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Abstract

The adaptation of populations to local environments often relies on the selection of beneficial

versions of polygenic traits. At the molecular level, this process corresponds to polygenic selection

models, in which many independent loci, often located in regulatory regions, experience subtle

shifts in frequency. Here, we first review the different approaches developed to detect signatures

of polygenic selection, their power and limitations. We then highlight the contribution of systems

biology to the understanding of the molecular bases of polygenic traits and the evolution of gene

regulatory networks involved in these traits. Finally, we discuss the need for a unifying framework

merging the fields of population genetics, quantitative genetics and systems biology to better

understand the molecular bases of polygenic traits adaptation.

Keywords: Quantitative traits, Polygenic selection, Gene regulatory networks, Systems Biology,

Adaptive evolution, Population genetics modelling

Highlights1

• In many species, adaptation of populations to local environment relies on traits that have a2

polygenic architecture.3

• Statistical approaches have been developed recently to specifically detect different aspects of4

the weak genomic signatures left by directional polygenic selection.5

• Genome-wide scans for selection have revealed that polygenic selection is a driving force of6

local adaptation and disproportionately targets regulatory regions, hinting for an important7

role of gene regulatory networks in evolution.8

• Gene regulatory network inference helps identifying and grouping together genes and regu-9

latory elements that participate to the same biological processes.10
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• The topology of gene regulatory elements put constraints on which genes and regulatory11

regions can be leveraged by polygenic selection.12

Local adaptation of polygenic traits: the importance of regulatory regions13

Many adaptive phenotypes – i.e. phenotypes involved in adaptation to local environments – are14

polygenic (see Box 1). Also called quantitative or complex traits, these phenotypes are determined15

by multiple genes and regulatory loci. This complex genetic architecture has strong implications16

on how these traits evolve. If these traits are under selection (either stabilising or directional), the17

underlying genetic model will be a model of polygenic selection, i.e. subtle shifts in frequencies at18

many independent loci coding for each adaptive trait [1–3]. This is for example the case for height,19

immune response, and metabolism in humans [4, 5], flowering time, and stress response in plants,20

[6–8], or pathogenicity in yeast [9]. Moreover, in humans, a lot of disorders such as autoimmune21

diseases and metabolic disorders are considered to be consequences of past adaptation of polygenic22

traits to changes in local environments, such as pathogens or lifestyle transition [10, 11]. Being23

able to detect polygenic adaptation is thus important not only to understand the evolution of24

polygenic traits, but also the origin of many human diseases.25

Our apprehending of the effects of directional selection on polygenic traits at the molecular26

level has strongly improved in the past ten years. QTL and genome-wide association studies27

(GWAS), have led to the identification of genetic variants associated with these polygenic traits,28

which were located overwhelmingly in non-coding regions [12, 13] – up to 90% in some species29

– highlighting the importance of regulatory regions. Population genetics studies, leveraging the30

ever growing number of genomic data sets available and the improvements in genomic functional31

annotation have confirmed that local adaptation often relies on selection of mutations located in32

regulatory regions that impact gene expression levels [9, 14]. This has spurred efforts to develop33

population genetic approaches to detect signatures of selection beyond coding genomic regions.34

Independently, these results helped creating new theoretical models, in which polygenic traits35

result from a complex interplay of regulatory relationships between genes and different molecular36

actors at the cellular level. This led to the development of systems biology models aiming at37

understanding how these regulatory relationship evolve under directional selection, which brought38

new clues to understand the molecular bases of polygenic traits adaptation to local environments.39
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Detecting genomic signatures of polygenic selection: an ongoing quest40

During the past few years, population geneticists have attempted to develop approaches to41

detect signatures of polygenic selection on genomic data. The first difficulty is to identify the type42

of signatures that one must look for. For this purpose, models have been developed to investigate43

the expected impact of polygenic adaptation on population genomic data [3, 15–19] (see Box 2).44

They assume additive and/or epistatic interactions among loci. These studies have shown mainly45

that polygenic adaptation is likely to yield subtle frequency shifts at the genes involved in the46

polygenic trait: polygenic adaptation events target several mutations simultaneously and leave47

weak molecular signatures on the genome [20]. Recently, Hollinger and colleagues have however48

shown that the type of genomic signature observed ranges from sweeps (either total or partial) to49

subtle frequency shifts, depending on the population-scaled mutation rate [3].50

Methods to detect genomic signatures of polygenic selection events have mainly focused on51

combining signatures of positive selection across sets of mutations that are defined a priori as likely52

candidates for adaptive pressures. In particular, some studies have proposed to group mutations for53

which allele frequencies correlate with specific ecological variables [4, 21]. These approaches, while54

powerful, require access to past and present environmental data for the populations under study,55

which are often difficult to obtain. Other approaches use gene pathways and information about56

biological functions or GWAS results to group mutations together [5, 8, 22]. The first approach57

consists in investigating whether known pathways or gene sets are particularly enriched in selection58

signals [5], with many loci exhibiting a high level of genetic differentiation among populations. A59

recently developed related approach looks for local subnetworks under strong differentiation [23].60

The second approach consists in testing whether a known trait has been submitted to divergent61

selection [22, 24–26]. These methods require that previously performed genome-wide association62

studies (GWAS) are available, which have detected loci associated with the traits and estimated63

their additive effect on these traits. This allows computing the polygenic score of the genotyped64

individuals in the studied populations, which can then be compared to what is expected under65

genetic drift only. Because they rely on already existing GWAS studies, these methods cannot be66

used blindly on the genome.67

On the other hand, other methods have focused on scanning the genome in order to detect loci68

with high level of differences in allele frequencies among populations, without a priori grouping69

mutations. This is the case for example of the SDS approach [27], OutFLANK [28] and PCAdapt70
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[29]. These genome-scan methods can be used blindly on the genome, however they were mainly71

developed in a context of strong selection on a single locus and simulation studies have shown that72

their efficiency for detecting loci evolving under polygenic selection is rather limited [30, 31].73

Shortcomings of polygenic selection detection approaches74

The shortcomings of existing approaches to detect polygenic selection have been extensively75

discussed in recent papers [32–35] that have raised several caveats concerning the results of these76

polygenic selection tests. The first set of caveats are technical and relate primarily to GWAS-based77

results: if not correctly taken into account, a hidden population structure in the samples used for78

GWAS can lead to the false detection of directional polygenic selection signal on the trait under79

study. This has been demonstrated for height in European human populations [34, 35]. Similarly,80

GWAS ascertainment biases can confuse selection signals [36]. Transferring GWAS results across81

time and space can also lead to misidentification of causal mutations, the impact of which on the82

selection tests is uncertain.83

The last set of caveats relates to the interpretation of test results. They include the potential84

existence of gene x environment interactions and the poorly known interactions between traits85

[32], both of which can hide the selection signals or inverse the direction of selection. Finally,86

an important part of the selection signals might be lost in current studies because a fundamental87

component of the genetic architecture of polygenic traits is often minimized or totally ignored:88

epistatic interactions [37]. On this topic, Payne and colleagues recently highlighted the impor-89

tance of studying the topography of the adaptive landscape and, in particular, the exceptional90

characteristics of gene expression regulatory networks in terms of epistasic interactions, pleiotropy91

and robustness [38].92

To this list of caveats, we can add another one: while carrying the majority of the genetic93

variation associated with polygenic traits, the regulatory regions are a blind spot of the methods94

designed to detect polygenic selection described above. These approaches, which combine signa-95

tures of positive selection across loci associated to a given trait, often only target genes, completely96

ignoring regulatory regions. The recently developed approaches based on GWAS results include97

some genetic variants from regulatory regions. However, because they only include the variants98

that are statistically significantly associated to the phenotype at the genome-wide level, they miss a99

good part of the genetic bases of polygenic phenotypes – the famous “missing heritability” [39, 40].100
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On the other hand, blind genome-wide scans have detected the signatures of polygenic selection101

in regulatory regions. Several studies have indeed revealed an enrichment in positive selection sig-102

nals among cis-regulatory elements and expression QTLs [41–43]. However, the lack of functional103

annotation of these regions often prevents identification of targeted phenotypes, beyond general104

results of Gene Ontology enrichment assays.105

In short, despite recent advances in polygenic selection signature testing, several difficulties106

persist. While the technical caveats point to the need to carefully consider potential confounding107

effects and to assess the sensitivity and specificity of polygenic selection tests, most of the difficul-108

ties in interpreting polygenic selection tests can be explained by the “genomic only” approaches109

used in these tests. These difficulties indeed arise from our limited knowledge of the true genetic110

architecture and molecular bases of polygenic traits. These traits are determined by various reg-111

ulatory regions, and depend on a complex interplay between different actors that are expressed112

following a rigid spatio-temporal framework. Ignoring these features makes it difficult to interpret113

results of polygenic selection tests, and to identify the biological functions and traits potentially114

under polygenic selection.115

Embracing the Complexity: Contributions from Systems Biology116

Organizing and integrating information from diverse sources and understanding how polygenic117

phenotypes are generated from the genome at different levels, from the cell to the organism, is the118

core of systems biology [44]. The rise of this research field initiated a switch in the perception of119

the molecular bases of polygenic traits, from a gene-first to an interaction-first model. Quantita-120

tive genomics apprehends indeed the molecular bases of polygenic phenotypes as a collection of121

independent genes, each coding for a fraction of the phenotype, with potentially some interactions.122

Conversely, systems biology focuses primarily on these interactions, modelling the regulatory rela-123

tionship between genes, their regulators and their products. During the past twenty years, buoyed124

by the availability of high-throughput data, numerous approaches have been developed to model125

these regulatory relationships and to efficiently deal with their complexity. In particular, the126

representation of these relationships as Gene Regulatory Networks (GRNs), which gather tens to127

thousands of genes, has allowed better understanding the molecular bases of polygenic traits [45].128

From the systems biology point of view, understanding the molecular bases of polygenic se-129

lection consists, therefore, in deciphering how regulatory interactions among genes evolve under130
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constraints. Models have been developed to study how GRNs evolve, which explicitly simulates131

these interactions. Initially developed by Wagner, they model gene networks through a matrix132

whose coefficients determines how each gene regulates each other and itself [46, 47]. These co-133

efficients vary among individuals and can evolve through mutations that change the regulatory134

relationships between genes. Each matrix leads to a given level of expression of each locus. Selec-135

tion will occur through the assumption that there is an optimal level of expression for each gene.136

This model was first developed to study the evolution of gene duplications [46].137

It allowed then discovering some properties of GRN evolution. One of the major results is138

the demonstration that, under stabilizing selection, network evolves toward a state where a single139

mutation becomes less likely to reduce the fitness of the individuals [47], a phenomenon called140

canalisation [48]. This insensitivity to mutations becomes stronger when the number of connections141

in the network increases [49] or when phenotypic optima become more extreme [50]. Conversely,142

this robustness of the network promotes the accumulation of hidden loss-of-function mutations,143

which can then accelerate adaptation in a changing environment [51].144

GRN evolution models have also helped better understanding how the structure of these GRNs145

impacts the individual response of each gene to selection, as a function of selection intensity and146

distance between the current phenotype and the optimal one. Genes that are more upstream in147

the network (i.e. strongly regulating the other genes and/or less regulated by them) are more148

affected by selection [52]. This could explain the empirical observation that transcription factors149

are evolving faster than the other genes [53].150

Impact of GRN structure on architecture of polygenic selection151

Understanding the evolution of GRNs that underlies polygenic phenotypes is currently a hot152

topic in evolutionary biology. The various scenarii of GRN evolution observed have been summa-153

rized for animals, insects [54] and plants [55]. Modifications of GRNs seems to be frequent during154

speciation [56] and domestication [57, 58], and can lead to dramatic changes in developmental155

patterns and other polygenic phenotypes. Moreover, there are many examples of directional and156

polygenic selection events affecting the gene regulatory networks [8, 9, 43, 59]. The analysis of157

cellular GRN and their evolution has led to hypotheses about how polygenic selection can act,158

and how gene regulatory network structure might facilitate or constrain it. Three GRN features159

are worthy of attention in this context: redundancy, modularity, and their scale-free property (see160
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Figure 1 and Box 3).161

Redundancy is a characteristics of GRNs that ensures stability of gene expression, buffers noise162

and ensures phenotype robustness to random mutations that may cause gene inactivation [50, 60].163

It has been shown also to facilitate polygenic adaptation. For example, an evolution experiment in164

Drosophila showed phenotypic convergence in response to a temperature change in ten populations,165

while the genetic analysis revealed that different pathways were targeted by polygenic selection166

in each replicate [61]. Redundancy of GRNs thus facilitated polygenic selection by increasing167

the number of available targets to reach the optimum phenotype (see Figure 1B). However, this168

polygenic selection will be difficult to detect, as it will potentially affect different pathways among169

populations confronted to the same constraints.170

GRNs are also highly modular, i.e., made of small groups of genes strongly interconnected with171

each other but only loosely connected to the rest of the network, thus constituting a module. It172

has been proposed, in the omnigenic model, that as all genes are seemingly interconnected within173

the GRN, each trait might be influenced by all genes [40]. Theoretically, such extreme generalized174

pleiotropy – property of a gene that influences several, apparently unrelated traits – would severely175

constrain the possibility for polygenic selection to act, because it could not modify a given trait176

without influencing all the others. However, the modularity of GRNs can mitigate this effect.177

Indeed, in each module, only a few genes are connected with genes from other modules. Most178

genes in a module are thus isolated from the rest of the network and can be leveraged by polygenic179

selection (see Figure 1A).180

Finally, GRNs tend to be scale-free, i.e. there are many more genes that are connected to181

only a few other genes than there are genes connected to lots of other genes [62] (see Figure 1B).182

This has been shown on various types of networks [45, 62, 63]. As confirmed by observations on183

molecular data (transcriptomics or proteomics), the level of connection of a gene in a network is184

inversely correlated with its level of genetic diversity [64–66]. This means that the handful of highly185

pleiotropic genes at the center of these networks often evolve under strong negative selection and186

present few variations of expression among individuals. Conversely, the vast majority of genes are187

at the periphery of the network, involved in only one or few pathways. Changes in their regulation188

will, therefore, only very slightly affect the other pathways (see Figure 1A and B). This leaves189

open a large field full of candidates for polygenic selection to act on, both at the level of the gene190

sequence and the gene regulatory elements, while limiting the potential side effects of selection on191
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other pathways.192

Polygenic selection and GRNs: advantages and limits193

Theoretical models of GRNs combined with results on real data sets allow better understanding194

the molecular bases of polygenic phenotypes and their evolution. They also help understanding195

where and how polygenic selection can act, and where to look for genomic signatures of selection.196

However, the models often focus on the evolution of unipartite networks of genes interacting197

with each other, thus overlooking important features that would be useful to get a complete198

picture of how polygenic selection can impact GRNs. First, despite the evidences for pervasive199

polygenic selection targeting regulatory mutations [9], theses models do not include explicitly200

how modifications in non-coding regulatory regions, such as enhancers, can impact the expression201

level of several genes at once, while not modifying their interactions. An important source of202

polygenic trait variation and evolution is thus not taken into account. Some current approaches203

integrate heterogeneous data using multipartite networks, in order to identify not only gene-gene204

regulatory interactions but also interactions between regulatory regions and genes [45, 67, 68].205

These approaches could serve as bases for the development of new GRN evolution models. Second,206

most studies on GRN evolution do not model individual nucleotides. Consequently, they allow to207

study questions such as redundancy, pleiotropy and canalisation, but not to dissect the genetic208

bases of evolution, and to understand the genomic signatures that may be expected in different209

polygenic selection scenarios.210

Concluding Remarks and Future Perspectives: towards systems population genetics211

In order to detect polygenic selection and to disentangle the impact of several confounding fac-212

tors, we need to better understand not only the genetic architecture of polygenic traits, but also213

their molecular architecture. A new integrative evolutionary framework becomes quite indispens-214

able, which would take this architecture into account, in particular its redundancy and the fact that215

two selective events in the same population might not lead to the same selection scenario at the216

molecular level [69]. Here, we argue that, in order to achieve such a unifying framework, we need217

not only to identify which genes and pathways contribute to polygenic traits, and how redundant218

they are, but also investigate the complex regulatory interactions that govern their expression (see219

Outstanding Questions). In particular, we need to take into account how the genomic regulatory220

8



regions impact the expression of these traits. We should focus on the crucial post-trancriptional221

regulatory steps, on the gene-gene interactions, and maybe more importantly, on the position of222

these genes in the cellular gene regulatory network. All of this could be achieved by combining223

population genomics and system biology approaches.224

Outstanding Questions225

• Redundancy allows for the selection of the same version of a trait through the selection of226

genetic variants in different pathways. Do we observe this phenomenon at the scale of the227

population? In that case, which molecular signatures do such evolutionary processes leaves228

on the genome and how can we detect them?229

• Pleiotropy is a major property of gene regulatory networks actors that constrains how poly-230

genic selection acts. Genes are often involved in several distinct pathways. What is the level231

of pleiotropy of the regulatory elements, in particular of the distal ones such as enhancers232

and how does it constrain their evolution?233

• Classical population genetics approaches model the evolution of genetic sequences but ignore234

their complex interactions in gene regulatory networks. On the other hand, gene regulatory235

networks model the evolution of these regulatory relationships but not their genetic bases.236

Will more integrated approaches that explicitly model the molecular evolution of regulatory237

regions in the context of gene regulatory networks improve our understanding of the molecular238

bases of local adaptation?239

• Selection on polygenic traits yields linkage disequilibrium among genes involved in the traits,240

at the within- and among-population levels [15]. How do regulatory interactions affect this241

linkage disequilibrium? Can it be used to detect polygenic selection?242

• GWAS-based method aiming at detecting polygenic selection use the additive effect of each243

gene on the trait. Could the interaction (dominance, epistasy) between these genes also be244

integrated in these approaches?245
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Box 1. Genetic architecture of traits: from the Mendelian to the omnigenic model246

Polygenic traits have been the focus of many theoretical and empirical studies since Fisher’s247

seminal model of polygenic inheritance, which bridged the gap between the Mendelian inheritance248

model and the observation of continuous traits. This model suggests that the apparent continuity249

of many phenotypic traits can be explained if multiple genes contribute additively to these traits250

[70]. Classic genetic studies, recent advances in quantitative genetics and genome-wide association251

studies (GWAS) have demonstrated the existence of a continuum of genetic architectures for252

traits, in many organisms including yeast, insects, worms, plants and mammals [39, 71–73]. These253

architectures range from the Mendelian model, where a trait is determined by a single gene (e.g.254

ABO blood groups in primates, Mendel’s peas color and shape) to the infinitesimal model [74]255

where a seemingly infinite number of loci are involved in the determinism of a trait (e.g. height,256

in both humans and plants [24, 75]). This last concept has been highlighted in a recent paper257

[40] that labelled it the ’omnigenic’ model. In between, we find a myriad of traits that present258

an oligogenic or polygenic determinism, such as flowering time in plants, tolerance to ethanol in259

yeasts or susceptibility to diabetes in humans [75–78].260

Box 2. Polygenic selection261

Polygenic selection consists in natural or artificial selection occurring on a trait coded by several262

loci. Under this framework, even when the phenotypic optimum differs strongly from the current263

average phenotype, populations can evolve toward this optimum without substantial changes in264

allelic frequencies [15]. Indeed, each locus can undergo only swift changes in these frequencies,265

while allelic associations will appear among the different loci, allowing to reach the phenotypic266

optimum. In this case, methods aiming at detecting signals of selective sweeps such as iHS [79]267

or nSL [80] will probably not detect any signal, as no locus is undergoing a strong shift in allelic268

frequencies. Note, however, that this will depend on the number of loci involved in the trait: if269

this number is low, each locus will respond more strongly in terms of allelic frequencies changes270

and some might be detected. Moreover, if among the loci coding for the trait, some are major loci271

with a high contribution to genetic variance, these loci are more likely to be affected by a strong272

shift in allelic frequencies [16, 17], and thus to be detected by selective sweeps tests.273

Other approaches modeled the fate of a locus coding for a given trait, while all other loci274

coding for this trait were treated as background genetic variance [18]. They find that a selective275
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sweep will be observed in some cases at the focal locus, depending upon its relative variance as276

compared to the background loci and also upon the shape of the selection function. In a model that277

considered also epistatic interactions, Hollinger and colleagues then showed that the probability of278

observing a sweep at a locus involved in a quantitative trait will depend mainly on a parameter279

called the population-scaled background mutation rate Θbg, i.e. the product of the effective size of280

the population by the total mutation rate of all background loci [3]. Low values for Θbg will lead281

to the occurrence of selective sweeps at the focal locus, while high values will yield small polygenic282

allele frequency shifts. Several partial selective sweeps will be observed for intermediate values.283

Box 3. Gene Regulatory Networks284

Gene Regulatory Networks (GRNs) describe a collection of molecules that interact together to285

regulate the level of expression of genes, both as mRNA and proteins. These regulatory relation-286

ships can be direct or indirect, for example when a transcription factor increases another protein287

level through the activation of its coding gene transcription.288

GRNs are often represented as graphs, mathematical objects that represent the elements289

(nodes) and the interactions between elements (edges). They can include one type of elements290

such as proteins (unipartite graphs), or several types of elements such as transcription factors, reg-291

ulatory mutations and mRNAs (multipartite graphs). The study of the topology of these graphs292

allows better understanding how the elements interact together and how GRNs evolve.293

GRNs, whether in yeasts, insects, plants or mammals, show some shared topological charac-294

teristics. Most importantly, they are scale-free. This means that very few of the nodes within the295

network are connected to many others — the key or master regulators – while most of the nodes296

are connected only to a few other nodes (see Figure Figure 1B). GRNs are also highly modular,297

i.e. organized into groups of nodes that are strongly interconnected but only loosely connected to298

the rest of the network, thus constituting a module. The modules often correspond to biological299

pathways.300

The topology of the network also seems to constrain the evolutionary history of each node. In301

GRNs, the handful of high-degree genes, i.e. connected to many other genes, are often known to302

be pleiotropic, involved in many pathways, and to be very constrained [64], evolve under strong303

negative selection and present few variations of expression among individuals. Conversely, periph-304

erical genes, which are only connected to few other genes, are often included in only one pathway.305

11



They are also more likely to evolve under positive selection.306
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Figure 1: Impact of gene regulatory network structure on selection action. (A) Modular structure of a gene

regulatory network. Genes are represented as circles and edges represent regulatory relationship between gene

products. Genes are colored by topological characteristics: high degree genes in red, high core-score genes in yellow

and others in white. The network is structured into modules, i.e. groups of genes that regulate each others. These

modules often correspond to biological functions. Topological characteristics of gene regulatory networks such as

redundancy (several modules involved in the regulation of the same biological functions) and pleiotropy (genes

involved in the regulation of several biological functions) are highlighted. (B) Expected power law distribution of

the node degree in q gene regulatory network.
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Figure 2: Proposition for a new integrated framework to detect signatures of polygenic selection. Genes and

regulatory regions in blue present signatures of selection.
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