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Abstract: This paper presents a solution to simulate the 
dielectric relaxation in insulating materials using COMSOL 
Multiphysics in time domain. Indeed, the polarization P in a 
dielectric material may be divided into two parts according to 
the response time, the electronic polarization and the dipolar 
polarization. These two can respectively be regarded as a time 
instantaneous polarization and a time-dependent polarization, 
resulting from the orientation of both different types of 
dipoles. In the “Electric Currents” module, COMSOL 
Multiphysics uses an equation where the polarization is only 
considered as an instantaneous mechanism. However, in many 
cases, taking the time-dependent relaxation into account in 
time domain simulations is necessary. For example, dielectric 
relaxations modify the stress constraint’s supported by an 
insulating material in electrical engineering or power 
electronics systems during transient phases. In the paper, a 
description of the physical mechanisms will be first presented. 
Then, the method proposed for their model implementation in 
COMSOL Multiphysics will be exposed, using the particular 
case of the relaxation Debye’s model. The time domain 
parameters of the associated model will be identified from 
dielectric spectroscopy measurements. Examples of time 
domain simulation results will be given for a basic capacitor 
configuration under different excitation signals allowing to 
illustrate the proposed simulation method performance and 
interest. 
Keywords: Electric field simulations, Dielectric relaxation, 
Time domain simulation, Insulation system. 

Introduction 

When an external electric field �⃗�  is applied on a 
dielectric sample, a nonzero macroscopic dipole moment 
appears and the dielectric is polarized under the influence of 

the field �⃗� . The mechanism of polarization deals with how a 
molecules or atoms are reacting to the external electric field, 
by forming dipoles able to be oriented. The polarization vector 

�⃗�  is the volume density of electric dipole moments. In the 
linear approximation, the polarization of the dielectric sample 

is proportional to the strength of the electric field �⃗� . If all the 
polarization are supposed to be  instantaneous and collinear 

with the applied electric field, the relation between �⃗�   and �⃗�  
is given by Error! Reference source not found.: 

�⃗� (𝑡) = 𝜀0𝜒�⃗� (𝑡) 
 

(1) 

where 𝜀0  is the vacuum permittivity, and 𝜒 is the 
material susceptibility.  

Electronic polarization, ionic polarization, dipolar 
polarization and interfacial polarization are some important 
types of polarization mechanisms1. When the external applied 
electric field applied for a sufficiently long duration is suddenly 
suppressed, the decay of polarization to zero is not 
instantaneous but takes a finite time. This is the time required 
for the dipoles to recover a random distribution. Similarly, 
following to the sudden application of a direct voltage, it takes 
a finite time interval before the dipole polarization will achieve 
its maximum value2. This phenomenon is described by the 
general term of dielectric relaxations. The relaxation time 𝜏 is 
used to define the time constant of a dielectric relaxation 
dynamics3. As a main reason of the energy losses in insulating 
materials, the study of the dielectric relaxation impact on an 
electrical system behavior is important. 

At the start of the 20th century, Debye3 theorized the 
orientational polarization phenomenon for low pressure gases. 
Assuming a single type of dipoles without interaction between 

them, if a step electric field 𝐸0
⃗⃗⃗⃗  is applied at an initial time, the 

polarization vector �⃗� (𝑡) will evolve in the dielectric material as 
represented on Figure 1, and described by the following 
relation : 

�⃗� (𝑡) = 𝑃∞⃗⃗ ⃗⃗  + (𝑃𝑠⃗⃗  ⃗ − 𝑃∞⃗⃗ ⃗⃗  ) ∗ (1 − 𝑒−
𝑡
𝜏) 

(2) 

In fact, this behavior can be separated into two 

distinct phenomena : an instantaneous one, for which 𝑃∞
⃗⃗ ⃗⃗   is 

defined as the instantaneous polarization, followed by a non-
instantaneous polarization one, with a relaxation time 𝜏 . 
When all the dipoles are oriented, the remaining polarization 

is defined as the static polarization 𝑃𝑠
⃗⃗  ⃗.   
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Figure 1 . Dynamic polarization for a step of E 



The applied electric field 𝐸0
⃗⃗⃗⃗ , using equation (1) and 

the corresponding 𝜒∞  and 𝜒𝑠  are infinite and static 
susceptibilities, can be introduced into the equation (2) as 
follows : 

�⃗� (𝑡) = 𝜀0𝜒∞𝐸0
⃗⃗⃗⃗ + 𝜀0(𝜒𝑠 − 𝜒∞) (1 − 𝑒−

𝑡
𝜏) 𝐸0

⃗⃗⃗⃗  
(3) 

Based on the definitions of the electric displacement 

�⃗⃗� = 𝜀0�⃗� + �⃗� = 𝜀0(1 + 𝜒)�⃗�  and of the relative permittivity 

𝜀𝑟 = 1 + 𝜒 , �⃗⃗� (𝑡) can also be given by the equation : 

�⃗⃗� (𝑡) = 𝜀0𝜀∞𝐸0
⃗⃗⃗⃗ + 𝜀0(𝜀𝑠 − 𝜀∞) (1 − 𝑒−

𝑡
𝜏)𝐸0

⃗⃗⃗⃗  (4) 

with 𝜀∞ and 𝜀𝑠  corresponding to the instantaneous 
polarization and the long-term polarization. If 𝜀∞ , 𝜀𝑠 and 𝜏 are 
independent on the electric field 𝐸0  applied, equation (4) 
corresponds to the step response of a first order linear system. 

Considering any electric field �⃗� (𝑡)  and using the Laplace 

transformation in time domain ( L𝑡{𝐹 (𝑡)} = 𝐹 (𝑠) ) the 

equation (4) can be generalized :  

�⃗⃗� (𝑠) = 𝜀0𝜀∞�⃗� (𝑠) + 𝜀0
𝜀𝑠 − 𝜀∞
1 + 𝜏𝑠

�⃗� (𝑠) =  𝐷∞
⃗⃗ ⃗⃗  ⃗(𝑠) + 𝐷#

⃗⃗ ⃗⃗  (𝑠) (5) 

We set: 

𝐷# ⃗⃗ ⃗⃗  ⃗(𝑠) = 𝜀0
𝜀𝑠 − 𝜀∞
1 + 𝜏𝑠

�⃗� (𝑠) (6) 

The Laplace inverse transform of relations (5) and (6) lead to 
the following equations: 

�⃗⃗� (𝑡) = 𝜀0𝜀∞�⃗� (𝑡) + 𝐷# ⃗⃗ ⃗⃗  ⃗(𝑡) (7) 

𝐷# ⃗⃗ ⃗⃗  ⃗(𝑡) + 𝜏
𝜕𝐷# ⃗⃗ ⃗⃗  ⃗

𝜕𝑡
= 𝜀0 (𝜀𝑠 − 𝜀∞)�⃗� (𝑡) (8) 

Hence, the system consisting in equations (7) and (8) 
is the one to be solved in order to take into account non 
instantaneous polarization in dielectric materials in time 
domain simulation of electrical devices for any electric field 

�⃗� (t).  
Currently, COMSOL Multiphysics only allows to take 

into account non instantaneous polarization mechanisms in 
the frequency domain by replacing 𝑠 with 𝑖𝜔 in Equation (5), 
can be rewritten:  

�⃗⃗� (𝑖𝜔)

�⃗� (𝑖𝜔)
= 𝜀0𝜀∞ + 𝜀0

𝜀𝑠 − 𝜀∞
1 + 𝜏 𝑖𝜔

 (9) 

In this case, Debye defined the complex permittivity 
𝜀∗, as a function (10) of the angular frequency as follows : 

𝜀∗(𝑖𝜔) = 𝜀∞ +
𝜀𝑠 − 𝜀∞
1 + 𝑖𝜔𝜏

 (10) 

where, 𝜔 is the angular frequency (in rad/s).  
However, the frequency domain calculation (in 

COMSOL) only allows the users to predict the situation in the 
steady state of an electrical system under sinusoidal excitation 
(moreover requiring a linear behavior of the materials 
properties). Though, overvoltage or overcurrent could appear 
in operation transient phases of electrical system, which 

cannot be predicted with the frequency domain solver. 
Especially, overvoltage is a critical factor in the design of 
electrical insulating devices for high voltage applications. 

In this paper, we propose a method to be able to take 
into account the non-instantaneous polarization effect based 
on a time domain simulation, using COMSOL Multiphysics tool, 
in the particular case of the Debye model equations. Our 
simulations will be carried out in the basic electrical 
engineering isolation systems: insulating structures with 
parallel plane, under the excitation signal of a step and of sinus.  

The model and implementation in COMSOL 

In general, the ‘Electric Current’ physics in COMSOL is 
used to compute the electric field, current and potential 
distributions of a configuration (geometry, mesh, boundaries 
conditions etc.). According to the conduction electric current 
due to the charge flow and the displacement current due to 
the rate of change of the electric field, the equation of the 
current in the dielectric medium is the generalized Ohm’s law 
(11) where 𝜎 is the conductivity of the medium. 

𝐽 (𝑡) = 𝜎�⃗� (𝑡) +
𝜕�⃗⃗� (𝑡)

𝜕𝑡
+ 𝐽𝑒⃗⃗⃗  (𝑡) (11) 

�⃗⃗� (𝑡) = 𝜀0𝜀𝑟�⃗� (𝑡) (12) 

 But, in order to take account of the phenomenon of 
non-instantaneous Debye type polarization, Debye’s model 
should be solved together with the generalized Ohm’s law by 
replacing the equation (12) by the equations (7) and (8). The 
implementation of the Debye’s equations in time domain 
(‘Mathematics’) will be coupled with the generalized Ohm’s 
law (11) (‘Electric current’).  

The relation of the electric displacement (equation (7)) 
must be formulated in the ‘Charge conservation’ boundary 
condition for the dielectric material with non-instantaneous 
polarization in the model. 

The non-instantaneous electric displacement 𝐷#
⃗⃗ ⃗⃗  (𝑡), 

is calculated coupled by the ‘Partial differential equation’ with 
the variable electric field in different directions (equation (8)). 

Finally, the equations (the model) solved in COMSOL 
could be summary by: 

𝐸(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = −𝑔𝑟𝑎𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑉(𝑡) (13) 

𝐽(𝑡)⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝜎𝐸(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +
𝜕𝐷(𝑡)⃗⃗ ⃗⃗⃗⃗ ⃗⃗  ⃗

𝜕𝑡
+ 𝐽𝑒(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (14) 

�⃗⃗� (𝑡) = 𝜀0𝜀∞�⃗� (𝑡) + 𝐷# ⃗⃗ ⃗⃗  ⃗(𝑡) (15) 

𝐷# ⃗⃗ ⃗⃗  ⃗(𝑡) + 𝜏
𝜕𝐷# ⃗⃗ ⃗⃗  ⃗

𝜕𝑡
= 𝜀0 (𝜀𝑠 − 𝜀∞)�⃗� (𝑡) (16) 

In the following section, examples of simulations in 
the time domain solving these equations will be presented. A 
first case will allow a comparison with the corresponding 
simulation in frequency domain. In order to do so, it is 
necessary to introduce the equivalent complex permittivity, as 



Figure 3 : (a) Electric field vs Time simulated in time domain 
using the proposed method calculation (b) The steady state of 
the results in time domain (c) Simulation in frequency domain   

the one obtained from spectroscopy impedance4. The 
impedance 𝑍𝐼𝑆  (17) of of a test cell made of a dielectric 
material metallized on both sides is defined as : 

𝑍𝐼𝑆(𝑖𝜔) =
1

𝐶𝐼𝑆(𝑖𝜔)𝑖𝜔
 (17) 

Where the complex capacitance is given by : 

𝐶𝐼𝑆(𝑖𝜔) = 𝜀0𝜀𝐼𝑆(𝑖𝜔)
𝑆

𝑒
 (18) 

With 𝑆  and 𝑒  are the dielectric sample surface area 

and thickness, and 𝜀𝐼𝑆(𝑖𝜔)  is the equivalent complex 

permittivity. The real 𝜀′(𝜔) and imaginary 𝜀′′(𝜔) parts of this 

equivalent permittivity, are classically defined by the following 

expression : 

𝜀𝐼𝑆(𝑖𝜔) = 𝜀′(𝜔) − 𝑖𝜀′′(𝜔) 
(19) 

𝜀′(𝜔)and 𝜀′′(𝜔)are the required parameters to be 
input in COMSOL for frequency domain simulation. The 
relations allowing to define these two parameters in function 
of the Debye model parameters and the electric conductivity 
are :  

𝜀′(ω) = 𝜀∞ +  
(𝜀𝑠 − 𝜀∞)

1 + 𝜏2𝜔2  
(20) 

𝜀′′(ω) =
𝜎

𝜔𝜀0
+  

𝜏𝜔(𝜀𝑠 − 𝜀∞)

1 + 𝜏2𝜔2  (21) 

Simulation examples 

The performance validation of the simulation taking 
into account non instantaneous polarization mechanisms in 
the time domain, by using the proposed method, has been 
made considering a simple parallel plane electrode-capacitor 
structure. Its definition in COMSOL is presented on Figure 2, 
showing the 10 mm-thick dielectric material inserted between 
both top and bottom metallic electrodes, covered by air layers 
(of about 100 mm thick). The width of this structure is 500 mm. 
A current source is supplied to the uncharged capacitor. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The dielectric material properties have been defined 

using 𝜎 , 𝜏 , 𝜀𝑠  and 𝜀∞  parameters, assuming a non-
instantaneous polarization behavior according to the Debye’s 

model. In all this section, the parameters  𝜎, 𝜀𝑠 and 𝜀∞will be 
given the fixed values presented in Table 1, whereas the time 

constant 𝜏  will be specified for each simulation case. The 
electric field induced in the dielectric material is the simulated 
quantity under study. Several simulation results are presented 
hereafter. 

 
Table 1 . Simulation parameters for the relaxation dielectric medium 

 
Property 𝜎(𝑆/𝑚) 𝜀𝑠 𝜀∞ 

Value 1*10-12 9 3 

 

a. Steady state results for a sinusoidal current excitation  

In order to compare the proposed method’s results 
with COMSOL’s already allowed results, a sinusoidal current 
excitation has been considered first, with a 0.0005(A) current 
magnitude (𝐼0) and 5 Hz-frequency (𝑓). In this case, the non-
instantaneous polarization can be taken into account by 
performing frequency domain calculation, deriving the real 
𝜀′(𝜔)  and imaginary parts 𝜀′′(𝜔)  values of the complex 
permittivity from equations (20) and (21).  

The result obtained from the time domain simulation 
including our model is presented by Figure 3, which shows the 
electric field time dependence, from the initial transient period 
(after the current supply/application, supposing 𝐼(𝑡) = 𝐼0  at 
𝑡 = 0𝑠), up to the steady state (at long enough times) of the 
electric field time variation. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Only the steady state electric field characteristics can 

be calculated in the frequency domain Figure 3(c), based on 
the magnitude and the phase of the complex electric field 

�⃗� (𝑖𝜔). By comparing both simulation results in the steady 
state Figure 3(b) (c), we could verify that the same electric field 

(a) (b) 

(c) 

Figure 2 . The parallel-plane capacitor description in COMSOL 



magnitudes, of 1.19 kV/mm, are well obtained. So this 
comparison attests the successful performance of our method, 
its validation at steady state for sinusoidal excitation, and its 
interest for studying transient period behavior of the 
simulated system. 

b. Transient state results for step current excitation 

The electric field of the transient phase when a step  
of current source is applied, obtained from the COMSOL 
simulations with different constant times 𝜏 = 5𝑠, 𝜏 = 25𝑠 are 
shown in Figure 4. As reference data, results of the simulations 
which are calculated with 𝜀𝑟 = 9  (epsi9) and 𝜀𝑟 = 3  (epsi3) 
without Debye model are also shown all the polarizations are 
then regarded as instantaneous polarizations and it means 𝜏 =
0𝑠. 
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Figure 4 . Electric field (step reponse) vs time in front of the 
electrode. Blue/green: without Debye Model 𝜀𝑟 = 9/3. Black/red: 
with Debye Model 𝜏 = 5/25(𝑠) 

 
The results of the field with the Debye model vary 

between the results of ‘epsi9’ and ‘epsi3’, the Debye model 
describes the processes of the variety of the time dependent 
polarization from 𝑃∞  to 𝑃𝑠 . one can see the influence of the 
time constant 𝜏 on the velocity of the variety of the electric 
field in transient phase. 

 
Figure 5 . Electric field (step reponse) vs time in front of the 
electrode with different time constant in Debye model and 
conducivity 

Combining the Debye model in the time domain 
simulation allows us to take into account the influence of the 
non-instantaneous polarization. The results of different 
constant time (𝜏 = 5𝑠, 𝜏 = 25𝑠) in Debye model with different 
conductivity ( 𝜎 = 10−13 𝑆/𝑚 , 𝜎 = 10−12 𝑆/𝑚 ) show in 
Figure 5. The transient period of a system without Debye 
model depends on both the conductivity and the permittivity 
of the dielectric material. The system with a smaller 
conductivity needs more time to achieve the steady state. The 
electric field varies faster with a greater 𝜏  when the step 
response is just applied, then it becomes slower.  

 

c. Transient state results for sinusoidal current excitation in 
different frequency 

Figure 6 shows a sinusoidal (𝑓 = 5𝐻𝑧, 50𝐻𝑧) signal is 
applied on the geometry for the simulation. All material 
properties (𝜎, 𝜀𝑠  and 𝜀∞) are the same as those in previous 
section (Table 1). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

As the results of the sinusoidal signal show, the 
maximum value of the electric field (absolute peak value) in 

Figure 6 . Electric field vs time in front of the electrode with different 

time constant  𝜏 (a) frequency of signal 𝑓 = 5 𝐻𝑧 (b) frequency of 
signal 𝑓 = 50𝐻𝑧 

(a) 

(b) 

epsi3 

epsi9 



the transient period is more important than the one in the 
steady state. Based on the simulation results, it was observed 
that the transient phase is dependent on the relation between 
the time constant 𝜏 and the period 𝑇 of the sinusoidal signal 
applied. As long as the time constant 𝜏 ≪ 𝑇, most of the non-
instantaneous polarizations (including depolarizations) are 
completed in each period, therefore a significant difference in 
the amplitude could be found with different time constant. 
While these two parameters are in the same order of 
magnitude, the transient period of Debye polarization appears. 
For the time constant 𝜏 = 0.05𝑠 , there is no significant 
transient overvoltage appears while the excitation of 5Hz 
applied in Figure 6(a). However, the transient overvoltage 
appears when the excitation of 50Hz applied in Figure 6(b). 
It should also be noted that the transient phase is also 
influenced by the initial conditions: In our case they are zero. 

Conclusions 

The electric field is a key parameter for the 
development of higher voltage electrical insulation devices. 
The standard simulation method consists in solving the 
Poisson's equation, the generalized Ohm's law and charge 
conservation in the time domain with the material parameters 
i.e. electrical conductivity and relative permittivity or with 
complex permittivity in the frequency domain. However, all 
polarizations are considered as instantaneous in COMSOL 
Multiphysics in the calculation of the time domain. In the 
frequency domain, non-instantaneous polarizations are 
considered but only for the steady state. 

In this article, we propose a solution to take into 
account the non-instantaneous polarization which can be 
applied for all types of excitation (sinus, step, square etc.). The 
basic geometry used allowed to prove the concept through a 
simple example. The steady-state results for our model when 
sinusoidal excitation is applied are compared with the results 
obtained by COMSOL in the frequency domain computation. 
This model can be easily integrated in more complex 3D 
geometries with several stacked dielectric materials and 
whatever the type of excitation. 

The different parameters introduced by the Debye 
model (𝜏 , 𝜀∞  , 𝜀𝑠 ), can be easily identified from temporal 
measurements6 or from more commonly by impedance 
spectroscopy tests. 

Here, we have introduced the Debye model in the 
computation, because it is the most basic model to describe 
dielectric relaxation. Others models can be integrated such as 
the Cole-Cole5, Cole-Davidson or Havriliak-Negami models. But 
their implementation in time domain simulations is not so 
direct because of the presence of non-integer time derivatives6. 
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