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Short Communication 
 
Estrogen receptor related receptor alpha (ERRa) was the oldest orphan nuclear receptor with 

sequence identity to the estrogen receptors, ERa/b [1]. The sequence alignment of the 

ERRa and the ERs reveals a high similarity (68%) in the DNA-binding domain and a 

moderate similarity (36%) in other parts of the proteins such as the ligand-binding E domain 

[1]. If ERRa does not bind estrogen, cholesterol had been recently described as a potential 

agonist of the receptor [2]. Bone maintenance depends on a balance between bone resorption 

and bone formation that implicates bone-resorbing cells (osteoclasts), bone-forming cells 

(osteoblasts) and the osteocytes that modulate response of bone mechanical stress [3]. In 

skeletal tissues, ERRa plays mainly a functional role in osteoclasts (bone resorbing cells) but 

also has a role in osteoblasts (bone-forming cells) and chondrocytes [4].  

A recent study has reinforced the role for ERRa in osteoclasts differentiation and function [2]. 

In osteoclastogenesis, ERRa was already known to act as a pro-osteoclastic factor in vivo, the 

ERRa knockout mice exhibiting osteopetrosis (excess of bone formation) [5]. Concomitantly, 

osteoclastogenesis was dramatically disturbed in vitro and genes implicated in mitochondrial 

biogenesis were down regulated (Fig.1A). Moreover, ERRa was also implicated in 

osteoclasts mobility and actin cytoskeletal organization by regulating the osteopontin (OPN)- 

integrin b3 chain- activated c-src (phosphorylated at the Tyr416) pathway causing the 

disruption of the specific actin structure (podosome belt) implicated in osteoclast adhesion, 

migration and invasion [6] (Fig.1B). Recently, ERRa was shown to mediate the effect of 

cholesterol on bone resorption and skeletal remodeling [2] (Fig.1C). Many studies have 

suggested a link between dyslipidemia (such as hypercholesterolemia) and low bone mineral 

density (a strong predicator of osteoporosis) for postmenopausal women [7]. Interestingly, 

osteoporosis is mainly due to an excess of osteoclasts since the amount of bone resorbed by 

the osteoclasts is not restored with the new bone deposited by the osteoblasts, suggesting that 



cholesterol may directly act through osteoclasts to induce bone loss in postmenopausal 

women [8]. Moreover, cholesterol had been described as a stimulator of Interleukin 1a (IL1a) 

secretion by macrophages and of RANKL (receptor activator of the NF-kB ligand) that are 

both strong pro-osteoclastic factors [9] [10] [11].  ERRa has also been link to osteoporosis. 

Indeed, ERRa expression is stimulated by estrogen in proliferative osteoblasts in vitro and 

inhibited in bone in vivo in ovariectomized adult rats [12]. Similarly to estrogens/ERs, ERRa 

may also regulate vascularisation and VEGF expression which is also known to impact 

osteoblasts and osteoclasts [13][14][15][16][17]. Moreover, the conditional knock-out of 

ERRa in female mice in pre-osteoblasts and the global ERRa deletion confer resistance to 

bone loss induced by estrogen-deficiency which suggest that ERRa may contribute to bone 

loss in osteoporosis [18][19]. It seems that ERRa may also mediate the pharmacological 

effects of bisphosphonates, the most prescribed anti-resorptive drugs for fracture prevention 

in postmenopausal women [2]. 

Cholesterol also has the ability to recruit coactivators PGC1b to ERRa in osteoclasts [2] 

(Fig.1C). PGC1b is upregulated during the transition from bone marrow macrophages to pre-

osteoclasts, and PGC1b knockout mice exhibited osteopetrosis [5]. It is also downregulated in 

mice that were deleted in NF-kB proteins in osteoclast precursors [20].  Moreover, similarly 

to osteoclasts deleted in ERRa, PGC1b-deficient osteoclasts displayed abnormal morphology 

and their bone resorbing activity was significantly impaired due to a reduction in 

phosphorylation of c-src at Tyr416 and a decrease in actin ring formation [5] [6]. Taken 

together, these data suggest that targeting ERRa-PGC1 through synthetic molecules like the 

inverse agonist XCT-790 that was designed to block ERRa activity by preventing its 

interaction with the PGC1 coactivators, can block the ERRa activation by cholesterol. 

Consequently, ERRa regulation of the mitochondrial biogenesis and of the actin cytoskeletal 

organization that are required for osteoclasts formation, migration and resorption capacity 



could be altered [21].  

In clinic, treatments that are generally recommended for postmenopausal women are 

bisphosphonates that bind to bone surfaces, target osteoclasts and decrease bone resorption 

[22]. Interestingly, the nitrogen-containing-bisphosphonates such as zoledronate inhibits the 

mevalonate pathway and therefore the production of cholesterol which results in osteoclasts 

apoptosis [23] (Fig.1D).  In mice, Wei et al show that the reduction of cholesterol synthesis 

by the zoledronate decrease ERRa transcriptional activity suggesting that ERRa mediates at 

least in part the anti-resorptive effects of bisphosphonates [2] (Fig.1D). They also show that 

the statins that are the most prescribed cholesterol-lowering drugs can also regulate ERRa 

activity in muscle. In contrast to bisphosphonates, that only target bone matrix surfaces, 

statins have pleiotropic effects [24]. Indeed beside their cardioprotective properties, statins 

have also been described to act as pro-osteogenic molecules by increasing the bone mineral 

density in post-menopausal women [25] [26]. Moreover, statins (Simvastatin, atorvastatin) are 

able to stimulate growth factors secretions such as VEGF in osteoblasts which is also a direct 

target gene of ERRa [17][27]. Statins (Lovastatin) can also inhibit osteoclasts formation and a 

defect in ERRa  in osteoclasts blocks the effect of Lovastatin [2]. 

In aging, cholesterol is strongly linked to age-related disorders [28). ERRa in association with 

the PGC1 family of coactivators play a main role in the transcriptional control of 

mitochondrial biogenesis and respiratory function [29]. Deregulation of mitochondrial 

function is a common feature in multiple aspects of bone loss and cartilage destruction 

suggesting the involvement of ERRa in skeletal aging [30][31]. The bone phenotype in ERRa 

knock-out mice is more prevalent in aged mice (10 to 12 month) compared with 4 to 5 month-

old mice and mainly due to osteoclasts defects and downregulation of genes implicated in 

mitochondrial function and biogenesis [5]. Very recently, ERRa-PGC1b had been linked to 

Sirtuin 3, a major mitochondrial deacetylase (nicotinamide adenine dinucleotide (NAD)+-



dependent protein deacetylase) that regulates oxidative stress resistance, in bone homeostasis 

[32][33]. Indeed, mice deficient in SIRT3 exhibit osteopenia due to increased numbers of 

osteoclasts. Huh et al show that in response to the pro-osteoclastic cytokine RANKL, the 

osteoclasts progenitors Sirt3-/- undergo increased osteoclastogenesis due to the stimulation of 

the ERRa-PGC1b at the transcriptional level.  

Mitochondria also play a key role in chondrocytes function, survival and oxidative stress [34). 

Chondrocytes from osteoarthritis cartilage, the most common chronic joint disease in the 

elderly population, showed a significant decrease of mitochondrial electron transport chain 

activity leading to mitochondrial damage of the outer membrane [30][35]. Proteomics study 

from osteoarthritic (OA) chondrocytes described a decrease in mitochondrial superoxide 

dismutase (SOD) levels and an increase in intracellular reactive oxygen species (ROS) in OA 

chondrocytes [36].  Considerable data now support the idea that ERRa, combined with PGC1 

family members, regulates ROS production. Indeed, dysregulation of ERRa with the inverse 

agonist XCT-790 enhanced ROS production in differentiated adipocytes, muscles and breast 

cancer [37][38][39] (Fig.2). Moreover, in DAergic neuronal cells, ERRa was involved in 

Sirt3 neuroprotective functions by regulating Sirt3 expression via ERRa-PGC1a interaction 

and binding on Sirt3 promoter. Increase of Sirt3 expression led to interaction with SOD2 that 

prevented ROS production and DAergic neurons death observed in Parkinson’s disease [40]. 

Also, the anti-oxidant effect of resveratrol was recently linked to the transcriptional regulation 

of SOD2 by ERRa in cells deficient in mitochondria Complex I [41] (Fig.2). Currently, no 

similar data are yet available in osteoarthritic chondrocytes, but these results clearly show a 

strong link between ERRa-PGCa complex with ROS-detoxifying processes, the 

mitochondrial SOD2 and the NAD-dependent deacetylase Sirt3 suggesting that similar 

transcriptional regulation may occur in cartilage in aging.  



In conclusion, we have reviewed the increasing data supporting a role for ERRa in regulation 

of osteoclasts differentiation and function. Together, the data suggest that ERRa mainly act as 

a regulator of bone resorption. They also bring new insights into ERRa function and suggest 

that ERRa may mediate the pharmacological effects of anti-resorptive drugs such as 

bisphosphonates and statins that are both targeting cholesterol metabolism. The fact that 

cholesterol is also linked to age-related disorders combined with ERRa function in 

mitochondria and in oxidative stress as a regulator of ROS production, suggest that ERRa 

may also act as a regulator of the aging process in skeletal tissues.  
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Figure 1: ERRa as a regulator of osteoclastogenesis through its function in both 

mitochondrial biogenesis  (A) and actin organization and resorption capacity (B). Recently, 

ERRa was shown to mediate the effect of cholesterol on bone resorption (C), and its 

transcriptional activity  was decreased by the reduction of cholesterol synthesis induced by 

the zoledronate suggesting that ERRa mediates at least in part the anti-resorptive effects of 

bisphosphonates (D). 
	
Figure 2: Several data clearly show a strong link between ERRa-PGC complex with ROS-

detoxifying processes, the mitochondrial SOD2 and the NAD-dependent deacetylase Sirt3 

suggesting that similar transcriptional regulation may occur in cartilage maintenance in aging.  
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