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This paper presents a solution to simulate the dielectric relaxation in insulating materials using COMSOL Multiphysics in time domain. Indeed, the polarization P in a dielectric material may be divided into two parts according to the response time, the electronic polarization and the dipolar polarization. These two can respectively be regarded as a time instantaneous polarization and a time-dependent polarization, resulting from the orientation of both different types of dipoles. In the "Electric Currents" module, COMSOL Multiphysics uses an equation where the polarization is only considered as an instantaneous mechanism. However, in many cases, taking the time-dependent relaxation into account in time domain simulations is necessary. For example, dielectric relaxations modify the stress constraint's supported by an insulating material in electrical engineering or power electronics systems during transient phases. In the paper, a description of the physical mechanisms will be first presented. Then, the method proposed for their model implementation in COMSOL Multiphysics will be exposed, using the particular case of the relaxation Debye's model. The time domain parameters of the associated model will be identified from dielectric spectroscopy measurements. Examples of time domain simulation results will be given for a basic capacitor configuration under different excitation signals allowing to illustrate the proposed simulation method performance and interest.

Introduction

When an external electric field 𝐸 ⃗ is applied on a dielectric sample, a nonzero macroscopic dipole moment appears and the dielectric is polarized under the influence of the field 𝐸 ⃗ . The mechanism of polarization deals with how a molecules or atoms are reacting to the external electric field, by forming dipoles able to be oriented. The polarization vector 𝑃 ⃗ is the volume density of electric dipole moments. In the linear approximation, the polarization of the dielectric sample is proportional to the strength of the electric field 𝐸 ⃗ . If all the polarization are supposed to be instantaneous and collinear with the applied electric field, the relation between 𝑃 ⃗ and 𝐸 ⃗ is given by Error! Reference source not found.: 𝑃 ⃗ (𝑡) = 𝜀 0 𝜒𝐸 ⃗ (𝑡) (1) where 𝜀 0 is the vacuum permittivity, and 𝜒 is the material susceptibility.

Electronic polarization, ionic polarization, dipolar polarization and interfacial polarization are some important types of polarization mechanisms [START_REF] Jonscher | Dielectric relaxation in solids[END_REF] . When the external applied electric field applied for a sufficiently long duration is suddenly suppressed, the decay of polarization to zero is not instantaneous but takes a finite time. This is the time required for the dipoles to recover a random distribution. Similarly, following to the sudden application of a direct voltage, it takes a finite time interval before the dipole polarization will achieve its maximum value 2 . This phenomenon is described by the general term of dielectric relaxations. The relaxation time 𝜏 is used to define the time constant of a dielectric relaxation dynamics [START_REF] Debye | Polar molecules[END_REF] . As a main reason of the energy losses in insulating materials, the study of the dielectric relaxation impact on an electrical system behavior is important.

At the start of the 20 th century, Debye [START_REF] Debye | Polar molecules[END_REF] theorized the orientational polarization phenomenon for low pressure gases. Assuming a single type of dipoles without interaction between them, if a step electric field 𝐸 0 ⃗⃗⃗⃗ is applied at an initial time, the polarization vector 𝑃 ⃗ (𝑡) will evolve in the dielectric material as represented on Figure 1, and described by the following relation :

𝑃 ⃗ (𝑡) = 𝑃 ∞ ⃗⃗⃗⃗ + (𝑃 𝑠 ⃗⃗⃗ -𝑃 ∞ ⃗⃗⃗⃗ ) * (1 -𝑒 -𝑡 𝜏 ) (2) 
In fact, this behavior can be separated into two distinct phenomena : an instantaneous one, for which 𝑃 ∞ ⃗⃗⃗⃗ is defined as the instantaneous polarization, followed by a noninstantaneous polarization one, with a relaxation time 𝜏 . When all the dipoles are oriented, the remaining polarization is defined as the static polarization 𝑃 𝑠 ⃗⃗⃗ .

Application of electric field time The applied electric field 𝐸 0 ⃗⃗⃗⃗ , using equation ( 1) and the corresponding 𝜒 ∞ and 𝜒 𝑠 are infinite and static susceptibilities, can be introduced into the equation (2) as follows :

𝑃 ⃗ (𝑡) = 𝜀 0 𝜒 ∞ 𝐸 0 ⃗⃗⃗⃗ + 𝜀 0 (𝜒 𝑠 -𝜒 ∞ ) (1 -𝑒 -𝑡 𝜏 ) 𝐸 0 ⃗⃗⃗⃗ (3) 
Based on the definitions of the electric displacement 𝐷 ⃗ ⃗ = 𝜀 0 𝐸 ⃗ + 𝑃 ⃗ = 𝜀 0 (1 + 𝜒)𝐸 ⃗ and of the relative permittivity 𝜀 𝑟 = 1 + 𝜒 , 𝐷 ⃗ ⃗ (𝑡) can also be given by the equation :

𝐷 ⃗ ⃗ (𝑡) = 𝜀 0 𝜀 ∞ 𝐸 0 ⃗⃗⃗⃗ + 𝜀 0 (𝜀 𝑠 -𝜀 ∞ ) (1 -𝑒 -𝑡 𝜏 ) 𝐸 0 ⃗⃗⃗⃗ (4) 
with 𝜀 ∞ and 𝜀 𝑠 corresponding to the instantaneous polarization and the long-term polarization. If 𝜀 ∞ , 𝜀 𝑠 and 𝜏 are independent on the electric field 𝐸 0 applied, equation ( 4) corresponds to the step response of a first order linear system. Considering any electric field 𝐸 ⃗ (𝑡) and using the Laplace transformation in time domain ( L 𝑡 {𝐹 (𝑡)} = 𝐹 (𝑠) ) the equation ( 4) can be generalized :

𝐷 ⃗ ⃗ (𝑠) = 𝜀 0 𝜀 ∞ 𝐸 ⃗ (𝑠) + 𝜀 0 𝜀 -𝜀 ∞ 1 + 𝜏𝑠 𝐸 ⃗ (𝑠) = 𝐷 ∞ ⃗⃗⃗⃗⃗ (𝑠) + 𝐷 # ⃗⃗⃗⃗ (𝑠) (5) 
We set:

𝐷 # ⃗⃗⃗⃗⃗ (𝑠) = 𝜀 0 𝜀 𝑠 -𝜀 ∞ 1 + 𝜏𝑠 𝐸 ⃗ (𝑠) (6) 
The Laplace inverse transform of relations ( 5) and ( 6) lead to the following equations:

𝐷 ⃗ ⃗ (𝑡) = 𝜀 0 𝜀 ∞ 𝐸 ⃗ (𝑡) + 𝐷 # ⃗⃗⃗⃗⃗ (𝑡) (7) 𝐷 # ⃗⃗⃗⃗⃗ (𝑡) + 𝜏 𝜕𝐷 # ⃗⃗⃗⃗⃗ 𝜕𝑡 = 𝜀 0 (𝜀 𝑠 -𝜀 ∞ )𝐸 ⃗ (𝑡) (8) 
Hence, the system consisting in equations ( 7) and ( 8) is the one to be solved in order to take into account non instantaneous polarization in dielectric materials in time domain simulation of electrical devices for any electric field 𝐸 ⃗ (t).

Currently, COMSOL Multiphysics only allows to take into account non instantaneous polarization mechanisms in the frequency domain by replacing 𝑠 with 𝑖𝜔 in Equation ( 5), can be rewritten:

𝐷 ⃗ ⃗ (𝑖𝜔) 𝐸 ⃗ (𝑖𝜔) = 𝜀 0 𝜀 ∞ + 𝜀 0 𝜀 𝑠 -𝜀 ∞ 1 + 𝜏 𝑖𝜔 (9) 
In this case, Debye defined the complex permittivity 𝜀 * , as a function (10) of the angular frequency as follows :

𝜀 * (𝑖𝜔) = 𝜀 ∞ + 𝜀 𝑠 -𝜀 ∞ 1 + 𝑖𝜔𝜏 (10)
where, 𝜔 is the angular frequency (in rad/s). However, the frequency domain calculation (in COMSOL) only allows the users to predict the situation in the steady state of an electrical system under sinusoidal excitation (moreover requiring a linear behavior of the materials properties). Though, overvoltage or overcurrent could appear in operation transient phases of electrical system, which cannot be predicted with the frequency domain solver. Especially, overvoltage is a critical factor in the design of electrical insulating devices for high voltage applications.

In this paper, we propose a method to be able to take into account the non-instantaneous polarization effect based on a time domain simulation, using COMSOL Multiphysics tool, in the particular case of the Debye model equations. Our simulations will be carried out in the basic electrical engineering isolation systems: insulating structures with parallel plane, under the excitation signal of a step and of sinus.

The model and implementation in COMSOL

In general, the 'Electric Current' physics in COMSOL is used to compute the electric field, current and potential distributions of a configuration (geometry, mesh, boundaries conditions etc.). According to the conduction electric current due to the charge flow and the displacement current due to the rate of change of the electric field, the equation of the current in the dielectric medium is the generalized Ohm's law (11) where 𝜎 is the conductivity of the medium.

𝐽 (𝑡) = 𝜎𝐸 ⃗ (𝑡) + 𝜕𝐷 ⃗ ⃗ (𝑡) 𝜕𝑡 + 𝐽 𝑒 ⃗⃗⃗ (𝑡) (11) 𝐷 ⃗ ⃗ (𝑡) = 𝜀 0 𝜀 𝑟 𝐸 ⃗ (𝑡) (12) 
But, in order to take account of the phenomenon of non-instantaneous Debye type polarization, Debye's model should be solved together with the generalized Ohm's law by replacing the equation (12) by the equations ( 7) and (8). The implementation of the Debye's equations in time domain ('Mathematics') will be coupled with the generalized Ohm's law (11) ('Electric current').

The relation of the electric displacement (equation ( 7)) must be formulated in the 'Charge conservation' boundary condition for the dielectric material with non-instantaneous polarization in the model.

The non-instantaneous electric displacement 𝐷 # ⃗⃗⃗⃗ (𝑡), is calculated coupled by the 'Partial differential equation' with the variable electric field in different directions (equation ( 8)).

Finally, the equations (the model) solved in COMSOL could be summary by:

𝐸(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗ = -𝑔𝑟𝑎𝑑 ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝑉(𝑡) (13) 𝐽(𝑡) ⃗⃗⃗⃗⃗⃗⃗ = 𝜎𝐸(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗ + 𝜕𝐷(𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝜕𝑡 + 𝐽 𝑒 (𝑡) ⃗⃗⃗⃗⃗⃗⃗⃗⃗ (14) 𝐷 ⃗ ⃗ (𝑡) = 𝜀 0 𝜀 ∞ 𝐸 ⃗ (𝑡) + 𝐷 # ⃗⃗⃗⃗⃗ (𝑡) (15) 
𝐷 # ⃗⃗⃗⃗⃗ (𝑡) + 𝜏 𝜕𝐷 # ⃗⃗⃗⃗⃗ 𝜕𝑡 = 𝜀 0 (𝜀 𝑠 -𝜀 ∞ )𝐸 ⃗ (𝑡) (16) 
In the following section, examples of simulations in the time domain solving these equations will be presented. A first case will allow a comparison with the corresponding simulation in frequency domain. In order to do so, it is necessary to introduce the equivalent complex permittivity, as the one obtained from spectroscopy impedance [START_REF] Raistrick | Impedance Spectroscopy[END_REF] . The impedance 𝑍 𝐼𝑆 (17) of of a test cell made of a dielectric material metallized on both sides is defined as :

𝑍 𝐼𝑆 (𝑖𝜔) = 1 𝐶 𝐼𝑆 (𝑖𝜔)𝑖𝜔 (17)
Where the complex capacitance is given by :

𝐶 𝐼𝑆 (𝑖𝜔) = 𝜀 0 𝜀 𝐼𝑆 (𝑖𝜔) 𝑆 𝑒 (18) 
With 𝑆 and 𝑒 are the dielectric sample surface area and thickness, and 𝜀 𝐼𝑆 (𝑖𝜔) is the equivalent complex permittivity. The real 𝜀 ′ (𝜔) and imaginary 𝜀 ′′ (𝜔) parts of this equivalent permittivity, are classically defined by the following expression :

𝜀 𝐼𝑆 (𝑖𝜔) = 𝜀 ′ (𝜔) -𝑖𝜀 ′′ (𝜔) (19) 
𝜀 ′ (𝜔)and 𝜀 ′′ (𝜔)are the required parameters to be input in COMSOL for frequency domain simulation. The relations allowing to define these two parameters in function of the Debye model parameters and the electric conductivity are :

𝜀′(ω) = 𝜀 ∞ + (𝜀 𝑠 -𝜀 ∞ ) 1 + 𝜏 2 𝜔 2
(20)

𝜀′′(ω) = 𝜎 𝜔𝜀 0 + 𝜏𝜔(𝜀 𝑠 -𝜀 ∞ ) 1 + 𝜏 2 𝜔 2 (21)

Simulation examples

The performance validation of the simulation taking into account non instantaneous polarization mechanisms in the time domain, by using the proposed method, has been made considering a simple parallel plane electrode-capacitor structure. Its definition in COMSOL is presented on Figure 2, showing the 10 mm-thick dielectric material inserted between both top and bottom metallic electrodes, covered by air layers (of about 100 mm thick). The width of this structure is 500 mm. A current source is supplied to the uncharged capacitor.

The dielectric material properties have been defined using 𝜎 , 𝜏 , 𝜀 𝑠 and 𝜀 ∞ parameters, assuming a noninstantaneous polarization behavior according to the Debye's model. In all this section, the parameters 𝜎, 𝜀 𝑠 and 𝜀 ∞ will be given the fixed values presented in Table 1, whereas the time constant 𝜏 will be specified for each simulation case. The electric field induced in the dielectric material is the simulated quantity under study. Several simulation results are presented hereafter. a. Steady state results for a sinusoidal current excitation

In order to compare the proposed method's results with COMSOL's already allowed results, a sinusoidal current excitation has been considered first, with a 0.0005(A) current magnitude (𝐼 0 ) and 5 Hz-frequency (𝑓). In this case, the noninstantaneous polarization can be taken into account by performing frequency domain calculation, deriving the real 𝜀′(𝜔) and imaginary parts 𝜀′′(𝜔) values of the complex permittivity from equations ( 20) and ( 21).

The result obtained from the time domain simulation including our model is presented by Figure 3, which shows the electric field time dependence, from the initial transient period (after the current supply/application, supposing 𝐼(𝑡) = 𝐼 0 at 𝑡 = 0𝑠), up to the steady state (at long enough times) of the electric field time variation.

Only the steady state electric field characteristics can be calculated in the frequency domain Figure 3(c), based on the magnitude and the phase of the complex electric field 𝐸 ⃗ (𝑖𝜔). By comparing both simulation results in the steady state Figure 3(b) (c), we could verify that the same electric field The results of the field with the Debye model vary between the results of 'epsi9' and 'epsi3', the Debye model describes the processes of the variety of the time dependent polarization from 𝑃 ∞ to 𝑃 𝑠 . one can see the influence of the time constant 𝜏 on the velocity of the variety of the electric field in transient phase. 5. The transient period of a system without Debye model depends on both the conductivity and the permittivity of the dielectric material. The system with a smaller conductivity needs more time to achieve the steady state. The electric field varies faster with a greater 𝜏 when the step response is just applied, then it becomes slower. c. Transient state results for sinusoidal current excitation in different frequency Figure 6 shows a sinusoidal (𝑓 = 5𝐻𝑧, 50𝐻𝑧) signal is applied on the geometry for the simulation. All material properties (𝜎, 𝜀 𝑠 and 𝜀 ∞ ) are the same as those in previous section (Table 1).

As the results of the sinusoidal signal show, the maximum value of the electric field (absolute peak value) in the transient period is more important than the one in the steady state. Based on the simulation results, it was observed that the transient phase is dependent on the relation between the time constant 𝜏 and the period 𝑇 of the sinusoidal signal applied. As long as the time constant 𝜏 ≪ 𝑇, most of the noninstantaneous polarizations (including depolarizations) are completed in each period, therefore a significant difference in the amplitude could be found with different time constant. While these two parameters are in the same order of magnitude, the transient period of Debye polarization appears. For the time constant 𝜏 = 0.05𝑠 , there is no significant transient overvoltage appears while the excitation of 5Hz applied in Figure 6(a). However, the transient overvoltage appears when the excitation of 50Hz applied in Figure 6(b). It should also be noted that the transient phase is also influenced by the initial conditions: In our case they are zero.
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 1 Simulation parameters for the relaxation dielectric medium

	Property	𝜎(𝑆/𝑚)	𝜀 𝑠	𝜀 ∞
	Value	1*10 -12	9	3

Conclusions

The electric field is a key parameter for the development of higher voltage electrical insulation devices. The standard simulation method consists in solving the Poisson's equation, the generalized Ohm's law and charge conservation in the time domain with the material parameters i.e. electrical conductivity and relative permittivity or with complex permittivity in the frequency domain. However, all polarizations are considered as instantaneous in COMSOL Multiphysics in the calculation of the time domain. In the frequency domain, non-instantaneous polarizations are considered but only for the steady state.

In this article, we propose a solution to take into account the non-instantaneous polarization which can be applied for all types of excitation (sinus, step, square etc.). The basic geometry used allowed to prove the concept through a simple example. The steady-state results for our model when sinusoidal excitation is applied are compared with the results obtained by COMSOL in the frequency domain computation. This model can be easily integrated in more complex 3D geometries with several stacked dielectric materials and whatever the type of excitation.

The different parameters introduced by the Debye model ( 𝜏 , 𝜀 ∞ , 𝜀 𝑠 ), can be easily identified from temporal measurements [START_REF] Laudebat | Modeling of non rational electrical dynamics by means of diffusive representation. Part I : Modeling[END_REF] or from more commonly by impedance spectroscopy tests.

Here, we have introduced the Debye model in the computation, because it is the most basic model to describe dielectric relaxation. Others models can be integrated such as the Cole-Cole 5 , Cole-Davidson or Havriliak-Negami models. But their implementation in time domain simulations is not so direct because of the presence of non-integer time derivatives [START_REF] Laudebat | Modeling of non rational electrical dynamics by means of diffusive representation. Part I : Modeling[END_REF] .