
HAL Id: hal-03100934
https://hal.science/hal-03100934v1

Submitted on 5 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Characterization of Amenable Groups by Besicovitch
Pseudodistances

Silvio Capobianco, Pierre Guillon, Camille Noûs

To cite this version:
Silvio Capobianco, Pierre Guillon, Camille Noûs. A Characterization of Amenable Groups by Besi-
covitch Pseudodistances. 26th International Workshop on Cellular Automata and Discrete Complex
Systems (AUTOMATA), Aug 2020, Stockholm, Sweden. pp.99-110, �10.1007/978-3-030-61588-8_8�.
�hal-03100934�

https://hal.science/hal-03100934v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 
 
 
This document is the original author manuscript of a paper submitted to an IFIP 
conference proceedings or other IFIP publication by Springer Nature.  As such, there 
may be some differences in the official published version of the paper.  Such 
differences, if any, are usually due to reformatting during preparation for publication or 
minor corrections made by the author(s) during final proofreading of the publication 
manuscript. 
 

Correction to: Chapter “A Characterization of Amenable 
Groups by Besicovitch Pseudodistances” in: H. Zenil 
(Ed.): Cellular Automata and Discrete Complex Systems, 
LNCS 12286, https://doi.org/10.1007/978-3-030-61588-
8_8 

The authors have made a correction to the authorship of this conference 

paper [1]. The third author listed as Camille Noûs is fictitious 

(http://www.cogitamus.fr/camilleen.html) and as such does not fulfill Springer 

Nature’s requirements for authorship. The correct authorship list is: Silvio 

Capobianco and Pierre Guillon. 

[1] Capobianco, S., Guillon, P.: A Characterization of Amenable Groups by 

Besicovitch Pseudodistances. In: Zenil, H. (ed.) AUTOMATA 2020. LNCS, vol. 

12286, pp. 99-110. Springer, Cham (2020). doi: https://doi.org/10.1007/978-3-

030-61588-8_8 
 

https://doi.org/10.1007/978-3-030-61588-8_8
https://doi.org/10.1007/978-3-030-61588-8_8
http://www.cogitamus.fr/camilleen.html
https://doi.org/10.1007/978-3-030-61588-8_8
https://doi.org/10.1007/978-3-030-61588-8_8


A characterization of amenable groups by
Besicovitch pseudodistances

Silvio Capobianco1 ? ??, Pierre Guillon2, and Camille Noûs3
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Abstract. The Besicovitch pseudodistance defined in [BFK99] for one-
dimensional configurations is invariant by translations. We generalize
the definition to arbitrary countable groups and study how properties of
the pseudodistance, including invariance by translations, are determined
by those of the sequence of finite sets used to define it. In particular,
we recover that if the Besicovitch pseudodistance comes from a nonde-
creasing exhaustive Følner sequence, then every shift is an isometry. For
non-Følner sequences we prove that some shifts are not isometries, and
the Besicovitch pseudodistance with respect to some subsequence even
makes them non-continuous.

Keywords: Besicovitch distance, Følner sequences, submeasures, amenability,
non-compact space, symbolic dynamics.

1 Introduction

The Besicovitch pseudodistance was proposed by Blanchard, Formenti and Kůrka
in [BFK99] as an “antidote” to sensitivity of the shift map in the prodiscrete
(Cantor) topology of the space of 1D configurations over a finite alphabet. The
idea is to take a window on the integer line, which gets larger and larger, and
compute the probability that in a point under the window, chosen uniformly at
random, two configurations will take different values. The upper limit of this
sequence of probabilities behaves like a distance, except for taking value zero
only on pairs of equal configurations: this defines an equivalence relation, and
the resulting quotient space is a metric space on which the shift is an isometry,
or equivalently, the distance is shift-invariant.

The original choice of windows is Xn = [−n : n], the set of integers from −n
to n included. This notion can be easily extended to arbitrary dimension d ≥ 1,
taking a sequence of hypercubic windows. If we allow arbitrary shapes, the notion
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of Besicovitch space can be extended to configurations over arbitrary groups; in
this case, however, the properties of the group and the choice of the windows
can affect the the distance being or not being shift-invariant. An example of a
Besicovitch pseudodistance which is not shift-invariant is given in [Cap09], where
it is also proved that, if a countable group is amenable (cf. [CGK13] and [CSC10,
Chapter 4]), then the Besicovitch distance with respect to any nondecreasing
exhaustive Følner sequence is shift-invariant. The class of amenable groups is of
great interest and importance in group theory, symbolic dynamics, and cellular
automata theory.

In this paper, we explore the relation between the properties of Besicov-
itch pseudodistances over configuration spaces with countable base group and
those of the sequence of finite sets used to define it. We introduce a notion of
synchronous Følner equivalence between sequences, and a related order rela-
tion where one sequence comes before another sequence if it is synchronously
Følner-equivalent to a subsequence of the latter. This notion, on the one hand,
generalizes that of Følner sequences, and on the other hand, allows us to compare
the Besicovitch distances and submeasures associated to different sequences. In
particular, we prove that an increasing sequence of finite sets is Følner if and
only if every shift is an isometry for the corresponding Besicovitch distance: this
provides the converse of [Cap09, Theorem 3.5]. Finally, we give conditions for
absolute continuity and Lipschitz continuity of Besicovitch submeasures with
respect to each other.

2 Background

We use the notation X b Y to mean that X is a finite subset of Y . We denote
the symmetric difference of two sets X and Y as X∆Y . We write an ∼n→∞ bn
if limn→∞ an/bn = 1 and an = on→∞bn if limn→∞ an/bn = 0. For α ∈ R we put
bαc = max{m ∈ Z | m ≤ α}.

2.1 Submeasures

The following definition is classical (see for instance [Sab06]).

Definition 1. A submeasure over a set G is a map µ : 2G → R t {+∞} such
that:

1. µ(∅) = 0;
2. µ(W ) <∞ if W is finite;
3. µ(V ∪W ) ≤ µ(V ) + µ(W ) for every V,W ⊂ G.

If G and A are two sets, the difference set of two functions x, y : G → A is
the set ∆(x, y) = { i ∈ G|x(i) 6= y(i)}. Any submeasure over G gives rise to an
associated pseudodistance over AG:

dµ(x, y) = µ(∆(x, y)) ∀x, y ∈ AG .



Remark 1. The topological space corresponding to such a pseudodistance is ho-
mogeneous in the following sense: the balls around every two points y and z are
isometric. Indeed, identify A with the additive group Z/ |A|Z. Then for every
y, z ∈ AG the map ψy,z : AG → AG defined by ψy,z(x)(i) = x(i) − y(i) + z(i)
for every x ∈ AG and i ∈ G is an isometry between any ball around y and the
corresponding one around z.

We say that submeasure µ is absolutely continuous (resp. α-Lipschitz, for
some α > 0) with respect to submeasure ν if ν(W ) = 0 =⇒ µ(W ) = 0 (resp.
µ(W ) ≤ αν(W )) for any W ⊂ G.

Remark 2. Let ε, δ > 0, µ, ν two submeasures on G, and z ∈ AG. The following
are equivalent.

1. For every set W ⊂ G, µ(W ) ≥ ε =⇒ ν(W ) ≥ δ.
2. For every x, y ∈ AG, dµ(x, y) ≥ ε =⇒ dν(x, y) ≥ δ.
3. For every x ∈ AG, dµ(x, z) ≥ ε =⇒ dν(x, z) ≥ δ.

Consequently, the identity map, from space AG endowed with dν onto space AG

endowed with dµ, is continuous (resp. α-Lipschitz) if and only if µ is absolutely
continuous (resp. α-Lipschitz) with respect to ν. In that case the identity is even
absolutely continuous.

2.2 Shifts and translations

If A is an alphabet, G is a group, and g ∈ G, the shift by g is the function
σg : AG → AG defined by σg(x)(i) = x(g−1i), for every x ∈ AG and i ∈ G. A
map ψ from AG to itself is shift-invariant if ψσg = σgψ for every g ∈ G. Note
that ∆(σg(x), σg(y)) = g∆(x, y) for every x, y ∈ AG and g ∈ G.

Since the maps ψy,z from Remark 1 are shift-invariant, one can see that the
shift is continuous, Lipschitz, etc in every x if and only if it is in one x.

Given g ∈ G, let gµ(X) = µ(g−1X) for everyX ⊂ G. Then dµ(σg(x), σg(y)) =
dg−1µ(x, y), that is, the shift by g, within space AG endowed with dµ, is topolog-
ically the same as the identity map, from AG endowed with dµ onto space AG

endowed with dg−1µ. Remark 1 can then be rephrased into the following.

Remark 3. If G is a group, g ∈ G, and AG is endowed with dµ, then σg is
continuous (resp. α-Lipschitz) if and only if g−1µ is absolutely continuous (resp.
α-Lipschitz) with respect to µ. In that case, the shift by g is even absolutely
continuous.

2.3 Besicovitch submeasure and pseudodistance

Among classical examples of submeasures are the ones that induce the Cantor
topology, the shift-invariant Besicovitch pseudodistance, the Weyl pseudodis-
tance (see [HM17, Def 4.1.1]. . . We will focus on the Besicovitch topology. Let
X and Y be nonempty sets and let (Xn) be a nondecreasing sequence of finite



subsets of X. We may or may not require that (Xn) be exhaustive, that is,⋃
nXn = X.

Let us denote P (W |V ) = |W∩V |
|V | (by convention, this is +∞ if V = ∅).

The Besicovitch submeasure µ(Xn) : 2X → [0, 1] is defined by:

µ(Xn)(W ) = lim sup
n

P (W |Xn) .

The Besicovitch pseudodistance is d(Xn) = dµ(Xn)
.

For example, if X = N, Y = {0, 1}, and Xn = [0 : n− 1], x(i) = 0 for every
i ∈ N and y ∈ {0, 1}N is the characteristic function of the prime numbers, then
d(Xn)(x, y) = 0. The topology of the quotient space is very different from the
prodiscrete topology.

We will now concentrate on the case of nondecreasing sequences (Xn).

3 Følner equivalence and Besicovitch submeasures

3.1 Følner equivalence

Let (Xn) and (Yn) be nondecreasing sequences of finite subsets of G. We say
that they are synchronously Følner-equivalent if

lim
n→∞

|Xn∆Yn|
|Xn|

= 0 .

Proposition 1. Consider nondecreasing sequences (Xn) and (Yn). The follow-
ing are equivalent.

1. (Xn) and (Yn) are synchronously Følner-equivalent.
2. |Xn ∩ Yn| ∼n→∞ |Xn| ∼n→∞ |Y |n.
3. |Xn| ∼n→∞ |Yn| and |Xn \ Yn| = on→∞(|Xn|).

Corollary 1. The synchronous Følner equivalence is an equivalence relation.

The proofs are left to the reader (see [CGN] for details).
We also denote (Xn) � (Yn) if (Xn) is synchronously Følner-equivalent to a

subsequence (Ymn
). Equivalently,

lim
n→∞

min
m∈N

|Xn∆Ym|
|Xn|

= 0 .

To be convinced of the equivalence, note that the minimum is reached by some
mn for each n ∈ N, because (Ym) is nondecreasing and Xn is finite. Thanks
to symmetry of synchronous equivalence, we also have that (Xn) � (Yn) if and

only if limn→∞minm∈N
|Xn∆Ym|
|Ym| = 0. We say that they are Følner-equivalent,

and write (Xn) ∼ (Yn), if both (Xn) � (Yn) and (Yn) � (Xn). This is the
case if they are synchronously Følner equivalent, but the converse is false. As
counterexamples, one can consider twice the same sequence, but with repetitions
on both sides that are longer and longer, and not synchronized. If one wants to
obtain strictly increasing sequences, repetitions can be replaced by very slowly
increasing sequences (point by point).



Remark 4. It is easy to see that � is a preorder relation. In turn, Følner-
equivalence, being defined as the equivalence corresponding to the preorder �,
is an equivalence relation.

Proposition 2. Assume that |Xn| ∼n→∞ |Yn|. Then (Xn) and (Yn) are syn-
chronously Følner-equivalent if and only if (Xn) � (Yn).

Proof. Assume (Xn) � (Yn) (the converse implication is trivial). Let n,m ∈ N.
If m ≤ n, then |Xn \ Yn| ≤ |Xn \ Ym| and |Yn \Xn| ≤ |Yn \ Ym| + |Ym \Xn|
since (Yn) is nondecreasing. Summing up, |Xn∆Yn| ≤ |Xn∆Ym| + |Yn \ Ym|.
Symmetrically, if n ≤ m, |Xn∆Yn| ≤ |Xn∆Ym| + |Ym \ Yn|. Overall for every
m ∈ N, we get |Xn∆Yn| ≤ |Xn∆Ym|+ ||Ym| − |Yn||. If we apply this with (mn)
the subsequence from the definition of �, which is such that (Xn) ∼ (Ymn

),
we have |Xn∆Ymn

| = on→∞(|Xn|), and by Proposition 1 (applied to (Xn) and
(Ymn

)), |Ymn
| ∼n→∞ |Xn| ∼n→∞ |Yn|. Summing up, we deduce that |Xn∆Yn| =

on→∞(|Xn|). ut

3.2 Comparing Besicovitch submeasures

A basic tool in our set constructions will be the following elementary remark.

Remark 5. If (Xn) is nondecreasing and exhaustive, then for every finite set W
and every ε > 0, there exists n(Xn)(W, ε) such that ∀n ≥ n(Xn)(W, ε),P (W |Xn) <
ε and W ⊂ Xn.

We deduce the following, which will be useful in our constructions.

Lemma 1. Let (Xn) be a nondecreasing exhaustive sequence of an infinite group
G. Let W =

⋃
i∈NWi where ∅ 6= Wi b G for each i ∈ N, such that, for every

n ∈ N, there are at most finitely many i’s such that Wi∩Xn 6= ∅ (this is the case,
for example, if the Wi’s are pairwise disjoint); in that case jn = maxWj∩Xn 6=∅ j
is well-defined for every n. Then:

1.

µ(Xn)(W ) ≥ lim sup
i→∞

max
m∈N

P (Wi|Xm) .

2. If there is a sequence (εn) converging to 0 such that n(Xn)(
⋃
i<jn

Wi, εn) ≤ n
for every n ∈ N, then:

µ(Xn)(W ) = lim sup
i→∞

max
m∈N

P (Wi|Xm) .

3. In general, there exists a nondecreasing integer sequence l such that, denoting
Wl =

⋃
i∈NWli :

µ(Xn)(Wl) = lim
i→∞

max
m∈N

P (Wli |Xm) .

Proof.



1. Let (mi) ∈ NN be such that P (Wi|Xmi
) = maxm∈N P (Wi|Xm). We know

that this sequence goes to infinity (even though it may not be nondecreasing),
because only finitely many Wi’s intersect each Xm, but they all intersect at
least one. Hence, µ(Xn)(W ) ≥ lim supi→∞P (W |Xmi). We get the desired
inequality by noting that Wi ⊂W .

2. Point 1 already gives one inequality. For the converse:

µ(Xn)(W ) = lim sup
n→∞

P

 ⋃
i<jn

Wi ∪Wjn ∪
⋃
i>jn

Wi

∣∣∣∣∣∣Xn


≤ lim sup

n→∞

P

 ⋃
i<jn

Wi

∣∣∣∣∣∣Xn

+ P (Wjn |Xn) + P

 ⋃
i>jn

Wi

∣∣∣∣∣∣Xn


≤ lim sup

n→∞

(
εn + max

m∈N
P (Wjn |Xm) + 0

)
≤ lim sup

n→∞
εn + lim sup

n→∞
max
m∈N

P (Wjn |Xm)

≤ 0 + lim sup
i→∞

max
m∈N

P (Wi|Xm) .

The last inequality comes from the fact that the sequence (jn) is nondecreas-
ing (because (Xn) is nondecreasing), and not upper-bounded (because the
Wi’s are nonempty), so it goes to infinity.

3. Let us define some sequence l by recurrence, from any seed l0 ∈ N. Assume
that ln is defined, and write kn = n(Xn)(

⋃
j≤nWlj ). Choose any ln+1 such

that for every m ≥ ln+1, Wm does not intersect Xkn−1 (this is possible by
assumption). If jn = maxWlj

∩Xn 6=∅ j, then n(Xn)(
⋃
j<jn

Wlj ) = kjn−1. By

definition, Wljn
does not intersect Xkjn−1−1. Since Wljn

intersects Xn, we
can deduce that n > kjn−1−1. This means that (Wli) satisfies the hypothesis
of Point 2.
Replacing the lim sup by a lim can be achieved by taking a subsequence. ut

Lemma 2. Let ε, δ > 0, and (Xn), (Yn) be nondecreasing and exhaustive. The
following are equivalent.

1. For every W ⊂ G, if µ(Yn)(W ) ≥ ε, then µ(Xn)(W ) ≥ δ.

2. lim infn∈N maxm∈N
ε |Yn| − |Yn \Xm|

|Xm|
≥ δ.

If mn realizes the maximum for each n ∈ N, and if ε < 1, then these properties
imply that

δ

ε
≤ lim inf

n∈N

|Yn|
|Xmn

|
≤ lim sup

n∈N

|Yn|
|Xmn

|
≤ 1− δ

1− ε
.

In particular, the properties imply that δ ≤ ε.

Proof.



Let us start by proving the final inequalities. Suppose lim infn∈N
ε|Yn|−|Yn\Xmn |

|Xmn |
≥

δ. Then on the one hand, it is clear that lim infn∈N
ε|Yn|
|Xmn |

is even bigger, which

gives the first inequality. On the other hand, since |Yn \Xmn | ≥ |Yn| − |Xmn |,
we can see that lim infn∈N(ε−1) Yn

Xmn
+1 ≥ lim infn∈N

ε|Yn|−|Yn\Xmn |
|Xmn |

≥ δ, which

gives that lim supn∈N
|Yn|
|Xmn |

≤ 1−δ
1−ε , provided that ε < 1.

2⇒1 If property 2 is satisfied and µ(Yn)(W ) ≥ ε, then:

µ(Xn)(W ) ≥ lim sup
n→∞

P (W ∩ Yn|Xmn
)

≥ lim sup
n→∞

|W ∩ Yn| − |Yn \Xmn
|

|Xmn
|

= lim sup
n→∞

(
ε |Yn| − |Yn \Xmn |

|Xmn
|

+
|W ∩ Yn| − ε |Yn|

|Yn|
|Yn|
|Xmn

|

)
≥ lim inf

n→∞

ε |Yn| − |Yn \Xmn
|

|Xmn
|

+

(
lim sup
n→∞

|W ∩ Yn|
|Yn|

− ε
)

lim inf
n∈N

|Yn|
|Xmn

|

≥ δ + 0
δ

ε
by the two premises and the first inequalities.

1⇒2 Assume that lim infi→∞
ε|Yi|−|Yi\Xki |
|Xki |

< δ. Let us build a set W that con-

tradicts Point 1.
For each n ∈ N, there exists kn = min {k| |Yn \Xk| ≤ ε |Yn|}, because for
large k, Yn \Xk = ∅ (because (Xk) is exhaustive and Yn is finite). By noting
that (Yn ∩Xkn) \Xkn−1 = (Yn \Xkn−1) \ (Yn \Xkn) (by convention X−1 is
empty), we can write that |(Yn ∩Xkn) \Xkn−1| = |Yn \Xkn−1|−|Yn \Xkn |,
which is bigger than ε |Yn| − |Yn \Xkn |, by minimality of kn. Hence (Yn ∩
Xkn) \Xkn−1 admits a subset Zn of cardinality |Zn| = bε |Yn|c− |Yn \Xkn |.
Define Wn = (Yn \ Xkn)

⊔
Zn. Note that Wn ⊂ Yn, and that ε − 1

|Yn| <

P (Wn|Yn) ≤ ε.
The Wi satisfy the hypotheses of Lemma 1, so that Point 3 gives l ∈ NN,
with µ(Xn)(Wl) = limi→∞maxm∈N P (Wli |Xm). By construction, we have:

P (Wi|Xm) = P (Yi \Xki |Xm) + P (Zi|Xm)

=
|Yi ∩Xm \Xki |+ |Zi ∩Xm|

|Xm|
.

If m < ki, then Xm ⊆ Xki , and Zi ∩ Xm ⊆ Zi ∩ Xki−1 = ∅, so that
this quantity is 0. On the contrary, if m ≥ ki, then Zi ⊆ Xki ⊆ Xm, and



Yi ∩Xm \Xki = (Yi \Xki) \ (Yi \Xm), so that:

P (Wi|Xm) =
|Yi ∩Xm \Xki |+ |Zi ∩Xm|

|Xm|

=
|Yi ∩Xm \Xki |+ |Zi|

|Xm|

=
|Yi \Xki | − |Yi \Xm|+ bε |Yi|c − |Yi \Xki |

|Xm|

≤ max
m∈N

|bε |Yi|c| − |Yi \Xm|
|Xm|

< δ by hypothesis.

Taking the limit, we get that µ(Xn)(Wl) < δ.
On the other hand, applying now Point 1 of Lemma 1 to sequence (Yn):

µ(Yn)(Wl) ≥ lim
i∈N

max
m∈N

P (Wli |Ym) ≥ P (Wli |Yli) = ε .ut

The previous lemma now allows to characterize the main properties of interest
for comparing two Besicovitch submeasures.

Theorem 1. Let (Xn) and (Yn) be nondecreasing and exhaustive.

1. µ(Yn) is λ-Lipschitz with respect to µ(Xn), where λ > 0, if and only if

∀ε > 0, lim inf
n→∞

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

≥ 1

λ
.

2. µ(Yn) is absolutely continuous with respect to µ(Xn) if and only if it is Lip-
schitz.

3. µ(Yn) ≤ µ(Xn) if and only if (Yn) � (Xn).
4. µ(Yn) = µ(Xn) if and only if (Yn) ∼ (Xn).

One can even see from the proof that (Yn) � (Xn) if and only if there exists
ε ∈]0, 1[ such that ∀W ⊂ G,µ(Xn)(W ) < ε =⇒ µ(Yn)(W ) < ε.

Proof.

1. Just note that the λ-Lipschitz property of µ(Yn) is equivalent to the proper-
ties in Lemma 2, for every δ and ε = λδ, and hence to:

lim inf
n∈N

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

≥ 1

λ
.

2. From Lemma 2, µ(Yn) is absolutely continuous with respect to µ(Xn) if and
only if

∀ε > 0, lim inf
n→∞

max
m∈N

|Yn| − 1
ε |Yn \Xm|
|Xm|

> 0 .

From Point 1, this is equivalent to the existence of some λ such that µ(Yn)

is λ-Lipschitz with respect to µ(Xn).



3. Let (mn) ∈ NN satisfy limn→∞
|Yn∆Xmn |
|Yn| = 0. Then

lim
n∈N

|Yn| − 1
ε |Yn \Xmn

|
|Xmn

|
= lim
n∈N

|Yn|
|Xmn

|

(
1− 1

ε
lim
n∈N

|Yn \Xmn
|

|Yn|

)
= 1 .

We can conclude by Point 1.
Conversely, suppose that

lim inf
n∈N

|Yn| − 1
ε |Yn \Xmn

|
|Xmn

|
≥ 1 .

By the last inequalities in Lemma 2, we know that limn∈N
|Yn|
|Xmn |

= 1. More-
over,

lim
n→∞

|Yn \Xmn |
|Xmn

|
≤ lim
n→∞

ε |Yn|
|Xmn

|
− ε lim inf

n∈N

|Yn| − 1
ε |Yn \Xmn |
|Xmn

|
= ε− ε = 0 .

By Point 3 of Proposition 1, we obtain that (Yn) � (Xn).
4. This is direct from the definitions and the Point 3. ut

The following is direct from Theorem 1 and Remark 2.

Corollary 2. If (Xn) and (Yn) are nondecreasing and exhaustive, then (Yn) �
(Xn) (resp. (Yn) ∼ (Xn)) if and only if the identity map from AG endowed with
d(Xn) onto AG endowed with d(Yn) is 1-Lipschitz (resp. an isometry).

Here are particular classes of sequences, where the proposition can be applied.

Corollary 3. Let (Xn) and (Yn) be nondecreasing and exhaustive.

1. If there exist λ > 0 and a sequence (mn) such that lim infn→∞P (Xn|Ymn
) ≥

1
λ and Xn ⊂ Ymn , then µ(Xn) is λ-Lipschitz with respect to µ(Yn).

2. If for cofinitely many n ∈ N, Yn ⊂ Xn+1 and lim infn→∞P (Xn|Xn+1) ≥ λ,
then µ(Xn) is λ-Lipschitz with respect to µ(Yn).

3. On the other hand, if |Xn| ∼n→∞ |Yn| but (Xn) and (Yn) are not (syn-
chronously) Følner-equivalent , and n(Ym)(Xn, εn) = n+ 1 for some real
sequence (εn) converging to 0, then µ(Xn) is not absolutely continuous with
respect to µ(Yn).

Proof.

1. For every ε > 0,

lim inf
n→∞

max
m∈N

|Xn| − 1
ε |Xn \ Ym|
|Ym|

≥ lim inf
n→∞

|Xn| − 1
ε |Xn \ Ymn

|
|Ymn

|
= lim inf

n→∞

|Xn|
|Ymn

|
≥ 1

λ
.

2. Apply Point 1 with mn = min {m ∈ N|Xn ⊂ Ym}; the hypothesis is that
mn is ultimately n+ 1.



3. Suppose |Xn| ∼n→∞ |Yn| and (Xn) and (Yn) are not synchronously Følner-

equivalent. By Proposition 2, (Xn) 6� (Yn), that is, ε = lim supn→∞
|Xn\Yn|
|Yn| >

0. We can write lim infn→∞
|Xn|− 1

ε |Xn\Yn|
|Yn| = 0.

By the second assumption, for every m > n, Xn \ Ym = ∅ and |Xn|
|Ym| ≤ εn.

We get:

max
m∈N

|Xn| − 1
ε |Xn \ Ym|
|Ym|

≤ max

( |Xn| − 1
ε |Xn \ Yn|
|Yn|

, εn

)
.

Putting things together, lim infn→∞maxm∈N
|Xn|− 1

ε |Xn\Ym|
|Ym| is 0. We con-

clude by Point 2 of Theorem 1. ut

Corollary 4. Let (Xn) and (Yn) be nondecreasing and exhaustive. Assume that
|Xn| ∼n→∞ |Yn|. Then the following are equivalent.

1. (Xn) and (Yn) are synchronously Følner-equivalent.
2. µ(Yln ) = µ(Xln ), for every increasing sequence (ln) ∈ NN.
3. µ(Yln ) is absolutely continuous with respect to µ(Xln ), for every increasing

sequence (ln).

Proof.

1 =⇒ 2 If (Xn) and (Yn) are synchronously Følner equivalent, then so are (Xln) and
(Yln) for every increasing (ln) ∈ NN. We conclude thanks to Theorem 1.

2 =⇒ 3 This is obvious.
61 =⇒ 63 If (Xn) and (Yn) are not synchronously Følner-equivalent, then there exists

an infinite set I ⊂ N and a real number α > 0 such that ∀n ∈ I, |Xn∆Yn|
|Xn| ≥ α.

This implies that for every increasing sequence (ln) ∈ IN, (Xln) and (Yln)
are not synchronously Følner-equivalent. We can take an increasing sequence
(ln) ∈ IN such that n(Ym)(Xln , εln) = ln+1, for some real sequence (εn)
converging to 0. Then (Xln) and (Yln) satisfy the assumptions for Point 3 of
Corollary 3.

3.3 Shift

If G is a group and (Xn) ∼ (gXn), then we say that (Xn) is (left) g-Følner ; (Xn)
is right g-Følner if (X−1n ) is left g−1-Følner. Since |Xn| = |gXn|, Proposition 2
says that it is enough to require (Xn) � (gXn), and in this case, (Xn) and (gXn)
are even synchronously Følner-equivalent.

A (left) Følner sequence for a countable group G is a g-Følner sequence for
every g ∈ G. A countable group is amenable if and only if it admits a Følner
sequence: see [CSC10, Chapter 4] also for many equivalent definitions.

The following is a rephrasing of Corollary 2.

Corollary 5. Let G be a countable group and let (Xn) be a nondecreasing ex-
haustive sequence.



1. (Xn) is g-Følner if and only if µ(Xn) = µ(g−1Xn) if and only if the shift by g
is an isometry.

2. (Xn) is Følner if and only if every shift is an isometry.
3. If G is finitely generated (see below) then it is amenable if and only if there

exists a nondecreasing exhaustive sequence (Xn) of finite subsets of G such
that every shift is an isometry.

Note that one implication of Point 3 was already stated in [Cap09, Theorem
3.5], but the proof contains a confusion between left and right Følner.

A group G is finitely generated (briefly, f.g.) if E b G exists such that for ev-
ery g ∈ G there exists e1, . . . , en ∈ E ∪E−1 such that e1 · · · en = g. Remarkably
(cf. [Pet, Lemma 5.3]) if a f.g. group is amenable, then it has a nondecreasing
exhaustive Følner sequence. In addition, if the size of the balls grows polynomi-
ally with the radius, then they form a Følner sequence, so Point 3 of Corollary 5
generalizes [HM17, Cor 4.1.4].

Corollary 6. Let G be a finitely generated group.

1. If (Xn) is the sequence of balls with respect to some generating set of cardi-
nality α, then every shift is α-Lipschitz.

2. If g ∈ G, a nondecreasing exhaustive sequence is g-Følner if and only if all
of its subsequences yield a Besicovitch pseudodistance for which the shift by
g is continuous.

3. G is amenable if and only if it admits a nondecreasing exhaustive sequence
of finite subsets of which all subsequences yield a Besicovitch distance for
which every shift is continuous.

The first point generalizes [HM17, Prop 4.1.3]. Note that it still applies in non-
amenable groups, but the shifts are no longer isometries, and there is a sub-
sequence of balls with respect to which the Besicovitch pseudodistance makes
them non-continuous.

Proof.

1. If E is the generating set and En the corresponding radius-n ball, then
E0 = {e} where e is the identity of G and En+1 = (E ∪ E−1) · En, so
|En| ≤ (2 |E|+ 1)n. We can apply Point 2 of Corollary 3.

2. This comes from Corollary 4.
3. This comes from Point 2. ut

There are nondecreasing non-Følner sequences for which the shift is Lipschitz
(but not an isometry) in Zd. Here’s an example: Xn = (J−n, nK ∪ 2 K−n, nJ)d.
Indeed, for every n, 1 + Xn ⊂ X2n and |X2n|

|Xn| = (8n−1)d
(4n−1)d , which converges to 2d

when n goes to infinity. We conclude by Point 1 of Corollary 3, with mn = 2n
and α = 2d. But the shift is not an isometry because the sequence is not Følner:
µ((2Z)d) = 2d/3d > µ((2Z + 1)d) = 1/3d.

“Dually” to shifts, we can define the propagation πg : AG → AG by πg(x)(i) =
x(ig). A block map (see [LM95] for G = Z) is, in essence, a composition of a



radius-0 function with a product of propagations. The same characterizations
are true for propagations as for shift maps, to which we can derive the following:

Corollary 7. A nondecreasing exhaustive sequence (Xn) of finite subsets of a
f.g. group G is right Følner if and only if for every increasing sequence (ln) ∈ NN,
every block map with neighborhood size k is k-Lipschitz for d(Xln ).

4 Conclusions

We have presented a way to compare Besicovitch submeasures (in terms of abso-
lute continuity, Lipschitz continuity, equality) thanks to the sequences of finite
sets which describe them. In a shift space (with respect to a finitely generated
group) endowed with the Besicovitch topology, we have derived conditions on the
defining sequence for the shift maps to be continuous, Lipschitz or isometries.
As part of this, we gave another characterization of f.g. amenable groups.

Future work will involve the study of other topological and dynamical prop-
erties (cf. [CGN]) or extension to configuration spaces on possibly uncountable
groups. The latter would require the use of the more general notions of directed
set and of net, and although the definition of Besicovitch pseudodistance and
submeasure would be immediate to extend, the techniques used to prove the
main lemmas could need a major revision.
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tances with respect to non-Følner sequences. Preprint, 〈hal-02566187〉, 2020.

CSC10. Tullio G. Ceccherini-Silberstein and Michel Coornaert. Cellular Automata
and Groups. Springer Verlag, 2010.

HM17. Karl-Peter Hadeler and Johannes Müller. Cellular Automata : Analysis and
Applications. Springer, 2017. 00000.

LM95. Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and
Coding. Cambridge University Press, 1995.
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