On presentations for mapping class groups of orientable surfaces via Poincaré's Polyhedron theorem and graphs of groups

Lluís Bacardit

- To cite this version:

Lluís Bacardit. On presentations for mapping class groups of orientable surfaces via Poincaré's Polyhedron theorem and graphs of groups. 2021. hal-03100803

HAL Id: hal-03100803

https://hal.science/hal-03100803

Preprint submitted on 6 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On presentations for mapping class groups of orientable surfaces via Poincaré's Polyhedron theorem and graphs of groups

Lluís Bacardit

Abstract

The mapping class group of an orientable surface with one boundary component, S, is isomorphic to a subgroup of the automorphism group of the fundamental group of S. We call these subgroups algebraic mapping class groups. An algebraic mapping class group acts on a space called ordered Auter space. We apply Poincaré's Polyhedron theorem to this action. We describe a decomposition of ordered Auter space. From these results, we deduce that the algebraic mapping class group of S is a quotient of the fundamental group of a graph of groups with, at most, two vertices and, at most, six edges. Vertex and edge groups of our graph of groups are mapping class groups of orientable surfaces with one, two or three boundary components. A presentation for the mapping class group of S can be obtained by adding, at most, 24 relations to the fundamental group of our graph of groups.

2010 Mathematics Subject Classification. Primary: 57N05, 20F05; Secondary: 20F28, 20F34.
Key words. Mapping class groups, presentations, automorphism groups, Auter space.

1 Introduction

Presentations for mapping class groups of orientable surfaces were obtained by different authors after a seminal paper by Hatcher and Thurston [7, where a method to deduce presentations was exposed although presentations themselves were not given. Wajnryb [12] followed Hatcher and Thurston's method, with improvements introduced by Harer [5], to obtain explicit presentations for mapping class groups of orientable surfaces of finite genus without punctures and one boundary component. Matsumoto [9] interpreted some of the relations in Wajnryb's presentations as equalities between centralizers in Artin groups. From

Wajnryb's presentations, Gervais [4] deduced presentations for surfaces without punctures and a finite number of boundary components. Labruère and Paris [8] generalized Matsumoto's presentation to orientable surfaces with a finite number of punctures and a finite number of boundary components.

The Mapping class group of an orientable surface with exactly one boundary component can be identified with a subgroup of the automorphism group of the fundamental group of the surface. We call these subgroups algebraic mapping class groups. Before Hatcher and Thurson's paper appeared, McCool [10], [11] had proved that algebraic mapping class groups are finitely presentable.

In [2], we followed Armstrong, Forrest and Vogtmann [1] to obtain an algorithm which gives presentations for algebraic mapping class groups. That algorithm gives explicit presentations, although a large number of generators and relations are needed. We did not find an argument to sensibly reduce the number of generators and relations.

In the present paper, we obtain a new algorithm which gives presentations for algebraic mapping class groups. Although this new algorithm gives generators and relations, our presentations are described as quotients of fundamental groups of graph of groups. For a genus 0 surface with at least three punctures, the graphs of groups has one vertex and one edge; and, one relation needs to be added. For a surface without punctures and genus at least 2, the graph of groups has one vertex and two edges. For a genus 2 surface without punctures, five relations need to be added. For a surface with genus at least 3 without punctures, six relations need to be added. For a surface with genus at least 1 and at least one puncture, the graph of groups has two vertices and no more than six edges; no more than 24 relations need to be added. We only give explicit presentations for some simple cases. Although we do not give explicit presentations in general, a presentation for the mapping class group of an orientable surface with one boundary components can be obtained by our method and an inductive argument. The obtained presentation has a reasonable number of generators and relations.

As in [2], we consider an action of algebraic mapping class groups on a space analogous to Auter space, called ordered Auter space. In [2], the Degree theorem by Hatcher and Vogtmann [6] was applied to obtain a 2-dimensional complex from which the algorithm was deduced. In the present paper, the new algorithm is deduced from Poincaré's Polyhedron theorem applied to the action of algebraic mapping class groups on ordered Auter space. Since ordered Auter space is a manifold, Poincaré's Polyhedron theorem can be applied. Recall Auter space is not a manifold. Hence, Poincaré's Polyhedron theorem cannot be applied to the action of the automorphism group of a free group on Auter space. We describe a decomposition of ordered Auter space which gives the vertices of our graph of groups. By refining once this decomposition, we obtain the edges of our graph of groups. And, by refining the decomposition a second time, we obtain the relations that need to be added to the fundamental group of the graph of groups.

The vertex groups of the graph of groups are algebraic mapping class group of an orientable surface with one or two boundary components. Presentations for the vertex groups of the graph of groups can be computed by our method either by induction or by our method applied one level deeper. The edge groups of the graph of groups are algebraic mapping class group of an orientable surface with one, two or three boundary components.

The outline of the paper is the following. Section 2 contains notations and definitions. Section 3 recovers some results which are needed to apply Poincaré's Polyhedron theorem, and, contains the algorithm obtained by applying Poincaré's Polyhedron theorem to the action of algebraic mapping class groups on ordered Auter space. Section 4 contains the description of a subcomplex of ordered Auter space which decomposes ordered Auter space. Section 5 describes a subcomplex of ordered Auter space which is a homotopy retract of ordered Auter space. The latter subcomplex is more suitable for being decomposed. Section 6 describes a decomposition of the subcomplex of ordered Auter space described in Section 5. Section 7 gives an inductive argument in two steps: generators and relations. Section 8 describes our presentations for algebraic mapping class groups in terms of graphs of groups. Section 9 contains examples.

2 Notation and Definitions

This section contains notation and definitions used through the paper.
2.1 Notation. Let X be a set. The cardinality of X will be denoted $|X|$.

Let G be a group. For $g, h \in G$, we write $[g, h]=g^{-1} h^{-1} g h$, the commutator of g and h; and, $g^{h}=h^{-1} g h$, the conjugated of g by h. We write $[g]=\left\{g^{h} \mid h \in\right.$ $G\}$, the conjugacy class of g in G.

Let $\operatorname{Aut}(G)$ be the group of automorphisms of G, and, let $\operatorname{Out}(G)$ be the automorphism group of G modulo inner automorphisms.

We fix an integer $n \geq 1$, and, non-negative integers g, p and b such that $n=2 g+p+b-1 \geq 1$.

Let S be a genus g orientable surface with p punctures and b boundary components. We consider homeomorphisms of S which fix the set of punctures and whose restriction to each boundary component is the identity. Hence, such an homeomorhism respects the orientation of S. The mapping class group of S, denoted $\mathcal{M}(S)$, is the group of isotopy classes of such homeomorphisms, where every isotopy leaves fixed the set of punctures and its restriction to each boundary component is the identity. Since two orientable surfaces with the same genus g, the same number of punctures p and the same number of boundary components b, are homeomorphic; their mapping class groups are isomorphic. Hence, we also denote $\mathcal{M}(S)$ by $\mathcal{M}_{g, p, b}$, and we say that $\mathcal{M}_{g, p, b}$ is the mapping class group of a genus g surface with p punctures and b boundary components.

We denote by $\pi_{1}(S)$ the fundamental group of S. For $(p, b)=(0,0)$, the Dehn-Nielsen-Baer theorem states that $\mathcal{M}_{g, 0,0}$ is isomorphic to an index 2 subgroup of $\operatorname{Out}\left(\pi_{1}(S)\right.$), the group of outer automorphisms of $\pi_{1}(S)$. For $(p, b) \neq(0,0), \pi_{1}(S)$ is a free group of rank $n=2 g+p+b-1$, and, a generalization of the Dehn-Nielsen-Baer theorem states that $\mathcal{M}_{g, p, b}$ is isomorphic to a subgroup of $\operatorname{Out}\left(\pi_{1}(S)\right)$.

For $b \geq 1$, it can be deduced from Dehn-Nielsen-Baer theorem that $\mathcal{M}_{g, p, b}$ is isomorphic to a subgroup of $\operatorname{Aut}\left(\pi_{1}(S) *\left\langle c_{1}, c_{2}, \ldots, c_{b-1} \mid\right\rangle\right)$ denoted $\mathcal{A} \mathcal{M}_{g, p, b}$. The following notation is needed in order to define $\mathcal{A N}_{g, p, b}$.

We consider the following presentation for $\pi_{1}(S)$

$$
F_{g, p, b}=\left\langle x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{g}, y_{g}, t_{1}, t_{2}, \ldots, t_{p}, z_{1}, z_{2}, \ldots, z_{b} \mid w_{g, p, b}\right\rangle
$$

where $w_{g, p, b}=\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right] \ldots\left[x_{g}, y_{g}\right] t_{1} t_{2} \ldots t_{p} z_{1} z_{2} \ldots z_{b}$. Since $b \geq 1, F_{g, p, b}$ is a free group of rank $n=2 g+p+b-1$ with basis x_{i}, y_{i} for $1 \leq i \leq g$, t_{k} for $1 \leq k \leq p$, and, z_{l} for $1 \leq l \leq b-1$.

For $1 \leq l \leq b$, let $*_{l}$ be a point in the l-th boundary component of S. From a topological point of view, the presentation $F_{g, p, b}$ for $\pi_{1}(S)$ can be interpreted as follows: $w_{g, p, b}$ represents a loop based at $*_{b}$ around the b-th boundary component of S, t_{i} represents a loop based at $*_{b}$ around the i-th puncture of S for $1 \leq i \leq p$ and b_{l} represents a loop based at $*_{b}$ around the l-th boundary component of S for $1 \leq l \leq b-1$. To distinguish between punctures and boundary components, we introduce c_{l}, for $1 \leq l \leq b-1$, which represents an arc from $*_{b}$ to $*_{l}$ such that $z_{l}^{c_{l}}$ represents a loop based at $*_{l}$ around the l-th boundary component.

The following definition of algebraic mapping class group appears in [3], with slightly different notation.
2.2 Definition. We denote by $\mathcal{A} \mathcal{M}_{g, p, b}$ the subgroup of

$$
\operatorname{Aut}\left(F_{g, p, b} *\left\langle c_{1}, c_{2}, \ldots, c_{b-1} \mid\right\rangle\right)
$$

consisting of automorphisms φ of $F_{g, p, b} *\left\langle c_{1}, c_{2}, \ldots, c_{b-1} \mid\right\rangle$ such that the following conditions hold:
(a) The subgroup $F_{g, p, b}$ is invariant under φ.
(b) The set of conjugacy classes $\left\{\left[t_{1}^{-1}\right],\left[t_{2}^{-1}\right], \ldots,\left[t_{p}^{-1}\right]\right\}$ is fixed by φ.
(c) The words $z_{l}^{c_{l}}$, for $1 \leq l \leq b-1$, and the generator z_{b} are fixed by φ.
(d) For $1 \leq l \leq(b-1)$, the image of c_{l} under φ lies inside the right coset $F_{g, p, b} \cdot c_{l}$ of $F_{g, p, b} \backslash\left(F_{g, p, b} *\left\langle c_{1}, c_{2}, \ldots, c_{b-1} \mid\right\rangle\right)$.

We call $\mathcal{A M}_{g, p, b}$ the algebraic mapping class group of an orientable genus g surface with p punctures and b boundary components.

We will use the following definition for combinatorial graph.
2.3 Definitions. A combinatorial graph Γ is a three-tuple $\left(V(\Gamma), E(\Gamma), V^{*}(\Gamma)\right)$ such that $V(\Gamma)$ and $E(\Gamma)$ are disjoint sets, called the vertex set and the edge set, respectivebly; and $V^{*}(\Gamma)=\left\{v^{*} \mid v \in V(\Gamma)\right\}$ where v^{*} is defined as follows. Let $\bar{E}(\Gamma)$ be a set disjoint from $E(\Gamma)$ and let $\cdot: E(\Gamma) \rightarrow \bar{E}(\Gamma)$ be a bijection which extends to an involution ${ }^{-}: E(\Gamma) \cup \bar{E}(\Gamma) \rightarrow E(\Gamma) \cup \bar{E}(\Gamma)$. For every $v \in V, v^{*}$ is a subset of $E(\Gamma) \cup \bar{E}(\Gamma)$ such that $V^{*}(\Gamma)=\left\{v^{*} \mid v \in V(\Gamma)\right\}$ is a partition of $E(\Gamma) \cup \bar{E}(\Gamma)$; that is, $v_{1}^{*} \cap v_{2}^{*}=\emptyset$ if $v_{1} \neq v_{2}$, and $\bigcup_{v \in V(\Gamma)} v^{*}=E(\Gamma) \cup \bar{E}(\Gamma)$.

A graph with a distinguished vertex is a two-tuple (Γ, v_{0}) where Γ is a combinatorial graph and v_{0} is a vertex of Γ.

A fat graph with a distinguished vertex is a three-tuple (Γ, v_{0},ord) where (Γ, v_{0}) is a graph with a distinguished vertex, and, ord is an order relation in v^{*} for each $v \in V(\Gamma)$, denoted $\operatorname{ord}\left(v^{*}\right)$, such that $\operatorname{ord}\left(v_{0}^{*}\right)$ is a linear order and, for $v \neq v_{0}, \operatorname{ord}\left(v^{*}\right)$ is a cyclic order.

Let $\left(\Gamma, v_{0}\right.$, ord) be a fat graph with a distinguished vertex. Suppose $V(\Gamma)=$ $\left\{v_{0}, v_{1}, \ldots, v_{q}\right\},\left|v_{i}^{*}\right|=r_{i}$ and

$$
\begin{equation*}
\operatorname{ord}\left(v_{i}^{*}\right)=\left(e_{1}^{i}, e_{2}^{i}, \ldots, e_{r_{i}}^{i}\right), \quad \text { for } 0 \leq i \leq q . \tag{1}
\end{equation*}
$$

Consider the following element and conjugacy classes of $\pi_{1}\left(\Gamma, v_{0}\right)$:

$$
\begin{align*}
& w_{0}=a_{1}^{0} a_{2}^{0} \cdots a_{l_{0}}^{0} \\
& {\left[w_{i}\right]=\left[a_{1}^{i} a_{2}^{i} \cdots a_{l_{i}}^{i}\right], \quad \text { for } 1 \leq i \leq p,} \tag{2}
\end{align*}
$$

where $a_{1}^{0}=e_{1}^{0}, a_{l_{0}}^{0}=\bar{e}_{r_{0}}^{0}$, the subsequence $\left(\bar{a}_{j}^{0}, a_{j+1}^{0}\right)$ appears in (1) for every $1 \leq j \leq\left(l_{0}-1\right)$, the subsequence ($\bar{a}_{j}^{i}, a_{j+1}^{i}$) appears in (1) for every $1 \leq i \leq$ $p, 1 \leq j \leq l_{i}$ and subindices of a^{i} are modulo l_{i}. We require that every element of $E(\Gamma) \cup \bar{E}(\Gamma)$ appears exactly once in (2). We denote by $w\left(\Gamma, v_{0}\right.$, ord) the set $\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\}$. We denote

$$
g=\frac{n-p}{2} .
$$

We say that $\left(\Gamma, v_{0}\right.$, ord $)$ is a fat graph with a distinguished vertex which has genus g and p punctures, or, a (g, p)-fat graph with a distinguished vertex.

It can be seen that the genus g is a non-negative integer. See [2, Lemma 4.10].
2.4 Notation. Let (Γ, v_{0}, ord) be a fat graph with a distinguished vertex. Suppose $V(\Gamma)=\left\{v_{0}, v_{1}, \ldots, v_{q}\right\},\left|v_{i}^{*}\right|=r_{i}$ and

$$
\operatorname{ord}\left(v_{i}^{*}\right)=\left(e_{1}^{i}, e_{2}^{i}, \ldots, e_{r_{i}}^{i}\right), \quad \text { for } 0 \leq i \leq q .
$$

To simplify notation, we will write

$$
\begin{aligned}
\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) & =\operatorname{ord}\left(v_{0}^{*}\right) ; \operatorname{ord}\left(v_{1}^{*}\right), \ldots, \operatorname{ord}\left(v_{q}^{*}\right) \\
& =\left(e_{1}^{0}, e_{2}^{0}, \ldots, e_{r_{0}}^{0}\right) ;\left(e_{1}^{1}, e_{2}^{1}, \ldots, e_{r_{1}}^{1}\right), \ldots,\left(e_{1}^{q}, e_{2}^{q}, \ldots, e_{r_{q}}^{q}\right)
\end{aligned}
$$

2.5 Example. Let $\Gamma=\left(V(\Gamma), E(\Gamma), V^{*}(\Gamma)\right)$ be the combinatorial graph where

$$
\begin{aligned}
V(\Gamma) & =\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}, \\
E(\Gamma) & =\left\{e_{1}, e_{2}, \ldots, e_{9}\right\}, \\
u_{1}^{*} & =\left\{e_{1}, \bar{e}_{1}, e_{2}, e_{3}, e_{4}\right\}, \\
u_{2}^{*} & =\left\{e_{5}, e_{6}, \bar{e}_{2}, \bar{e}_{3}\right\}, \\
u_{3}^{*} & =\left\{e_{7}, e_{8}, \bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right\}, \\
u_{4}^{*} & =\left\{e_{9}, \bar{e}_{6}, \bar{e}_{8}, \bar{e}_{9}\right\} .
\end{aligned}
$$

Let $\left(\Gamma, v_{0}\right)$ be the graph with the distinguished vertex $v_{0}=u_{2}$ and let (Γ, v_{0}, ord) be the fat graph with a distinguished vertex where

$$
\begin{aligned}
& \operatorname{ord}\left(v_{0}^{*}\right)= \operatorname{ord}\left(u_{2}^{*}\right) \\
& \operatorname{ord}\left(u_{1}^{*}\right)=\left(\bar{e}_{2}, e_{6}, \bar{e}_{3}, e_{5}\right), \\
& \operatorname{ord}\left(u_{3}^{*}\right)=\left(e_{3}, e_{4}, \bar{e}_{1}, e_{2}\right), \\
& \operatorname{ord}\left(e_{4}^{*}\right)=\left(\bar{e}_{7}, \bar{e}_{4}, e_{9}, \bar{e}_{5},\right), \\
&\left., \bar{e}_{9}\right) .
\end{aligned}
$$

With notation above, we write

$$
\left(\Gamma, v_{0}, \text { ord }\right)=\left(\bar{e}_{2}, e_{6}, \bar{e}_{3}, e_{5}\right) ;\left(e_{1}, e_{3}, e_{4}, \bar{e}_{1}, e_{2}\right),\left(e_{7}, e_{8}, \bar{e}_{7}, \bar{e}_{4}, \bar{e}_{5},\right),\left(\bar{e}_{8}, e_{9}, \bar{e}_{6}, \bar{e}_{9}\right) .
$$

Then $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right]\right\}$ where

$$
\begin{aligned}
w_{0} & =\bar{e}_{2} e_{1} e_{2} e_{6} \bar{e}_{9} \bar{e}_{6} \bar{e}_{3} e_{4} \bar{e}_{5} ; \\
{\left[w_{1}\right] } & =\left[\bar{e}_{1} e_{3} e_{5} e_{7} \bar{e}_{4}\right] ; \\
{\left[w_{2}\right] } & =\left[\bar{e}_{7} e_{8} e_{9} \bar{e}_{8}\right] .
\end{aligned}
$$

Notice $\pi_{1}\left(\Gamma, v_{0}\right)$ is a free group of rank $n=6$. Since $w\left(\Gamma, v_{0}\right.$, ord $)$ has two cyclic words, we have $p=2$ and $g=(n-p) / 2=(6-2) / 2=2$. Hence, $\left(\Gamma, v_{0}\right.$, ord) is a (2,2)-fat graph with a distinguished vertex.

The following operations on graphs are well-known.
2.6 Definition. Let (Γ, v_{0}, ord) be a fat graph with a distinguished vertex.

Let $f \in E(\Gamma) \cup \bar{E}(\Gamma)$ and $v_{1}, v_{2} \in V(\Gamma), v_{1} \neq v_{2}$, such that $f \in v_{1}^{*}, \bar{f} \in$ v_{2}^{*}. Suppose $v_{2} \neq v_{0}$. We define the fat graph with a distinguished vertex
$\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}\right)$ where

$$
\begin{aligned}
& V\left(\Gamma^{f}\right)=V(\Gamma) \cup\{u\}-\left\{v_{1}, v_{2}\right\}, \quad u \notin V(\Gamma) \\
& v_{1} \neq v_{0} \Rightarrow v_{0}^{f}=v_{0} \\
& v_{1}=v_{0} \Rightarrow v_{0}^{f}=u ; \\
& E\left(\Gamma^{f}\right) \cup \bar{E}\left(\Gamma^{f}\right)=E(\Gamma) \cup \bar{E}(\Gamma)-\{f, \bar{f}\} .
\end{aligned}
$$

For $v \in V(\Gamma)-\left\{v_{1}, v_{2}\right\}$, we define $\operatorname{ord}^{f}\left(v^{*}\right)=\operatorname{ord}\left(v^{*}\right)$. Suppose $\operatorname{ord}\left(v_{i}^{*}\right)=$ $\left(e_{1}^{i}, e_{2}^{i}, \ldots, e_{r_{i}}^{i}\right)$, for $i=1,2$. Since $f \in v_{1}^{*}$, there exists $1 \leq k_{1} \leq r_{1}$ such that $f=e_{k_{1}}^{1}$. Since $\bar{f} \in v_{2}^{*}$, there exists $1 \leq k_{2} \leq r_{2}$ such that $\bar{f}=e_{k_{2}}^{2}$. We define

$$
\begin{aligned}
\operatorname{ord}^{f}\left(u^{*}\right)=(& e_{1}^{1}, e_{2}^{1}, \ldots, e_{k_{1}-1}^{1} \\
& e_{k_{2}+1}^{2}, e_{k_{2}+2}^{2}, \ldots, e_{r_{2}}^{2}, e_{1}^{2}, e_{2}^{2}, \ldots, e_{k_{2}-1} \\
& \left.e_{k_{1}+1}^{1}, e_{k_{1}+2}^{1}, \ldots, e_{r_{1}}^{1}\right)
\end{aligned}
$$

We say that $\left(\Gamma^{f}, v_{0}^{f}\right.$, ord $\left.^{f}\right)$ is obtained from (Γ, v_{0}, ord) by collapsing the edge f.

It is easy to see that collapsing an edge is well-defined and respects the genus and the number of punctures. See [2, Lemma 3.5, Lemma 4.5].
2.7 Definition. Let $u \in V(\Gamma)$ such that $\left|u^{*}\right|=r$. For $1 \leq k_{1}<k_{2} \leq r$, $\left(k_{1}, k_{2}\right) \neq(1, r)$, we define the fat graph with a distinguished vertex $\left(\Gamma^{u}, v_{0}^{u}, \operatorname{ord}^{u}\right)$ where

$$
\begin{aligned}
& V\left(\Gamma^{u}\right)=V(\Gamma) \cup\left\{v_{1}, v_{2}\right\}-\{u\}, \quad v_{1}, v_{2} \notin V(\Gamma), \\
& u \neq v_{0} \Rightarrow v_{0}^{u}=v_{0} \\
& u=v_{0} \Rightarrow v_{0}^{u}=v_{1} \\
& E\left(\Gamma^{u}\right)=E(\Gamma) \cup\{f\}, \quad f \notin E(\Gamma) \cup \bar{E}(\Gamma)
\end{aligned}
$$

For $v \in V\left(\Gamma^{u}\right)-\left\{v_{1}, v_{2}\right\}$, we define $\operatorname{ord}^{u}\left(v^{*}\right)=\operatorname{ord}\left(v^{*}\right)$. Suppose $\operatorname{ord}\left(u^{*}\right)=$ $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$. We define

$$
\begin{aligned}
\operatorname{ord}^{u}\left(v_{1}^{*}\right)= & \left(e_{1}, e_{2}, \ldots, e_{k_{1}-1}\right. \\
& \left.f, e_{k_{2}+1}, e_{k_{2}+2}, \ldots, e_{r}\right) \\
\operatorname{ord}\left(v_{2}^{*}\right)= & \left(\bar{f}, e_{k_{1}}, e_{k_{1}+1}, \ldots, e_{k_{2}}\right)
\end{aligned}
$$

We say that $\left(\Gamma^{u}, v_{0}^{u}, \operatorname{ord}^{u}\right)$ is obtained from $\left(\Gamma, v_{0}\right.$, ord $)$ by splitting the vertex u.

It is easy to see that splitting a vertex is well-defined and respects the genus and the number of punctures. See [2, Lemma 3.6, Lemma 4.8]. Often in the literature, splitting a vertex is called blowing up an edge.
2.8 Definition. Let (Γ, v_{0}, ord, ϕ) be a four-tuple where (Γ, v_{0}, ord) is a (g, p)-fat graph with a distinguished vertex such that:
(a) Γ is a metric graph with total volume 1;
(b) Γ is finite and connected without separating edges;
(c) $\left|v^{*}\right| \geq 3$ for every $v \in V(\Gamma)-\left\{v_{0}\right\}$ whereas $\left|v_{0}^{*}\right| \geq 2$;
(d) $\phi: \pi_{1}\left(\Gamma, v_{0}\right) \rightarrow F_{g, p, 1}$ is an isomorphism called the marking.

We say that $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ is equivalent to $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ if there exists an isometry $h: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $h\left(v_{1,0}\right)=v_{2,0}$, if $\operatorname{ord}_{1}(v)=\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ then $\operatorname{ord}_{2}(h(v))=\left(h\left(e_{1}\right), h\left(e_{2}\right), \ldots, h\left(e_{r}\right)\right)$ for every $v \in V\left(\Gamma_{1}\right)$, and the isomorphism $h_{*}: \pi_{1}\left(\Gamma_{1}, v_{1,0}\right) \rightarrow \pi_{1}\left(\Gamma_{2}, v_{2,0}\right)$ satisfies $\phi_{1}=\phi_{2} \circ h_{*}$.

It is easy to see that being equivalent is an equivalence relations among four-tuples (Γ, v_{0}, ord, ϕ) as in Definition 2.8.

Auter space is an analogous of Outer space for graphs with a distinguished vertex. The following definition is an analogous of Auter space for four-tuples (Γ, v_{0}, ord, ϕ) as in Definition 2.8.
2.9 Definition. We denote by ord $\mathbb{A}_{g, p}$ the space of equivalent classes of four-tuples (Γ, v_{0}, ord, ϕ) as in Definition 2.8 where the isomorphism $\phi:\left(\Gamma, v_{0}\right) \rightarrow$ $F_{g, p, 1}$ and $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\}$ satisfy

$$
\begin{aligned}
\phi\left(w_{0}\right) & =\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right] \cdots\left[x_{g}, y_{g}\right] t_{1} t_{2} \cdots t_{p}=w_{g, p, 1} z_{1}^{-1} \\
\left\{\left[\phi\left(w_{1}\right)\right],\left[\phi\left(w_{2}\right)\right], \ldots,\left[\phi\left(w_{p}\right)\right]\right\} & =\left\{\left[t_{1}^{-1}\right],\left[t_{2}^{-1}\right], \ldots,\left[t_{p}^{-1}\right]\right\} .
\end{aligned}
$$

Let \mathfrak{p} be a point in $\operatorname{ord} \mathbb{A}_{g, p}$ represented by $\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$. Suppose $|E(\Gamma)|=$ $k+1$. Varying the length of the edges of Γ defines an open k-simplex $\sigma(\mathfrak{p})=$ $\sigma\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ of $\operatorname{ord} \mathbb{A}_{g, p}$. Let Δ^{k} be the standard open k-dimensional simplex of \mathbb{R}^{k+1}. Then Δ^{k} parametrizes the k-simplex $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ by saying that $\left(\Gamma_{s}, v_{0}\right.$, ord, $\left.\phi\right) \in \sigma(\mathfrak{p})$ is the point in $\operatorname{ord} \mathbb{A}_{g, p}$ such that the length of the edges of Γ_{s} equal the barycentric coordinates of $s \in \Delta^{k}$. Since a non-trivial isometry of Γ permutes some edges of Γ, such an isometry gives a non-trivial element of $H_{1}(\Gamma)$. Hence, a non-trivial isometry changes ϕ in $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ and the parametrization above is a bijection.

Some faces of $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ belong to ord $\mathbb{A}_{g, p}$. Let $f \in E(\Gamma), v_{1}, v_{2} \in$ $V(\Gamma), v_{1} \neq v_{2}$, such that $f \in v_{1}^{*}$ and $\bar{f} \in v_{2}^{*}$. We can collapse f to obtain a new graph $\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}\right)$ with metric induced by the metric of $\left(\Gamma, v_{0}\right.$, ord $)$ scaled such that the total volume is one. There exists a quotient map $p:\left(\Gamma, v_{0}\right.$, ord $) \rightarrow$ $\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}\right)$. Since $p_{*}: \pi_{1}\left(\Gamma, v_{0}\right) \rightarrow \pi_{1}\left(\Gamma^{f}, v_{0}^{f}\right)$ is an isomorphism, there exists a point $\mathfrak{p}^{f}=\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}, \phi^{f}\right)$ in ord $\mathbb{A}_{g, p}$ where $\phi=\phi^{f} \circ p_{*}$. We say that $\sigma\left(\mathfrak{p}^{f}\right)=\sigma\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}, \phi^{f}\right)$ is a face of $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$. Faces of $\sigma\left(\mathfrak{p}^{f}\right)$
are faces of $\sigma(\mathfrak{p})$. We cannot collapse an edge which is incident to a unique vertex, i.e. $v_{1}=v_{2}$. Hence, some faces of $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ are missing. In particular, ord $\mathbb{A}_{g, p}$ is not a simplicial complex.

The closure of $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$, denoted $\operatorname{cl}(\sigma(\mathfrak{p}))=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord,$\left.\left.\phi\right)\right)$, is the union of $\sigma(\mathfrak{p})$ and all its faces. Notice $\operatorname{cl}(\sigma(\mathfrak{p}))$ is parametrized by the closure of Δ^{k} with some faces missing. The topology of $\operatorname{cl}(\sigma(\mathfrak{p}))$ is induced by this parametrization. Since $\operatorname{ord} \mathbb{A}_{g, p}$ can be seen as the disjoint union of all these simplices $\operatorname{cl}(\sigma(\mathfrak{p}))$ after identifying equivalent points in the sense of Definition 2.8, $\operatorname{ord} \mathbb{A}_{g, p}$ has the quotient topology of the union of all these simplices $\operatorname{cl}(\sigma(\mathfrak{p}))$.

Thus, $\operatorname{ord} \mathbb{A}_{g, p}$ is a topological space with a complex structure with open simplices $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$. Since the fat graph with a distinguished vertex (Γ, v_{0}, ord) has a finite number of vertices and every vertex can be split in a finite number of different manners, there exists a finite number of simplices of $\operatorname{ord} \mathbb{A}_{g, p}$ which have $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ as a face. Since the fat graph with a distinguished vertex (Γ, v_{0}, ord) has a finite number of edges, $\sigma(\mathfrak{p})=$ $\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ has a finite number of faces. Hence, the complex structure of $\operatorname{ord} \mathbb{A}_{g, p}$ is locally finite.
2.10 Remark. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in ord $\mathbb{A}_{g, p}$. By an Euler characteristic argument, the condition $\left|v^{*}\right| \geq 3$ for all $v \in V(\Gamma)-\left\{v_{0}\right\}$ whereas $\left|v_{0}^{*}\right| \geq 2$ in Definition 2.8, implies $|E(\Gamma)| \leq 6 g+3 p-2=3 n-2$. Recall $n=2 g+p$. Hence, $\operatorname{ord} \mathbb{A}_{g, p}$ is a complex of dimension $6 g+3 p-3=3 n-3$.
$\operatorname{Out}\left(F_{n}\right)$ acts on Outer space by "changing" the marking, and $\operatorname{Aut}\left(F_{n}\right)$ acts on Auter space in a similar manner. We define the same action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$.
2.11 Definition. $\mathcal{A} \mathcal{M}_{g, p, 1}$ acts on $\operatorname{ord} \mathbb{A}_{g, p}$ via

$$
\varphi \cdot \mathfrak{p}=\varphi \cdot\left(\Gamma, v_{0}, \text { ord }, \phi\right)=\left(\Gamma, v_{0}, \text { ord }, \varphi \circ \phi\right) .
$$

where φ is an element of $\mathcal{A} \mathcal{M}_{g, p, 1}$ and $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ is a point in $\operatorname{ord} \mathbb{A}_{g, p}$.

3 Poincaré's Polyhedron theorem

First, we recall some results from [2]. Some of these results are directly transferred from Outer space [6]. Then, we apply Poincaré's Polyhedron theorem to the action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$ given in Definition 2.11. Since Poincaré's Polyhedron theorem can be applied in different contexts under suitable hypothesis, we give a proof of Poincaré's Polyhedron theorem in our context. Finally, we give two examples.
3.1 Remark. $\operatorname{ord} \mathbb{A}_{g, p}$ is connected. See [2, Remark 4.20 (d)]
3.2 Lemma. ord $\mathbb{A}_{g, p}$ is simply connected.

See [2, Remark 4.20 (g)].
3.3 Lemma. The action of $\mathcal{A M}_{g, p, 1}$ on ord $\mathbb{A}_{g, p}$ is free. Hence, $\mathcal{A M}_{g, p, 1}$ is isomorphic to the fundamental group of $\mathcal{A} \mathcal{M}_{g, p, 1} \backslash$ ord $\mathbb{A}_{g, p}$.

See [2, Lemma 6.3, Remark 6.2].
Notice we replaced ordSA ${ }_{g, p}$ in [2, Remark $4.20(\mathrm{~g})$, Lemma 6.3] by $\operatorname{ord} \mathbb{A}_{g, p}$. Since $\operatorname{ordS} \mathbb{A}_{g, p}$, called the spine of $\operatorname{ord} \mathbb{A}_{g, p}$, is a homotopy retract of $\operatorname{ord} \mathbb{A}_{g, p}$, this replacement can be done.
3.4 Lemma. The ordered Auter space ord $\mathbb{A}_{g, p}$ is a $(6 g+3 p-3)$-dimensional manifold with boundary of dimension $6 g+3 p-4$.

See [2, Lemma 4.15]. We recall some facts in the proof of [2, Lemma 4.15] which will be used in the statement and proof of Poincaré's Polyhedron theorem.
3.5 Remark. Let $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a $(6 g+3 p-3)$-dimensional simplex of ord $\mathbb{A}_{g, p}$ and let f be an edge of Γ. By collapsing f we obtain a codimension one face of $\sigma(\mathfrak{p})$ denoted $\sigma\left(\mathfrak{p}^{f}\right)=\sigma\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}, \phi^{f}\right)$. Notice $\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}\right)$ has a vertex v such that either $v \neq v_{0}^{f}$ and $\left|v^{*}\right|=4$, or, $v=v_{0}^{f}$ and $\left|v^{*}\right|=3$. In both cases, v can be split to obtain two different graphs. One of these graphs is (Γ, v_{0}, ord) and the other one is a graph which may have a separating edge. Hence, $\sigma\left(\mathfrak{p}^{f}\right)$ is either an interior face or a boundary face as follows.
(a) If there are exactly two $(6 g+3 p-3)$-dimensional simplices of ord $\mathbb{A}_{g, p}$ which have $\sigma\left(\mathfrak{p}^{f}\right)$ as a face, then $\sigma\left(\mathfrak{p}^{f}\right)$ lies in the interior of $\operatorname{ord} \mathbb{A}_{g, p}$. We say that $\sigma\left(\mathfrak{p}^{f}\right)$ is an interior face.
(b) If $\sigma(\mathfrak{p})$ is the unique $(6 g+3 p-3)$-dimensional simplex of $\operatorname{ord} \mathbb{A}_{g, p}$ which has $\sigma\left(\mathfrak{p}^{f}\right)$ as a face, then $\sigma\left(\mathfrak{p}^{f}\right)$ lies in the boundary of ord $\mathbb{A}_{g, p}$. We say that $\sigma\left(\mathfrak{p}^{f}\right)$ is a boundary face.

We are interested in interior codimension one faces of $(6 g+3 p-3)$-dimensional simplices of $\operatorname{ord} \mathbb{A}_{g, p}$.
3.6 Definition. We denote by $\mathbb{P}_{g, p} \subseteq \operatorname{ord} \mathbb{A}_{g, p}$ a fundamental domain for the action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$.

Notice $\mathbb{P}_{g, p}$ is the finite union of the closure of $(6 g+3 p-3)$-dimensional simplices of ord $\mathbb{A}_{g, p}$. Hence, $\mathbb{P}_{g, p}$ is a polyhedron.

The following theorem is Poincaré's Polyhedron theorem applied to the action of $\mathcal{A M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$. See Definition 2.11.
3.7 Theorem. The group $\mathcal{A \mathcal { M }}_{g, p, 1}$ is finitely presented.

The group $\mathcal{A} \mathcal{M}_{g, p, 1}$ has generators represented by interior codimension one faces of $(6 g+3 p-3)$-dimensional simplices of $\mathbb{P}_{g, p}$.

There are three sets of relations of $\mathcal{A} \mathcal{M}_{g, p, 1}$ which we describe.
Let $\sigma\left(\mathfrak{p}_{1}\right)=\sigma\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}, \phi_{1}\right)$ and $\sigma\left(\mathfrak{p}_{2}\right)=\sigma\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}, \phi_{2}\right)$ be two $(6 g+$ $3 p-3)$-dimensional simplices of ord $\mathbb{A}_{g, p}$ and $e_{1} \in E\left(\Gamma_{1}\right), f_{2} \in E\left(\Gamma_{2}\right)$ such that

$$
\begin{equation*}
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{f_{2}}, v_{2,0}^{f_{2}}, \operatorname{ord}_{2}^{f_{2}}, \phi_{2}^{f_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right) . \tag{3}
\end{equation*}
$$

Hence, $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)$ is an interior codimension one face of ord $\mathbb{A}_{g, p}$ obtained by either collapsing e_{1} in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right)$ or collapsing f_{2} in $\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right)$. Suppose $\sigma\left(\mathfrak{p}_{1}\right)$ lies in $\mathbb{P}_{g, p}$. Then $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$ represents a generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$.

The first set of relations of $\mathcal{A M}_{g, p, 1}$ is described by saying that if $\sigma\left(\mathfrak{p}_{2}\right)$ lies in $\mathbb{P}_{g, p}$, then the generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$ represented by $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$ is the identity.

The second set of relations of $\mathcal{A} \mathcal{M}_{g, p, 1}$ is described as follows. If $\sigma\left(\mathfrak{p}_{2}\right)$ does not lie in $\mathbb{P}_{g, p}$, then there exists a $(6 g+3 p-3)$-dimensional simplex $\sigma\left(\mathfrak{p}_{3}\right)=$ $\sigma\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}, \phi_{3}\right) \subseteq \mathbb{P}_{g, p}$ which lies in the $\mathcal{A \mathcal { M }}_{g, p, 1}$-orbit of $\sigma\left(\mathfrak{p}_{2}\right)$. Hence, there exists $\psi \in \mathcal{A} \mathcal{M}_{g, p, 1}$ such that $\psi \cdot \sigma\left(\mathfrak{p}_{2}\right)=\sigma\left(\mathfrak{p}_{3}\right)$. And there exists an isometry h : $\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right) \rightarrow\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}\right)$ realising this equality. Let $f_{3}=h\left(f_{2}\right) \in E\left(\Gamma_{3}\right)$. Then, by (3), the faces $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$ and $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)$ are in the same $\mathcal{A} \mathcal{M}_{g, p, 1}$-orbit. The second set of relations is given by saying that the generator represented by the face $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)$ of $\sigma\left(\mathfrak{p}_{3}\right) \subseteq \mathbb{P}_{g, p}$ is the inverse of the generator represented by the face $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$ of $\sigma\left(\mathfrak{p}_{1}\right) \subseteq \mathbb{P}_{g, p}$.

The third set of relations of $\mathcal{A}_{\mathcal{M}_{g, p, 1}}$ correspond to codimension two simplices. Let $f_{1} \in E\left(\Gamma_{1}\right)-\left\{e_{1}\right\}$ such that the face $\sigma\left(\mathfrak{p}_{1}^{f_{1}}\right)=\sigma\left(\Gamma_{1}^{f_{1}}, v_{1,0}^{f_{1}}\right.$, ord $\left.d_{1}^{f_{1}}, \phi_{1}^{f_{1}}\right)$ of $\sigma\left(\mathfrak{p}_{1}\right)$ is interior. Suppose $\left\{e_{1}, f_{1}\right\}$ are the edges of a forest in Γ_{1}. Equivalently, there exists the codimension two face $\sigma\left(\mathfrak{p}_{1}^{e_{1}, f_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}, f_{1}}, v_{1,0}^{e_{1}, f_{1}}\right.$, ord $\left.d_{1}^{e_{1}, f_{1}}, \phi_{1}^{e_{1}, f_{1}}\right)$ obtained by collapsing either f_{1} in $\Gamma_{1}^{e_{1}}$ or e_{1} in $\Gamma_{1}^{f_{1}}$. We can move from $\sigma\left(\mathfrak{p}_{1}\right)$ to $\sigma\left(\mathfrak{p}_{2}\right)$ through the face $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)$. Then, f_{1} is identified with an edge e_{2} of Γ_{2}. Since f_{1} can be collapsed in $\Gamma_{1}^{e_{1}},\left\{e_{2}, f_{2}\right\}$ are the edges of a forest in Γ_{2}. Let $\sigma\left(\mathfrak{p}_{3}\right)=\sigma\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}, \phi_{3}\right)$ be a simplex in $\mathbb{P}_{g, p}$ which lies in the $\mathcal{A} \mathcal{M}_{g, p, 1^{-}}$orbit of $\sigma\left(\mathfrak{p}_{2}\right)$ with isometry $h:\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right) \rightarrow\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}\right)$. Let $e_{3}=h\left(e_{2}\right), f_{3}=h\left(f_{2}\right)$. If $\sigma\left(\mathfrak{p}_{3}^{e_{3}}\right)=\sigma\left(\Gamma_{3}^{e_{3}}, v_{3,0}^{e_{3}}\right.$, ord $\left.d_{3}^{e_{3}}, \phi_{3}^{e_{3}}\right)$ is an interior face, we can apply the same procedure to the $(6 g+3 p-3)$-dimensional simplex $\sigma\left(\mathfrak{p}_{3}\right)$ instead of $\sigma\left(\mathfrak{p}_{1}\right)$, where e_{1}, f_{1} are replaced by e_{3}, f_{3}, respectively. After a finite number of times repeating this procedure either we will obtain a boundary face or we will be back to $\sigma\left(\mathfrak{p}_{1}\right)$ with pair of edges $\left\{e_{1}, f_{1}\right\}$ and collapsing e_{1}. Each time we apply the procedure, we obtain a generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$. The first time we obtain the generator corresponding to the face $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$ of $\sigma\left(\mathfrak{p}_{1}\right)$, the second time we obtain the generator corresponding to the face $\sigma\left(\mathfrak{p}_{3}^{e_{3}}\right)$ of $\sigma\left(\mathfrak{p}_{3}\right)$, etc. If at some point we obtain a boundary face, then we do not obtain a new relation. If we go back to $\sigma\left(\mathfrak{p}_{1}\right)$ with pair of edges $\left\{e_{1}, f_{1}\right\}$ and we have to collapse e_{1}; then we obtain a relation which is the word described by the procedure.

Proof. Let G be a group with presentation given in the statement. We have to prove that G is isomorphic to $\mathcal{A} \mathcal{M}_{g, p, 1}$. We will construct group homomorphisms $G \rightarrow \mathcal{A} \mathcal{M}_{g, p, 1}$ and $\mathcal{A M}_{g, p, 1} \rightarrow G$ such that both composition are the identity.

Let x be a generator of G represented by the interior codimension 1 face $\sigma^{\prime} \subseteq \mathbb{P}_{g, p}$. There exist two $(6 g+3 p-3)$-dimensional simplices $\sigma\left(\mathfrak{p}_{1}\right)=$ $\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right), \sigma\left(\mathfrak{p}_{2}\right)=\sigma\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ and edges $e_{1} \in E\left(\Gamma_{1}\right), f_{2} \in$ $E\left(\Gamma_{2}\right)$ such that $\sigma\left(\mathfrak{p}_{1}\right) \subseteq \mathbb{P}_{g, p}$ and $\sigma^{\prime}=\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)$. Since $\mathbb{P}_{g, p}$ is a fundamental domain of the action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on ord $\mathbb{A}_{g, p}$, there exists $\psi \in \mathcal{A} \mathcal{M}_{g, p, 1}$ such that $\psi \cdot \sigma\left(\mathfrak{p}_{2}\right) \subseteq \mathbb{P}_{g, p}$. We define the group homomorphism $G \rightarrow \mathcal{A} \mathcal{M}_{g, p, 1}, x \mapsto \psi$.

To see $G \rightarrow \mathcal{A} \mathcal{M}_{g, p, 1}$ is well-defined, we have to prove the three set of relations of G hold in $\mathcal{A M}_{g, p, 1}$.

If $\sigma\left(\mathfrak{p}_{2}\right) \subseteq \mathbb{P}_{g, p}$, then ψ is the identity. Hence, the first set of relations of G holds.

Since $\psi \cdot \sigma\left(\mathfrak{p}_{2}\right)=\sigma\left(\mathfrak{p}_{3}\right)=\sigma\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}, \phi_{3}\right) \subseteq \mathbb{P}_{g, p}$, there exists an isometry $h:\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right) \rightarrow\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$. Let $h\left(f_{2}\right)=f_{3}$. Since $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)$ is an interior codimension one face of $\sigma\left(\mathfrak{p}_{3}\right) \subseteq \mathbb{P}_{g, p}$ and $\psi^{-1} \cdot \sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)=\psi^{-1} \psi \cdot \sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)=\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$, we see $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)$ represents x^{-1}. Hence, the second set of relations of G holds.

Let $x_{k} x_{k-1} \cdots x_{1}$ be a word given by applying the procedure in the third set of relations. Let $\psi_{i} \in \mathcal{A} \mathcal{M}_{g, p, 1}$ such that $x_{i} \mapsto \psi_{i}$. Then ψ_{1} sends the interior codimension 1 face $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)$ to $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)$. Notice $\psi_{1} \cdot\left(\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right) \cap \sigma\left(\mathfrak{p}_{1}^{f_{1}}\right)\right)=$ $\psi_{1} \cdot\left(\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right) \cap \sigma\left(\mathfrak{p}_{2}^{e_{2}}\right)\right)=\left(\psi_{1} \cdot \sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)\right) \cap\left(\psi_{1} \cdot \sigma\left(\mathfrak{p}_{2}^{e_{2}}\right)\right)=\sigma\left(\mathfrak{p}_{3}^{h\left(f_{2}\right)}\right) \cap \sigma\left(\mathfrak{p}_{3}^{h\left(e_{2}\right)}\right)=$ $\sigma\left(\mathfrak{p}_{3}^{f_{3}}\right) \cap \sigma\left(\mathfrak{p}_{3}^{e_{3}}\right)$. Next, we apply the procedure with $\sigma\left(\mathfrak{p}_{1}\right)$ replaced by $\sigma\left(\mathfrak{p}_{3}\right)$ and e_{1}, f_{1} replaced by e_{3}, f_{3}, respectively. Hence, ψ_{2} sends $\sigma\left(\mathfrak{p}_{3}^{e_{3}}\right)=\sigma\left(\mathfrak{p}_{4}^{f_{4}}\right)$ to $\sigma\left(\mathfrak{p}_{5}^{f_{5}}\right)$ and $\psi_{2} \psi_{1} \cdot\left(\sigma\left(\mathfrak{p}_{1}^{f_{1}}\right) \cap \sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)\right)=\psi_{2} \cdot\left(\sigma\left(\mathfrak{p}_{3}^{e_{3}}\right) \cap \sigma\left(\mathfrak{p}_{3}^{f_{3}}\right)\right)=\sigma\left(\mathfrak{p}_{5}^{f_{5}}\right) \cap \sigma\left(\mathfrak{p}_{5}^{e_{5}}\right)$. The procedure gives a relation if we go back to $\sigma\left(\mathfrak{p}_{1}\right)$ with pair of edges $\left\{e_{1}, f_{1}\right\}$, or equivalently, if $\psi_{k} \cdots \psi_{2} \psi_{1} \cdot\left(\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right) \cap \sigma\left(\mathfrak{p}_{1}^{f_{1}}\right)\right)=\sigma\left(\mathfrak{p}_{1}^{f_{1}}\right) \cap \sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)$. In this case, since $\mathcal{A} \mathcal{M}_{g, p, 1}$ acts freely on ord $\mathbb{A}_{g, p}, \psi_{k} \cdots \psi_{2} \psi_{1}$ is the identity.

Recall $\operatorname{ord} \mathbb{A}_{g, p}$ is locally finite. Since generators of G are represented by interior codimension 1 faces of $\mathbb{P}_{g, p}$, we see G is finitely generated. Since the number of relations of the first and second sets are bounded by the number of codimension 1 faces of $\mathbb{P}_{g, p}$, and, the number of relations of the third set is bounded by the number of codimension 2 faces of $\mathbb{P}_{g, p}$, we see G is finitely presented.

Let \mathfrak{p} be a point such that $\sigma(\mathfrak{p})$ is a $(6 g+3 p-3)$-dimensional simplex and $\sigma(\mathfrak{p}) \subseteq \mathbb{P}_{g, p}$. Let $\varphi \in \mathcal{A} \mathcal{M}_{g, p, 1}$. Since ord $\mathbb{A}_{g, p}$ is simply-connected and $\mathcal{A} \mathcal{M}_{g, p, 1}$ acts freely on ord $\mathbb{A}_{g, p}$, we see φ is determined by any path $\gamma:[0,1] \rightarrow \operatorname{ord} \mathbb{A}_{g, p}$ from \mathfrak{p} to $\varphi \cdot \mathfrak{p}$.

It is proved in [2] that ord $\mathbb{A}_{g, p}$ is a $(6 g+3 p-3)$-dimensional manifold. The proof reduces to the following facts.
(a) Each codimension 1 simplex lies in at most the closure of two $(6 g+3 p-$ 3)-dimensional simplices. See Remark 3.5 .
(b) If $\sigma^{\prime \prime}$ is a simplex of $\operatorname{ord} \mathbb{A}_{g, p}$ of codimension at least 1 and σ, σ^{\prime} are two $(6 g+3 p-3)$-dimensional simplices of $\operatorname{ord} \mathbb{A}_{g, p}$ such that $\sigma^{\prime \prime}$ is a face of both σ and σ^{\prime}, then there exists a sequence of $(6 g+3 p-3)$-dimensional simplices of $\operatorname{ord} \mathbb{A}_{g, p}$ such that the sequence starts with σ and ends with σ^{\prime}, and, we can move from one element of the sequence to the next element of the sequence through a codimension 1 face which has $\sigma^{\prime \prime}$ as a face.

From (a) and (b) above, by a general position argument, we have the following.
(i) γ is isotopic, relative to $\gamma(0)=\mathfrak{p}$ and $\gamma(1)=\psi \cdot \mathfrak{p}$, to a path lying in the interior of simplices of codimension at most one.
(ii) If γ lies in the interior of simplices of codimension at most one and γ bounds a disk $D \subseteq \operatorname{ord} \mathbb{A}_{g, p}$, then D is isotopic, relative to $\gamma=\partial D$, to a disk lying in the interior of simplices of codimension at most two.

By (i) above, we can suppose there exist a sequence of ($6 g+3 p-3$)-dimensional open simplices $\sigma\left(\mathfrak{p}_{i}\right)=\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $1 \leq i \leq k$, and there exist edges $e_{i} \in E\left(\Gamma_{i}\right)$ and $f_{i+1} \in E\left(\Gamma_{i+1}\right)$, for $1 \leq i \leq k-1$, such that $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)=\sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right) \subseteq \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i}\right)\right) \cap \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i+1}\right)\right)$ and

$$
\begin{equation*}
\gamma([0,1]) \subseteq\left(\bigcup_{1 \leq i \leq k} \sigma\left(\mathfrak{p}_{i}\right)\right) \cup\left(\bigcup_{1 \leq i \leq k-1} \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)\right)\right) . \tag{4}
\end{equation*}
$$

Without lost of generality, we can suppose \mathfrak{p} is the barycenter of $\sigma\left(\mathfrak{p}_{1}\right)$ and $\gamma([0,1])$ is the concatenation of segments from the barycenter of $\sigma\left(\mathfrak{p}_{i}\right)$ to the barycenter of $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)$ and from the barycenter of $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)=\sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right)$ to the barycenter of $\sigma\left(\mathfrak{p}_{i+1}\right)$, for $1 \leq i \leq k-1$.

Since $\mathbb{P}_{g, p}$ is a fundamental domain for the action of $\mathcal{\mathcal { A }} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$, for $1 \leq i \leq k$, there exists $\varphi_{i} \in \mathcal{A} \mathcal{M}_{g, p, 1}$ such that $\sigma\left(\mathfrak{p}_{i}\right) \subseteq \varphi_{i} \cdot \mathbb{P}_{g, p}$. Notice φ_{i} is uniquely determined and $\varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right), \varphi_{i+1}^{-1} \cdot \sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right)$ are interior codimension one faces of $\varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}\right), \varphi_{i+1}^{-1} \cdot \sigma\left(\mathfrak{p}_{i+1}\right) \subseteq \mathbb{P}_{g, p}$, respectively. Let $\psi_{i}=\varphi_{i+1}^{-1} \varphi_{i} \in \mathcal{A} \mathcal{M}_{g, p, 1}$ for $1 \leq i \leq k-1$. Notice

$$
\psi_{i} \varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)=\varphi_{i+1}^{-1} \varphi_{i} \varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)=\varphi_{i+1}^{-1} \cdot \sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right) .
$$

Hence, ψ_{i} sends the interior of the face $\varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)$ of $\mathbb{P}_{g, p}$ to the interior of the face $\varphi_{i+1}^{-1} \cdot \sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right)$ of $\mathbb{P}_{g, p}$. Since $\varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right), \varphi_{i+1}^{-1} \cdot \sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right)$ are codimension one faces of $\mathbb{P}_{g, p}$, we see ψ_{i} is represented by $\varphi_{i}^{-1} \cdot \sigma\left(\mathfrak{p}_{i}^{e_{i}}\right)$. From $\sigma\left(\mathfrak{p}_{1}\right) \subseteq \mathbb{P}_{g, p}$, it follows φ_{1} is the identity and $\psi_{1}^{-1} \psi_{2}^{-1} \cdots \psi_{k-1}^{-1}=\left(\varphi_{1}^{-1} \varphi_{2}\right) \cdot\left(\varphi_{2}^{-1} \varphi_{3}\right) \cdots\left(\varphi_{k-1}^{-1} \varphi_{k}\right)=\varphi_{1}^{-1} \varphi_{k}=\varphi_{k}$ sends $\mathfrak{p} \in \sigma\left(\mathfrak{p}_{1}\right)$ to $\varphi_{k} \cdot \mathfrak{p} \in \varphi_{k} \cdot \sigma\left(\mathfrak{p}_{1}\right)=\sigma\left(\mathfrak{p}_{k}\right)$. Since $\mathcal{A} \mathcal{M}_{g, p, 1}$ acts freely on $\operatorname{ord} \mathbb{A}_{g, p}$, we see $\varphi=\psi_{1}^{-1} \psi_{2}^{-1} \cdots \psi_{k-1}^{-1}$. We define a group homomorphism $\mathcal{A} \mathcal{M}_{g, p, 1} \rightarrow G, \varphi \mapsto x_{1}^{-1} x_{2}^{-1} \cdots x_{k-1}^{-1}$.

Suppose $\gamma:[0,1] \rightarrow \operatorname{ord} \mathbb{A}_{g, p}$ is a loop. To see $\mathcal{A M}_{g, p, 1} \rightarrow G$ is well defined we have to prove $x_{k-1} x_{k-2} \cdots x_{1}$ is the identity. Since ord $\mathbb{A}_{g, p}$ is simply connected, γ
bounds a disk D. By (i) and (iii) above, we can suppose $\gamma=\partial D$ lies in the union of simplices of codimension at most one, and, the interior of D lies in the union of open simplices of codimension at most two. Then D has a complex structure with 2 -cells defined by $D \cap \sigma$, 1-cells defined by $D \cap \sigma^{\prime}$ and 0 -cells defined by $D \cap \sigma^{\prime \prime}$, where σ is a $(6 g+3 p-3)$-dimensional simplex, σ^{\prime} is a codimension one simplex and $\sigma^{\prime \prime}$ is a codimension two simplex. Since γ is the boundary of D, by (i) above, all 0 -cells are in the inetrior of D.

If D does not have any 0 -cell, then the complex structure of D consist of arcs which do not intersect themselves and join points in $\gamma=\partial D$. Then, there exists an inner-most segment in γ which joins points $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right) \cap \gamma$ and $\sigma\left(\mathfrak{p}_{i+1}^{e_{i+1}}\right) \cap \gamma$. And there exists a subsequences of $(6 g+3 p-3)$-dimensional simplices $\sigma\left(\mathfrak{p}_{i-1}\right)$, $\sigma\left(\mathfrak{p}_{i}\right), \sigma\left(\mathfrak{p}_{i+1}\right)$ such that $\sigma\left(\mathfrak{p}_{i-1}\right)=\sigma\left(\mathfrak{p}_{i+1}\right)$. Hence, $\varphi_{i+1}=\varphi_{i-1}$ and $\psi_{i}=\varphi_{i+1}^{-1} \varphi_{i}=\varphi_{i-1}^{-1} \varphi_{i}=\psi_{i-1}^{-1}$. Thus, $x_{k-1} x_{k-2} \cdots x_{1}$ can be reduced by relations of the second set. Applying this relation to $x_{k-1} x_{k-2} \cdots x_{1}$ is equivalent to remove from D the 2 -cell bounded by the arc of $\gamma=\partial D$ from $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right) \cap \gamma$ to $\sigma\left(\mathfrak{p}_{i+1}^{e_{i+1}}\right) \cap \gamma$ and the arc inside D from $\sigma\left(\mathfrak{p}_{i}^{e_{i}}\right) \cap \gamma$ to $\sigma\left(\mathfrak{p}_{i+1}^{e_{i+1}}\right) \cap \gamma$. The same argument can be applied to the new word.

If the complex structure of D has 0 -cells, then there exisits a 1 -cell which joins a 0 -cell q_{1} to a point $q_{2} \in \gamma=\partial D$. Notice $q_{2}=\sigma\left(\mathfrak{p}_{\mathfrak{i}}{ }^{e_{i}}\right) \cap \gamma=\sigma\left(\mathfrak{p}_{i+1}^{f_{i+1}}\right) \cap \gamma$ and $q_{1}=\sigma\left(\mathfrak{p}_{\mathfrak{i}}{ }^{e_{i}, f}\right) \cap D$ for some $f \in E\left(\Gamma_{i}\right)$. The relation obtained by applying the procedure of the third set of relations to $\sigma\left(\mathfrak{p}_{i}\right)$ with pair of edges $\left\{e_{i}, f\right\}$ and collpasing e_{i} is a word $y_{1} y_{2} \cdots y_{r}$ such that $y_{1}=x_{i}$. Then we can replace x_{i} in $x_{k-1} x_{k-2} \cdots x_{1}$ by $y_{r}^{-1} \cdots y_{2}^{-1}$. The new word $\left(x_{k-1} x_{k-2} \cdots x_{i+1}\right) \cdot\left(y_{r}^{-1} \cdots y_{2}^{-1}\right)$. $\left(x_{i-1} \cdots x_{1}\right)$ represents a path which bounds a disk obtained from D by applying an homotopy supported in D. The homotopy moves γ beyond q_{1} through the arc from q_{2} to q_{1}. This new disk does not have q_{1} in the interior. Hence, this new disk has a 0 -cell fewer in the interior. The same argument can be applied to the new word.
3.8 Examples. (a) For $(g, p, b)=(0,2,1)$, we have $\mathbb{P}_{0,2}=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord, $\left.\left.\phi\right)\right)$ where

$$
\begin{aligned}
V(\Gamma) & =\left\{v_{0}, v_{1}, v_{2}\right\}, \\
E(\Gamma) & =\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}, \\
\operatorname{ord}\left(v_{0}^{*}\right) & =\left(e_{1}, e_{2}\right), \\
\operatorname{ord}\left(v_{1}^{*}\right) & =\left(\bar{e}_{1}, e_{3}, e_{4}\right), \\
\operatorname{ord}\left(v_{2}^{*}\right) & =\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right) .
\end{aligned}
$$

We write

$$
\left(\Gamma, v_{0}, \text { ord }\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right) .
$$

Notice

$$
w\left(\Gamma, v_{0}, \text { ord }\right)=\left\{e_{1} e_{3} \bar{e}_{2},\left[\bar{e}_{1} e_{2} \bar{e}_{4}\right],\left[\bar{e}_{3} e_{4}\right]\right\} .
$$

By collapsing e_{1} we have

$$
\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}, \operatorname{ord}^{e_{1}}\right)=\left(e_{3}, e_{4}, e_{2}\right) ;\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)
$$

We can split $v_{0}^{e_{1}}$, where $\operatorname{ord}^{e_{1}}\left(v_{0}^{e_{1}}\right)=\left(e_{3}, e_{4}, e_{2}\right)$, in two different manners. Both of them give graphs without separating edges. Hence, $\sigma\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}\right.$, ord $\left.^{e_{1}}, \phi^{e_{1}}\right)$ is an interior face which represents a generator x_{1} of $\mathcal{A} \mathcal{M}_{0,2,1}$.
Similarly,

$$
\left(\Gamma^{e_{2}}, v_{0}^{e_{2}}, \operatorname{ord}^{e_{2}}\right)=\left(e_{1}, \bar{e}_{4}, \bar{e}_{3}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right)
$$

is an interior face which represents a generator x_{2} of $\mathcal{A} \mathcal{M}_{0,2,1}$.
By collapsing e_{3} we have

$$
\left(\Gamma^{e_{3}}, v_{0}^{e_{3}}, \operatorname{ord}^{e_{3}}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{4}, e_{4}\right)
$$

We can split the vertex corresponding to ($\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{4}, e_{4}$) in two manners, one case gives a graph with a separating edge. Hence, $\sigma\left(\Gamma^{e_{3}}, v_{0}^{e_{3}}\right.$, ord $\left.^{e_{3}}, \phi^{e_{3}}\right)$ is a boundary face. Similarly, $\sigma\left(\Gamma^{e_{4}}, v_{0}^{e_{4}}, \operatorname{ord}^{e_{4}}, \phi^{e_{4}}\right)$ is a boundary face.
We see faces $\sigma\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}\right.$, ord $\left.{ }^{e_{1}}, \phi^{e_{1}}\right)$ and $\sigma\left(\Gamma^{e_{2}}, v_{0}^{e_{2}}\right.$, ord $\left.^{e_{2}}, \phi^{e_{2}}\right)$ are in the same $\mathcal{A M}_{0,2,1}$-orbit by the isometry $h_{e_{1}, e_{2}}:\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}\right.$, ord $\left.^{e_{1}}\right) \rightarrow\left(\Gamma^{e_{2}}, v_{0}^{e_{2}}\right.$, ord $\left.^{e_{2}}\right)$ described by

$$
h_{e_{1}, e_{2}}:\left\{\begin{array}{rll}
e_{2} & \mapsto & \bar{e}_{3}, \\
e_{3} & \mapsto & e_{1}, \\
e_{4} & \mapsto & \bar{e}_{4} .
\end{array}\right.
$$

Hence, x_{1}, the generator represented by $\sigma\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}\right.$, ord $\left.^{e_{1}}, \phi^{e_{1}}\right)$, is the inverse of x_{2}, the generator represented by $\sigma\left(\Gamma^{e_{2}}, v_{0}^{e_{2}}\right.$, ord $\left.^{e_{2}}, \phi^{e_{2}}\right)$. We represent these generators and this relation:

The only possible relation comes from the pair of edges $\left\{e_{1}, e_{2}\right\}$. By splitting $v_{0}^{e_{1}}$ in $\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}\right.$, ord $\left.^{e_{1}}\right)$ we have (Γ, v_{0}, ord $)$ and $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=$ $\left(e_{3}, e_{1}\right) ;\left(\bar{e}_{3}, \bar{e}_{2}, \bar{e}_{4}\right),\left(\bar{e}_{1}, e_{4}, e_{2}\right)$. Then ($\left.\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ and $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ are in the same $\mathcal{A M}_{0,2,1}$-orbit with isometry $h:\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right) \rightarrow\left(\Gamma, v_{0}\right.$, ord $)$ such that

$$
h:\left\{\begin{array}{lll}
e_{1} & \mapsto & e_{2} \\
\bar{e}_{2} & \mapsto & e_{3}, \\
e_{3} & \mapsto & e_{1}, \\
\bar{e}_{4} & \mapsto & e_{4} .
\end{array}\right.
$$

We have to apply the same procedure to (Γ, v_{0}, ord) with edges $h\left(e_{2}\right)=$ $\bar{e}_{3}, h\left(e_{1}\right)=e_{2}$. Since $\sigma\left(\Gamma^{e_{3}}, v_{0}^{e_{3}}\right.$, ord $\left.^{e_{3}}, \phi^{e_{3}}\right)$ is a boundary face, we do not obtain a relation and $\mathcal{A} \mathcal{M}_{0,2,1}$ is a free cyclic group generated by x_{1}. Notice the isometry $h:\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right) \rightarrow\left(\Gamma, v_{0}\right.$, ord $)$ can be deduced from the isometry $h_{e_{1}, e_{2}}:\left(\Gamma^{e_{1}}, v_{0}^{e_{1}}, \operatorname{ord}^{e_{1}}\right) \rightarrow\left(\Gamma^{e_{2}}, v_{0}^{e_{2}}, \operatorname{ord}^{e_{2}}\right)$ and $e_{1} \mapsto e_{2}$.
(b) For $(g, p, b)=(1,0,1)$, we have $\mathbb{P}_{1,0}=\operatorname{cl}\left(\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}\right.\right.$, ord $\left.\left.{ }^{\prime}, \phi^{\prime}\right)\right)$ where

$$
\left(\Gamma^{\prime}, v_{0}^{\prime}, \text { ord }^{\prime}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right)\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right)
$$

And,

$$
w\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}\right)=\left\{e_{1} e_{3} \bar{e}_{4} \bar{e}_{1} e_{2} \bar{e}_{3} e_{4} \bar{e}_{2}\right\} .
$$

By collapsing e_{1} and e_{2} we have, respectively,

$$
\begin{aligned}
& \left(\Gamma^{\prime} e_{1}, v_{0}^{\prime e_{1}}, \operatorname{ord}^{\prime} e_{1}\right)=\left(e_{3}, e_{4}, e_{2}\right) ;\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right), \\
& \left(\Gamma^{\prime} e_{2}, v_{0}^{\prime e_{2}}, \operatorname{ord}^{\prime e_{2}}\right)=\left(e_{1}, \bar{e}_{3}, \bar{e}_{4}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right) .
\end{aligned}
$$

Notice $\sigma\left(\Gamma^{\prime} e_{1}, v_{0}^{\prime e_{1}}, \operatorname{ord}^{\prime} e_{1}, \phi^{\prime} e_{1}\right)$ and $\sigma\left(\Gamma^{\prime} e_{2}, v_{0}^{\prime e_{2}}, \operatorname{ord}^{\prime} e_{2}, \phi^{\prime e_{2}}\right)$ are in the same $\mathcal{A N}_{1,0,1}$-orbit. The isometry $h_{e_{1}, e_{2}}:\left(\Gamma^{\prime e_{1}}, v_{0}^{\prime e_{1}}, \operatorname{ord}^{\prime e_{1}}\right) \rightarrow\left(\Gamma^{\prime} e_{2}, v_{0}^{\prime e_{2}}, \operatorname{ord}^{\prime} e_{2}\right)$ is described by

$$
h_{e_{1}, e_{2}}:\left\{\begin{array}{lll}
e_{2} & \mapsto & \bar{e}_{4}, \\
e_{3} & \mapsto & e_{1}, \\
e_{4} & \mapsto & \bar{e}_{3} .
\end{array}\right.
$$

Hence, both faces are interior and they represent generators of $\mathcal{A \mathcal { M } _ { 1 , 0 , 1 }}$, one inverse of the other. Let x_{1} be the generator represented by $\sigma\left(\Gamma^{\prime e_{1}}, v_{0}^{\prime e_{1}}\right.$, ord $\left.^{\prime} e^{1}, \phi^{\prime e_{1}}\right)$ and x_{2} the generator represented by $\sigma\left(\Gamma^{\prime} e_{2}, v_{0}^{\prime} e_{2}, \operatorname{ord}^{\prime e_{2}}, \phi^{\prime} e_{2}\right)$. Then, $x_{2}=x_{1}^{-1}$. We represent these generators and this relations:

By collapsing e_{3} and e_{4} we have, respectively,

$$
\begin{aligned}
& \left(\Gamma^{\prime} e_{3}, v_{0}^{\prime e_{3}}, \operatorname{ord}^{\prime} e_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, \bar{e}_{4}, \bar{e}_{2}, e_{4}\right), \\
& \left(\Gamma^{\prime} e_{4}, v_{0}^{\prime e_{4}}, \operatorname{ord}^{\prime e_{4}}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, \bar{e}_{2}, \bar{e}_{3}\right) .
\end{aligned}
$$

Notice $\sigma\left(\Gamma^{\prime} e_{3}, v_{0}^{\prime e_{3}}, \operatorname{ord}^{\prime e_{3}}, \phi^{\prime} e_{3}\right)$ and $\sigma\left(\Gamma^{\prime} e_{4}, v_{0}^{\prime e_{4}}\right.$, ord $\left.{ }^{\prime} e_{4}, \phi^{\prime} e_{4}\right)$ are in the same $\mathcal{A N}_{1,0,1}$-orbit. The isometry $h_{e_{3}, e_{4}}:\left(\Gamma^{\prime} e_{3}, v_{0}^{\prime e_{3}}\right.$, ord $\left.^{\prime e_{3}}\right) \rightarrow\left(\Gamma^{\prime} e_{4}, v_{0}^{\prime e_{4}}, \operatorname{ord}^{\prime} e_{4}\right)$ is described by

$$
h_{e_{3}, e_{4}}:\left\{\begin{array}{rll}
e_{1} & \mapsto & e_{1}, \\
e_{2} & \mapsto & e_{2}, \\
e_{4} & \mapsto & e_{3} .
\end{array}\right.
$$

Hence, both faces are interior and they represent generators of $\mathcal{A \mathcal { M } _ { 1 , 0 , 1 }}$, one inverse of the other. Let x_{3} be the generator represented by $\sigma\left(\Gamma^{\prime e_{3}}, v_{0}^{\prime e_{3}}, \operatorname{ord}^{\prime e_{3}}, \phi^{\prime} e_{3}\right)$ and x_{4} the generator represented by $\sigma\left(\Gamma^{\prime} e_{4}, v_{0}^{\prime} e_{4}\right.$, ord $\left.^{\prime e_{4}}, \phi^{\prime e_{4}}\right)$. Then, $x_{4}=x_{3}^{-1}$. We represent these generators and this relations:

To deduce all relation, we have to consider the relations obtained from the pair of edges $\left\{e_{1}, e_{2}\right\},\left\{e_{1}, e_{3}\right\},\left\{e_{1}, e_{4}\right\},\left\{e_{2}, e_{3}\right\}$ and $\left\{e_{2}, e_{4}\right\}$ of ($\Gamma^{\prime}, v_{0}^{\prime}$, ord'). Notice the pair $\left\{e_{3}, e_{4}\right\}$ cannot be considered, since e_{3} and e_{4} are not the edges of a forest in ($\Gamma^{\prime}, v_{0}^{\prime}$, ord').
From the pair $\left\{e_{1}, e_{2}\right\}$ we have the following.

1. We collapse e_{1} in $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)$ and we obtain $\left(\Gamma^{\prime} e_{1}, v_{0}^{\prime e_{1}}\right.$, ord $\left.^{{ }^{\prime} e_{1}}\right)$ which lies in the $\mathcal{A} \mathcal{M}_{1,0,1}$-orbit of $\left(\Gamma^{\prime} e_{2}, v_{0}^{\prime e_{2}}\right.$, ord $\left.{ }^{\prime} e_{2}\right)$. Hence, we obtain the generator x_{1} and the pair of edges $h_{e_{1}, e_{2}}\left(e_{2}\right)=\bar{e}_{4}, h_{e_{1}, e_{2}}\left(e_{1}\right)=e_{2}$.
2. We collapse e_{4} in $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)$ and we obtain $\left(\Gamma^{\prime} e_{4}, v_{0}^{\prime e_{4}}\right.$, ord $\left.{ }^{{ }^{\prime} e_{4}}\right)$ which lies in the $\mathcal{A} \mathcal{M}_{1,0,1}$-orbit of $\left(\Gamma^{\prime e_{3}}, v_{0}^{\prime e_{3}}\right.$, ord $\left.{ }^{\prime}{ }^{e_{3}}\right)$. Hence, we obtain the generator $x_{4}=x_{3}^{-1}$ and the pair of edges $h_{e_{4}, e_{3}}\left(e_{2}\right)=h_{e_{3}, e_{4}}^{-1}\left(e_{2}\right)=e_{2}, h_{e_{4}, e_{3}}\left(e_{4}\right)=$ $h_{e_{3}, e_{4}}^{-1}\left(e_{4}\right)=e_{3}$.
3. We collapse e_{2} in $\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}\right)$ and we obtain $\left(\Gamma^{\prime} e_{2}, v_{0}^{\prime e_{2}}, \operatorname{ord}^{\prime} e_{2}\right)$ which lies in the $\mathcal{A} \mathcal{M}_{1,0,1}$-orbit of ($\Gamma^{\prime e_{1}}, v_{0}^{\prime e_{1}}$, ord ${ }^{\prime e_{1}}$). Hence, we obtain the generator $x_{2}=x_{1}^{-1}$ and the pair of edges $h_{e_{2}, e_{1}}\left(e_{3}\right)=h_{e_{1}, e_{2}}^{-1}\left(e_{3}\right)=\bar{e}_{4}, h_{e_{2}, e_{1}}\left(e_{2}\right)=$ $h_{e_{1}, e_{2}}^{-1}\left(e_{2}\right)=e_{1}$.
4. We collapse e_{4} in $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)$, and we obtain $\left(\Gamma^{\prime} e_{4}, v_{0}^{\prime e_{4}}\right.$, ord $\left.^{e_{4}}\right)$ which lies in the $\mathcal{A}_{1}^{1,0,1}{ }_{1}$-orbit of $\left(\Gamma^{\prime} e_{3}, v_{0}^{\prime e_{3}}, \operatorname{ord}^{\prime}{ }^{e_{3}}\right)$. Hence, we obtain the generator $x_{4}=x_{3}^{-1}$ and the pair of edges $h_{e_{4}, e_{3}}\left(e_{1}\right)=h_{e_{3}, e_{4}}^{-1}\left(e_{1}\right)=e_{1}, h_{e_{4}, e_{3}}\left(e_{4}\right)=$ $h_{e_{3}, e_{4}}^{-1}\left(e_{4}\right)=e_{3}$.
5. We collapse e_{1} in $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)$, and we obtain $\left(\Gamma^{\prime e_{1}}, v_{0}^{\prime e_{1}}\right.$, ord $\left.{ }^{e_{1}}\right)$ which lies in the $\mathcal{A} \mathcal{M}_{1,0,1}$-orbit of ($\left.\Gamma^{\prime e_{2}}, v_{0}^{\prime e_{2}}, \operatorname{ord}^{\prime e_{2}}\right)$. Hence, we obtain the generator x_{1} and the pair of edges $h_{e_{1}, e_{2}}\left(e_{3}\right)=e_{1}, h_{e_{1}, e_{2}}\left(e_{1}\right)=e_{2}$.

We are back to ($\Gamma^{\prime}, v_{0}^{\prime}$, ord' $)$ with pair of edges $\left\{e_{1}, e_{2}\right\}$ and we have to collapse e_{1}. Hence, we obtain the relation $x_{1} x_{3}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}$. We represent this relation:

Since we have used the pairs of edges $\left\{e_{1}, e_{3}\right\},\left\{e_{1}, e_{4}\right\},\left\{e_{2}, e_{3}\right\}$ and $\left\{e_{2}, e_{4}\right\}$, there are no more relations and $\mathcal{A} \mathcal{M}_{1,0,1}$ has the presentation

$$
\left\langle x_{1}, x_{3} \mid x_{1} x_{3}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}\right\rangle
$$

3.9 Remark. Let $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a $(6 g+3 p-3)$-dimensional simplex of $\mathbb{P}_{g, p}$ and let $e, f \in E(\Gamma)$ be the edges of a forest in Γ. Suppose that applying the procedure in Theorem 3.7 to the pair of edges $\{e, f\}$ and collapsing e we obtain a relation r.
(a) If we apply the procedure in Theorem 3.7 to the pair of edges $\{e, f\}$ and collapsing f, then we obtain the word r^{-1}, the inverse of r.
(b) If e, f are the edges of a tree in Γ; then, after collapsing e and f in (Γ, v_{0}, ord) we obtain a graph $\left(\Gamma^{e, f}, v_{0}^{e, f}\right.$, ord $\left.{ }^{e, f}\right)$ with a vertex v such that either $\left|v^{*}\right|=5$ if $v \neq v_{0}^{e, f}$, or, $\left|v^{*}\right|=4$ if $v=v_{0}^{e, f}$. In both cases there are, at most, 5 simplices of dimension $(6 g+3 p-3)$ which have $\sigma\left(\mathfrak{p}^{e, f}\right)=\sigma\left(\Gamma^{e, f}, v_{0}^{e, f}, \operatorname{ord}^{e, f}, \phi^{e, f}\right)$ as a face. Hence, r is a word of length five.
(c) If e, f are the edges of two non-connected trees in (Γ, v_{0}, ord); then, after collapsing e and f in Γ we obtain a graph ($\Gamma^{e, f}, v_{0}^{e, f}$, ord ${ }^{e, f}$) with two vertices $u_{1} \neq u_{2}$ such that either $\left|u_{1}^{*}\right|=\left|u_{2}^{*}\right|=4$ if $u_{1} \neq v_{0}^{e, f}$ and $u_{2} \neq v_{0}^{e, f}$, or, $\left|u_{1}^{*}\right|=3,\left|u_{2}^{*}\right|=4$ if $u_{1}=v_{0}^{e, f}$. In both cases there are, at most, 4 simplices of dimension $(6 g+3 p-3)$ which have $\sigma\left(\mathfrak{p}^{e, f}\right)=\sigma\left(\Gamma^{e, f}, v_{0}^{e, f}\right.$, ord $\left.{ }^{e, f}, \phi^{e, f}\right)$ as a face. Hence, r is a word of length four.

4 The subcomplex $\mathbb{T}_{g, p}$ of ord $\mathbb{A}_{g, p}$

We define a connected subcomplex, denoted $\mathbb{T}_{g, p}$, of ord $\mathbb{A}_{g, p}$ which decomposes $\operatorname{ord} \mathbb{A}_{g, p}$.
4.1 Definition. Let (Γ, v_{0}, ord) be a connected (g, p)-fat graph with a distinguished vertex. The standard labelling of (Γ, v_{0}, ord) is a labelling of vertices and edges of Γ as follows. Recall ord $\left(v_{0}^{*}\right)$ is a linear order on v_{0}^{*}. We label edges incident to v_{0} according to the order on v_{0}^{*}, that is, $\operatorname{ord}\left(v_{0}^{*}\right)=\left(e_{1}, e_{2}, \ldots\right)$ or $\operatorname{ord}\left(v_{0}^{*}\right)=\left(e_{1}, \bar{e}_{1}, e_{2}, \ldots\right)$. Suppose we have labelled edges $e_{1}, e_{2}, \ldots, e_{i} \in E(\Gamma)$ and vertices $v_{0}, v_{1}, \ldots, v_{j} \in V(\Gamma)$. Let $k, 1 \leq k \leq i$, be the least integer such that $\bar{e}_{k} \in u^{*}$ where $u \in V(\Gamma)$ has not been labelled by $v_{1}, v_{2}, \ldots, v_{j}$. Then we label u by v_{j+1}. Suppose $\operatorname{ord}\left(v_{j+1}^{*}\right)=\left(\bar{e}_{k}, f_{1}, f_{2}, \ldots, f_{r}\right)$. Notice some edges $f_{1}, f_{2}, \ldots f_{r}$ may have been labelled by some $\bar{e}_{k+1}, \bar{e}_{k+2}, \ldots, \bar{e}_{i}$. We label by e_{i+1}, e_{i+2}, \ldots edges $f_{1}, f_{2}, \ldots, f_{r}$ which have not been labelled by $\bar{e}_{k+1}, \bar{e}_{k+2}, \ldots, \bar{e}_{i}$. Since (Γ, v_{0}, ord) is connected, we label every vertex by $v_{0}, v_{1}, v_{2}, \ldots$ and every edge by $e_{1}, e_{2}, e_{3}, \ldots$.
4.2 Example. Let (Γ, v_{0}, ord) be a fat graph with a distinguished vertex where $V(\Gamma)=\left\{v_{0}, u_{1}, u_{2}, u_{3}\right\}, E(\Gamma)=\left\{f_{1}, f_{2}, \ldots, f_{7}\right\}$ and

$$
\begin{aligned}
\left(\Gamma, v_{0}, \operatorname{ord}\right) & =\operatorname{ord}\left(v_{0}^{*}\right) ; \operatorname{ord}\left(u_{1}^{*}\right), \operatorname{ord}\left(u_{2}^{*}\right), \operatorname{ord}\left(u_{3}^{*}\right) \\
& =\left(f_{1}, f_{2}\right) ;\left(f_{3}, \bar{f}_{2}, f_{4}\right),\left(f_{5}, f_{6}, \bar{f}_{1}, \bar{f}_{4}\right),\left(f_{7}, \bar{f}_{5}, \bar{f}_{7}, \bar{f}_{3}, \bar{f}_{6}\right) .
\end{aligned}
$$

The standard labelling of (Γ, v_{0}, ord) is obtained as follows. Since $\operatorname{ord}\left(v_{0}^{*}\right)=$ $\left(f_{1}, f_{2}\right), f_{1}$ is labelled e_{1} and f_{2} is labelled e_{2}. Hence, ord $\left(v_{0}^{*}\right)=\left(e_{1}, e_{2}\right)$. Since $\bar{e}_{1}=\bar{f}_{1} \in u_{2}^{*}, u_{2}$ is labelled v_{1} and $\operatorname{ord}\left(v_{1}^{*}\right)=\left(\bar{e}_{1}, \bar{f}_{4}, f_{5}, f_{6}\right)$. Then \bar{f}_{4} is labelled e_{3}, f_{5} is labelled e_{4} and f_{6} is labelled e_{5}. Hence, $\operatorname{ord}\left(v_{1}^{*}\right)=\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right)$. Since $\bar{e}_{2}=\bar{f}_{2} \in u_{1}^{*}, u_{1}$ is labelled v_{2} and $\operatorname{ord}\left(v_{2}^{*}\right)=\left(\bar{e}_{2}, \bar{e}_{3}, f_{3}\right)$. Then f_{3} is labelled e_{6}. Hence, $\operatorname{ord}\left(v_{2}^{*}\right)=\left(\bar{e}_{2}, \bar{e}_{3}, e_{6}\right)$. Since $\bar{e}_{3} \in v_{2}^{*}, \bar{e}_{4}=\bar{f}_{5} \in u_{3}^{*}$, u_{3} is labelled v_{3} and $\operatorname{ord}\left(v_{3}^{*}\right)=\left(\bar{e}_{4}, \bar{f}_{7}, \bar{e}_{6}, \bar{e}_{5}, f_{7}\right)$. Then \bar{f}_{7} is labelled e_{7}. Hence, $\operatorname{ord}\left(v_{3}^{*}\right)=\left(\bar{e}_{4}, e_{7}, \bar{e}_{6}, \bar{e}_{5}, \bar{e}_{7}\right)$. The standard labelling of (Γ, v_{0}, ord $)$ is $V(\Gamma)=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, E(\Gamma)=\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ and

$$
\begin{aligned}
\left(\Gamma, v_{0}, \operatorname{ord}\right) & =\operatorname{ord}\left(v_{0}^{*}\right) ; \operatorname{ord}\left(v_{1}^{*}\right), \operatorname{ord}\left(v_{2}^{*}\right), \operatorname{ord}\left(v_{3}^{*}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, \bar{e}_{3}, e_{6}\right),\left(\bar{e}_{4}, e_{7}, \bar{e}_{6}, \bar{e}_{5}, \bar{e}_{7}\right) .
\end{aligned}
$$

4.3 Remark. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right), i=1,2$ be two points in $\operatorname{ord} \mathbb{A}_{g, p}$. Simplices $\sigma\left(\mathfrak{p}_{1}\right)=\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ and $\sigma\left(\mathfrak{p}_{2}\right)=\sigma\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ are in the same $\mathcal{A N}_{g, p, 1}$-orbit if and only if the standard labelling of $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right)$ equals to the standard labelling of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$.
4.4 Notation. From now on, we suppose that all fat graph with a distinguished vertex (Γ, v_{0}, ord) have the standard labelling. In particular, if $\left|v_{0}^{*}\right|=2$ and $|V(\Gamma)| \geq 3$, then $\operatorname{ord}\left(v_{0}^{*}\right)=\left(e_{1}, e_{2}\right), \operatorname{ord}\left(v_{1}^{*}\right)=\left(\bar{e}_{1}, \ldots\right)$ and, either $\bar{e}_{2} \in v_{1}^{*}$ or $\operatorname{ord}\left(v_{2}^{*}\right)=\left(\bar{e}_{2}, \ldots\right)$.
4.5 Definition. Let (Γ, v_{0}, ord) be a connected (g, p)-fat graph with a distinguished vertex such that $\left|v_{0}^{*}\right|=2$. Suppose $(g, p) \neq(0,1)$. Since $\left(\Gamma, v_{0}\right.$, ord) has the standard labelling, $\operatorname{ord}\left(v_{0}^{*}\right)=\left(e_{1}, e_{2}\right)$ and $\operatorname{ord}\left(v_{1}^{*}\right)=\left(\bar{e}_{1}, \ldots\right)$. Since $\left(\Gamma, v_{0}\right)$ is connected and $(g, p) \neq(0,1)$, we see $e_{1} \neq \bar{e}_{2}$. We define the fat graph with a distinguished vertex $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ obtained from (Γ, v_{0}, ord) by setting $v_{0}^{\downarrow}=v_{1}, V\left(\Gamma^{\downarrow}\right)=V(\Gamma)-\left\{v_{0}\right\}$ and $E\left(\Gamma^{\downarrow}\right)=E(\Gamma)-\left\{e_{1}, e_{2}\right\}$. We set $\operatorname{ord}^{\downarrow}(v)=\operatorname{ord}(v)$ for $v \in V\left(\Gamma^{\downarrow}\right)-\left\{v_{0}^{\downarrow}, u\right\}$ where $\bar{e}_{2} \in u^{*}$. If $\bar{e}_{2} \notin v_{1}^{*}$, then $u=v_{2}$ and we set $\operatorname{ord}^{\downarrow}\left(v_{0}^{\downarrow}\right)=\left(f_{1}^{1}, f_{2}^{1}, \ldots, f_{r}^{1}\right)$ and $\operatorname{ord}^{\downarrow}\left(v_{2}\right)=\left(f_{1}^{2}, f_{2}^{2}, \ldots, f_{s}^{2}\right)$ where $\operatorname{ord}\left(v_{1}\right)=\left(\bar{e}_{1}, f_{1}^{1}, f_{2}^{1}, \ldots, f_{r}^{1}\right)$ and $\operatorname{ord}\left(v_{2}\right)=\left(\bar{e}_{2}, f_{1}^{2}, f_{2}^{2}, \ldots, f_{s}^{2}\right)$. If $\bar{e}_{2} \in v_{1}^{*}$, then $u=v_{1}$ and we set $\operatorname{ord}^{\downarrow}\left(v_{0}^{\downarrow}\right)=\left(f_{1}, f_{2}, \ldots, f_{k-1}, f_{k+1}, \ldots, f_{r}\right)$ where $\operatorname{ord}\left(v_{1}\right)=\left(\bar{e}_{1}, f_{1}, f_{2}, \ldots, f_{k-1}, \bar{e}_{2}, f_{k+1}, \ldots, f_{r}\right)$

Notice $v_{0}^{\downarrow}=v_{1}, u \in E\left(\Gamma^{\downarrow}\right)$ may have valency two. If $u \neq v_{1}$, then u is not the distinguished vertex of ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$). If $u \neq v_{1}$ and $\left|u^{*}\right|=2$, then we set u as the midpoint of a new edge defined by concatenating the two edges incident to $u \in \Gamma^{\downarrow}$.

If (Γ, v_{0}, ord) is a metric graph with total volume one, then $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord ${ }^{\downarrow}$) has a metric induced by the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$; and scaling the metric of (Γ, v_{0}, ord) such that the total volume of $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is one.
4.6 Remark. Notice ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) may have separating edges.
4.7 Examples. (a) Let

$$
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right)
$$

Notice $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ has the standard labelling and

$$
w\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left\{e_{1} e_{3} \bar{e}_{6} \bar{e}_{2},\left[\bar{e}_{1} e_{2} e_{5} \bar{e}_{7} \bar{e}_{3} e_{4} \bar{e}_{5} e_{6} e_{7} \bar{e}_{4}\right]\right\}
$$

Since $\pi_{1}\left(\Gamma_{1}, v_{1,0}\right)$ is a rank-3 free-group, we see $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ is a (1,1)-fat graph with a distinguished vertex.
Then

$$
\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, f, e_{7}\right),\left(\bar{e}_{4}, \bar{f}, \bar{e}_{7}\right) .
$$

where edges e_{5}, e_{6} have been concatenated to a unique edge f. We have $w\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left\{e_{3} f \bar{e}_{7} \bar{e}_{3} e_{4} \bar{f} e_{7} \bar{e}_{4}\right\}$. Since $\pi_{1}\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right)$ is a rank-2 free-group, we see $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a (1,0)-fat graph with a distinguished vertex.
(b) Let

$$
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{6}\right),\left(\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right)
$$

Notice $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ has the standard labelling and

$$
w\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left\{e_{1} e_{3} e_{7} \bar{e}_{4} \bar{e}_{1} e_{2} e_{5} \bar{e}_{7} \bar{e}_{6} \bar{e}_{2},\left[\bar{e}_{3} e_{4} \bar{e}_{5} e_{6}\right]\right\}
$$

Since $\pi_{1}\left(\Gamma_{2}, v_{2,0}\right)$ is a rank-3 free group, we see $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ is a (1, $)$-fat graph with a distinguished vertex.

Then

$$
\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, e_{7}, f\right),\left(\bar{e}_{4}, \bar{f}, \bar{e}_{7}\right)
$$

where edges e_{5}, e_{6} have been concatenated to a unique edge f. We have $w\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)=\left\{e_{3} e_{7} \bar{e}_{4},\left[\bar{e}_{3} e_{4} \bar{f}\right],\left[f \bar{e}_{7}\right]\right\}$. Since $\pi_{1}\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right)$ is a rank-2 free group, we see $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(0,2)$-fat graph with a distinguished vertex.

The following lemma generalises these examples.
4.8 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in ord $\mathbb{A}_{g, p}$ such that $\left|v_{0}^{*}\right|=2$. Suppose $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right], \ldots,\left[w_{p}\right]\right\}$. Then $w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{2}$ and $\bar{e}_{1} e_{2}$ appears in $w\left(\Gamma, v_{0}\right.$, ord $)$.
(i) If $\left[w_{i}\right]=\left[\bar{e}_{1} e_{2} w_{i}^{\prime}\right]$ for some $1 \leq i \leq p$, then $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex.
(ii) If $w_{0}=e_{1} u_{0}^{\prime} \bar{e}_{1} e_{2} v_{0}^{\prime} \bar{e}_{2}$, then $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex.

Proof. Notice there exists an embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, which induces an injective group homomorphism $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow \pi_{1}\left(\Gamma, v_{1}\right)$. Then, $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ is a free group of rank $2 g+p-1=n-1$.

Since $\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ has the standard labelling, we have $w\left(\Gamma, v_{0}\right.$, ord $)=$ $\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\}$ where $w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{2}$ and the subword $\bar{e}_{1} e_{2}$ appears in $w\left(\Gamma, v_{0}\right.$, ord $)$.

If $\left[w_{i}\right]=\left[\bar{e}_{1} e_{2} w_{i}^{\prime}\right]$ for some $1 \leq i \leq p$, then

$$
w\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right)=\left\{w_{0}^{\prime} w_{i}^{\prime},\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{i-1}\right],\left[w_{i+1}\right], \ldots,\left[w_{p}\right]\right\}
$$

If $w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{2}=e_{1} u_{0}^{\prime} \bar{e}_{1} e_{2} v_{0}^{\prime} \bar{e}_{2}$, then

$$
w\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right)=\left\{u_{0}^{\prime},\left[v_{0}^{\prime}\right],\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\} .
$$

4.9 Definition. Let $\mathbb{T}_{g, p}$ be the set of all points $\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ in $\operatorname{ord} \mathbb{A}_{g, p}$ such that $\left|v_{0}^{*}\right| \geq 3$.
4.10 Remark. In [2, Remark 4.20 (d)], it is proved that $\operatorname{ord} \mathbb{A}_{g, p}$ is connected by proving that $\mathbb{T}_{g, p}$ is connected.
4.11 Remark. If a point $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ in $\operatorname{ord} \mathbb{A}_{g, p}$ lies in $\mathbb{T}_{g, p}$, then the open simplex $\sigma(\mathfrak{p})$ lies in $\mathbb{T}_{g, p}$. Hence, $\mathbb{T}_{g, p}$ and $\left(\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}\right)$ have a simplex structure. In particular, we have the following.

If $\sigma(\mathfrak{p})$ is a $(6 g+3 p-3)$-dimensional simplex, then $\left|v_{0}^{*}\right|=2$ and $\sigma(\mathfrak{p}) \subseteq$ $\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}$.

If $\sigma(\mathfrak{p}) \subseteq \operatorname{ord} \mathbb{A}_{g, p}$ is a simplex such that $\left|v_{0}^{*}\right|=2$, then a face σ^{\prime} of $\sigma(\mathfrak{p})$ is missing in $\sigma(\mathfrak{p}) \cap\left(\operatorname{ord}_{\mathbb{A}_{g, p}}-\mathbb{T}_{g, p}\right)$ if and only if σ^{\prime} is obtained from $\sigma(\mathfrak{p})$ by collapsing a forest of Γ which contains either e_{1} or e_{2}.
4.12 Definition. Let \mathfrak{p} be a point in ord $\mathbb{A}_{g, p}-\mathbb{T}_{g, p}$.

We denote by $\operatorname{ord} \mathbb{A}_{g, p}^{p}$ the connected component of $\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}$ which contains \mathfrak{p}.

We define

$$
\mathcal{A N}_{g, p, 1}^{\mathfrak{p}}=\left\{\varphi \in \mathcal{A} \mathcal{M}_{g, p, 1} \mid \varphi \cdot \mathfrak{p} \in \operatorname{ord} \mathbb{A}_{g, p}^{\mathfrak{p}}\right\} .
$$

4.13 Remarks. Let \mathfrak{p} be a point in $\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}$.
(a) $\mathcal{A}_{\mathcal{M}_{g, p, 1}^{\mathfrak{p}}}$ is a subgroup of $\mathcal{A} \mathcal{M}_{g, p, 1}$ which acts on ord $\mathbb{A}_{g, p}^{\mathfrak{p}}$.
(b) By Remark 4.11, ord $\mathbb{A}_{g, p}^{p}$ has a complex structure.
(c) Let $\varphi \in \mathcal{A} \mathcal{M}_{g, p, 1}$. Then $\mathcal{A N}_{g, p, 1}^{\varphi \cdot p}=\varphi \cdot \mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}} \cdot \varphi^{-1}$.
(d) Suppose $g \geq 1, p \geq 1$. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right), i=1,2$, be points in $\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}$ such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. Then $\operatorname{ord} \mathbb{A}_{g, p}^{\mathfrak{p}_{1}} \cap \operatorname{ord} \mathbb{A}_{g, p}^{\mathfrak{p}_{2}}=\emptyset$.

5 The reduced ordered Auter space

We define a subcomplex of ord $\mathbb{A}_{g, p}$, called the reduced ordered Auter space. This subspace, denoted $\widehat{\operatorname{ord}} \mathbb{A}_{g, p}$, is a homotopy retract of $\operatorname{ord} \mathbb{A}_{g, p}$. Since $\operatorname{ord} \mathbb{A}_{g, p}$ is simply connected, $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$ is simply connected. The action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$ restricts to an action on $\widehat{\operatorname{ord}}_{g, p}$. On the other hand, $\widehat{\operatorname{ord}}_{g, p}$ is a $(6 g+3 p-$ 3)-dimensional manifold, and, Poincaré's Polyhedron theorem can be applied to the action of $\mathcal{A N}_{g, p, 1}$ on $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$.
5.1 Definition. Let (Γ, v_{0}, ord) be a connected (g, p)-fat graph with a distinguished vertex such that $\left|v_{0}^{*}\right|=2$ and $\left|v^{*}\right|=3$ for every $v \in V(\Gamma)-\left\{v_{0}\right\}$.

For $2 g+p=1$, we say that (Γ, v_{0}, ord $)$ is a strongly non-separating graph if there are not separating edges in (Γ, v_{0}, ord).

For $2 g+p \geq 2$, we say that (Γ, v_{0}, ord) is a strongly non-separating graph if there are not separating edges in (Γ, v_{0}, ord) and ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) is a strongly non-separating graph.

Recall a point $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \operatorname{ord} \mathbb{A}_{g, p}$ defines a simplex $\sigma(\mathfrak{p})$ of dimension $6 g+3 p-3$ if and only if $\left|v_{0}^{*}\right|=2$ and $\left|v^{*}\right|=3$ for every $v \in V(\Gamma)-\left\{v_{0}\right\}$.
5.2 Definition. We define the reduced ordered Auter space, denoted $\widehat{\operatorname{ord}}_{g}$, , as the closure of $(6 g+3 p-3)$-dimensional simplices $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \subseteq \operatorname{ord}_{\mathbb{A}_{g, p}}$ such that (Γ, v_{0}, ord) is a strongly non-separating graph.
5.3 Lemma. Let (Γ, v_{0}, ord) be a fat graph with a distinguished vertex. Suppose there are not separating edges in $\left(\Gamma, v_{0}\right.$, ord $)$. Let $u \in V(\Gamma)$ such that $\left|u^{*}\right| \geq 4$ if $u \neq v_{0}$, or, $\left|u^{*}\right| \geq 3$ if $u=v_{0}$. Then u can be split such that $\left(\Gamma^{u}, v_{0}^{u}\right.$, ord $\left.{ }^{u}\right)$ has no separating edges.

Proof. Suppose $|u|=r$ and $\operatorname{ord}(u)=\left(e_{1}, e_{2}, \ldots, e_{r}\right)$. We split u according to $1 \leq k_{1}<k_{2} \leq r,\left(k_{1}, k_{2}\right) \neq(1, r)$. See Definition 2.7. If $\left(\Gamma^{u}, v_{0}^{u}, \operatorname{ord}^{u}\right)$ has separating edges, then, since $\left(k_{1}, k_{2}\right) \neq(1, r)$, we can split u according to either $1 \leq k_{1}-1<k_{2}-1 \leq r$ or $1 \leq k_{1}+1<k_{2}+1 \leq r$ and the new splitting gives a graph with a distinguished vertex without separating edges.
5.4 Lemma. $\widehat{\operatorname{ord}}_{g, p}$ is a homotopy retract of $\operatorname{ord} \mathbb{A}_{g, p}$.

Proof. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \operatorname{ord} \mathbb{A}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a $(6 g+3 p-$ 3)-dimensional simplex, and $\mathfrak{p} \notin \widehat{\operatorname{ordA}}_{g, p}$. Suppose ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) has separating edges. The embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord), $v_{0}^{\downarrow} \mapsto v_{1}$ identifies every edge of Γ^{\downarrow}, but one, with an edge of Γ, and one edge of Γ^{\downarrow} with the concatenation of two edges of Γ. Since (Γ, v_{0}, ord) does not have separating edges, collapsing separating edges of ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) can be extend to collapsing the corresponding edges of (Γ, v_{0}, ord). This defines a homotopy retraction which sends $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord,$\left.\phi\right)$ to $\mathfrak{p}^{\prime}=\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right)$. By Lemma 5.3 \mathfrak{p}^{\prime} lies in the closure of a $(6 g+3 p-3)$-dimensional simplex $\sigma\left(\mathfrak{p}_{1}\right)=\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ does not have separating edges.

If ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) does not have separating edges, after a finite number of times applying Definition 4.5, we obtain a graph with separating edges and the same argument can be applied. The homotopy retraction can be extend to $\operatorname{ord} \mathbb{A}_{g, p}$.
5.5 Remark. The action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\operatorname{ord} \mathbb{A}_{g, p}$ described in Definition 2.11 gives an action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\widehat{\operatorname{ord}}_{g, p}$.
5.6 Lemma. $\widehat{\text { ord }}_{g, p}$ is a manifold of dimension $6 g+3 p-3$ with boundary of dimension $6 g+3 p-4$.

Proof. It is proved in [2, Lemma 4.15] that ord $\mathbb{A}_{g, p}$ is a $(6 g+3 p-3)$-dimensional manifold. The proof reduces to the following facts.
(a) Each codimension 1 simplex lies, at most, in the closure of two $(6 g+3 p-$ 3)-dimensional simplices. See Remark 3.5.
(b) If $\sigma^{\prime \prime}$ is a simplex of $\operatorname{ord} \mathbb{A}_{g, p}$ of codimension at least 1 and σ, σ^{\prime} are two $(6 g+3 p-3)$-dimensional simplices of $\operatorname{ord} \mathbb{A}_{g, p}$ which have $\sigma^{\prime \prime}$ is a face, then there exists a sequence of $(6 g+3 p-3)$-dimensional simplices of ord $\mathbb{A}_{g, p}$ such that the sequence starts with σ and ends with σ^{\prime}, and, we can move from one element of the sequence to the next element of the sequence through a codimension 1 face which has $\sigma^{\prime \prime}$ as a face.

Since $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$ is a subcomplex of $\operatorname{ord} \mathbb{A}_{g, p}$, condition (a) above holds for $\widehat{\operatorname{ordA}}_{g, p}$.

The proof of condition (B) above is the same for $\operatorname{ord} \mathbb{A}_{g, p}$ and $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$.
5.7 Remark. By Lemma 5.4, $\widehat{\operatorname{ordA}}_{g, p}$ is simply connected. By Lemma 5.6 , ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}$ is a manifold. Hence, Poincaré's Polyhedron theorem can be applied to the action of $\mathcal{A} \mathcal{M}_{g, p, 1}$ on $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$.
5.8 Definition. We define

$$
\begin{aligned}
\widehat{\mathbb{P}}_{g, p} & =\widehat{\operatorname{ord}}_{g, p} \cap \mathbb{P}_{g, p}, \\
\widehat{\mathbb{T}}_{g, p} & =\widehat{\operatorname{ord} \mathbb{A}_{g, p}} \cap \mathbb{T}_{g, p} .
\end{aligned}
$$

For $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}^{-\widehat{\mathbb{T}}_{g, p}}$, we define

$$
\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}}=\widehat{\operatorname{ord}}_{g, p} \cap \operatorname{ord} \mathbb{A}_{g, p}^{p} .
$$

6 A decomposition for ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}$

6.1 Definitions. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ be a point in $\widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$.

Recall ord $\left(v_{0}\right)=\left(e_{1}, e_{2}\right)$. We say that edges $e_{1}, e_{2} \in E(\Gamma)$ are g-edges of level $n=2 g+p$.

We denote by $\frac{1}{2}-\widehat{\operatorname{ordA}}_{g, p}^{p}$ the subspace of $\widehat{\operatorname{ord}}^{p}$,p consisting of points such that the length of each g-edge of level n, e_{1} and e_{2}, is $\frac{1}{4}$.
6.2 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\widehat{\operatorname{ordA}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Then $\frac{1}{2} \widehat{\text { ordA }}_{g, p}^{\mathfrak{p}}$ is a homotopy retract of $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}}$.
Proof. We define an homotophy

$$
\begin{aligned}
{[0,1] \times[0,1] \times \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}} } & \rightarrow \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}, \\
\left(s, t,\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right)\right) & \mapsto\left(\Gamma^{\prime \prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right) .
\end{aligned}
$$

such that $\left(\Gamma^{\prime \prime}, v_{0}^{\prime}\right.$, ord $\left.{ }^{\prime}, \phi^{\prime}\right)$ equals ($\Gamma^{\prime}, v_{0}^{\prime}$, ord $\left.^{\prime}, \phi^{\prime}\right)$ excepts for the length of edges as follows. If we denote the length of an edge e of Γ by $\ell_{\Gamma}(e)$, then $\ell_{\Gamma^{\prime \prime}}\left(e_{1}\right)=$ $\frac{s}{4}+(1-s) \ell_{\Gamma^{\prime}}\left(e_{1}\right), \ell_{\Gamma^{\prime \prime}}\left(e_{2}\right)=\frac{t}{4}+(1-t) \ell_{\Gamma^{\prime}}\left(e_{2}\right)$ and $\ell_{\Gamma^{\prime \prime}}(f)$, where $f \in E\left(\Gamma^{\prime \prime}\right)-$ $\left\{e_{1}, e_{2}\right\}=E\left(\Gamma^{\prime}\right)-\left\{e_{1}, e_{2}\right\}$, equals $\ell_{\Gamma^{\prime}}(f)$ scaled by a factor such that the sum of lengths of all edges in $E\left(\Gamma^{\prime \prime}\right)$ is 1 .
6.3 Definition. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ be a point in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\bar{e}_{2} \in u^{*}, u \in V(\Gamma)$ and $\left|u^{*}\right|=3$. We say that edges in $u^{*}-\left\{\bar{e}_{2}\right\}$ are h-edges of level $n=2 g+p$.
6.4 Example. By Example 3.8, $\widehat{\mathbb{P}}_{0,2}=\mathbb{P}_{0,2}=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord, $\left.\left.\phi\right)\right)$ where $\left(\Gamma, v_{0}\right.$, ord $)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$ and $\widehat{\mathbb{P}}_{1,0}=\mathbb{P}_{1,0}=\operatorname{cl}\left(\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right)\right)$ where $\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$. In both cases, e_{1} and e_{2} are g-edges of level 2, and, e_{3} and e_{4} are h-edges of level 2.
6.5 Remark. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$ be a point in $\widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\bar{e}_{2} \in$ $u^{*}, u \in V(\Gamma)$ and $\left|u^{*}\right|=3$. Notice the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $)$, $v_{0}^{\downarrow} \mapsto v_{1}$, identifies every edge of Γ which is neither a g-edge nor an h-edge of level n with an edge of Γ^{\downarrow}, and, identifies the concatenation of both h-edges of level n with an edge of Γ^{\downarrow}.
6.6 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\frac{1}{2}$-ord $\widehat{\mathbb{A}}_{g, p}$. Suppose $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex. Let ϕ^{\downarrow} : $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{h, q}$.

Then, a path in $\widehat{\operatorname{ord}}_{h, q}$ lying in simplices of codimension at most one and starting at $\mathfrak{p}^{\downarrow}$ can be lifted to a unique path, up to h-edges of level n and length of h-edges of level n, starting at \mathfrak{p} and lying in simplices of $\frac{1}{2}-\widehat{\text { ord }}_{g, p}^{\mathfrak{p}}$ of codimension at most one.

Proof. By Lemma 4.8, $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right)$ is a (h, q)-fat graph where either $(h, q)=$ $(g-1, p+1)$ or $(h, q)=(g, p-1)$. By definition of $\widehat{\operatorname{ord}}_{g, p}$, there exists a point $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right)$ in $\widehat{\operatorname{ord}}_{h, q}$. By Remark 6.5, a path starting at $\mathfrak{p}^{\downarrow}$ in the open simplex $\sigma\left(\mathfrak{p}^{\downarrow}\right)$ can be lifted to a path starting at \mathfrak{p} inside the open simplex $\sigma(\mathfrak{p})$ such that the length of g-edges of level n of Γ is constant. Notice such a lift is unique up to the length of h-edges of level n of Γ.

A path in $\widehat{\operatorname{ord}}_{h, q}$ which lies in simplices of codimension at most one is a sequence of collapsing edges and splitting the vertex of valence four, if it is not the distinguished vertex, or the vertex of valence three, if it is the distinguished vertex. By Remark 6.5, such a path in $\widehat{\operatorname{ord}}_{h, q}$ can be lifted to $\widehat{\operatorname{ord}}_{g, p}$ if the edge of Γ^{\downarrow} which is collapsed is not identified with the concatenation of both h-edges of level n of (Γ, v_{0}, ord).

Collapsing the edge of $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ which is identified with the concatenation of both h-edges of level n of Γ can be lifted by previously collapsing one of the two h-edges of level n and splitting the vertex of valence four. After this sequence of collapsing and splitting, the edge of $\mathfrak{p}^{\downarrow}$ which is collapsed is not identified with the concatenation of both h-edge of level n of \mathfrak{p}.

Notice the length of g-edges of level n can be left constant and the lifted path lies in codimension at most one simplices. Hence, the lifted path lies in $\frac{1}{2}-\widehat{\operatorname{Ord}}_{\text {A }}^{p, p}$.
6.7 Proposition. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\widehat{\text { ord }}_{g, p}$. Suppose $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex. Let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{h, q}$.

Then, there exists an onto and continuous map

$$
\begin{aligned}
\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}} & \rightarrow \widehat{\operatorname{ord}}_{h, q}, \\
\mathfrak{p} & \mapsto \mathfrak{p}^{\downarrow} .
\end{aligned}
$$

such that μ is constant on paths where any two points in the path have different length of h-edges of level n.

Proof. By definition of the metric on $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ and Remark 6.5. the assignment $\mathfrak{p} \mapsto \mathfrak{p}^{\downarrow}$, extends to a continuous map between open simplices $\sigma(\mathfrak{p}) \rightarrow \sigma\left(\mathfrak{p}^{\downarrow}\right)$. Notice this map is constant on points which only differ in the length of h-edges of level n. By Remark 4.11 and Remark 6.5, $\sigma(\mathfrak{p}) \rightarrow \sigma\left(\mathfrak{p}^{\downarrow}\right)$ extends to faces of $\sigma(\mathfrak{p})$ obtained without collapsing none of the g-edges of level n. Hence, $\sigma(\mathfrak{p}) \rightarrow \sigma\left(\mathfrak{p}^{\downarrow}\right)$ extends to faces of $\sigma(\mathfrak{p})$ lying in ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}}$. By Remark 6.5. the continuous map $\sigma(\mathfrak{p}) \rightarrow \sigma\left(\mathfrak{p}^{\downarrow}\right)$ extends to a continuous map from simplices where $\sigma(\mathfrak{p})$ is a face. Since ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}^{\mathfrak{p}}}^{1}$ is path-connected, we have defined μ. We have to see that μ is well-defined.

Let $\gamma:[0,1] \rightarrow \widehat{\operatorname{ordA}}_{g, p}$ be a path such that $\gamma(0)=\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)$. Recall γ is a sequence of collapsing edges and splitting vertices. Let $\gamma(1)=$ $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$. Then $\phi_{1}^{-1} \cdot \phi: \pi_{1}\left(\Gamma, v_{0}\right) \rightarrow \pi_{1}\left(\Gamma_{1}, v_{1,0}\right)$ is an isomorphism obtained by the process of collapsing the edges and splitting the vertices described in γ. Consider the path $\gamma^{\downarrow}=\mu \gamma:[0,1] \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}$ and $\gamma^{\downarrow}(1)=$ $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}, \phi_{1}^{\downarrow}\right)$. Notice $\left(\phi_{1}^{\downarrow}\right)^{-1} \cdot \phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow \pi_{1}\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right)$ is the restriction of $\phi_{1}^{-1} \cdot \phi$ to $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ under the inclusion induced by $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow$ $\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$. Suppose $\gamma(1)=\gamma(0)=\mathfrak{p}$. To see μ is well defined, we have to see $\gamma^{\downarrow}(1)=\gamma^{\downarrow}(0)=\mathfrak{p}^{\downarrow}$. Since $\gamma(1)=\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ and $\gamma^{\downarrow}(1)=\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right.$, ord $\left._{1}^{\downarrow}, \phi_{1}^{\downarrow}\right)$, we see $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$. And $\left(\phi_{1}^{\downarrow}\right)^{-1} \cdot \phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ is the identity since it is the restriction to $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ of the identity of $\pi_{1}\left(\Gamma, v_{0}\right)$.

We can suppose both g-edges of level n of Γ have length $\frac{1}{4}$. Since ${\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}^{\text {is }}$ path-connected by paths lying in codimension at most one simplices of $\widehat{\operatorname{ord}}_{h, q}$, by Lemma 6.6, such a path in $\widehat{\operatorname{ordA}}_{h, q}$ starting at $\mathfrak{p}^{\downarrow}$ lifts to a path in $\frac{1}{2}$-ordA${ }_{g, p}^{\mathfrak{p}}$ staring at \mathfrak{p}. Then μ maps the end point of the lifted path starting at \mathfrak{p} to the end point of the path starting at $\mathfrak{p}^{\downarrow}$.
6.8 Remark. Notice $\mu: \widehat{\operatorname{ord}}^{\mathfrak{p}},{\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}^{\text {, }}, \mathfrak{p} \mapsto \mathfrak{p}^{\downarrow}$ defined in Proposition 6.7 depends on the choice of the isomorphism $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ which defines $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$.
6.9 Corollary. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\widehat{\operatorname{ord} d}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Then $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$ is simply connected.

Proof. Let γ be a closed path in ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{p}^{p}$. Then $\mu \gamma$ is a closed path in $\widehat{\operatorname{ord}}_{h, q}$. Since ${\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}^{\text {is simply connected, } \mu \gamma \text { bounds a disk. This disk can be lifted, by }}$ Lemma 6.6, to a disk in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$ with boundary γ.
6.10 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\widehat{\text { ord }}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Suppose the length of each g-edge is $\frac{1}{4}$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex. Let $\mathfrak{p}^{\prime}=\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.{ }^{\prime}, \phi^{\prime}\right)$ be a point in $\widehat{\operatorname{ord}}_{h, q}$ such that $\sigma\left(\mathfrak{p}^{\prime}\right)$ is a simplex of dimension $3(n-1)-3=6 h+3 q-3$.

Then a connected component of the anti-image of \mathfrak{p}^{\prime} under μ restricted to $\frac{1}{2} \widehat{\text {-ord }}_{g, p}^{\mathfrak{p}}$ is obtained by changing the length of h-edges of level n, collapsing h-edges of level n and splitting the vertex of valence four, and, scaling the length of every edge but g-edges and h-edges of level n such that the total volume is one.
(i) If $(h, q)=(g, p-1)$, then the anti-image of \mathfrak{p}^{\prime} under μ restricted to $\frac{1}{2}$-ord $\mathbb{A}_{\text {g,p }}^{p}$ is homeomorphic to $[0,1]$.
(ii) If $(h, q)=(g-1, p+1)$, then the anti-image of \mathfrak{p}^{\prime} under μ restricted to $\frac{1}{2}$-ord $\mathbb{A}_{g, p}^{p}$ is homeomorphic to the disjoint union of $(p+1)$ copies of \mathbb{R}.

Proof. Recall $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$ has dimension $3 n-3=6 g+3 p-3, \frac{1}{2}$-ordA्A ${ }_{g, p}^{\mathfrak{p}}$ has dimension $3 n-5=6 g+3 p-5$ and $\widehat{\operatorname{ord}}_{h, q}$ has dimension $3(n-1)-3=6 g+3 p-$ 6. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=1,2$, be a point in $\frac{1}{2}$-ord $\widehat{\mathbb{A}}_{g, p}^{\mathfrak{p}}$ such that $\sigma\left(\mathfrak{p}_{\mathfrak{i}}\right)$ is a simplex of dimension $3 n-3=6 g+3 p-3$ and $\mu\left(\mathfrak{p}_{\mathfrak{i}}\right)=\mathfrak{p}^{\prime}$, for $i=$ 1,2 . Then $\left(\Gamma_{i}^{\downarrow}, v_{i, 0}^{\downarrow}, \operatorname{ord}_{i}^{\downarrow}\right)=\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)$, for $i=1,2$. Notice $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ and ($\Gamma_{2}, v_{2,0}$, ord $_{2}$) are obtained from ($\Gamma^{\prime}, v_{0}^{\prime}$, ord') by choosing an oriented edge which corresponds to the concatenation of both h-edges of level n. Hence, h-edges of level n of ($\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}$) and ($\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}$) either are the same, possibly with different lengths, or, are different edges. Since μ is constant on paths where two
points in the path only differ in the length of h-edges, if both points \mathfrak{p}_{1} and \mathfrak{p}_{2} are in the same component of the anti-image under μ, then there is a sequence of collapsing an h-edge and splitting the valence four vertex which transforms $\mathfrak{p}_{1}=\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ into $\mathfrak{p}_{2}=\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$.

Suppose $w\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}\right)=\left\{w_{0}^{\prime},\left[w_{1}^{\prime}\right],\left[w_{2}^{\prime}\right], \ldots,\left[w_{q}^{\prime}\right]\right\}$.
If $(h, q)=(g, p-1)$, then the chosen oriented edge appears in w_{0}^{\prime}. Hence, the anti-image is parametrized by $[0,1]$.

If $(h, q)=(g-1, p+1)$, then the chosen oriented edge appears in $\left[w_{i}^{\prime}\right]$, for $1 \leq i \leq p+1$. Hence, the anti-image is parametrized by $(p+1)$ copies of \mathbb{R}.
6.11 Proposition. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in \widehat{\operatorname{ord}}_{\underline{A}}, p-\widehat{\mathbb{T}}_{g, p}, i=1,2$, be points such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right.$, ord $\left.{ }_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right.$, ord $\left.{ }_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. Then

$$
\widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}=\bigcup_{i=1,2}\left(\cup_{\varphi_{i}}\left(\varphi_{i} \cdot \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{i}}\right)\right),
$$

where φ_{i} ranges over $\mathcal{A} \mathcal{M}_{g, p, 1} / \mathcal{A \mathcal { M }}_{g, p, 1}^{\boldsymbol{p}_{i}}, i=1,2$; and every pair of sets on the right-hand side are disjoint.

Proof. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Since $\left|v_{0}^{*}\right|=2$, by Lemma 4.8, $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ is either a $(g, p-1)$-fat graph with a distinguished vertex or a ($g-1, p+1$)-fat graph with a distinguished vertex.

Suppose $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord ${ }^{\downarrow}$) is a $(g-1, p+1)$-fat graph with a distinguished vertex. Let $\phi_{2}^{\downarrow}: \pi_{1}\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right) \rightarrow F_{g-1, p+1,1}$ be an isomorphism such that $\mathfrak{p}_{2}^{\downarrow}=\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}, \phi_{2}^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{g-1, p+1}$. By Proposition 6.7, there exists a continuous map

$$
\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{2}} \rightarrow \widehat{\operatorname{ord}}_{g-1, p+1}, \mathfrak{p}_{2} \mapsto \mathfrak{p}_{2}^{\downarrow}
$$

Let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{g-1, p+1,1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord} \mathbb{A}_{g-1, p+1}}$. Let γ^{\downarrow} be a path in $\widehat{\operatorname{ord}}_{g-1, p+1}$ from $\mathfrak{p}_{2}^{\downarrow}$ to $\mathfrak{p}^{\downarrow}$ such that each simplex intersected by γ^{\downarrow} has codimension at most one. By Lemma 6.6. γ^{\downarrow} lifts to a path γ in $\frac{1}{2}-\widehat{\operatorname{Ord}}_{g, p}^{\mathfrak{A}_{2}}$ from \mathfrak{p}_{2} to $\mathfrak{p}^{\prime}=\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord',$\left.\phi^{\prime}\right)$. Then $\mu\left(\mathfrak{p}^{\prime}\right)=\mathfrak{p}^{\downarrow}$. By Lemma 6.10, there exists $\mathfrak{p}^{\prime \prime}=\left(\Gamma^{\prime \prime}, v_{0}^{\prime \prime}, \operatorname{ord}^{\prime \prime}, \phi^{\prime \prime}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2}}$ such that $\mu\left(\mathfrak{p}^{\prime \prime}\right)=\mu\left(\mathfrak{p}^{\prime}\right)=\mathfrak{p}^{\downarrow}$ and $\left(\Gamma^{\prime \prime}, v_{0}^{\prime \prime}\right.$,ord $\left.{ }^{\prime \prime}\right)=\left(\Gamma, v_{0}\right.$, ord $)$. Hence, \mathfrak{p} and $\mathfrak{p}^{\prime \prime}$ are in the same $\widehat{\operatorname{ord}} \mathbb{A}_{g, p}$-orbit and $\mathfrak{p}^{\prime \prime} \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2}}$.

If $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex, the same argument can be applied with \mathfrak{p}_{2} replaced by \mathfrak{p}_{1}.

Every pair of sets on the right-hand side of the equality in the statement are disjoint by definition and Remark 4.13(d).
6.12 Remark. Recall $\widehat{\mathbb{P}}_{g, p}$ is a fundamental domain for the action of $\mathcal{A M} \mathcal{M}_{g, p, 1}$ on $\widehat{\operatorname{ord}}_{g, p}$. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in \widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}, i=1,2$, be points such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. By Proposition 6.11, we can choose $\widehat{\mathbb{P}}_{g, p}$ such that

$$
\widehat{\mathbb{P}}_{g, p}-\widehat{\mathbb{T}}_{g, p} \subseteq \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{1}} \cup{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2}} .
$$

Since sets on the right-hand side above are disjoint, we have a decomposition of $\widehat{\mathbb{P}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$ in two disjoint sets: $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{1}}$ and $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{2}} \cap \widehat{\mathbb{P}}_{g, p}$. Notice $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\mathbb{T}}_{g, p}$ lies in the closure of $(6 g+3 p-3)$-dimensional simplices of $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{1}} \cap \widehat{\mathbb{P}}_{g, p}$ and $\widehat{\operatorname{OrdA}}_{g, p}^{\boldsymbol{p}_{2}} \cap \widehat{\mathbb{P}}_{g, p}$.

Recall $\mathcal{A \mathcal { M }}_{g, p, 1}^{p_{i}}, i=1,2$, is the subgroup of $\mathcal{A \mathcal { M }}_{g, p, 1}$ consisting of automorphisms $\varphi \in \mathcal{A M}_{g, p, 1}$ such that $\varphi \cdot \mathfrak{p}_{i} \in \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{i}}, i=1,2$. Hence, $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{\boldsymbol{p}}}, i=1,2$, is the subgroup of $\mathcal{A M}_{g, p, 1}$ which leaves $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{i}}, i=1,2$, invariant. By Theorem 3.7, a presentation for $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{i}}, i=1,2$, can be deduced from $\widehat{\mathbb{P}}_{g, p} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{i}}, i=1,2$.

The following Proposition identifies $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}}$.
6.13 Proposition. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ be a point in $\widehat{\text { ord }}_{g, p}-\widehat{\mathbb{T}}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$.
(i) If $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex, then $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}}$ is isomorphic to $\mathcal{A M}_{g, p-1,1}$.
(ii) If $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex, then $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ is isomorphic to $\mathcal{A N}_{g-1, p, 2}$.

Proof. Suppose $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\}$. We identify $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ with its image under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord \downarrow) $\hookrightarrow\left(\Gamma, v_{0}\right.$, ord), $v_{0}^{\downarrow} \mapsto v_{1}$. Then $e_{1} \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}$ is a free factor of $\pi_{1}\left(\Gamma, v_{0}\right)$ and

$$
\pi_{1}\left(\Gamma, v_{0}\right)=\left(e_{1} \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}\right) *\left\langle e_{1} \gamma_{v_{2}} \bar{e}_{2}\right\rangle
$$

where $\gamma_{v_{2}}$ is a path in $\Gamma^{\downarrow} \subseteq \Gamma$ from $v_{0}^{\downarrow}=v_{1}$ to v_{2} where $\bar{e}_{2} \in v_{2}^{*}$.
Let $\varphi \in \mathcal{A N}_{g, p, 1}^{\mathfrak{p}}$. Recall $\phi: \pi_{1}\left(\Gamma, v_{0}\right) \rightarrow F_{g, p, 1}$ is an isomorphism. Notice $\phi^{-1} \varphi \phi=\varphi^{\phi}$ is an automorphism of $\pi_{1}\left(\Gamma, v_{0}\right)$ which preserves w_{0} and the set of conjugacy classes $\left\{\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\}$. We will define an automorphism of $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ with the appropriated properties in both cases.

Since $\mathcal{A M}_{g, p, 1}$ acts freely on the simply connected space $\widehat{\operatorname{ord}}_{\underline{\mathbb{A}}}^{g, p}$, we see φ is determined by a path $\gamma:[0,1] \rightarrow \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}} \subseteq \widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$ from $\gamma(0)=\mathfrak{p}$ to
$\gamma(1)=\varphi \cdot \mathfrak{p}=\varphi \cdot\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)=\left(\Gamma, v_{0}\right.$, ord,$\left.\varphi \circ \phi\right)$. We can suppose $\gamma([0,1])$ lies in the union of simplices of codimension at most 1. Hence, there exists a sequence of $(6 g+3 p-3)$-dimensional open simplices $\sigma\left(\mathfrak{p}_{1}\right), \sigma\left(\mathfrak{p}_{2}\right), \ldots, \sigma\left(\mathfrak{p}_{k}\right)$ such that $\sigma(\mathfrak{p})=\sigma\left(\mathfrak{p}_{1}\right), \varphi \cdot \sigma(\mathfrak{p})=\sigma\left(\mathfrak{p}_{k}\right)$ and

$$
\gamma([0,1]) \subseteq\left(\bigcup_{1 \leq i \leq k} \sigma\left(\mathfrak{p}_{i}\right)\right) \cup\left(\bigcup_{1 \leq i \leq k-1}\left(\operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i}\right)\right) \cap \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i+1}\right)\right)\right)\right),
$$

where $\operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i}\right)\right) \cap \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{i+1}\right)\right)$ contains a codimension 1 face of $\sigma\left(\mathfrak{p}_{i}\right)$ and $\sigma\left(\mathfrak{p}_{i+1}\right)$. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ for $1 \leq i \leq k$. Then $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$. Since the codimension one face in $\operatorname{cl}\left(\sigma\left(\mathfrak{p}_{1}\right)\right) \cap \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{2}\right)\right)$ is obtained without collapsing none of the two g-edges of level n, moving from $\sigma\left(\mathfrak{p}_{1}\right)$ to $\sigma\left(\mathfrak{p}_{2}\right)$ through the codimension one face in $\operatorname{cl}\left(\sigma\left(\mathfrak{p}_{1}\right)\right) \cap \operatorname{cl}\left(\sigma\left(\mathfrak{p}_{2}\right)\right)$ sends the subgraph $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ of $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ to the subgraph $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$, sends $v_{1,0}$ to $v_{2,0}$ and sends $\operatorname{ord}_{1}\left(v_{1,0}^{*}\right)$ to $\operatorname{ord}_{2}\left(v_{2,0}^{*}\right)$. This process can be repeated until $\sigma\left(\mathfrak{p}_{k}\right)=\sigma\left(\Gamma_{k}, v_{k, 0}, \operatorname{ord}_{k}, \phi_{k}\right)=\sigma\left(\Gamma, v_{0}, \operatorname{ord}, \varphi \circ \phi\right)=\sigma\left(\varphi \cdot\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right)\right)=\varphi \cdot \sigma(\mathfrak{p})$. Hence, the subgroup $e_{1} \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}=e_{1} \pi_{1}\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right) \bar{e}_{1}=e_{1} \pi_{1}\left(\Gamma_{k}^{\downarrow}, v_{k, 0}^{\downarrow}\right) \bar{e}_{1}$ is invariant under φ^{ϕ} and the image of $e_{1} \gamma_{v_{2}} \bar{e}_{2}$ under φ^{ϕ} lies in the right coset $e_{1} \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1} \cdot\left(e_{1} \gamma_{v_{2}} \bar{e}_{2}\right)$ of $\left(e_{1} \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}\right) \backslash \pi_{1}\left(\Gamma, v_{0}\right)$. We define an automorphism $\rho(\varphi)$ of $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$

$$
\rho(\varphi): \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right), \quad w \mapsto \bar{e}_{1} \varphi^{\phi}\left(e_{1} w \bar{e}_{1}\right) e_{1} .
$$

Let $u \in \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ such that $\varphi^{\phi}\left(e_{1} \gamma_{v_{2}} \bar{e}_{2}\right)=e_{1} u \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}$. Recall $w_{0}=$ $e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}$ and $\bar{e}_{1} e_{2}$ appears in $w\left(\Gamma, v_{0}\right.$, ord $)$.

If $\bar{e}_{1} e_{2}$ appears in $\left[w_{i}\right]$ for some $1 \leq i \leq p$; then, by Lemma 4.8. ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord $\left.^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex, and, $w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}$, $\left[w_{i}\right]=\left[e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} w_{i}^{\prime} \bar{e}_{1}\right]$ for some $1 \leq i \leq p$ where $w_{0}^{\prime}, w_{i}^{\prime} \in \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ and $\left[w_{1}\right],\left[w_{2}\right], \ldots\left[w_{i-1}\right],\left[w_{i+1}\right], \ldots,\left[w_{p}\right]$ are conjugacy classes in $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$. Then

$$
\begin{aligned}
\varphi^{\phi}\left(w_{0}\right) & =\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}\right) \\
& =\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{1} \gamma_{v_{2}} \bar{e}_{2}\right) \\
& =\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1}\right) \cdot e_{1} u \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2} \\
{\left[\varphi^{\phi}\left(w_{i}\right)\right] } & =\left[\varphi^{\phi}\left(e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} w_{i}^{\prime} \bar{e}_{1}\right)\right] \\
& =\left[\varphi^{\phi}\left(e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{1} w_{i}^{\prime} \bar{e}_{1}\right)\right] \\
& =\left[e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} \bar{u} \bar{e}_{1} \cdot \varphi^{\phi}\left(e_{1} w_{i}^{\prime} \bar{e}_{1}\right)\right] .
\end{aligned}
$$

Since these equalities hold in the free group $\pi_{1}\left(\Gamma, v_{0}\right)=\left(e_{1} \pi\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}\right) *\left\langle e_{1} \gamma_{v_{2}} \bar{e}_{2}\right\rangle$ and $\varphi^{\phi}\left(w_{0}\right)=w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2},\left[\varphi^{\phi}\left(w_{i}\right)\right]=\left[w_{i}\right]=\left[e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} w_{i}^{\prime} \bar{e}_{1}\right]$, we see

$$
\begin{aligned}
\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1}\right) & =e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \bar{u} \bar{e}_{1} \\
& =e_{1} w_{0}^{\prime} \bar{u} \bar{e}_{1} ; \\
\varphi^{\phi}\left(e_{1} w_{i}^{\prime} \bar{e}_{1}\right) & =e_{1} u \bar{e}_{1} \cdot e_{1} w_{i}^{\prime} \bar{e}_{1} \\
& =e_{1} u w_{i}^{\prime} \bar{e}_{1} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\varphi^{\phi}\left(e_{1} w_{0}^{\prime} w_{i}^{\prime} \bar{e}_{1}\right) & =\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} w_{i}^{\prime} \bar{e}_{1}\right) \\
& =\varphi^{\phi}\left(e_{1} w_{0}^{\prime} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{1} w_{i}^{\prime} \bar{e}_{1}\right) \\
& =e_{1} w_{0}^{\prime} \bar{u} \bar{e}_{1} \cdot e_{1} u w_{i}^{\prime} \bar{e}_{1} \\
& =e_{1} w_{0}^{\prime} w_{i}^{\prime} \bar{e}_{1} .
\end{aligned}
$$

And,

$$
\begin{aligned}
& \rho(\varphi)\left(w_{0}^{\prime} w_{i}^{\prime}\right)=w_{0}^{\prime} w_{i}^{\prime} \\
&\left\{\left[\rho(\varphi)\left(w_{1}\right)\right], \ldots,\left[\rho(\varphi)\left(w_{i-1}\right)\right]\right. \\
& {\left.\left[\rho(\varphi)\left(w_{i+1}\right)\right], \ldots,\left[\rho(\varphi)\left(w_{p}\right)\right]\right\} }=\left\{\left[w_{1}\right], \ldots,\left[w_{i-1}\right],\left[w_{i+1}\right], \ldots,\left[w_{p}\right]\right\} .
\end{aligned}
$$

We fix $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{g, p-1,1}$, independent of φ, such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right) \in$ $\operatorname{ord} \mathbb{A}_{g, p-1}$ and we have $\phi^{\downarrow} \rho(\varphi)\left(\phi^{\downarrow}\right)^{-1} \in \mathcal{A} \mathcal{M}_{g, p-1,1}$.

If $\bar{e}_{1} e_{2}$ appears in w_{0}; then, by Lemma $4.8,\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex, and,

$$
w_{0}=e_{1} w_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}=e_{1} u_{0}^{\prime} \bar{e}_{1} \cdot e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} v_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2} \in \pi_{1}\left(\Gamma, v_{0}\right),
$$

where $u_{0}^{\prime}, v_{0}^{\prime} \in \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$ and $\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]$ are conjugacy classes in $\pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right)$. Then

$$
\begin{aligned}
\varphi^{\phi}\left(w_{0}\right) & =\varphi^{\phi}\left(e_{1} u_{0}^{\prime} \bar{e}_{1} \cdot e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} v_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}\right) \\
& =\varphi^{\phi}\left(e_{1} u_{0}^{\prime} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{1} v_{0}^{\prime} \bar{e}_{1}\right) \cdot \varphi^{\phi}\left(e_{1} \gamma_{v_{2}} \bar{e}_{2}\right) \\
& =\varphi^{\phi}\left(e_{1} u_{0}^{\prime} \bar{e}_{1}\right) \cdot e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} \bar{u} \bar{e}_{1} \cdot \varphi^{\phi}\left(e_{1} v_{0}^{\prime} \bar{e}_{1}\right) \cdot e_{1} u \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2} .
\end{aligned}
$$

Since this equality holds in the free group $\pi_{1}\left(\Gamma, v_{0}\right)=\left(e_{1} \pi\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \bar{e}_{1}\right) *\left\langle e_{1} \gamma_{v_{2}} \bar{e}_{2}\right\rangle$ and $\varphi^{\phi}\left(w_{0}\right)=w_{0}=e_{1} u_{0}^{\prime} \bar{e}_{1} \cdot e_{2} \bar{\gamma}_{v_{2}} \bar{e}_{1} \cdot e_{1} v_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}$, we see

$$
\begin{aligned}
\varphi^{\phi}\left(e_{1} u_{0}^{\prime} \bar{e}_{1}\right) & =e_{1} u_{0}^{\prime} \bar{e}_{1}, \\
\varphi^{\phi}\left(e_{1} v_{0}^{\prime} \bar{e}_{1}\right) & =e_{1} u \bar{e}_{1} \cdot e_{1} v_{0}^{\prime} \bar{e}_{1} \cdot e_{1} \bar{u} \bar{e}_{1} \\
& =e_{1} u v_{0}^{\prime} \bar{u} \bar{e}_{1}, \\
\varphi^{\phi}\left(\left(e_{1} v_{0}^{\prime} \bar{e}_{1}\right)^{e_{1} \gamma_{v_{2}} \bar{e}_{2}}\right) & =\left(e_{1} u v_{0}^{\prime} \bar{u} \bar{e}_{1}\right)^{e_{1} u \bar{e}_{1} \cdot e_{1} \gamma_{v_{2}} \bar{e}_{2}} \\
& =\left(e_{1} v_{0}^{\prime} \bar{e}_{1}\right)^{e_{1} \gamma_{v_{2}} \bar{e}_{2}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\rho(\varphi)\left(u_{0}^{\prime}\right) & =u_{0}^{\prime}, \\
{\left[\rho(\varphi)\left(v_{0}^{\prime}\right)\right] } & =\left[v_{0}^{\prime}\right], \\
\rho(\varphi)\left(\left(v_{0}^{\prime}\right)^{\gamma_{v_{2}} \bar{e}_{2} e_{1}}\right) & =\left(v_{0}^{\prime}\right)^{\gamma_{v_{2}} \bar{e}_{2} e_{1}}, \\
\left\{\left[\rho(\varphi)\left(w_{1}\right)\right],\left[\rho(\varphi)\left(w_{2}\right)\right], \ldots,\left[\rho(\varphi)\left(w_{p}\right)\right]\right\} & =\left\{\left[w_{1}\right],\left[w_{2}\right], \ldots,\left[w_{p}\right]\right\} .
\end{aligned}
$$

We fix $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{g-1, p+1,1}$, independent of φ, such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right) \in$ $\operatorname{ord} \mathbb{A}_{g-1, p+1}$. We see $\phi^{\downarrow} \rho(\varphi)\left(\phi^{\downarrow}\right)^{-1} \in \mathcal{A M}_{g-1, p, 2}$ by considering that $u_{0}^{\prime}, v_{0}^{\prime}$ represent boundary components and $\gamma_{v_{2}} \bar{e}_{2} e_{1}$ represents an arc from the boundary component represented by u_{0}^{\prime} to the boundary component represented by v_{0}^{\prime}.

The following remarks gives an inductive description of $\widehat{\mathbb{P}}_{g, p}$.
6.14 Remark. Let $\mathfrak{p}_{1}=\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$ be a point such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex.

Let $\phi_{1}^{\downarrow}: \pi_{1}\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right) \rightarrow F_{g, p-1,1}$ be an isomorphism such that $\mathfrak{p}_{1}^{\downarrow}=\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}, \phi_{1}^{\downarrow}\right)$ is a point in ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p-1}}$. Recall there is a continuous map

$$
\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1}} \rightarrow \widehat{\operatorname{ordA}}_{g, p-1}, \mathfrak{p}_{1} \mapsto \mathfrak{p}_{1}^{\downarrow}
$$

By Lemma 6.10, the anti-image of a $(6 g+3(p-1)-3)$-dimensional simplex of $\widehat{\mathbb{P}}_{g, p-1}$ under μ restricted to $\frac{1}{2}$-ordA ${ }_{g, p}^{\mathfrak{p}_{1}}$ is parametrized by $[0,1]$. This restricted anti-image is described by changing the length of h-edges of level n and collapsing h-edges of level n. We choose $\widehat{\mathbb{P}}_{g, p}$ such that the anti-image of each $(6 g+3(p-1)-$ 3)-dimensional simplex of $\widehat{\mathbb{P}}_{g, p-1}$ is contained in $\widehat{\mathbb{P}}_{g, p}$. Hence, every codimension one face of $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ord}}_{g, p}^{\boldsymbol{p}_{1}}$ corresponding to collapse an h-edge of level n is interior in $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ord}}_{g, p}^{\boldsymbol{p}_{1}}$. Since μ is onto, we choose $\widehat{\mathbb{P}}_{g, p}$ such that $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{1}}$ maps onto $\widehat{\mathbb{P}}_{g, p-1}$ under μ.
6.15 Example. We compute $\widehat{\mathbb{P}}_{0,3}$ following Remark 6.14 .

By Definition 5.8 and Example $3.8(\mathrm{a}), \widehat{\mathbb{P}}_{0,2}=\mathbb{P}_{0,2}=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord, $\left.\left.\phi\right)\right)$, where $\left(\Gamma, v_{0}\right.$, ord $)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$. We have to compute a connected anti-image of (Γ, v_{0}, ord, ϕ) by collapsing h-edges of level 3 . Since $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right]\right\}, w_{0}=e_{1} e_{3} \bar{e}_{2},\left[w_{1}\right]=\left[\bar{e}_{1} e_{2} \bar{e}_{4}\right],\left[w_{2}\right]=\left[\bar{e}_{3} e_{4}\right]$, we choose an oriented edge in $w_{0}=e_{1} e_{3} \bar{e}_{2}$ to be identified with h-edges of level 3 .

If we choose e_{1} in $w_{0}=e_{1} e_{3} \bar{e}_{2}$, we have

$$
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right)
$$

Notice $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(\Gamma, v_{0}\right.$, ord $)$ and $e_{1} \in E(\Gamma)$ is identified with the concatenation of $e_{5}, \bar{e}_{3} \in E\left(\Gamma_{1}\right)$, which are the h-edges of level 3 of $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. Collapsing \bar{e}_{3} gives a boundary face of $\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$. Hence, collapsing \bar{e}_{3} does not give a new simplex in the anti-image of (Γ, v_{0}, ord, ϕ) under μ. Collapsing e_{5} gives an interior face of $\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$. Then, collapsing e_{5} gives a new simplex in the anti-image of (Γ, v_{0}, ord, ϕ) under μ as follows.

$$
\begin{aligned}
\left(\Gamma_{1}^{e_{5}}, v_{1,0}^{e_{5}}, \operatorname{ord}_{1}^{e_{5}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{7}, \bar{e}_{6}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right) \\
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{7}, f\right),\left(\bar{f}, \bar{e}_{6}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right)
\end{aligned}
$$

where last notation of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ is standard labelling. Notice e_{5} and \bar{e}_{3} are h-egdes of level 3 in ($\Gamma_{1}, v_{1,0}$, ord $_{1}$). Hence, there exist a generator corresponding to collapse e_{5} in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right)$. We denote this generator by $h_{3,1}$ since it is represented by collapsing an h-edge of level 3 lying in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$.

Collapsing e_{6} in ($\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}$) we go back to ($\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}$) and collapsing e_{5} gives an interior face of $\sigma\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ as follows.

$$
\begin{aligned}
\left(\Gamma_{2}^{e_{5}}, v_{2,0}^{e_{5}}, \operatorname{ord}_{2}^{e_{5}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{7}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right) \\
\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, f\right),\left(\bar{f}, \bar{e}_{7}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, e_{5}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right),
\end{aligned}
$$

where last notation of $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$ is standard labelling. Notice e_{5} and e_{6} are h-egdes of level 3 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$. Hence, there exist a generator corresponding to collapse e_{5} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$. We denote this generator by $h_{3,2}$ since it is represented by collapsing an h-edge of level 3 lying in ($\Gamma_{2}, v_{2,0}$, ord $_{2}$).

Collapsing e_{5} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$ we go back to $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ and collapsing \bar{e}_{4} gives a boundary face of $\sigma\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$. Notice \bar{e}_{4} and e_{5} are h-egdes of level 3 in ($\Gamma_{3}, v_{3,0}$, ord $_{3}$).

We represent these generators:

We have $\widehat{\mathbb{P}}_{0,3} \cap \widehat{\operatorname{ord} \mathbb{A}_{0,3}}\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \quad=\cup_{i=1}^{3} \mathrm{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right)$ and

$$
\widehat{\mathbb{P}}_{0,3}=\cup_{i=1}^{3} \operatorname{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right) .
$$

6.16 Remark. Let $\mathfrak{p}_{2}=\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$ be a point such that $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex.

Let $\phi_{2}^{\downarrow}: \pi_{1}\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right) \rightarrow F_{g-1, p+1,1}$ be an isomorphism such that $\mathfrak{p}_{2}^{\downarrow}=$ $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}, \phi_{2}^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{g-1, p+1}$. Recall there is a continuous map

$$
\mu: \widehat{\operatorname{ord}}_{(g, p)}^{\mathfrak{p}_{2}} \rightarrow \widehat{\operatorname{ord} \mathbb{A}}_{g-1, p+1}, \mathfrak{p}_{2} \mapsto \mathfrak{p}_{2}^{\downarrow}
$$

By Lemma 6.10, the anti-image of a $(6(g-1)+3(p+1)-3)$-dimensional simplex of $\widehat{\mathbb{P}}_{g-1, p+1}$ under μ restricted to $\frac{1}{2}$-ord $\widehat{\mathbb{A}}_{g, p}^{\mathfrak{p}_{2}}$ is parametrized by $p+1$ copies of \mathbb{R}. A connected component of this anti-image restricted to $\frac{1}{2}$-ordA ${ }_{g, p}^{\mathfrak{p}_{2}}$ is described by changing the length of h-edges of level n and collapsing h-edges of level n. We choose $\widehat{\mathbb{P}}_{g, p}$ such that the anti-image of each $(6(g-1)+3(p+1)-$ 3)-dimensional simplex of $\widehat{\mathbb{P}}_{g-1, p+1}$ has $p+1$ connected components contained in
$\widehat{\mathbb{P}}_{g, p}$. Hence, for each simplex of dimension $3(n-1)-3=6(g-1)+3(p+1)-3$ of $\widehat{\mathbb{P}}_{g-1, p+1}$, every codimension one face of $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{\boldsymbol{p}_{2}}$ corresponding to collapse an h-edge of level n is interior in $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{p_{2}}$, but one for every connected component. Since μ is onto, we choose $\widehat{\mathbb{P}}_{g, p}$ such that $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{p_{2}}$ has $p+1$ connected components which map onto $\widehat{\mathbb{P}}_{g-1, p+1}$ under μ. We explain how to connect these $p+1$ connected components in next section.
6.17 Example. We compute $\widehat{\mathbb{P}}_{1,1}$.

By Definition 5.8, and, Example 3.8 (a) and Example 3.8 (b), $\widehat{\mathbb{P}}_{0,2}=\mathbb{P}_{0,2}=$ $\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord,$\left.\left.\phi\right)\right)$ and $\widehat{\mathbb{P}}_{1,0}=\mathbb{P}_{1,0}=\operatorname{cl}\left(\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}\right.\right.$, ord $\left.\left.^{\prime}, \phi^{\prime}\right)\right)$ where $\left(\Gamma, v_{0}\right.$, ord $)=$ $\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$ and $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$. We have to compute connected anti-images of (Γ, v_{0}, ord, ϕ) and ($\Gamma^{\prime}, v_{0}^{\prime}$, ord' ${ }^{\prime} \phi^{\prime}$) by collapsing h-edges of level 3 .

We follow Remark 6.14. Since $w\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.{ }^{\prime}\right)=\left\{w_{0}^{\prime}\right\}, w_{0}^{\prime}=e_{1} e_{3} \bar{e}_{4} \bar{e}_{1} e_{2} \bar{e}_{3} e_{4} \bar{e}_{2}$, we choose the (oriented) edge e_{1} which appears in w_{0}^{\prime} to be the image of h-edges of level 3; and we have

$$
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)
$$

Notice $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)=\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.{ }^{\prime}\right)$ and $e_{1} \in E\left(\Gamma^{\prime}\right)$ is identified with the concatenation of edges $e_{5}, \bar{e}_{3} \in E\left(\Gamma_{1}\right)$ which are h-edges of level 3 in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. Collapsing \bar{e}_{3} in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right)$ we have a boundary face. Collapsing e_{5} in ($\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}$) we have

$$
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right)$ we have

$$
\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{5}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{6}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$ we have

$$
\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, e_{5}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)
$$

Collapsing \bar{e}_{3} in $\left(\Gamma_{4}, v_{4,0}\right.$, ord $\left._{4}\right)$ we have

$$
\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{4}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}\right)$ we have

$$
\left(\Gamma_{6}, v_{6,0}, \operatorname{ord}_{6}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{5}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{7}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{6}, v_{6,0}\right.$, ord $\left._{6}\right)$ we have

$$
\left(\Gamma_{7}, v_{7,0}, \operatorname{ord}_{7}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{6}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{7}, v_{7,0}\right.$, ord $\left._{7}\right)$ we have

$$
\left(\Gamma_{8}, v_{8,0}, \operatorname{ord}_{8}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, e_{5}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right) .
$$

Collapsing \bar{e}_{4} in $\left(\Gamma_{8}, v_{8,0}\right.$, ord $\left._{8}\right)$ we have a boundary face. We represent these generators:

There is one connected anti-image of $\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right)$ under μ. We have $\widehat{\mathbb{P}}_{1,1} \cap$ $\widehat{\operatorname{ord} \mathbb{A}_{1,1}}\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)=\cup_{i=1}^{8} \operatorname{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right)$.

We follow Remark 6.16. Since $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right],\left[w_{2}\right]\right\}$, $w_{0}=$ $e_{1} e_{3} \bar{e}_{2},\left[w_{1}\right]=\left[\bar{e}_{1} e_{2} \bar{e}_{4}\right],\left[w_{2}\right]=\left[\bar{e}_{3} e_{4}\right]$, the anti-image of (Γ, v_{0}, ord, ϕ) has one connected components for each cyclic word. We choose the oriented edge \bar{e}_{1} which appears in $\left[w_{1}\right]=\left[\bar{e}_{1} e_{2} \bar{e}_{4}\right]$ to be the anti-image of h-edges of level 3 ; and we have

$$
\left(\Gamma_{9}, v_{9,0}, \operatorname{ord}_{9}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, e_{5}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right)
$$

Collapsing \bar{e}_{3} in $\left(\Gamma_{9}, v_{9,0}\right.$, ord $\left._{9}\right)$ we have

$$
\left(\Gamma_{10}, v_{10,0}, \operatorname{ord}_{10}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{4}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right)
$$

Collapsing e_{5} in $\left(\Gamma_{10}, v_{10,0}, \operatorname{ord}_{10}\right)$ we have

$$
\left(\Gamma_{11}, v_{11,0}, \operatorname{ord}_{11}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{5}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{7}\right) .
$$

Collapsing e_{5} in $\left(\Gamma_{11}, v_{11,0}\right.$, ord $\left._{11}\right)$ we go back to $\left(\Gamma_{9}, v_{9,0}\right.$, ord $\left._{9}\right)$. Hence, we have computed a connected component of the anti-image of $\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$. We represent these generators:

Notice one of the three codimension one faces is not interior in $\widehat{\mathbb{P}}_{1,1}$.
To compute the other connected component, we choose \bar{e}_{3} in $\left[w_{2}\right]=\left[\bar{e}_{3} e_{4}\right]$ to be the anti-image of h-edges of level 3 ; and we have

$$
\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{5}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{6}\right) .
$$

Collapsing e_{5} in $\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}\right)$ we have

$$
\left(\Gamma_{13}, v_{13,0}, \operatorname{ord}_{13}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{6}\right),\left(\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right) .
$$

Collapsing e_{5} in $\left(\Gamma_{13}, v_{13,0}, \operatorname{ord}_{13}\right)$ we go back to $\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}\right)$. Hence, we have computed another connected component of the anti-image of $\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$. We represent these generators:

Notice one of the two codimension one faces is not interior in $\widehat{\mathbb{P}}_{1,1}$.
These two connected anti-images of (Γ, v_{0}, ord, ϕ) under μ need to be connected through a codimension one face. We do this in next section. We deduce $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{9}, v_{9,0}, \operatorname{ordg}, \phi_{9}\right)}=\cup_{i=9}^{13} \mathrm{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right)$.

To define $\widehat{\mathbb{P}}_{1,1}$, it remains to declare which codimension one face is interior in $\widehat{\mathbb{P}}_{1,1}$ in order to connected the connected components $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord} \mathbb{A}_{1,1}}\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}, \phi_{1}\right)$ and $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right)}$. This interior face of $\widehat{\mathbb{P}}_{1,1}$ corresponds to collapse a g-edge of level 3. Then

$$
\widehat{\mathbb{P}}_{1,1}=\cup_{i=1}^{13} \operatorname{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi\right)\right) .
$$

7 An inductive argument

For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ be a point in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$ such that $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. We give explicit descriptions of the isomorphisms $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{1}} \simeq \mathcal{A N}_{g, p-1,1}$ and $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2}} \simeq$ $\mathcal{A} \mathcal{M}_{g-1, p, 2}$ in Proposition 6.13.

Notice for $p=0$ such a \mathfrak{p}_{1} does not exist, and, for $g=0$ such a \mathfrak{p}_{2} does not exist. To avoid distinguished cases, we will consider points \mathfrak{p}_{1} and \mathfrak{p}_{2} as above with the convention that if the point does not exist, there is no consideration.
7.1 Definition. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$ such that $\left|u^{*}\right|=3$ where $\bar{e}_{2} \in u^{*}, u \in V(\Gamma)$. Then $\operatorname{ord}\left(v_{0}^{*}\right)=\left(e_{1}, e_{2}\right)$ and $\operatorname{ord}\left(u^{*}\right)=\left(\bar{e}_{2}, f_{1}, f_{2}\right)$, for some $f_{1}, f_{2} \in E(\Gamma) \cup \bar{E}(\Gamma)$. We say that e_{1} and f_{1} are left edges, and, e_{2} and f_{2} are right edges.
7.2 Example. By Example 3.8, $\widehat{\mathbb{P}}_{0,2}=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord, $\left.\left.\phi\right)\right)$ where $\left(\Gamma, v_{0}\right.$, ord $)=$ $\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$. Thus, e_{1} and \bar{e}_{4} are left edges, and, e_{2} and \bar{e}_{3} are right edges of Γ.

Similarly, by Example 3.8, $\widehat{\mathbb{P}}_{1,0}=\operatorname{cl}\left(\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}\right.\right.$, ord $\left.\left.^{\prime}, \phi^{\prime}\right)\right)$ where $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}\right)=$ $\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$. Thus, e_{1} and \bar{e}_{3} are left edges, and, e_{2} and \bar{e}_{4} are right edges of Γ^{\prime}.

The following extends the definition above.
7.3 Definition. Suppose $n \geq 3$. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord} \mathbb{A}_{g, p}}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Notice, in $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$, there are left and right g-edges, and, left and right h-edges of level $n-1$.

A left (resp. right) g-edge of level $n-1$ of (Γ, v_{0}, ord $)$ is an edge of Γ which is identified under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, with a left (resp. right) g-edge of level $n-1$ of Γ^{\downarrow}.

A left (resp. right) h-edge of level $n-1$ of $\left(\Gamma, v_{0}\right.$, ord $)$ is an edge of Γ which is identified under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, with a left (resp. right) h-edge of level $n-1$ of Γ^{\downarrow}.

For $n \geq 4$, we define left and right g-edges, and, left and right h-edges of level k of Γ, where $2 \leq k \leq n-2$, as edges which are identified under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, with left and right g-edges, and, left and right h-edges of level k of Γ^{\downarrow}, respectively.
7.4 Example. By Example 6.15, $\widehat{\mathbb{P}}_{0,3}=\cup_{i=1}^{3} \operatorname{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right)$ where $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right)$, $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(f, e_{4}\right) ;\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{f}, \bar{e}_{7}, \bar{e}_{6}\right)$, and,

Γ_{1}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	\bar{e}_{3}
level 2		e_{4}	e_{6}	e_{7}

$\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right)$, $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, f, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{f}\right)$, and,

Γ_{2}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	e_{6}
level 2	e_{3}	e_{4}	\bar{e}_{7}	

$\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, e_{5}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right)$,
$\left(\Gamma_{3}^{\downarrow}, v_{3,0}^{\downarrow}, \operatorname{ord}_{3}^{\downarrow}\right)=\left(e_{3}, f\right) ;\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{f}, \bar{e}_{7}, \bar{e}_{6}\right)$, and,

Γ_{3}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	\bar{e}_{4}	e_{5}
level 2	e_{3}		\bar{e}_{7}	\bar{e}_{6}

7.5 Example. By Example 6.17, $\widehat{\mathbb{P}}_{1,1}=\cup_{i=1}^{13} \mathrm{cl}\left(\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)\right)$ where $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)$, $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(f, e_{4}\right) ;\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{f}, \bar{e}_{6}, \bar{e}_{7}\right)$, and,

Γ_{1}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	\bar{e}_{3}
level 2		e_{4}	e_{6}	e_{7}

$\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{5}, \bar{e}_{7}\right)$, $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, f, e_{7}\right),\left(\bar{e}_{4}, \bar{f}, \bar{e}_{7}\right)$, and,

Γ_{2}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	e_{6}
level 2	e_{3}	e_{4}		\bar{e}_{7}

$\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{5}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{6}\right)$, $\left(\Gamma_{3}^{\downarrow}, v_{3,0}^{\downarrow}, \operatorname{ord}_{3}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, e_{7}, f\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{f}\right)$, and,

Γ_{3}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	e_{6}
level 2	e_{3}	e_{4}	\bar{e}_{7}	

$\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, e_{5}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)$, $\left(\Gamma_{4}^{\downarrow}, v_{4,0}^{\downarrow}, \operatorname{ord}_{4}^{\downarrow}\right)=\left(f, e_{4}\right) ;\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{f}, \bar{e}_{6}, \bar{e}_{7}\right)$, and,

Γ_{4}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	\bar{e}_{3}	e_{5}
level 2		e_{4}	e_{6}	e_{7}

$\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{4}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{6}, \bar{e}_{7}\right)$, $\left(\Gamma_{5}^{\downarrow}, v_{5,0}^{\downarrow}, \operatorname{ord}_{5}^{\downarrow}\right)=\left(e_{3}, f\right) ;\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{f}, \bar{e}_{6}, \bar{e}_{7}\right)$, and,

Γ_{5}	g-edge		h-edge	
	left	right	left	right
level 3	e_{1}	e_{2}	e_{5}	\bar{e}_{4}
level 2	e_{3}		\bar{e}_{6}	\bar{e}_{7}

The remaining cases are similar.

7.1 Generators

We give a description of generators of $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}}$ where \mathfrak{p} is a point in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. These are generators of $\mathcal{A} \mathcal{M}_{g, p, 1}$ but generators corresponding to collapse g-edges of level n.
7.6 Remark. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}^{\text {. Suppose }} \sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex. Let f be an edge of Γ of level less than n, and, let f^{\downarrow} be the edge of Γ^{\downarrow} identified with f under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$. Then the following holds.
(a) f is a left (resp. right) edge of level $k<n$ if, and only if, f^{\downarrow} is a left (resp. right) edge of level k.
(b) f is a g-edge (resp. h-edge) of level $k<n$ if, and only if, f^{\downarrow} is a g-edge (resp. h-edge) of level k.
7.7 Lemma. Let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right), i=1,2$, be points in $\widehat{\text { ord }}_{\text {g,p }}$ such that $\sigma\left(\mathfrak{p}_{i}\right), i=1,2$, are simplices of dimension $3 n-3=6 g+3 p-3$. Let f_{i} be edges of $\Gamma_{i}, i=1,2$, such that $\sigma\left(\mathfrak{p}_{1}^{f_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{f_{2}}\right)$.

Then, for $2 \leq k \leq n$, f_{1} is a left g-edge (resp. h-edge) of level k if, and only if, f_{2} is a right g-edge (resp. h-edge) of level k.

Proof. If f_{1} is a left g-edge of level n, then $\left|\left(v_{1,0}^{f_{1}}\right)^{*}\right|=3$. Since $\mathfrak{p}_{1}^{f_{1}}=$ $\left(\Gamma_{1}^{f_{1}}, v_{1,0}^{f_{1}}, \operatorname{ord}_{1}^{f_{1}}, \phi_{1}^{f_{1}}\right)=\left(\Gamma_{2}^{f_{2}}, v_{2,0}^{f_{2}}, \operatorname{ord}_{2}^{f_{2}}, \phi_{2}^{f_{2}}\right)=\mathfrak{p}_{1}^{f_{2}}$, it follows $\left|\left(v_{2,0}^{f_{2}}\right)^{*}\right|=3$. Then, f_{2} is a g-edge of level n. And, f_{1} is a left edge if and only if f_{2} is a right edge.

If f_{1} is a left h-edge of level n, then f_{1} is incident to $v_{1,2}$, where $\bar{e}_{2} \in v_{1,2}^{*}$, and $\left|\left(v_{1,2}^{f_{1}}\right)^{*}\right|=4$. Since $\mathfrak{p}_{1}^{f_{1}}=\left(\Gamma_{1}^{f_{1}}, v_{1,0}^{f_{1}}, \operatorname{ord}_{1}^{f_{1}}, \phi_{1}^{f_{1}}\right)=\left(\Gamma_{2}^{f_{2}}, v_{2,0}^{f_{2}}, \operatorname{ord}_{2}^{f_{2}}, \phi_{2}^{f_{2}}\right)=\mathfrak{p}_{2}^{f_{2}}$, we see $\left|\left(v_{2,2}^{f_{2}}\right)^{*}\right|=4$, where $\bar{e}_{2} \in v_{2,2}^{*}$, and f_{2} is an h-edge of level n. Then, f_{1} is a left edge if and only if f_{2} is a right edge.

Let k_{i} be an integer such that $f_{i} \in E\left(\Gamma_{i}\right)$ has level $k_{i}, i=1,2$. Suppose $k_{1} \geq k_{2}$. We have proved that if $k_{1}=n$, then the result holds. Suppose $k_{1}<n$. Let h, q be integers such that $\left(\Gamma_{i}^{\downarrow}, v_{i, 0}^{\downarrow}, \operatorname{ord}_{i}^{\downarrow}\right), i=1,2$, are (h, q)-fat graphs. We choose $\phi_{1}^{\downarrow}: \pi_{1}\left(\Gamma_{1}, v_{1,0}\right) \rightarrow F_{h, q, 1}$ such that $\mathfrak{p}_{1}^{\downarrow}=\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}, \phi_{1}^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{h, q}$. Let $\phi_{2}^{\downarrow}: \pi_{2}\left(\Gamma_{2}, v_{2,0}\right) \rightarrow F_{h, q, 1}$ such that $\mu\left(\mathfrak{p}_{2}\right)=\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}, \phi_{2}^{\downarrow}\right)=\mathfrak{p}_{2}^{\downarrow}$ where $\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1}} \rightarrow \widehat{\operatorname{ord}}_{h, q}, \mathfrak{p}_{1} \mapsto \mathfrak{p}_{1}^{\downarrow}$. By induction hypothesis, the result holds for f_{i}^{\downarrow} and $\mathfrak{p}_{i}^{\downarrow}=\left(\Gamma_{i}^{\downarrow}, v_{i, 0}^{\downarrow}, \operatorname{ord}_{i}^{\downarrow}, \phi_{i}^{\downarrow}\right), i=1,2$, where f_{i}^{\downarrow} is identified with f_{i} under the embedding $\left(\Gamma_{i}^{\downarrow}, v_{i, 0}^{\downarrow}, \operatorname{ord}_{i}^{\downarrow}\right) \hookrightarrow\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}\right), v_{i, 0}^{\downarrow} \mapsto v_{i, 1}, i=1,2$. Then, conclusions hold for f_{i} and $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right), i=1,2$.

Since generators of $\mathcal{A} \mathcal{M}_{g, p, 1}$ correspond to collapse edges, we have the following definition.
7.8 Definition. A g-generator (resp. an h-generator) of level k of $\mathcal{A M}_{g, p, 1}$ is a generator which corresponds to collapse a left g-edge (resp. h-edge) of level k.
7.9 Remark. By Lemma 7.7, the inverse of a g-generator (resp. an h-generator) of level k corresponds to collapse a right g-edge (resp. h-generator) of level k.
7.10 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$,ord, $\left.\phi\right) \in \widehat{\text { ord }}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is $a(h, q)$-fat graph with a distinguished vertex, and, let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ is a point in ${\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}$.

Let f be a g-edge (resp. an h-edge) of Γ of level $k<n$, and, let $f \downarrow$ be the edge of Γ^{\downarrow} identified with f under the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$. Then there exists a g-generator (resp. an h-generator) of level k of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ corresponding to collapse f in $\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ if and only if there exists a g-generator (resp. an h-generator) of level k of $\mathcal{A M}_{h, q, 1}$ corresponding to collapse f^{\downarrow} in $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$.

Proof. Since level of f is $k<n$, there exists $f^{\downarrow} \in E\left(\Gamma^{\downarrow}\right)$ as in the statement. By Proposition 6.7, there exists a continuous map which is onto

$$
\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}} \rightarrow \widehat{\operatorname{ord}}_{h, q}, \mathfrak{p} \mapsto \mathfrak{p}^{\downarrow}
$$

If there exists a generator corresponding to collapse f in (Γ, v_{0}, ord, ϕ), then there exist a simplex $\sigma\left(\mathfrak{p}^{\prime}\right)=\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.^{\prime}, \phi^{\prime}\right)$ of dimension $3 n-3=6 g+3 p-3$ which has the codimension one face $\sigma\left(\mathfrak{p}^{f}\right)=\sigma\left(\Gamma^{f}, v_{0}^{f}, \operatorname{ord}^{f}, \phi^{f}\right)$. Hence, $\mu\left(\mathfrak{p}^{\prime}\right)$ is a simplex of dimension $3(n-1)-3$ which has the codimension one face obtained by collapsing f^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$.

Since μ is onto, if there exists a generator corresponding to collapse f^{\downarrow} in $\mathfrak{p}^{\downarrow}$, then a similar argument can be applied.
7.11 Definition. With the hypothesis of the Corollary above, we say the generator of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ corresponding to collapse f in $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ is a lift of the generator of $\mathcal{A} \mathcal{N}_{h, q, 1}$ corresponding to collapse f^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord ${ }^{\downarrow}$, $\left.\phi^{\downarrow}\right)$.
7.12 Example. We compute generators of $\mathcal{A M}_{0,3,1}$ of level less than 3. By Lemma 7.10 and Example 6.15, we have to lift generators of $\mathcal{A} \mathcal{M}_{0,2,1}$. By Example 3.8(a), $\mathcal{A N}_{0,2,1}=\left\langle x_{1} \mid\right\rangle$, where x_{1} corresponds to collapse e_{1}. Recall $\widehat{\mathbb{P}}_{0,2}=\operatorname{cl}\left(\sigma\left(\Gamma, v_{0}\right.\right.$, ord, $\left.\left.\phi\right)\right)$, where $\left(\Gamma, v_{0}\right.$, ord $)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$. By Example 6.4 and Definition 7.1, e_{1} is a left g-edge of level 2. Then, we denote by g_{2} the generator x_{1} of $\mathcal{A} \mathcal{M}_{0,2,1}$. Hence, $\mathcal{A} \mathcal{M}_{0,2,1}=\left\langle g_{2} \mid\right\rangle$.

To lift $g_{2} \in \mathcal{A M}_{0,2,1}$, we follow Example 7.4 . Notice there is no left g-edge of level 2 in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right), e_{3}$ is the left g-edge of level 2 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ and e_{3} is the left g-edge of level 2 in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$. By Lemma 7.10, $\mathcal{A M}_{0,3,1}$ has two g-generators of level 2 corresponding to collapse e_{3} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$
and e_{3} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$. To identify these generators we collapse left and right g-edges of level 2 .

Collapsing left g-edges of level 2 we have the following.

$$
\begin{aligned}
\left(\Gamma_{2}^{e_{3}}, v_{2,0}^{e_{3}}, \operatorname{ord}_{2}^{e_{3}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, \bar{e}_{6}, e_{7}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, e_{6}, \bar{e}_{3}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) \\
\left(\Gamma_{3}^{e_{3}}, v_{3,0}^{e_{3}}, \operatorname{ord}_{3}^{e_{3}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{6}, e_{7}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, e_{5}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, \bar{e}_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, \bar{e}_{4}\right)
\end{aligned}
$$

Collapsing right g-edges of level 2 we have the following.

$$
\begin{aligned}
\left(\Gamma_{1}^{e_{4}}, v_{1,0}^{e_{4}}, \operatorname{ord}_{1}^{e_{4}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, e_{6}, \bar{e}_{3}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) \\
\left(\Gamma_{2}^{e_{4}}, v_{2,0}^{e_{4}}, \operatorname{ord}_{2}^{e_{4}}\right) & =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, \bar{e}_{7}, \bar{e}_{5}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right) \\
& =\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, \bar{e}_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, \bar{e}_{4}\right)
\end{aligned}
$$

Since $\left(\Gamma_{2}^{e_{3}}, v_{2,0}^{e_{3}}, \operatorname{ord}_{2}^{e_{3}}\right)=\left(\Gamma_{1}^{e_{4}}, v_{1,0}^{e_{4}}, \operatorname{ord}_{1}^{e_{4}}\right)$ and e_{3} is a left edge of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$, we define the generator $g_{2,2}$ which corresponds to collapse e_{3} in $\left.\left(\Gamma_{2}, v_{2,0} \text {, ord }\right)_{2}\right)$.

Since $\left(\Gamma_{3}^{e_{3}}, v_{3,0}^{e_{3}}, \operatorname{ord}_{3}^{e_{3}}\right)=\left(\Gamma_{2}^{e_{4}}, v_{2,0}^{e_{4}}, \operatorname{ord}_{2}^{e_{4}}\right)$ and e_{3} is a left edge of $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$, we define the generator $g_{2,3}$ which corresponds to collapse e_{3} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$. We represent these generators:

We denote these generators by a g_{2} since they are lifts of the g-generator g_{2} in $\mathcal{A} \mathcal{M}_{0,2,1}$, and a second subindex which denotes the fat graph where the left edge which needs to be collapsed lies. Hence, $g_{2,2}$ is obtained by collapsing the left g-edge of level 2 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ and $g_{2,3}$ is obtained by collapsing the left g-edge of level 2 in ($\Gamma_{3}, v_{3,0}$, ord $_{3}$).
7.13 Remark. We complete Remark 6.16. Each of the $p+1$ connected components in $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{\boldsymbol{p}_{2}}$ which map onto $\widehat{\mathbb{P}}_{g-1, p+1}$ under μ corresponds to a cyclic word in $w\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ as follows. Each connected component in $\widehat{\mathbb{P}}_{g, p} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2}}$ contains points $\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right)=\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right.$, ord $\left.{ }_{2}^{\downarrow}\right)$. By the embedding $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{2,0}^{\downarrow} \mapsto v_{1}$, there is a cyclic word in $w\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ which does not appears in $w\left(\Gamma, v_{0}, \operatorname{ord}\right)$. Recall $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph and (Γ, v_{0}, ord) is a (g, p)-fat graph. There exists a g-generator of level $k<n$ in $\mathcal{A \mathcal { M }}_{g-1, p+1,1}$ whose corresponding left g-edge is incident to this cyclic word. Then, the lift of this g-generator of level $k<n$ in $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ connects the connected component containing \mathfrak{p} with another connected component.
7.14 Example. We compute generators of $\mathcal{A} \mathcal{M}_{1,1,1}$ of level less than 3. By Lemma 7.10 and Example 6.17, we have to lift generators of $\mathcal{A} \mathcal{M}_{1,0,1}$ and $\mathcal{A M}_{0,2,1}$.

By Example 3.8(b), $\mathcal{A N}_{1,0,1}=\left\langle x_{1}, x_{3} \mid x_{1} x_{3}^{-1} x_{1}^{-1} x_{3}^{-1} x_{1}\right\rangle$, where x_{1} corresponds to collapse e_{1}, and, x_{3} corresponds to collapse e_{3}. Recall $\widehat{\mathbb{P}}_{1,0}=$ $\operatorname{cl}\left(\sigma\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}, \phi^{\prime}\right)\right)$, where $\left(\Gamma^{\prime}, v_{0}^{\prime}, \operatorname{ord}^{\prime}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, \bar{e}_{4}\right)$. By Example 6.4 and Definition 7.1, e_{3} is a left h-edge of level 2, and, e_{1} is a left g-edge of level 2 . Then, we denote by h_{2} the generator x_{3} of $\mathcal{A} \mathcal{M}_{1,0,1}$, and, by g_{2} the generator x_{1} of $\mathcal{A} \mathcal{M}_{1,0,1}$. Hence, $\mathcal{A}_{\mathcal{M}_{1,0,1}}=\left\langle h_{2}, g_{2} \mid g_{2} h_{2}^{-1} g_{2}^{-1} h_{2}^{-1} g_{2}\right\rangle$.

To lift $h_{2}, g_{2} \in \mathcal{A} \mathcal{M}_{1,0,1}$, we have to complete Example 7.5. If we complete Example 7.5, we will see e_{6} is the left h-edge of level 2 in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}, \phi_{1}\right)$, there is no left h-edge of level 2 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right), \bar{e}_{7}$ is the left h-edge of level 2 in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right), e_{6}$ is the left h-edge of level 2 in $\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}, \phi_{4}\right), \bar{e}_{6}$ is the left h-edge of level 2 in $\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}, \phi_{5}\right)$, there is no left h-edge of level 2 in ($\Gamma_{6}, v_{6,0}, \operatorname{ord}_{6}, \phi_{6}$), \bar{e}_{7} is the left h-edge of level 2 in ($\Gamma_{7}, v_{7,0}, \operatorname{ord}_{7}, \phi_{7}$), and, \bar{e}_{6} is the left h-edge of level 2 in ($\Gamma_{8}, v_{8,0}$, ord $_{8}, \phi_{8}$). By Lemma 7.10, $\mathcal{A M}_{1,1,1}$ has six h-generators of level 2 corresponding to collapse these left h-edges of level 2. To identify these generators, we can collapse left and right h-edges of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=1, \ldots, 8$. We denote by $h_{2,1}$ the generator corresponding to collapse e_{6} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right), h_{2,3}$ the generator corresponding to collapse \bar{e}_{7} in $\left(\Gamma_{3}, v_{3,0}\right.$, ord $\left._{3}, \phi_{3}\right), h_{2,4}$ the generator corresponding to collapse e_{6} in $\left(\Gamma_{4}, v_{4,0}\right.$, ord $\left._{4}, \phi_{4}\right), h_{2,5}$ the generator corresponding to collapse \bar{e}_{6} in $\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}, \phi_{5}\right), h_{2,7}$ the generator corresponding to collapse \bar{e}_{7} in $\left(\Gamma_{7}, v_{7,0}, \operatorname{ord}_{7}, \phi_{7}\right)$, and, $h_{2,8}$ the generator corresponding to collapse \bar{e}_{6} in $\left(\Gamma_{8}, v_{8,0}, \operatorname{ord}_{8}, \phi_{8}\right)$. We represent these generators:

On the other hand, there are neither left g-edge of level 2 in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ nor in $\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}, \phi_{4}\right)$, and, e_{3} is the left g-edge of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=2,3,5,6,7,8$. By Lemma 7.10, $\mathcal{A M}_{1,1,1}$ has six g-generators of level 2 corresponding to collapse these left g-edges of level 2 . To identify this generators, we can collapse left and right g-edges of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=$ $1, \ldots, 8$. We denote by $g_{2, i}$ the generator corresponding to collapse left g-edges of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=2,3,5,6,7,8$. We represent these generators:

As in the previous example, $\mathcal{A \mathcal { M }}_{0,2,1}=\left\langle g_{2} \mid\right\rangle$ where g_{2} corresponds to collapse e_{1} in $\left(\Gamma, v_{0}\right.$, ord $)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{4}, \bar{e}_{3}\right)$. To lift $g_{2} \in \mathcal{A \mathcal { M } _ { 0 , 2 , 1 }}$, we follow Example 7.5. Notice there is no left g-egde of level 2 in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ and e_{3} is the left g-edge of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=10, \ldots, 13$. By Lemma 7.10, $\mathcal{A N}_{1,1,1}$ has four g-generators of level 2 corresponding to collapse e_{3} in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=10, \ldots, 13$. To identify these generators, we can collapse left and right g-edges of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=9, \ldots, 13$. We denote by $g_{2, i}$ the generator corresponding to collapse e_{3} in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=10, \ldots, 13$. We represent these generators:

By Example 6.17, the first component of $\widehat{\mathbb{P}}_{0,2}$ contains $\Gamma_{9}, \Gamma_{10}, \Gamma_{11}$ and the second component contains Γ_{12}, Γ_{13}. These two components are connected through codimension one faces obtained by collapsing g-edges of level 2 .

7.2 Relations

We give a description of relations of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ where \mathfrak{p} is a point in $\operatorname{ord} \mathbb{A}_{g, p}-\mathbb{T}_{g, p}$. These are relations of $\mathcal{A} \mathcal{M}_{g, p, 1}$ which do not involve g-generators of level n.

Notice h-generators of level n are described in Lemma 6.10. The following lemma describes relations involving generators of level $k<n$ and h-generators
of level n.
7.15 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}^{-\widehat{\mathbb{T}}_{g, p} . \text { For } i=1,2 \text {, let } \mathfrak{p}_{i}=}$ $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ be a point in $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}}$ such that $\sigma\left(\mathfrak{p}_{i}\right)$ is a simplex of dimension $3 n-3=6 g+3 p-3$. For $i=1,2$, let f_{i} be a left g-edge (resp. h-edge) of Γ_{i} of level $k<n$ such that there exists a g-generator (resp. an h-generator) corresponding to collapse f_{i} in $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right)$.

If there exists a path γ from \mathfrak{p}_{1} to \mathfrak{p}_{2} such that γ lies in simplices of codimension at most one where every codimension one simplex intersected by γ is obtained by collapsing an h-edge of level n, then the generator corresponding to collapse f_{1} in $\mathfrak{p}_{1}=\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}, \phi_{1}\right)$ is equal to the generator corresponding to collapse f_{2} in $\mathfrak{p}_{2}=\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}, \phi_{2}\right)$, up to h-generators of level n.

Proof. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex and let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{h, q}$.

By Proposition 6.7, there exists a continuous map

$$
\mu: \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}} \rightarrow \widehat{\operatorname{ord}}_{h, q}, \mathfrak{p} \mapsto \mathfrak{p}^{\downarrow}
$$

Since every codimension one simplex intersected by γ is obtained by collapsing an h-edge of level n, we can suppose μ is constant on γ. Then

$$
\mu\left(\mathfrak{p}_{1}\right)=\mu\left(\mathfrak{p}_{2}\right)
$$

and γ is homotopic to a path γ^{f} from $\mathfrak{p}^{f_{1}}=\left(\Gamma_{1}^{f_{1}}, v_{1,0}^{f_{1}}, \operatorname{ord}_{1}^{f_{1}}, \phi_{1}^{f_{1}}\right)$ to $\mathfrak{p}^{f_{2}}=$ $\left(\Gamma_{2}^{f_{2}}, v_{2,0}^{f_{2}}, \operatorname{ord}_{2}^{f_{2}}, \phi_{2}^{f_{2}}\right)$ such that μ is constant on γ^{f}. Then γ^{f} lies in simplices of codimension 1 or 2 . The graph of each codimension 1 simplex which contains a segment of γ^{f} has a vertex of valence 4 . This vertex can be split in two manners. One manner gives a ($3 n-3$)-dimensional simplex which contains a segment of γ. Since there exists generators corresponding to collapse f_{i} in $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right), i=1,2$, there exists simplices $\sigma\left(\mathfrak{p}_{i}^{\prime}\right)=\sigma\left(\Gamma_{i}^{\prime}, v_{i, 0}^{\prime}, \operatorname{ord}_{i}^{\prime}, \phi_{i}^{\prime}\right), i=1,2$, such that $\sigma\left(\Gamma_{i}^{f_{i}}, v_{i, 0}^{f_{i}}, \operatorname{ord}_{i}^{f_{i}}, \phi_{i}^{f_{i}}\right)$ is a common face of both $\sigma\left(\mathfrak{p}_{i}\right)$ and $\sigma\left(\mathfrak{p}_{i}^{\prime}\right), i=1,2$. From $\mu\left(\mathfrak{p}_{1}^{f_{1}}\right)=\mu\left(\mathfrak{p}_{2}^{f_{2}}\right)$ we see $\mu\left(\mathfrak{p}^{\prime}{ }_{1}\right)=\mu\left(\mathfrak{p}_{2}^{\prime}\right)$. By Lemma 7.10, the other manner to split the valence 4 vertex gives a $(3 n-3)$-dimensional simplex of $\widehat{\operatorname{ord}}^{\mathfrak{p}}$ g,p which maps to $\sigma\left(\mu\left(\mathfrak{p}^{\prime}{ }_{1}\right)\right)$ under μ. Then γ^{f} is homotopic to a path γ^{\prime} from $\mathfrak{p}_{1}^{\prime}$ to $\mathfrak{p}_{2}^{\prime}$ lying in simplices of codimension at most one where every codimension one simplex is obtained by collapsing an h-edge of level n. For $i=1,2$, let β_{i} be a path from \mathfrak{p}_{i} to $\mathfrak{p}_{i}^{\prime}$ through the codimension one face $\sigma\left(\mathfrak{p}_{i}^{f_{i}}\right)$. Hence, there exists a disc in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$ bounded by $\beta_{1}, \gamma^{\prime}, \bar{\beta}_{2}$ and $\bar{\gamma}$.
7.16 Remark. Let $\mathfrak{p}_{1}=\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ be a point in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex.

Generators of $\mathcal{A N}_{g, p, 1}^{\boldsymbol{p}_{1}}$ are h-generators of level at most n and g-generators of level at most $n-1$.

By Remark 6.14, all h-edges of level n of $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{1}}$ are declared to be the identity. See the first set of relations in Theorem 3.7 and Lemma 6.10.

By Lemma 7.10 and Definition 7.11, every generator of level at most $n-1$ of $\mathcal{A \mathcal { M }}_{g, p, 1}^{\boldsymbol{p}_{1}}$ is a lift of a generator of $\mathcal{A M}_{g, p-1,1}$.

By Remark 6.14, all lifts of a generators of $\mathcal{A} \mathcal{M}_{g, p-1,1}$ are connected through codimension one simplices corresponding to collapse h-edges of level n. Then, by Lemma 7.15, the set of generators of $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{1}}$ is reduced to the set of generators of $\mathcal{A} \mathcal{M}_{g, p-1,1}$.
7.17 Example. By Example 7.12, $\mathcal{A \mathcal { M }}_{0,3,1}$ has two lift of $g_{2} \in \mathcal{A \mathcal { M }}_{0,2,1}$ denoted $g_{2,2}$ and $g_{2,3}$. Recall $g_{2,2}$ and $g_{2,3}$ correspond to collapse the left g-edge of level 2 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ and $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$, respectively. By Example 6.15, $\sigma\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ and $\sigma\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$ are connected through a codimension one face obtained by collapsing an h-edge of level 3 . Then, by Lemma 7.15, $g_{2,2}$ and $g_{2,3}$ are equal, up to h-generators of level 3 . We apply Theorem 3.7 to $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$, the pair of edges $\left\{e_{3}, e_{5}\right\}$ and collapsing e_{3}. We obtain the relation $g_{2,2} h_{3,1} g_{2,3}^{-1} h_{3,2}^{-1}$. We represent this relation:

By Remark 6.14, in $\mathcal{A M}_{0,3,1}$, we have $h_{3,1}=h_{3,2}=1$. Then, relation $g_{2,2} h_{3,1} g_{2,3}^{-1} h_{3,2}^{-1}$ reduces to $g_{2,2}=g_{2,3}$. Hence, $\mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1}, 0, \operatorname{ord}_{1}, \phi_{1}\right)}$ is generated by $g_{2,2}$. Since $\mathcal{A} \mathcal{M}_{0,2,1}$ is generated by g_{2}, this agrees with Remark 7.16.
7.18 Example. By Example $7.14, \mathcal{A \mathcal { M }}_{1,1,1}$ has six lifts of h_{2} in $\mathcal{A \mathcal { M }}_{1,0,1}$ denoted $h_{2, i}$ for $i=1,3,4,5,7,8$. Recall $h_{2, i}$ corresponds to collapse the left h-edge of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=1,3,4,5,7,8$.

By Example 6.17, for $i=1, \ldots, 7, \sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ and $\sigma\left(\Gamma_{i+1}, v_{i+1,0}, \operatorname{ord}_{i+1}, \phi_{i+1}\right)$ are connected through a codimension one face obtained by collapsing an h-edge of level 3 . We represent the relations involving h-generators of level 2 and 3 that we obtain by Theorem 3.7.

By Remark 6.16, in $\mathcal{A M}_{1,1,1}$, we have $h_{3, i}=1, i=1, \ldots, 7$. Then, the obtained relations reduce to $h_{2,1}=h_{2,3}=h_{2,4}=h_{2,5}=h_{2,7}=h_{2,8}$.

By Example 7.14, $\mathcal{A} \mathcal{M}_{1,1,1}$ has six lifts of g_{2} in $\mathcal{A} \mathcal{M}_{1,0,1}$ denoted $g_{2, i}$ for $i=$ $2,3,5,6,7,8$. Recall these generators correspond to collapse the left g-edge of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=2,3,5,6,7,8$.

By Example 6.17, for $i=1, \ldots, 7, \sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ and $\sigma\left(\Gamma_{i+1}, v_{i+1,0}, \operatorname{ord}_{i+1}, \phi_{i+1}\right)$ are connected through a codimension one face obtained by collapsing an h-edge of level 3. We represent the relations involving h-generators of level 3 and g-generators of level 2 that we obtain by Theorem 3.7.

By Remark 6.16, in $\mathcal{A M}_{1,1,1}$, we have $h_{3, i}=1, i=1, \ldots, 8$. Then, the obtained relations reduce to $g_{2,2}=g_{2,3}=g_{2,5}=g_{2,6}=g_{2,7}=g_{2,8}$.

Hence, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}$ is generated by $h_{2,1}$ and $g_{2,2}$. Since $\mathcal{A M}_{0,2,1}$ is generated by h_{2} and g_{2}, this agrees with Remark 7.16.
7.19 Remark. Let $\mathfrak{p}_{2}=\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ be a point in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex.

Generators of $\mathcal{A M}_{g, p, 1}^{p_{2}}$ are h-generators of level at most n and g-generators of level at most $n-1$. By Remark 6.16, for each $(3(n-1)-3)$-dimensional simplex of $\widehat{\mathbb{P}}_{g-1, p+1}$, there are $(p+1)$ components connected through codimension one faces obtained by collapsing h-edges of level n.

For each of these components, by Remark 6.16, all h-generators of level n of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{2}}$ are declared to be the identity, but one. See the first set of relations in Theorem 3.7 and Lemma 6.10.

By Lemma 7.10 and Definition 7.11, every generator of level at most $n-1$ of $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2}}$ is a lift of a generator of $\mathcal{A M}_{g-1, p+1,1}$.

Hence, by Lemma 7.15, the set of generators of $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{2}}$ is reduced to a set of $p+1 h$-generators of level n for each $(3(n-1)-3)$-dimensional simplex of $\widehat{\mathbb{P}}_{g-1, p+1}$ (one generator for every connected component), and, $(p+1)$ lifts of each generator of $\mathcal{A N}_{g-1, p+1,1}$ (one lift for every connected component).

By Remark 7.13, there are $p g$-generators of level $k<n$ which are declareted to be the identity. Recall that the corresponding edge of these g-generators must connect two connected components.
7.20 Example. By Example 6.17, ($\left.\Gamma_{9}, v_{9,0}, \operatorname{ord}_{9}, \phi_{9}\right)$, $\left(\Gamma_{10}, v_{10,0}, \operatorname{ord}_{10}, \phi_{10}\right)$ and $\left(\Gamma_{11}, v_{11,0}, \operatorname{ord}_{11}, \phi_{11}\right)$ in $\widehat{\operatorname{ord}}_{1,1}$ are connected by two paths contained in simplices of codimension at most one where every codimension one simplex is obtained by collapsing an h-edge of level 3 . Similarly, $\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}, \phi_{12}\right)$ and $\left(\Gamma_{13}, v_{13,0}, \operatorname{ord}_{13}, \phi_{13}\right)$ are connected by two paths contained in simplices of codimension at most one where every codimension one simplex is obtained by collapsing an h-edge of level 3 .

By Remark 6.16, in $\mathcal{A} \mathcal{M}_{1,1,1}$, we have $h_{3,10}=h_{3,11}=1$ and $h_{3,13}=1$. Hence, $h_{3,9}$ and $h_{3,12}$ are the h-generators of level 3 which are not declared to the identity for the components containing ($\left.\Gamma_{9}, v_{9,0}, \operatorname{ord}_{9}, \phi_{9}\right)$ and $\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}, \phi_{12}\right)$, respectively.

By Example 7.14, $\mathcal{A \mathcal { M }}_{1,1,1}$ has four lifts of g_{2} in $\mathcal{A \mathcal { M }}_{0,2,1}$ denoted $g_{2, i}$ for $i=10, \ldots, 13$. Recall $g_{2, i}$ corresponds to collapse the left g-edge of level 2 in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$, for $i=10, \ldots, 13$. Notice $g_{2,10}$ and $g_{2,11}$ are the g-generators of level 2 for the component containing ($\Gamma_{9}, v_{9,0}$, ord $_{9}, \phi_{9}$); $g_{2,12}$ and $g_{2,13}$ are the g-generators of level 2 for the component containing ($\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}, \phi_{12}$).

By Theorem 3.7 we obtain relations involving $g_{2,10}$ and $g_{2,11}: g_{2,10} h_{3,12} g_{2,11}^{-1} h_{3,10}^{-1}$ and $g_{2,10} h_{3,13}^{-1} g_{2,11}^{-1} h_{3,11} h_{3,9}$. We represent these relations.

Since, in $\mathcal{A} \mathcal{M}_{1,1,1}$, we have $h_{3,10}=h_{3,11}=1$ and $h_{3,13}=1$, these relations reduce to $g_{2,10} h_{3,12}=g_{2,11}$ and $h_{3,9} g_{2,10}=g_{2,11}$.

By Theorem 3.7 we obtain relations involving $g_{2,12}$ and $g_{2,13}: g_{2,12}^{-1} h_{3,12} g_{2,13} h_{3,10}^{-1} h_{3,9}^{-1}$ and $g_{2,12}^{-1} h_{3,13}^{-1} g_{2,13} h_{3,11}$. We represent these relations.

Since, $h_{3,10}=h_{3,11}=1, h_{3,13}=1$ hold in $\mathcal{A} \mathcal{M}_{1,1,1}$, these relations reduce to $h_{3,12} g_{2,13}=g_{2,12} h_{3,9}$ and $g_{2,13}=g_{2,12}$.

Hence, $\mathcal{A \mathcal { M }}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$ is generated by two h-generators of leve 3: $h_{3,9}, h_{3,12}$; and, two g-generators of level 2: $g_{2,10}, g_{2,12}$. Notice g-generators of level 2 connect the two connected components. And one of the g-generators of level 2 needs to declareted the identity to connect the two connected components. Since $\mathcal{A} \mathcal{M}_{0,2,1}$ is generated by a g-generator of level 2 , this agrees with Remark 7.19. If we declare $g_{2,12}=1$, then $h_{3,9}=h_{3,12}$ and $g_{2,10} h_{3,9}=h_{3,9} g_{2,10}$.
7.21 Lemma. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \widehat{\text { ordA्A}}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let $f_{i} \in E(\Gamma), i=1,2$, such that there
exists a codimention two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)=\sigma\left(\Gamma^{f_{1}, f_{2}}, v_{0}^{f_{1}, f_{2}}\right.$,ord $\left.d^{f_{1}, f_{2}}, \phi^{f_{1}, f_{2}}\right)$ in $\widehat{\text { ordA }}_{g, p}^{\mathfrak{p}}$ obtained by collapsing f_{1} and f_{2}. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is $a(h, q)$-fat graph with a distinguished vertex, and, let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ is a point in ${\widehat{\operatorname{ord}} \mathbb{A}_{h, q}}$. Let

$$
\mu: \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}} \rightarrow \widehat{\operatorname{ord}}_{h, q}, \mathfrak{p} \mapsto \mathfrak{p}^{\downarrow}
$$

be the map described in Proposition 6.7.
(i) If either f_{1} or f_{2} is an h-edges of level n, then $\mu\left(\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)\right)$ is a codimention one face of $\widehat{\text { ord }}_{h, q}$.
(ii) If neither f_{1} nor f_{2} is an h-edge of level n, then $\mu\left(\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)\right)$ is a codimention two face of $\widehat{\text { ord }}_{h, q}$.

Proof. Notice neither f_{1} nor f_{2} is a g-edge of level n.
(i) Suppose f_{1} is an h-edge of level n.

If f_{2} is an h-edge of level n, then there exists an edge f^{\downarrow} in $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ identified under $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, with the concatenation f_{1} and \bar{f}_{2} in (Γ, v_{0}, ord). Hence, μ sends the codimension two face $\sigma^{f_{1}, f_{2}}$ to the codimension one face of $\sigma\left(\mathfrak{p}^{\downarrow}\right)=\sigma\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ obtained by collapsing f^{\downarrow}.

If f_{2} is not an h-edge of level n, then there exists an edge f_{2}^{\downarrow} in ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$, ord ${ }^{\downarrow}$) identified under $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord), $v_{0}^{\downarrow} \mapsto v_{1}$, with f_{2} in (Γ, v_{0}, ord). Hence, μ sends the codimension two face $\sigma^{f_{1}, f_{2}}$ to the codimension one face of $\sigma\left(\mathfrak{p}^{\downarrow}\right)=\sigma\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right)$ obtained by collapsing f_{2}^{\downarrow}.
(ii) If neither f_{1} nor f_{2} is an h-edge of level n, then there exist edges $f_{1}^{\downarrow}, f_{2}^{\downarrow}$ in $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ identified under $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$, with f_{1}, f_{2} in (Γ, v_{0}, ord), respectively. Hence, μ sends the codimension two face $\sigma^{f_{1}, f_{2}}$ to the codimension two face of $\sigma\left(\mathfrak{p}^{\downarrow}\right)=\sigma\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$ obtained by collapsing f_{1}^{\downarrow} and f_{2}^{\downarrow}.
7.22 Corollary. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$,ord, $\left.\phi\right) \in \widehat{\text { ord }}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is $a(h, q)$-fat graph with a distinguished vertex, and, let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord} \mathbb{A}_{h}, q}$.

For $i=1,2$, let $f_{i} \in E(\Gamma)$ of level at most $n-1$, and, let f_{i}^{\downarrow} be identified with f_{i} under $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$.
(i) There exists the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)=\sigma\left(\Gamma^{f_{1}, f_{2}}, v_{0}^{f_{1}, f_{2}}\right.$, ord $\left.{ }^{f_{1}, f_{2}}, \phi^{f_{1}, f_{2}}\right)$ in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$ obtained by collapsing f_{1} and f_{2} if, and only if, there exists the codimension two face in $\widehat{\text { ordA्A }}_{h, q}$ obtained by collapsing f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$.
(ii) There exists a relation corresponding to the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)=$ $\sigma\left(\Gamma^{f_{1}, f_{2}}, v_{0}^{f_{1}, f_{2}}\right.$, ord $\left.{ }^{f_{1}, f_{2}}, \phi^{f_{1}, f_{2}}\right)$ in $\widehat{\text { ordA्A }}_{g, p}^{p}$ obtained by collapsing f_{1} and f_{2} if, and only if, there exists a relation corresponding to the codimension two face in $\widehat{\operatorname{ord} \mathbb{A}_{h, q}}$ obtained by collapsing f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$.

Proof. (i) If there exists the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$ of $\widehat{\operatorname{ord}}_{g, p}^{p}$, by Lemma 7.21 (iii), there exists the codimension two face corresponding to collapse f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right)$.

If there exists the codimension two face corresponding to collapse f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}, \phi^{\downarrow}\right)$, then f_{1}^{\downarrow} and f_{2}^{\downarrow} can be collapsed in $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$. Hence, f_{1} and f_{2} can be collapsed in (Γ, v_{0}, ord) and there exists the codimension two face $\sigma^{f_{1}, f_{2}}$ of $\widehat{\operatorname{ord}}_{\underline{A}}^{\mathfrak{p}}$.
(ii) Follows from (i) above and Lemma 7.10 .
7.23 Definition. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord}}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Let h, q be integers such that ($\Gamma^{\downarrow}, v_{0}^{\downarrow}$,ord ${ }^{\downarrow}$) is a (h, q)-fat graph with a distinguished vertex, and, let $\phi^{\downarrow}: \pi_{1}\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right) \rightarrow F_{h, q, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{h, q}$.

For $i=1,2$, let $f_{i} \in E(\Gamma)$, such that there exists a codimention two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)=\sigma\left(\Gamma^{f_{1}, f_{2}}, v_{0}^{f_{1}, f_{2}}, \operatorname{ord}^{f_{1}, f_{2}}, \phi^{f_{1}, f_{2}}\right)$ in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$ obtained by collapsing f_{1} and f_{2}. Suppose $f_{i}, i=1,2$, is an edge of level at most $n-1$, and, let f_{i}^{\downarrow} be identified with f_{i} under $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$.

We say that the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$ of $\widehat{\operatorname{ord}}_{g, p}^{p}$ is a lift of the codimension two face in $\widehat{\operatorname{ord} \mathbb{A}_{h, q}}$ obtained by collapsing f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=$ $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}, \phi^{\downarrow}\right)$.

If there exists a relation r in $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}}$ deduced from the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$, then we say that the relation r of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$ is a lift of the relation of $\mathcal{A} \mathcal{M}_{h, q, 1}^{\mathfrak{p}}$ deduced from the codimension two face obtained by collapsing f_{1}^{\downarrow} and f_{2}^{\downarrow} in $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}, \phi^{\downarrow}\right)$.
7.24 Corollary. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$.
(i) Every relation in $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}}$ obtained by Theorem 3.7 which involves h-generators of level n is deduced from Lemma 7.15 .
(ii) Every relation in $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}}$ obtained by Theorem 3.7 which does not involve h-generators of level n is a lift of a relation in $\mathcal{A} \mathcal{M}_{h, q, 1}$, where $\mathfrak{p}^{\downarrow}=\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.{ }^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex.

Proof. (i) Follows from Lemma 7.21(i).
(ii) Follows from Lemma 7.21(ii) and Definition 7.23 .
7.25 Remark. Let $\mathfrak{p}_{1}=\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\mathfrak{p}_{1}^{\downarrow}=$ $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex

By Proposition 6.13, $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{1}} \simeq \mathcal{A M}_{g, p-1,1}$. Results on this section give an explicit description of this isomorphism as follows. By Remark 7.16, there is a bijection between generators of $\mathcal{\mathcal { A }} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{1}}$ and generators of $\mathcal{\mathcal { A }} \mathcal{M}_{g, p-1,1}$. By Corollary 7.24 relations not involving h-generators of level n in $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{1}}$ are lifts of relations in $\mathcal{A} \mathcal{M}_{g, p-1,1}$.
7.26 Example. Recall $\mathcal{A} \mathcal{M}_{0,2,1}=\left\langle g_{2} \mid\right\rangle$. Following Example 7.17, by Corollary $7.24, \mathcal{A M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}=\left\langle g_{2,2} \mid\right\rangle \simeq \mathcal{A M}_{0,2,1}$.
7.27 Example. Recall $\mathcal{A M}_{1,0,1}=\left\langle h_{2}, g_{2} \mid g_{2} h_{2}^{-1} g_{2}^{-1} h_{2}^{-1} g_{2}\right\rangle$. The relation in $\mathcal{A M}_{1,0,1}$ lifts to the following relations in $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{1}, v_{1}, 0, \text { ord }_{1}, \phi_{1}\right)}: g_{2,2} h_{2,1}^{-1} g_{2,2}^{-1} h_{2,3}^{-1} g_{2,3}$; $g_{2,3} h_{2,3}^{-1} g_{2,5}^{-1} h_{2,5}^{-1} g_{2,5} ; g_{2,6} h_{2,4}^{-1} g_{2,6}^{-1} h_{2,7}^{-1} g_{2,7}$ and $g_{2,7} h_{2,7}^{-1} g_{2,8}^{-1} h_{2,8}^{-1} g_{2,8}$. Following Example 7.18, these relations reduce to the same relation. By Corollary 7.24 , $\mathcal{A M}_{1,1,1}^{\left(T_{\left.1, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}\right.}=\left\langle h_{2,1}, g_{2,2} \mid g_{2,2} h_{2,1}^{-1} g_{2,2}^{-1} h_{2,1}^{-1} g_{2,2}\right\rangle \simeq \mathcal{A M}_{1,0,1}$.
7.28 Remark. Let $\mathfrak{p}_{2}=\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in \widehat{\operatorname{ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\mathfrak{p}_{2}^{\downarrow}=$ $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex.

By Proposition 6.13, $\mathcal{A} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{2}} \simeq \mathcal{A} \mathcal{M}_{g-1, p, 2}$. Results on this section give an explicit description of this isomorphism as follows. By Remark 7.16, $\mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{2}}$ is generated by $(p+1)$ copies of the generators of $\mathcal{A} \mathcal{N}_{g, p-1,1}$ and $(p+1) h$-generators of level n for each $(3(n-1)-3)$-dimensional simplex of $\widehat{\mathbb{P}}_{g-1, p+1}$. On the other hand, relations not involving h-generators of level n in $\mathcal{A \mathcal { A }}_{g, p, 1}^{\mathfrak{p}_{2}}$ are lifts of relations in $\mathcal{A M}_{g-1, p+1,1}$. Recall $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ord}}^{\mathbb{A}_{g, p}}$ has $p+1$ connected components which map onto $\widehat{\mathbb{P}}_{g-1, p+1}$ under μ. Each of these connected components correspond to a cyclic word in $w\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$. See 6.16 and Remark 7.13 . There are $p g$-generators of level $k<n$ which are declareted to be the identity.
7.29 Example. Recall $\mathcal{A M}_{0,2,1}=\left\langle g_{2} \mid\right\rangle$. By Example 7.20 and by Corollary 7.24. $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right)}=\left\langle h_{3,9}, g_{2,10} \mid h_{3,9} g_{2,10}=g_{2,10} h_{3,9}\right\rangle$.

$8 \quad g$-generators of level n

We describe a refinement of the decomposition of $\widehat{\operatorname{ord}}_{g, p}$ which gives g-generators of level n and some relations involving g-generators of level n. We deduce $\mathcal{A} \mathcal{M}_{g, p, 1}$ is a quotient of the fundamental group of a graph of groups. We define a second refinement of the decomposition of $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}$ which gives the missing relations.
8.1 Definition. For $i=1,2$, let $\widehat{\mathbb{T}}_{g, p}^{(i)}$ be the set of points $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in$ $\widehat{\operatorname{Ord}}_{g, p}-\widehat{\mathbb{T}}_{g, p}$ such that $\left|u^{*}\right| \geq 4$ where $\bar{e}_{i} \in u^{*}, u \in V(\Gamma)$.
8.2 Remark. For $i=1,2$, if $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$, then $\left|v_{0}^{*}\right|=2$ and $\left|v_{i}^{*}\right|=3$.
8.3 Definition. For $i=1,2$, let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \widehat{\operatorname{ordA}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$. We denote by $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p},(i)}$ the connected component of $\widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$ which contains \mathfrak{p}.

We define

$$
\mathcal{A \mathcal { M }}_{g, p, 1}^{\mathfrak{p},(i)}=\left\{\varphi \in \mathcal{A \mathcal { M }}_{g, p, 1} \mid \varphi \cdot \mathfrak{p} \in \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(i)}\right\} .
$$

8.4 Remark. For $i=1,2$, let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$. Notice $\widehat{\operatorname{ord}}^{\mathfrak{A}}, \underline{g, p}$ (i) can be defined as the connected component of $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}-\widehat{\mathbb{T}}_{g, p}^{(i)}$ which contains \mathfrak{p}.

Since $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p},(i)} \subset \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}$, we see $\mathcal{A}_{\mathcal{M}_{g, p, 1}^{\mathfrak{p},(i)}}$ is a subgroup of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}}$.
8.5 Remark. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)}\right)$, and, let h, q be integers such that $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)$ is a (h, q)-fat graph with a distinguished vertex. Since $\mathfrak{p} \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)}\right)$, we see $\left|v_{0}^{\downarrow}\right|=2$. Hence, we can consider the (k, r)-fat graph with a distinguished vertex $\left(\Gamma^{\downarrow \downarrow}, v_{0}^{\downarrow \downarrow}\right.$, ord $\left.{ }^{\downarrow \downarrow}\right)$ where k, r are integers such that either $(k, r)=(h, q-1)$ or $(k, r)=(h-1, q+1)$.

We consider the composition of embeddings

$$
\begin{array}{ccccc}
\left(\Gamma^{\downarrow \downarrow}, v_{0}^{\downarrow \downarrow}, \text { ord }^{\downarrow \downarrow}\right) & \hookrightarrow & \left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right) & \hookrightarrow & \left(\Gamma, v_{0}, \text { ord }\right) \\
v_{0}^{\downarrow \downarrow} & \mapsto & v_{1}^{\downarrow} & & \\
& & v_{0}^{\downarrow} & \mapsto & v_{1}
\end{array}
$$

Notice $e_{1}, e_{2}, e_{3}, e_{4} \in E(\Gamma)$ do not lie in the image of this composition.
We can obtain results for the composition above analogous to the results obtained for the embedding $\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right) \hookrightarrow\left(\Gamma, v_{0}\right.$, ord $), v_{0}^{\downarrow} \mapsto v_{1}$.

Let $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right], \ldots,\left[w_{p}\right]\right\}$. Since

$$
\left(\Gamma, v_{0}, \text { ord }\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \ldots\right), \ldots
$$

w_{0} starts with $e_{1} e_{3}$ and ends with \bar{e}_{2}, and, $\bar{e}_{4} \bar{e}_{1} e_{2}$ and $\bar{e}_{3} e_{4}$ appear in $w\left(\Gamma, v_{0}\right.$, ord). Lemma 4.8 can be extended as follows.
(i) If $w_{0}=e_{1} e_{3} w_{0}^{\prime} \bar{e}_{2},\left[w_{i}\right]=\left[\bar{e}_{4} \bar{e}_{1} e_{2} w_{i}^{\prime}\right]$ for some $1 \leq i \leq p$, then $(h, q)=$ ($g, p-1$) and exactly one of the cases holds.
(a) If $w_{0}^{\prime}=u_{0}^{\prime} \bar{e}_{3} e_{4} v_{0}^{\prime}$, then $(k, r)=(h-1, q+1)=(g-1, p)$. Hence, g and p satisfy $g \geq 1$ and $p \geq 1$.
(b) If $w_{i}^{\prime}=u_{i}^{\prime} \bar{e}_{3} e_{4} v_{i}^{\prime}$, then $(k, r)=(h-1, q+1)=(g-1, p)$. Hence, g and p satisfy $g \geq 1$ and $p \geq 1$.
(c) If $\left[w_{j}\right]=\left[\bar{e}_{3} e_{4} v_{j}\right]$ for some $1 \leq j \leq p, j \neq i$, then $(k, r)=(h, q-1)=$ $(g, p-2)$. Hence, p satisfies $p \geq 2$.

Notice $w\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}, \operatorname{ord}^{\downarrow}\right)=\left\{w_{0}^{\downarrow},\left[w_{1}^{\downarrow}\right], \ldots,\left[w_{i-1}^{\downarrow}\right],\left[w_{i+1}^{\downarrow}\right], \ldots,\left[w_{p}^{\downarrow}\right]\right\}$ where $w_{0}^{\downarrow}=$ $e_{3} w_{0}^{\prime} w_{i}^{\prime} \bar{e}_{4}$ and, $\left[w_{j}^{\downarrow}\right]=\left[w_{j}\right]$ for $1 \leq j \leq p, j \neq i$. The three cases above are deduced by considering where $\bar{e}_{3} e_{4}$ appears.
(ii) If $w_{0}=e_{1} e_{3} w_{0}^{\prime} \bar{e}_{4} \bar{e}_{1} e_{2} w_{0}^{\prime \prime} \bar{e}_{2}$, then $(h, q)=(g-1, p+1)$ and exactly one of the cases holds.
(d) If $w_{0}^{\prime}=u_{0}^{\prime} \bar{e}_{3} e_{4} v_{0}^{\prime}$, then $(k, r)=(h-1, q+1)=(g-2, p+2)$. Hence, g satisfies $g \geq 2$.
(e) If $w_{0}^{\prime \prime}=u_{0}^{\prime \prime} \bar{e}_{3} e_{4} v_{0}^{\prime \prime}$, then $(k, r)=(h, q-1)=(g-1, p)$. Hence, g satisfies $g \geq 1$.
(f) If $\left[w_{i}\right]=\left[\bar{e}_{3} e_{4} u_{i}\right]$ for some $1 \leq i \leq p$, then $(k, r)=(h, q-1)=(g-1, p)$. Hence, g and p satisfy $g \geq 1$ and $p \geq 1$.

Notice $w\left(\Gamma^{\downarrow}, v_{0}^{\downarrow}\right.$, ord $\left.^{\downarrow}\right)=\left\{w_{0}^{\downarrow},\left[w_{1}^{\downarrow}\right], \ldots,\left[w_{p}^{\downarrow}\right],\left[w_{p+1}^{\downarrow}\right]\right\}$ where $w_{0}^{\downarrow}=e_{3} w_{0}^{\prime} \bar{e}_{4}$, $\left[w_{p+1}^{\downarrow}\right]=\left[w_{0}^{\prime \prime}\right]$ and $\left[w_{j}^{\downarrow}\right]=\left[w_{j}\right]$ for $1 \leq j \leq p$. The three cases above are deduced by considering where $\bar{e}_{3} e_{4}$ appears.

Lemma 6.6 can be extended as follows. Let $\phi^{\Downarrow \downarrow}: \pi_{1}\left(\Gamma^{\downarrow \downarrow}, v_{0}^{\downarrow \downarrow}\right) \rightarrow F_{k, r, 1}$ be an isomorphism such that $\mathfrak{p}^{\downarrow \downarrow}=\left(\Gamma^{\downarrow \downarrow}, v_{0}^{\downarrow \downarrow}, \operatorname{ord}^{\downarrow \downarrow}, \phi^{\downarrow \downarrow}\right)$ is a point in $\widehat{\operatorname{ord}}_{k, r}$. If $\sigma(\mathfrak{p})$ is a $(6 g+3 p-3)$-dimensional simplex, then a path in $\widehat{\operatorname{ord}}_{k, r}$ lying in simplices of codimentions at most one and starting at $\mathfrak{p}^{\Downarrow \downarrow}$ can be lifted to a path in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(1)}$ lying in simplices of codimension at most one and starting at \mathfrak{p}.

Proposition 6.7 can be extended as follows. We can define a continuous map

$$
\mu^{(1)}: \widehat{\operatorname{ord}}_{\underline{\mathbb{A}}}^{g, p} \mathfrak{p},(1) \quad \rightarrow \widehat{\operatorname{ord}}_{k, r}, \mathfrak{p} \mapsto \mathfrak{p}^{\downarrow \downarrow}
$$

We see $\widehat{\operatorname{ordA}}_{(g, p)}^{\mathfrak{p},(1)}$ is simply connected. See Corollary 6.9.
Since $\widehat{\operatorname{ord}}_{(g, p)}^{\mathfrak{p},(1)}$ has a complex structure, a presentation for $\mathcal{A \mathcal { M }}_{g, p, 1}^{\mathfrak{p},(1)}$ can be obtained by Theorem 3.7 applied to the action of $\mathcal{A M}_{g, p, 1}^{\mathfrak{p},(1)}$ on $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(1)}$.

Proposition 6.11 can be extended as follows. If $(h, q)=(g, p-1)$, let $\mathfrak{p}_{a}=$ $\left(\Gamma_{a}, v_{a, 0}, \operatorname{ord}_{a}, \phi_{a}\right), \mathfrak{p}_{b}=\left(\Gamma_{b}, v_{b, 0}, \operatorname{ord}_{b}, \phi_{b}\right), \mathfrak{p}_{c}=\left(\Gamma_{c}, v_{c, 0}, \operatorname{ord}_{c}, \phi_{c}\right) \in \widehat{\operatorname{ord}}_{\underline{A}}^{g, p} 10-\widehat{\mathbb{T}}_{g, p}^{(1)}$ such that $\left(\Gamma_{a}, v_{a, 0}, \operatorname{ord}_{a}\right),\left(\Gamma_{b}, v_{b, 0}, \operatorname{ord}_{b}\right)$ and $\left(\Gamma_{c}, v_{c, 0}, \operatorname{ord}_{c}\right)$ satisfy conditions (ia), (ib) and (ic) above, respectively. Then

$$
\begin{aligned}
\widehat{\operatorname{ord}}_{g, p}^{p}-\widehat{\mathbb{T}}_{g, p}^{(1)}= & \left(\cup_{\varphi_{a}}\left(\varphi_{a} \cdot \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{a},(1)}\right)\right) \cup\left(\cup_{\varphi_{b}}\left(\varphi_{b} \cdot \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{b},(1)}\right)\right) \\
& \cup\left(\cup_{\varphi_{c}}\left(\varphi_{c} \cdot{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{c},(1)}\right)\right),
\end{aligned}
$$

where φ_{a} ranges over $\mathcal{A} \mathcal{N}_{g, p, 1}^{\mathfrak{p}} / \mathcal{A \mathcal { M }}_{g, p, 1}^{\mathfrak{p}_{a},(1)}, \varphi_{b}$ ranges over $\mathcal{A \mathcal { M }}_{g, p, 1}^{\mathfrak{p}} / \mathcal{A \mathcal { N }}_{g, p, 1}^{\mathfrak{p}_{b},(1)}$ and φ_{c} ranges over $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}} / \mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p} c,(1)}$; and every pair of sets on the right-hand side are disjoint.

A similar result holds if $(h, q)=(g-1, p+1)$ and $\mathfrak{p}_{a}, \mathfrak{p}_{b}$ and \mathfrak{p}_{c} are replaced by $\mathfrak{p}_{d}=\left(\Gamma_{d}, v_{d, 0}, \operatorname{ord}_{d}, \phi_{d}\right), \mathfrak{p}_{e}=\left(\Gamma_{e}, v_{e, 0}, \operatorname{ord}_{e}, \phi_{e}\right), \mathfrak{p}_{f}=\left(\Gamma_{f}, v_{f, 0}, \operatorname{ord}_{f}, \phi_{f}\right) \in$ $\widehat{\operatorname{ord}}{ }_{g, p}^{\mathfrak{p}}-\widehat{\mathbb{T}}_{g, p}^{(1)}$ such that $\left(\Gamma_{d}, v_{d, 0}, \operatorname{ord}_{d}\right),\left(\Gamma_{e}, v_{e, 0}, \operatorname{ord}_{e}\right)$ and $\left(\Gamma_{f}, v_{f, 0}, \operatorname{ord}_{f}\right)$ satisfy conditions (iid), (iie) and (iif) above, respectively.

We can choose $\widehat{\mathbb{P}}_{g, p}$ such that there are at most three connected components in $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}}-\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$, one for every case above. Notice $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}^{\mathfrak{o}} \mathrm{g}, p-\right.$ $\left.\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$ can be computed from $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{p}$ by removing codimension one faces corresponding to collapse edges e_{3} and e_{4}.

Proposition 6.13 can be extended as follows, where $\mathfrak{p}_{a}, \mathfrak{p}_{b}, \mathfrak{p}_{c}, \mathfrak{p}_{d}, \mathfrak{p}_{e}$ and \mathfrak{p}_{f} are as above.
(iii) If $(h, q)=(g, p-1)$, then
(a) $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{a,(1)}} \simeq \mathcal{A}_{g-1, p-1,2}$.
(b) $\mathcal{A M}_{g, p, 1}^{\boldsymbol{p}_{b,(1)}} \simeq \mathcal{A M}_{g-1, p-1,2}$
(c) $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{c},(1)} \simeq \mathcal{A M}_{g, p-2,1}$.
(iv) If $(h, q)=(g-1, p)$, then
(d) $\mathcal{A \mathcal { M }}_{g, p, 1}^{\mathfrak{p}_{d},(1)} \simeq \mathcal{A N}_{g-2, p, 3}$.
(e) $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{e},(1)} \simeq \mathcal{A} \mathcal{M}_{g-1, p, 1}$
(f) $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p} f,(1)} \simeq \mathcal{A} \mathcal{M}_{g-1, p-1,2}$.
8.6 Example. We apply Remark 8.5 to $(g, p)=(0,3)$. The case $(h, q)=$ $(g-1, p+1)$ is empty and the case $(h, q)=(g, p-1)$ does not satisfies neither (ia) nor (ib) in Remark 8.5. Following Example 6.15 and Example 7.12 , $\widehat{\mathbb{P}}_{0,3} \cap\left(\widehat{\operatorname{ord}}_{3,0}^{\left(\Gamma_{\left.1, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}\right.}-\widehat{\mathbb{T}}_{0,3}^{(1)}\right)$ has one component corresponding to (ic) in Remark 8.5. This component is computed from $\widehat{\mathbb{P}}_{0,3} \cap \widehat{\operatorname{ordA}}_{3,0}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }, \phi_{1}\right)}$ by removing codimension one faces obtained by collapsing edges e_{3} and e_{4}. We obtain the following representation of $\widehat{\mathbb{P}}_{0,3} \cap \widehat{\operatorname{ord} \mathbb{A}_{3,0}}\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)$.

By (iiic) in Remark 8.5, $\mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,1,1}$ is the trivial group.
8.7 Example. We apply Remark 8.5 to $(g, p)=(1,1)$. The case $(h, q)=$ $(g, p-1)$ does not satisfies (ic) in Remark 8.5. Following Example 6.17 and Example $7.13, \widehat{\mathbb{P}}_{1,1} \cap\left(\widehat{\operatorname{ord} \mathbb{A}_{1,1}}\left(\widehat{1}_{\left.1, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}-\widehat{\mathbb{T}}_{1,1}^{(1)}\right)\right.$ has two components: $\widehat{\mathbb{P}}_{1,1} \cap$ $\widehat{\operatorname{ord}} \mathbb{A}_{1,1}^{\left(\Gamma_{1}, v_{1}, 0, \text { ord } 1, \phi_{1}\right),(1)}$ corresponding to (ib), and, $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{5}, v_{5}, 0, \text { ord } 5, \phi_{5}\right),(1)}$ corresponding to $($ ia $)$. These components are computed from $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord} \mathbb{A}_{1,1}}\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ by removing codimension one faces obtained by collapsing edges e_{3} and e_{4}.
$\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}} \mathbb{A}_{1,1}\left(\Gamma_{1}, v_{1,0,0, \text { ord }}^{1}, \phi_{1}\right),(1)$ has the following representation.

By iiib in Remark 8.5. $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,0,2}$ is a cyclic infinite group generated by $h_{2,1}$.

And, $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}} \widehat{\mathbb{A}}_{1,1}^{\left(\Gamma_{5}, v_{5,0}, \text { ord }_{5}, \phi_{5}\right),(1)}$ has the following representation.

By (iiia) in Remark 8.5, $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{5}, v_{5}, 0, \text { ord }_{5}, \phi_{5}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,0,2}$ is a cyclic infinite group generated by $h_{2,5}$.

The case $(h, q)=(g-1, p+1)$ does not satisfies condition (iid) in Remark 8.5. Following Example 6.17 and Example 7.13. $\widehat{\mathbb{P}}_{1,1} \cap\left({\widehat{\operatorname{ord}} \mathbb{A}_{1,1}}_{\left(\Gamma_{9}, v_{9}, 0, \text { ord } 9, \phi_{9}\right)}-\widehat{\mathbb{T}}_{1,1}^{(1)}\right)$ has two components: $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}} \mathbb{A}_{1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord }, \phi_{9}\right),(1)}$ corresponding to (iie), and, $\widehat{\mathbb{P}}_{1,1} \cap$ $\widehat{\operatorname{ord}} \mathbb{A}_{1,1}^{\left(\Gamma_{12}, v_{12,0}, \text { ord }{ }_{12}, \phi_{12}\right),(1)}$ corresponding to (iiif). These components are computed from $\widehat{\mathbb{P}}_{1,1} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{1,1}}_{\left(\Gamma_{9}, v_{9,0}, \text { ordg }, \phi_{9}\right)}$ by removing codimension one faces obtained by collapsing edges e_{3} and e_{4}.
$\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord } 9, \phi_{9}\right),(1)}$ has the following representation.

By (ive in Remark 8.5, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,1,1}$ is the trivial group.
And, $\widehat{\mathbb{P}}_{1,1} \cap \widehat{\operatorname{ord}}{ }_{1,1}\left(\Gamma_{12}, v_{12,}, \operatorname{ord}_{12}, \phi_{12}\right),(1)$ has the following representation.

By (ivf) in Remark 8.5. $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{\left.12, v_{12,0,0 r d ~}^{12}, \phi_{12}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,0,2} \text { is a cyclic infinite }\right.}$ group generated by $h_{3,12} h_{3,13}$.
8.8 Remark. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$. Suppose

$$
\begin{equation*}
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right) . \tag{5}
\end{equation*}
$$

Then edges of $\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}\right)$ are identified with edges of $\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}\right)$ through the codimension one face (5). In particular, the following identifications hold.

$$
\begin{aligned}
E\left(\Gamma_{1}\right)-\left\{e_{1}\right\} & \leftrightarrow E\left(\Gamma_{2}\right)-\left\{e_{2}\right\} \\
e_{2} & \leftrightarrow \text { right } h \text {-edge of level } n, \\
e_{3} & \leftrightarrow e_{1}, \\
e_{4} & \leftrightarrow \text { left } h \text {-edge of level } n .
\end{aligned}
$$

And, edges of $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ but $e_{1}, e_{2}, e_{3}, e_{4}$ are identified with edges of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ but e_{1}, e_{2}, left h-edge of level n, right h-edge of level n.
8.9 Lemma. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$ such that

$$
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right) .
$$

Then, there exist continuous maps

$$
\widehat{\operatorname{ord}}_{\mathbb{A}_{g, p}}^{\mathfrak{p}_{1},(1)} \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2},(2)} \quad \text { and } \quad \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{2},(2)} \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{1,(1)}}
$$

which are homotopy inverse. Hence, $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{1},(1)}$ and $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{2},(2)}$ are homotopy equivalent.

Proof. We define $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{1},(1)} \rightarrow \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{2},(2)}$. Let $\mathfrak{p}=\left(\Gamma, v_{0}, \operatorname{ord}, \phi\right) \in \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1},(1)}$. Then $\left|v_{0}^{*}\right|=2$ and $\left|v_{1}^{*}\right|=3$ hold in (Γ, v_{0}, ord). We define the homotopy which reduces the length of e_{1} to 0 and increases the length of e_{3} in the same proportion. Since, in (Γ, v_{0}, ord), $\left|v_{0}^{*}\right|=2$ and $\left|v_{1}^{*}\right|=3$, the distinguished vertex, $v_{0}^{e_{1}}$, of ($\Gamma^{e_{1}}, v_{0}^{e_{1}}$, ord ${ }^{e_{1}}$) has valency 3. Then $v_{0}^{e_{1}}$ can be split in a unique manner to produce points $\mathfrak{p}^{\prime}=\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord $\left.{ }^{\prime}, \phi^{\prime}\right) \notin \sigma(\mathfrak{p})$. We define a second homotopy which splits $v_{0}^{e_{1}}$ such that the length of e_{2} in ($\Gamma^{\prime}, v_{0}^{\prime}$, ord' $)$ increases from 0 to the length of e_{1} in (Γ, v_{0}, ord), and the length of e_{1} in ($\Gamma^{\prime}, v_{0}^{\prime}$, ord ${ }^{\prime}$) decreases from sum of the lengths of e_{1} and e_{3} in (Γ, v_{0}, ord) to the length of e_{3} in (Γ, v_{0}, ord). If ($\Gamma^{\prime}, v_{0}^{\prime}$, ord ${ }^{\prime}$) is not a strongly non-separating graph, then \mathfrak{p}^{\prime} does not lie in $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}{ }^{\mathfrak{p},(2)}$. In this case, to obtain points in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{2},(2)}$ we have to collapse edges in $\left(\Gamma^{\prime}, v_{0}^{\prime}\right.$, ord' $\left.^{\prime}\right)$ to obtain a strongly non-separating graph.

The inverse map $\widehat{\operatorname{ord} \mathbb{A}_{g, p}} \mathfrak{p}_{2,(2)} \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{1},(1)}$ is defined similarly, by firstly collapsing e_{2} in $\mathfrak{p} \in \widehat{\operatorname{ordA}}_{g, p}^{\boldsymbol{p}_{\mathbf{2}},(2)}$.

It is clear that these maps are homotopy inverse.
8.10 Corollary. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$ such that

$$
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \text { ord } d_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right) .
$$

Then, $\mathcal{A}_{\mathcal{M}_{g, p, 1}}^{\mathfrak{p}_{1},(1)}$ and $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2},(2)}$ are isomorphic.
Proof. Follows from Proposition 8.9 and Definition 8.3 .
8.11 Proposition. For $i=1,2,3,4$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in{\widehat{\text { ord }} \mathbb{A}_{g, p}}^{\text {such }}$ that $\sigma\left(\mathfrak{p}_{i}\right)$ is a simplex of dimension $6 g+3 p-3=3 n-3$. Suppose $\mathfrak{p}_{1}, \mathfrak{p}_{3} \in \widehat{\mathbb{P}}_{g, p}$,

$$
\begin{aligned}
\widehat{\operatorname{ord} d}_{g, p}^{\mathfrak{p}_{1},(1)} & ={\widehat{\operatorname{ord} d} \mathbb{A}_{g, p}^{{ }_{3},(1)}}^{\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)}=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right),
\end{aligned}
$$

and,

$$
\sigma\left(\mathfrak{p}_{3}^{e_{1}}\right)=\sigma\left(\Gamma_{3}^{e_{1}}, v_{3,0}^{e_{1}}, \operatorname{ord}_{3}^{e_{1}}, \phi_{3}^{e_{1}}\right)=\sigma\left(\Gamma_{4}^{e_{2}}, v_{4,0}^{e_{2}}, \text { ord }_{4}^{e_{2}}, \phi_{4}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{4}^{e_{2}}\right) .
$$

Let $g_{n, 1}$ be the generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$ corresponding to collapse e_{1} in \mathfrak{p}_{1}, and, let $g_{n, 3}$ be the generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$ corresponding to collapse e_{1} in \mathfrak{p}_{3}. Then $g_{n, 3}=g_{n, 1} w$ for some $w \in \mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{2,(2)}^{p}} \subseteq \mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{2}}$.

Proof. Let γ_{1} be a path from \mathfrak{p}_{1} to \mathfrak{p}_{3} contained in $\widehat{\mathbb{P}}_{g, p} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{1},(1)}$. The map

$$
\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1},(1)} \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2},(2)}
$$

in Lemma 8.9 gives a path γ_{2} homotopic to γ_{1} from \mathfrak{p}_{2} to \mathfrak{p}_{4}. Let β_{1} be the path from \mathfrak{p}_{1} to \mathfrak{p}_{2} through the codimension one face $\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right)$. And, let β_{3} be the path from \mathfrak{p}_{3} to \mathfrak{p}_{4} through the codimension one face $\sigma\left(\mathfrak{p}_{3}^{e_{1}}\right)=\sigma\left(\mathfrak{p}_{4}^{e_{2}}\right)$. Then, $\gamma_{1} \beta_{3} \bar{\gamma}_{2} \bar{\beta}_{1}$ bounds a disc in ${\widehat{\operatorname{Ord}}{ }_{\mathrm{A}}^{g, p}}$. Notice β_{1} and β_{3} correspond to the generators $g_{n, 1}$ and $g_{n, 3}$, respectively. We can suppose γ_{1} and γ_{2} lie in simplices of codimension at most 1 . Since γ_{1} is contained in $\widehat{\mathbb{P}}_{g, p}$, its corresponding word is the identity. Since γ_{2} is contained in $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{2},(2)}$, the word w corresponding to γ_{2} lies in $\mathcal{A \mathcal { M }}_{g, p, 1}^{\boldsymbol{p}_{2},(2)}$. Hence, the relation $g_{n, 3} w^{-1} g_{n, 1}^{-1}$ holds in $\mathcal{A N}_{g, p, 1}$.
8.12 Remark. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)}\right)$. Suppose $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. By Proposition 6.11 and Proposition 8.11, $\mathcal{A} \mathcal{M}_{g, p, 1}$ is generated by generators of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{i}}$ for $i=1,2$ and a g-generators of level n for each connected component of $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{1}}-\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$ and $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\boldsymbol{p}_{2}}-\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$.
8.13 Example. Recall $\widehat{\mathbb{P}}_{0,3}$ has three simplices of dimension $6 g+3 p-3=6$ described in Example 6.15. To compute g-generators of level 3 in $\mathcal{A M}_{0,3,1}$, we collapse edges e_{1} and e_{2} for each of these simplices.

$$
\begin{aligned}
\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}\right) & =\left(e_{3}, e_{4}, e_{2}\right) ;\left(\bar{e}_{3}, \bar{e}_{2}, e_{5}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, \bar{e}_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) . \\
\left(\Gamma_{2}^{e_{1}}, v_{2,0}^{e_{1}}, \operatorname{ord}_{2}^{e_{1}}\right) & =\left(e_{3}, e_{4}, e_{2}\right) ;\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, \bar{e}_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, \bar{e}_{4}\right) . \\
\left(\Gamma_{3}^{\left.e_{1}, v_{3,0}^{e_{1}}, \operatorname{ord}_{3}^{e_{1}}\right)}\right) & =\left(e_{3}, e_{4}, e_{2}\right) ;\left(\bar{e}_{3}, e_{6}, e_{7}\right),\left(\bar{e}_{4}, e_{5}, \bar{e}_{2}\right),\left(\bar{e}_{6}, \bar{e}_{5}, \bar{e}_{7}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, e_{6}, \bar{e}_{3}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) .
\end{aligned}
$$

And,

$$
\begin{aligned}
\left(\Gamma_{1}^{e_{2}}, v_{1,0}^{e_{2}}, \operatorname{ord}_{1}^{e_{2}}\right) & =\left(e_{1}, e_{5}, \bar{e}_{3}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right),\left(\bar{e}_{4}, e_{6}, e_{7}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, \bar{e}_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) . \\
\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}\right) & =\left(e_{1}, \bar{e}_{5}, e_{6}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{5}, \bar{e}_{4}, \bar{e}_{7}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, e_{4}, e_{5}\right),\left(\bar{e}_{2}, \bar{e}_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e} 6_{6}, \bar{e}_{4}\right) . \\
\left(\Gamma_{3}^{e_{2}}, v_{3,0}^{e_{2}}, \operatorname{ord}_{3}^{e_{2}}\right) & =\left(e_{1}, e_{4}, e_{5}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{5}, \bar{e}_{7}, \bar{e}_{6}\right),\left(\bar{e}_{3}, e_{6}, e_{7}\right), \\
& =\left(e_{1}, e_{2}, e_{3}\right) ;\left(\bar{e}_{1}, e_{4}, \bar{e}_{2}\right),\left(\bar{e}_{3}, e_{5}, e_{6}\right),\left(\bar{e}_{4}, \bar{e}_{6}, \bar{e}_{5}\right) .
\end{aligned}
$$

Since $\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}\right)=\left(\Gamma_{1}^{e_{2}}, v_{1,0}^{e_{2}}, \operatorname{ord}_{1}^{e_{2}}\right)$ and $\left(\Gamma_{2}^{e_{1}}, v_{2,0}^{e_{1}}, \operatorname{ord}_{2}^{e_{1}}\right)=\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}\right)$, there are two g-generators of level 3 denoted $g_{3,1}$ and $g_{3,2}$, respectively. By Example 8.6. $\widehat{\mathbb{P}}_{0,3} \cap\left(\widehat{\operatorname{ord} \mathbb{A}_{0,3}}\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)-\widehat{\mathbb{T}}_{0,3}^{(1)}\right)$ has one component and $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$, $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in \widehat{\mathbb{P}}_{0,3} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{0,3}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)}}^{\text {can be joined by a path through }}$
the codimension one face $\left(\Gamma_{1}^{e_{5}}, v_{1,0}^{e_{5}}, \operatorname{ord}_{1}^{e_{5}}, \phi_{1}^{e_{5}}\right)=\left(\Gamma_{2}^{e_{6}}, v_{2,0}^{e_{6}}, \operatorname{ord}_{2}^{e_{6}}, \phi_{2}^{e_{6}}\right)$ contained in $\widehat{\mathbb{P}}_{0,3} \cap \widehat{\operatorname{ord}} \widehat{\mathbb{A}}_{0,3}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)}$. By Proposition 8.11, $g_{3,1}=g_{3,2} w$ for some $w \in \mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1}, 0, \operatorname{ord}_{1}, \phi_{1}\right)}$. If we apply Theorem 3.7 to $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$, the pair of edges $\left\{e_{1}, e_{5}\right\}$ and collapsing e_{1}; we have the relation $g_{3,1} g_{2,2}^{-1} g_{3,2}^{-1} h_{3,1}^{-1}$. Since in $\mathcal{A M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$ there is the relation $h_{3,1}=1$, we see $g_{3,2}=g_{3,1} g_{2,2}^{-1}$. Hence, $g_{3,2} \in g_{3,1} \mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}$.
8.14 Example. Recall $\widehat{\mathbb{P}}_{1,1}$ has thirteen simplices of dimension $6 g+3 p-3=6$ described in Example 6.17. To compute g-generators of level 3 in $\mathcal{A \mathcal { M }}_{1,1,1}$, we collapse edges e_{1} and e_{2}. We obtain the following ten g-generators of level 3 :

$$
\begin{aligned}
& g_{3,1} \text { since }\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\left(\Gamma_{1}^{e_{2}}, v_{1,0}^{e_{2}}, \operatorname{ord}_{1}^{e_{2}}, \phi_{1}^{e_{2}}\right) \text {, } \\
& g_{3,2} \text { since }\left(\Gamma_{2}^{e_{1}}, v_{2,0}^{e_{1}}, \operatorname{ord}_{2}^{e_{1}}, \phi_{2}^{e_{1}}\right)=\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right) \text {, } \\
& g_{3,3} \text { since }\left(\Gamma_{3}^{e_{1}}, v_{3,0}^{e_{1}}, \operatorname{ord}_{3}^{e_{1}}, \phi_{3}^{e_{1}}\right)=\left(\Gamma_{3}^{e_{2}}, v_{3,0}^{e_{2}}, \operatorname{ord}_{3}^{e_{2}}, \phi_{3}^{e_{2}}\right) \text {, } \\
& g_{3,4} \text { since }\left(\Gamma_{4}^{e_{1}}, v_{4,0}^{e_{1}}, \operatorname{ord}_{4}^{e_{1}}, \phi_{4}^{e_{1}}\right)=\left(\Gamma_{5}^{e_{2}}, v_{5,0}^{e_{2}}, \operatorname{ord}_{5}^{e_{2}}, \phi_{5}^{e_{2}}\right) \text {, } \\
& g_{3,6} \text { since }\left(\Gamma_{6}^{e_{1}}, v_{6,0}^{e_{1}}, \text { ord }_{6}^{e_{1}}, \phi_{6}^{e_{1}}\right)=\left(\Gamma_{13}^{e_{2}}, v_{13,0}^{e_{2}}, \text { ord }_{13}^{e_{2}}, \phi_{13}^{e_{2}}\right) \text {, } \\
& g_{3,7} \operatorname{since}\left(\Gamma_{7}^{e_{1}}, v_{7,0}^{e_{1}}, \operatorname{ord}_{7}^{e_{1}}, \phi_{7}^{e_{1}}\right)=\left(\Gamma_{11}^{e_{2}}, v_{11,0}^{e_{2}}, \operatorname{ord}_{11}^{e_{2}}, \phi_{11}^{e_{2}}\right) \text {, } \\
& g_{3,9} \text { since }\left(\Gamma_{9}^{e_{1}}, v_{9,0}^{e_{1}}, \operatorname{ord}_{9}^{e_{1}}, \phi_{9}^{e_{1}}\right)=\left(\Gamma_{10}^{e_{2}}, v_{10,0}^{e_{2}}, \operatorname{ord}_{10}^{e_{2}}, \phi_{10}^{e_{2}}\right) \text {, } \\
& g_{3,11} \text { since }\left(\Gamma_{11}^{e_{1}}, v_{11,0}^{e_{1}}, \operatorname{ord}_{11}^{e_{1}}, \phi_{11}^{e_{1}}\right)=\left(\Gamma_{12}^{e_{2}}, v_{12,0}^{e_{2}}, \operatorname{ord}_{12}^{e_{2}}, \phi_{12}^{e_{2}}\right) \text {, } \\
& g_{3,12} \text { since }\left(\Gamma_{12}^{e_{1}}, v_{12,0}^{e_{1}}, \operatorname{ord}_{12}^{e_{1}}, \phi_{12}^{e_{1}}\right)=\left(\Gamma_{7}^{e_{2}}, v_{7,0}^{e_{2}}, \operatorname{ord}_{7}^{e_{2}}, \phi_{7}^{e_{2}}\right) \text {, } \\
& g_{3,13} \text { since }\left(\Gamma_{13}^{e_{1}}, v_{13,0}^{e_{1}}, \operatorname{ord}_{13}^{e_{1}}, \phi_{13}^{e_{1}}\right)=\left(\Gamma_{6}^{e_{2}}, v_{6,0}^{e_{2}}, \operatorname{ord}_{6}^{e_{2}}, \phi_{6}^{e_{2}}\right) \text {. }
\end{aligned}
$$

By Example 8.7, $\widehat{\mathbb{P}}_{1,1} \cap\left(\widehat{\operatorname{ord} \mathbb{A}_{1,1}}\left(\Gamma_{1}, v_{1,0}\right.\right.$, ord $\left.\left._{1}, \phi_{1}\right)-\widehat{\mathbb{T}}_{1,1}^{(1)}\right)$ has two component: $\widehat{\mathbb{P}}_{1,1} \cap$
 $\left.\widehat{\mathbb{T}}_{1,1}^{(1)}\right)$ has two component: $\widehat{\mathbb{P}}_{1,1} \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right),(1)}$ and $\left.\widehat{\mathbb{P}}_{1,1} \widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{12}, v_{12,0}, \text { ord }\right.}{ }_{12}, \phi_{12}\right),(1)$. By Proposition 8.11, $g_{3,2}, g_{3,3}, g_{3,4} \in g_{3,1} \mathcal{A N}_{1,1,1}^{\left(\Gamma_{1,1}, 0,0 \text { ord }_{1}, \phi_{1}\right)}, g_{3,7} \in g_{3,6} \mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right)}$, $g_{3,11} \in g_{3,9} \mathcal{A M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord }_{9}, \phi_{9}\right)}, g_{3,13} \in g_{3,12} \mathcal{A M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$. By Theorem 3.7, it can be computed: $g_{3,1} g_{2,2}^{-1}=h_{3,1} g_{3,2}, g_{3,2} h_{2,3}^{-1}=h_{3,2} g_{3,3}, g_{3,3} g_{2,5}^{-1}=h_{3,3} g_{3,4}$, $g_{3,6} g_{2,13}=h_{3,6} g_{3,7}, g_{3,9} g_{2,10}=h_{3,11} g_{3,11}$ and $g_{3,12} h_{2,7}=h_{3,13}^{-1} g_{3,13}$. Recall $h_{3,1}=h_{3,2}=h_{3,3}=h_{3,6}=h_{3,11}=h_{3,13}=1$.
8.15 Lemma. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(i)}\right)$ such that

$$
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right)
$$

For $i=1,2$, let h_{i}, q_{i} be integers such that $\left(\Gamma_{i}^{\downarrow}, v_{i, 0}^{\downarrow}\right.$, ord $\left._{i}^{\downarrow}\right)$ is a $\left(h_{i}, q_{i}\right)$-fat graph with a distinguished vertex, and, $w\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}\right)=\left\{w_{i, 0},\left[w_{i, 1}\right], \ldots,\left[w_{i, p}\right]\right\}$.
(i) If $\left(h_{1}, q_{1}\right)=(g, p-1)$, then $w_{1,0}=e_{1} e_{3} w_{1,0}^{\prime} \bar{e}_{2},\left[w_{1, j}\right]=\left[\bar{e}_{4} \bar{e}_{1} e_{2} w_{1, j}^{\prime}\right]$ for some $1 \leq j \leq p$ and exactly one of the cases holds.
(a) If $w_{1,0}^{\prime}=u_{1,0}^{\prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime}$, then $\left(h_{2}, q_{2}\right)=(g-1, p+1)$.
(b) If $w_{1, j}^{\prime}=u_{1, j}^{\prime} \bar{e}_{3} e_{4} v_{1, j}^{\prime}$, then $\left(h_{2}, q_{2}\right)=(g, p-1)$.
(c) If $\left[w_{1, k}\right]=\left[\bar{e}_{3} e_{4} v_{1, k}\right]$ for some $1 \leq k \leq p, k \neq j$, then $\left(h_{2}, q_{2}\right)=$ $(g, p-1)$.
(ii) If $\left(h_{1}, q_{1}\right)=(g-1, p+1)$, then $w_{1,0}=e_{1} e_{3} w_{1,0}^{\prime} \bar{e}_{4} \bar{e}_{1} e_{2} w_{1,0}^{\prime \prime} \bar{e}_{2}$ and exactly one of the cases holds.
(d) If $w_{1,0}^{\prime}=u_{1,0}^{\prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime}$, then $\left(h_{2}, q_{2}\right)=(g-1, p+1)$.
(e) If $w_{1,0}^{\prime \prime}=u_{1,0}^{\prime \prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime \prime}$, then $\left(h_{2}, q_{2}\right)=(g-1, p+1)$.
(f) If $\left[w_{1, j}\right]=\left[\bar{e}_{3} e_{4} v_{1, j}\right]$ for some $1 \leq j \leq p$, then $\left(h_{2}, q_{2}\right)=(g, p-1)$.

Proof. Notice $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$ can be obtained from $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ by removing the distinguished vertex $v_{1,0}$, declaring the concatenation of edges \bar{e}_{1} and e_{2} a new edge denoted f, divinding e_{3} in two new edges denoted f_{1} and f_{2} and declaring the new vertex inside e_{3} the new distinguished vertex $v_{2,0}$.
(i) If $\left(h_{1}, q_{1}\right)=(g, p-1)$, then $w_{2,0}=f_{1} w_{2,0}^{\prime} \bar{f} \bar{f}_{2},\left[w_{2, j}\right]=\left[\bar{e}_{4} f w_{2, j}^{\prime}\right]$ for some $1 \leq j \leq p$ and exactly one of the cases holds.
(a) If $w_{1,0}^{\prime}=u_{1,0}^{\prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime}$, then $w_{2,0}^{\prime}=u_{2,0}^{\prime} f_{2} \bar{f}_{1} e_{4} v_{2,0}^{\prime}$.
(b) If $w_{1, j}^{\prime}=u_{1, j}^{\prime} \bar{e}_{3} e_{4} v_{1, j}^{\prime}$, then $w_{2, j}^{\prime}=u_{2, j}^{\prime} f_{2} \bar{f}_{1} e_{4} v_{2, j}^{\prime}$.
(c) If $\left[w_{1, k}\right]=\left[\bar{e}_{3} e_{4} v_{1, k}\right]$ for some $1 \leq k \leq p, j \neq k$, then $\left[w_{2, k}\right]=$ $\left[f_{2} \bar{f}_{1} e_{4} v_{2, k}\right]$.
(ii) If $\left(h_{1}, q_{1}\right)=(g-1, p+1)$, then $w_{2,0}=f_{1} w_{2,0}^{\prime} \bar{e}_{4} f w_{2,0}^{\prime \prime} \bar{f} \bar{f}_{2}$ and exactly one of the cases holds.
(d) If $w_{1,0}^{\prime}=u_{1,0}^{\prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime}$, then $w_{1,0}^{\prime}=u_{2,0}^{\prime} f_{2} \bar{f}_{1} e_{4} v_{2,0}^{\prime}$.
(e) If $w_{1,0}^{\prime \prime}=u_{1,0}^{\prime \prime} \bar{e}_{3} e_{4} v_{1,0}^{\prime \prime}$, then $w_{2,0}^{\prime \prime}=u_{2,0}^{\prime \prime} f_{2} \bar{f}_{1} e_{4} v_{2,0}^{\prime \prime}$.
(f) If $\left[w_{1, j}\right]=\left[\bar{e}_{3} e_{4} v_{1, j}\right]$ for some $1 \leq j \leq p$, then $\left[w_{2, j}\right]=\left[f_{2} \bar{f}_{1} e_{4} v_{2, j}\right]$.
8.16 Theorem. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}-\widehat{\mathbb{T}}_{g, p}$. Suppose $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}\right.$, ord $\left.{ }_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right.$, ord $\left.{ }_{2}^{\downarrow}\right)$ is a $(g-1, p+1)$-fat graph with a distinguished vertex. Then $\mathcal{A} \mathcal{M}_{g, p, 1}$ is a quotient of the fundamental group of the graph of groups

where $\mathfrak{p}_{a}=\left(\Gamma_{a}, v_{a, 0}\right.$, ord $\left._{a}, \phi_{a}\right), \mathfrak{p}_{b}=\left(\Gamma_{b}, v_{b, 0}\right.$, ord $\left._{b}, \phi_{b}\right), \mathfrak{p}_{c}=\left(\Gamma_{c}, v_{c, 0}\right.$, ord $\left._{c}, \phi_{c}\right) \in$ $\widehat{\operatorname{ord} \mathbb{A}_{g, p}} \widehat{\mathbb{T}}_{g, p}^{(1)}$ and $\mathfrak{p}_{d}=\left(\Gamma_{d}, v_{d, 0}\right.$, ord $\left._{d}, \phi_{d}\right), \mathfrak{p}_{e}=\left(\Gamma_{e}, v_{e, 0}\right.$, ord $\left._{e}, \phi_{e}\right), \mathfrak{p}_{f}=\left(\Gamma_{f}, v_{f, 0}\right.$, ord $\left._{f}, \phi_{f}\right) \in$ $\widehat{o r d}_{g, p}^{\mathfrak{p}_{2}}-\widehat{\mathbb{T}}_{g, p}^{(1)}$ satisfy conditions (ial), (ib), (ic), (iid), (iie) and (iif) in Remark 8.5, respectively. For every edge, there exists a monomorphism which goes from the subgroup that labels the edge to the subgroup that labels the vertex where the edge points.

Proof. By definition, $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{1}}$ and $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2}}$ are subgroups of $\mathcal{A} \mathcal{M}_{g, p, 1}$. By Remark 8.12, $\mathcal{A M}_{g, p, 1}$ is generated by these two subgroups and a g-generator of level n for each connected component of $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{1}}-\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$ and $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{2}}-\right.$ $\widehat{\mathbb{T}}_{g, p}^{(1)}$. By Remark 8.5. these connected components are ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{a,(1)}}, \widehat{\operatorname{ord}}_{\mathbb{A}_{g, p}}^{\mathfrak{p}_{b}(1)}$ and $\widehat{\operatorname{ord} \mathbb{A}_{g, p}} \mathfrak{p}_{c},(1)$; and, ${\widehat{\operatorname{ord}} \mathfrak{A}_{g, p}}_{\mathfrak{p}_{d},(1)}, \widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{e},(1)}$ and $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{f},(1)}$. Hence, $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{c,(1)}}, \mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{b},(1)}$
 are subgroups of $\mathcal{A} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{2}}$. By Corollary 8.10 , the g-generator for each of these connected component is a monomorphism from the corresponding subgroup to the subgroup given by Lemma 8.15.
8.17 Corollary. $\mathcal{A} \mathcal{M}_{g, p, 1}$ is a quotien of the fundamental group of the graph of groups

Proof. Follows from Theorem 8.16, Proposition 6.13 and Remark 8.5 .
 of the fundamental group of the graph of groups

where $\mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \text { ord }_{1}\right)} \simeq \mathcal{A \mathcal { M }}_{0,2,1}$. Since $\mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1, v}, 0, \text { ord }_{1}, \text { ord }_{1}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,1,1}$ is the trivial group, the monomorphism corresponding to the edge is trivial.

We can give an explicit description of the monomorphism of the edges in Theorem 8.16.
8.19 Proposition. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in \widehat{\text { ordA }}_{g, p}$ such that $\sigma\left(\mathfrak{p}_{i}\right)$ is a simplex of dimension $6 g+3 p-3=3 n-3$. Suppose

$$
\sigma\left(\mathfrak{p}_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \text { ord }_{1}^{e_{1}}, \phi_{1}^{e_{1}}\right)=\sigma\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \text { ord }_{2}^{e_{2}}, \phi_{2}^{e_{2}}\right)=\sigma\left(\mathfrak{p}_{2}^{e_{2}}\right) .
$$

Let $\varphi \in \mathcal{A N}_{g, p, 1}^{\boldsymbol{p}_{1},(1)}$, and, let $\psi \in \mathcal{A}_{\mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{2},(2)}}$ be the image of φ under the isomorphism $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{1},(1)} \simeq \mathcal{A N}_{g, p, 1}^{\mathfrak{p}_{2},(2)}$ described in Corollary 8.10. Let $w_{\varphi, 1}$ be a word representing φ in $\mathcal{A M}_{g, p, 1}^{\boldsymbol{p}_{1},(1)}$, let $w_{\psi, 2}$ be a word representing ψ in $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2},(2)}$ and let $g_{n, 1}$ be the generator of $\mathcal{A} \mathcal{M}_{g, p, 1}$ corresponding to collapse e_{1} in \mathfrak{p}_{1}. Then $g_{n, 1}^{-1} w_{\varphi, 1} g_{n, 1}=w_{\psi, 2}$.

Proof. Since $\varphi \in \mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{1},(1)}$, we see $\varphi \cdot \mathfrak{p}_{1} \in \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1},(1)}$. Since $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p}_{1},(1)}$ is connected, there exists a path $\gamma_{1} \subseteq{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{1},(1)}$ from \mathfrak{p}_{1} to $\varphi \cdot \mathfrak{p}_{1}$ which represents φ.

The map

$$
\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{1},(1)} \rightarrow{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2},(2)}
$$

in Lemma 8.9 gives a path γ_{2} homotopic to γ_{1} from \mathfrak{p}_{2} to $\mathfrak{p}_{2}^{\prime}=\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left.{ }_{2}, \phi_{2}^{\prime}\right)$. Hence, $\mathfrak{p}_{2}^{\prime} \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{2},(2)}^{2}$ and $\psi=\phi_{2}^{\prime} \circ \phi_{2}^{-1}$ lies in $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{2},(2)}$. Notice $\mathfrak{p}_{2}^{\prime}=\psi \cdot \mathfrak{p}_{2}$.

We can suppose γ_{1} lies in simplices of codimension at most 1 . Then $w_{\varphi, 1}$ is obtaiend from γ_{1}. And $w_{\psi, 2}$ is obtained from a path contained in $\widehat{\operatorname{ord}}_{g, p}^{\boldsymbol{p}_{2},(2)}$ homotopic to γ_{2} and lying in simplices of codimension at most 1 .

Let β be a path from \mathfrak{p}_{1} to \mathfrak{p}_{2} which goes through the codimension one simplex corresponding to collapse e_{1} in \mathfrak{p}_{1}. Notice $\varphi \cdot \beta$ is a path from $\psi \cdot \mathfrak{p}_{1}$ to $\psi \cdot \mathfrak{p}_{2}$ which goes through the codimension one simplex corresponding to collapse e_{1} in $\psi \cdot \mathfrak{p}_{1}$. Then, $\bar{\beta} \gamma_{1}(\varphi \cdot \beta) \bar{\gamma}_{2}$ bounds a disc in ${\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}$. Hence, the relation $g_{n, 1}^{-1} w_{\varphi, 1} g_{n, 1} w_{\psi, 2}^{-1}$ holds in $\mathcal{A} \mathcal{M}_{g, p, 1}$.
8.20 Example. Following Example 8.7, by Theorem 8.16, $\mathcal{A M}_{1,1,1}$ is a quotient of the fundamental group of the graph of groups

$$
\overbrace{\mathcal{A N}_{1,1,1}^{\left(\Gamma_{1}, l_{1,0}, \text { ord }_{1}, \phi_{1}\right)}}^{\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right),(1)}}
$$

where $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \text { ord }_{1}\right)} \simeq \mathcal{A \mathcal { M }}_{1,0,1}$ and $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord }_{9}, \text { ord }_{9}\right)} \simeq \mathcal{A \mathcal { M }}_{0,1,2}$.
Since $\mathcal{A \mathcal { M }}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \text { ord } 9\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,1,1}$ is the trivial group, the monomorphism corresponding to this edge is trivial. To describe the monomorphisms of the other edges, we apply Proposition 8.19 to g-generators of level 3 given in Example 8.14 and subgroups given in Example 8.7. Notice $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \operatorname{ord}_{1}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,0,2}$, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{5}, v_{5}, 0, \operatorname{ord}_{5}, \text { ord }_{5}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,0,2}$ and $\mathcal{A \mathcal { M }}_{1,1,1}^{\left(\Gamma_{12}, v_{12,0,}, \operatorname{ord}_{12}, \operatorname{ord}_{12}\right),(1)} \simeq \mathcal{A M}_{0,0,2}$ are cyclic infinite groups.

The monomorphism for the edge labelled $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \text { ord }_{1}\right),(1)}$ is described by $g_{3,1}$ such that $g_{3,1}^{-1} h_{2,1} g_{3,1}=h_{2,1}$.

The monomorphism for the edge labelled $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{5}, v_{5}, 0, \text { ord }_{5}, \text { ord }_{5}\right),(1)}$ is described by $g_{3,6}$ such that $g_{3,6}^{-1} h_{3,6} h_{2,7} g_{3,6}=g_{2,13} g_{2,11}$.

The monomorphism for the edge labelled $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}, \operatorname{ord}_{12}\right),(1)}$ is described by $g_{3,12}$ such that $g_{3,12}^{-1} h_{3,12} h_{3,13} g_{3,12}=g_{2,7} h_{2,7}^{-1}$.

By Example 7.27. $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \text { ord }_{1}\right)}=\left\langle h_{2,1}, g_{2,2} \mid g_{2,2} h_{2,1}^{-1} g_{2,2}^{-1} h_{2,1}^{-1} g_{2,2}\right\rangle$.
By Example 7.29, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, \text { ord } 9, \phi_{9}\right)}=\left\langle h_{3,9}, g_{2,10} \mid h_{3,9} g_{2,10}=g_{2,10} h_{3,9}\right\rangle$.
By Example 7.18, $h_{3,6} h_{2,7}=h_{2,1}$ and $g_{2,7} h_{2,7}^{-1}=g_{2,2} h_{2,1}^{-1}$. By Example 7.20, $g_{2,13} g_{2,11}^{-1}=h_{3,9} g_{2,10}$ and $h_{3,12} h_{3,13}=h_{3,9}$. Hence, the monomorphisms of the edges are:

$$
\begin{aligned}
g_{3,1}^{-1} h_{2,1} g_{3,1} & =h_{2,1} \\
g_{3,6}^{-1} h_{2,1} g_{3,6} & =h_{3,9} g_{2,10}, \\
g_{3,12}^{-1} h_{3,9} g_{3,12} & =g_{2,2} h_{2,1}^{-1} .
\end{aligned}
$$

8.21 Remark. To obtain a presentation for $\mathcal{A} \mathcal{M}_{g, p, 1}$ from Theorem 8.16, we need to add relations from Theorem 3.7 corresponding to some codimension two faces of simplices of dimension $6 g+3 p-3=3 n-3$ of $\widehat{\mathbb{P}}_{g, p}$.

Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \widehat{\mathbb{P}}_{g, p}$ such that $\sigma(\mathfrak{p})$ is a simplex of dimension $6 g+3 p-$ $3=3 n-3$. Let $f_{1}, f_{2} \in E(\Gamma)$ such that there exists a relations corresponding to the codimension two face $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)=\left(\Gamma^{f_{1}, f_{2}}, v_{0}^{f_{1}, f_{2}}, \operatorname{ord}^{f_{1}, f_{2}}, \phi^{f_{1}, f_{2}}\right)$ obtained by collapsing f_{1} and f_{2}. To simplify cases, we suppose that in the standard labelling of (Γ, v_{0}, ord), f_{1} has been labelled before f_{2}. For example, if $f_{1}=e_{2}$ then $f_{2} \neq e_{1}$, or, if $f_{1}=e_{3}$ then $f_{2} \neq e_{1}, e_{2}$.

If $f_{1} \neq e_{1}, e_{2}$, then $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right) \subseteq{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}}$ and the relation deduced form $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$ appears in $\mathcal{A N}_{g, p, 1}^{p}$, a vertex group in the graph of groups in Theorem 8.16.

If $f_{1}=e_{1}$ and $f_{2} \notin\left\{e_{2}, e_{3}, e_{4}\right\}$, or, $f_{1}=e_{2}$ and $f_{2} \notin\{$ left h-edge of level n, right h-edge of level $n\}$; then the relation deduced form $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$ appears either in Proposition 8.11 or in Proposition 8.19. In both cases, the relation deduced form $\sigma\left(\mathfrak{p}^{f_{1}, f_{2}}\right)$ appears in the monomorphism of the edges in the graph of groups in Theorem 8.16

We have to consider the cases where either $f_{1}=e_{1}$ and $f_{2} \in\left\{e_{2}, e_{3}, e_{4}\right\}$, or, $f_{1}=e_{2}$ and $f_{2} \in\{$ left h-edge of level n, right h-edge of level $n\}$. The relation deduced from these codimension two faces can be computed by Remark 8.8 and represented as follows.

Notice this relation is similar to relation of length 5 in Example 3.8(b).

If the left side of the rectangle above corresponds to the generator $h_{n, 1}$, then $\bar{e}_{3} \in v_{2}^{*}$ and $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, \bar{e}_{3}, e_{5}\right), \ldots$. It follows, $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, \bar{e}_{2}, f\right),\left(\bar{f}, e_{5}, e_{4}\right), \ldots$ Hence, $\left(\Gamma_{1}^{e_{3}}, v_{1,0}^{e_{3}}, \operatorname{ord}_{1}^{e_{3}}, \phi_{1}^{e_{3}}\right)$ is a boundary face and there is no such a relation.

If the left side of the rectangle above corresponds to the generator $h_{n, 2}^{-1}$ and $n \geq 3$, then $\bar{e}_{3} \in v_{2}^{*}$ and $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, \bar{e}_{3}\right), \ldots$ It follows, $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{5}, f_{1}\right),\left(\bar{f}_{1}, \bar{e}_{2}, e_{4}\right), \ldots$ and $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=$ $\left(e_{5}, f_{2}\right) ;\left(\bar{f}_{2}, f_{1}, e_{2}\right),\left(\bar{f}_{1}, \bar{e}_{2}, e_{4}\right), \ldots$ Since $n \geq 3,\left(\Gamma_{3}^{\downarrow}, v_{3,0}^{\downarrow}\right.$, ord $\left._{3}^{\downarrow}\right)$ has a separating edge, $\left(\Gamma_{2}^{e_{1}}, v_{2,0}^{e_{1}}, \operatorname{ord}_{2}^{e_{1}}, \phi_{2}^{e_{1}}\right)$ is a boundary face and there is no such a relation.

Hence, for $n \geq 3$, the relations that need to be added are

$$
g_{n, 1} g_{n, 5}=g_{n-1,1} g_{n, 2} h_{n, 3}
$$

We will see that no more than 24 of these relations need to be added.
8.22 Definition. We denote by $\widehat{\mathbb{T}}_{g, p}^{(1),(3)}$ the set of point $\mathfrak{p}=\left(\Gamma, v_{0}\right.$ ord, $\left.\phi\right) \in$ $\widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)}\right)$ such that $\left|u^{*}\right| \geq 4$ where $\bar{e}_{3} \in u^{*}, u \in V(\Gamma)$.
8.23 Definition. Let $\mathfrak{p} \in \widehat{\operatorname{ord}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$. We denote by $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p},(1),(3)}$ the connected component of $\widehat{\operatorname{ord} \mathbb{A}_{g, p}}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1)(3)}\right)$ which contains \mathfrak{p}.
8.24 Remark. Let $\mathfrak{p} \in \widehat{\operatorname{ord}}{ }_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$.

Notice $\left|v_{0}^{*}\right|=2$ and $\left|v_{1}^{*}\right|=3$. If $\bar{e}_{3} \in v_{2}^{*}$, then $\left|v_{2}^{*}\right|=3$. If $\bar{e}_{3} \in v_{3}^{*}$, then $\left|v_{3}^{*}\right|=3$. In both cases, $\widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(1),(3)}$ can be defined as the connected component of $\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p},(1)}-\widehat{\mathbb{T}}_{g, p}^{(1),(3)}$ which contains \mathfrak{p}.
8.25 Remark. Let $\mathfrak{p}=\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right) \in \widehat{\mathbb{P}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$. Suppose there exists a relation in $\mathcal{A} \mathcal{M}_{g, p, 1}$ deduced from the codimension two face $\sigma\left(\mathfrak{p}^{e_{1}, e_{3}}\right)=\sigma\left(\Gamma^{e_{1}, e_{3}}, v_{0}^{e_{1}, e_{3}}, \operatorname{ord}^{e_{1}, e_{3}}, \phi^{e_{1}, e_{3}}\right)$. Hence, $\left(\Gamma, v_{0}, \operatorname{ord}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right), \ldots$ and $\operatorname{ord}\left(v_{3}^{*}\right)=\left(\bar{e}_{3}, f_{1}, f_{2}\right)$. Let $w\left(\Gamma, v_{0}\right.$, ord $)=\left\{w_{0},\left[w_{1}\right], \ldots,\left[w_{p}\right]\right\}$. Then $w_{0}=e_{1} e_{3} f_{1} w_{0}^{\prime} \bar{e}_{2}$ and $\bar{e}_{4} \bar{e}_{1} e_{2}, \bar{f}_{2} \bar{e}_{3} e_{4}, \bar{f}_{1} f_{2}$ appear in $w\left(\Gamma, v_{0}\right.$, ord $)$. It is show in Lemma 4.8 that there are at most two cases where $\bar{e}_{1} e_{2}$ can appear. It is shown in Remark 8.5 that for each of these two cases, there are at most three cases where $\bar{e}_{3} e_{4}$ can appear. Similarly, for each of these six cases there are at most four cases where $\bar{f}_{3} f_{4}$ can appear. For example, in Remark 8.5 (ia) we have $w_{0}=e_{1} e_{3} f_{1} w_{0}^{\prime} \bar{e}_{2},\left[w_{i}\right]=\left[\bar{e}_{4} \bar{e}_{1} e_{2} w_{i}^{\prime}\right]$ and $w_{0}^{\prime}=u_{0}^{\prime} \bar{f}_{2} \bar{e}_{3} e_{4} v_{0}^{\prime}$, under the condition $g \geq 1$ and $p \geq 1$. Then there are four cases according to whether $\bar{f}_{1} f_{2}$ appears in $u_{0}^{\prime}, v_{0}^{\prime}, w_{i}^{\prime}$ or, $\left[w_{j}\right]$ for $j \neq i$. Notice $\bar{f}_{1} f_{2}$ can appear in u_{0}^{\prime} under the condition $g \geq 2$ and $\bar{f}_{1} f_{2}$ can appear in $\left[w_{j}\right]$, for $j \neq i$, under the condition $p \geq 2$.

In general, $\widehat{\mathbb{P}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$ has, at most, 24 components with relations corresponding to collapse e_{1} and e_{3}.

In particular, for $g=0, \widehat{\mathbb{P}}_{0, p}-\left(\widehat{\mathbb{T}}_{0, p} \cup \widehat{\mathbb{T}}_{0, p}^{(1)} \cup \widehat{\mathbb{T}}_{0, p}^{(1),(3)}\right)$ has one component with relations corresponding to collapse e_{1} and e_{3}.

For $g=2$ and $p=0, \widehat{\mathbb{P}}_{2,0}-\left(\widehat{\mathbb{T}}_{2,0} \cup \widehat{\mathbb{T}}_{2,0}^{(1)} \cup \widehat{\mathbb{T}}_{2,0}^{(1),(3)}\right)$ has five components with relations corresponding to collapse e_{1} and e_{3}. And for $g \geq 3$ and $p=0$, $\widehat{\mathbb{P}}_{g, 0}-\left(\widehat{\mathbb{T}}_{g, 0} \cup \widehat{\mathbb{T}}_{g, 0}^{(1)} \cup \widehat{\mathbb{T}}_{g, 0}^{(1),(3)}\right)$ has six components with relations corresponding to collapse e_{1} and e_{3}.

Notice $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(1),(3)}$ can be computed from $\widehat{\mathbb{P}}_{g, p} \cap \widehat{\operatorname{ordA}}_{g, p}^{\mathfrak{p},(1)}$ by removing codimesion one face corresponding to collapse edges f_{1} and f_{2}. Recall $\operatorname{ord}\left(v_{3}^{*}\right)=$ $\left(\bar{e}_{3}, f_{1}, f_{2}\right)$.

The next Lemma expresses that all relations deduced from Theorem 3.7 corresponding to collapse edges e_{1} and e_{3} in a connected component of $\widehat{\mathbb{P}}_{g, p}-$ $\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$ are equal in the fundamental group of the graph of groups in Theorem 8.16.
8.26 Lemma. For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}, \phi_{i}\right) \in \widehat{\mathbb{P}}_{g, p}-\left(\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)$ such that $\widehat{\text { ordA्A }}_{g, p}^{\mathfrak{p}_{1},(1),(3)}=\widehat{\text { ord }}_{g, p}^{\mathfrak{p}_{2},(1),(3)}$. If there exists the relation r_{i} in $\mathcal{A M}_{g, p, 1}$ corresponding to collapse e_{1} and e_{3} in $\left(\Gamma_{i}, v_{i, 0}\right.$, ord $\left._{i}\right)$, for $i=1,2$, then $r_{1}=r_{2}$ in the fundamental group of the graph of groups in Theroem 8.16.
Proof. For $i=1,2$, the relation r_{i} is deduced from the codimension two face $\sigma\left(\mathfrak{p}_{i}^{e_{1}, e_{3}}\right)$ of $\sigma\left(\mathfrak{p}_{i}\right)$ obtained by collapsing e_{1} and e_{3} in $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}\right)$ where $\mathfrak{p}_{i}^{e_{1}, e_{3}}=\left(\Gamma_{i}^{e_{1}, e_{3}}, v_{i, 0}^{e_{1}, e_{3}}, \operatorname{ord}_{i}^{e_{1}, e_{3}}, \phi_{i}^{e_{1}, e_{3}}\right)$ and $\left|v_{i, 0}^{e_{1}, e_{3}}\right|=4$. Let γ be a path from \mathfrak{p}_{1} to \mathfrak{p}_{2} contained in $\widehat{\mathbb{P}}_{g, p} \cap{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}_{\mathfrak{p}_{1,(1),(3)}}$. Notice γ is a sequence of collapsing edges and splitting vertices such that if γ intersects $\sigma(\mathfrak{p})=\sigma\left(\Gamma, v_{0}\right.$, ord, $\left.\phi\right)$, then $\sigma(\mathfrak{p})$ does not intersect $\widehat{\mathbb{T}}_{g, p} \cup \widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}$. Hence, $\left|v_{0}^{*}\right|=2$ and $\left|v_{1}^{*}\right|=\left|v_{3}^{*}\right|=3$ in (Γ, v_{0}, ord, ϕ); and, the subtree with edge $e_{1}, e_{2}, e_{3}, e_{4}$ and f_{1}, f_{2} is left invariant through the path γ. We conclude γ is homotopic to a path $\gamma^{e_{1}, e_{3}}$ from $\sigma\left(\mathfrak{p}_{1}^{e_{1}, e_{3}}\right)$ to $\sigma\left(\mathfrak{p}_{2}^{e_{1}, e_{3}}\right)$ such that every simplex $\sigma\left(\mathfrak{p}^{e_{1}, e_{3}}\right)=\sigma\left(\Gamma^{e_{1}, e_{3}}, v_{0}^{e_{1}, e_{3}}\right.$, ord $\left.{ }^{e_{1}, e_{3}}, \phi^{e_{1}, e_{3}}\right)$ intersected by $\gamma^{e_{1}, e_{3}}$ satisfies $\left|\left(v_{0}^{e_{1}, e_{3}}\right)^{*}\right|=4$. Since $\gamma \subseteq \widehat{\mathbb{P}}_{g, p}$, the word in $\mathcal{A} \mathcal{M}_{g, p, 1}^{\boldsymbol{p}_{1},(1)}$ described by γ is the identity and $r_{1}=r_{2}$ in the fundamental group of the graph of groups in Theorem 8.16.
8.27 Example. We compute the connected components of $\widehat{\mathbb{P}}_{0,3}-\left(\widehat{\mathbb{T}}_{3,0} \cup \widehat{\mathbb{T}}_{3,0}^{(1)} \cup\right.$ $\left.\widehat{\mathbb{T}}_{3,0}^{(1),(3)}\right)$ by removing codimension one faces from $\widehat{\mathbb{P}}_{0,3}-\left(\widehat{\mathbb{T}}_{3,0} \cup \widehat{\mathbb{T}}_{3,0}^{(1)}\right)$. See Example 8.6. From Example 6.15, we see that the codimension one faces that need to be removed correspond to collapse \bar{e}_{2} and e_{5} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right), \bar{e}_{6}$ and e_{5} in $\left(\Gamma_{2}, v_{2,0}\right.$, ord $\left._{2}\right)$, and, e_{6} and e_{7} in ($\Gamma_{3}, v_{3,0}$, ord 3). Hence, $\widehat{\mathbb{P}}_{0,3}-\left(\widehat{\mathbb{T}}_{3,0} \cup \widehat{\mathbb{T}}_{3,0}^{(1)} \cup \widehat{\mathbb{T}}_{3,0}^{(1),(3)}\right)$ has the following connected components.

$$
\Gamma_{1}
$$

Since $\bar{e}_{3} \in v_{2}^{*}$ in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right)$, there is no relation corresponding to collapse e_{1} and e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. The relation $g_{3,2} g_{3,2}=g_{2,2} g_{3,1} h_{3,1}$ is deduced by collapsing e_{1} an e_{3} in ($\left.\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$.

By Example 7.26, $\mathcal{A} \mathcal{M}_{0,3,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \text { ord }_{1}\right)}=\left\langle g_{2,2} \mid\right\rangle$. By Example 8.18, $\mathcal{A M}_{0,3,1}$ is a quotient of the fundamental group of the graph of groups

where the edge group of $g_{3,2}$ is the trivial group. By Example 8.13, $g_{3,1}=g_{3,2} g_{2,2}$. The relation $g_{3,2} g_{3,2}=g_{2,2} g_{3,2} g_{2,2}$ needs to be added in the fundamental group of the graph of groups above.
8.28 Example. We compute the connected components of $\widehat{\mathbb{P}}_{1,1}-\left(\widehat{\mathbb{T}}_{1,1} \cup \widehat{\mathbb{T}}_{1,1}^{(1)} \cup\right.$ $\left.\widehat{\mathbb{T}}_{1,1}^{(1),(3)}\right)$ by removing codimension one faces from $\widehat{\mathbb{P}}_{1,1}-\left(\widehat{\mathbb{T}}_{1,1} \cup \widehat{\mathbb{T}}_{1,1}^{(1)}\right)$. See Example 8.7. From Example 6.17, we see which codimension one faces need to be removed. We conclude that $\mathbb{P}_{1,1}-\left(\widehat{\mathbb{T}}_{1,1} \cup \widehat{\mathbb{T}}_{1,1}^{(1)} \cup \widehat{\mathbb{T}}_{1,1}^{(1),(3)}\right)$ has eight connected components represented as follows.

Since $\bar{e}_{3} \in v_{2}^{*}$ in $\left(\Gamma_{1}, v_{1,0}\right.$, ord $\left._{1}\right),\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}\right)$ and $\left(\Gamma_{9}, v_{9,0}\right.$, ord 9$)$, there is no relation corresponding to collapse e_{1} and e_{3} in these cases.

Collapsing e_{1} and e_{3} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$, we have the relation $g_{3,2} g_{3,2}=$ $g_{2,2} g_{3,1} h_{3,1}$;

Collapsing e_{1} and e_{3} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$, we have the relation $g_{3,3} g_{3,3}=$ $g_{2,3} g_{3,2} h_{3,2}$;

Collapsing e_{1} and e_{3} in $\left(\Gamma_{6}, v_{6,0}, \operatorname{ord}_{6}\right)$, we have the relation $g_{3,6} g_{3,13}=$ $g_{2,6} g_{3,4} h_{3,5}$;

Collapsing e_{1} and e_{3} in $\left(\Gamma_{7}, v_{7,0}, \operatorname{ord}_{7}\right)$, we have the relation $g_{3,7} g_{3,11}=$ $g_{2,7} g_{3,6} h_{3,13} ;$

Collapsing e_{1} and e_{3} in $\left(\Gamma_{11}, v_{11,0}\right.$, ord $\left._{11}\right)$, we have the relation $g_{3,11} g_{3,12}=$ $g_{2,11} g_{3,13} h_{3,6} ;$

Collapsing e_{1} and e_{3} in $\left(\Gamma_{12}, v_{12,0}, \operatorname{ord}_{12}\right)$, we have the relation $g_{3,12} g_{3,7}=$ $g_{2,12} g_{3,9} h_{3,10}$;

Collapsing e_{1} and e_{3} in $\left(\Gamma_{13}, v_{13,0}, \operatorname{ord}_{13}\right)$, we have the relations $g_{3,13} g_{3,6}=$ $g_{2,13} g_{3,11} h_{3,12}$.

By Lemma 8.26, relations $g_{3,2} g_{3,2}=g_{2,2} g_{3,1} h_{3,1}$ and $g_{3,3} g_{3,3}=g_{2,3} g_{3,2} h_{3,2}$ are equal in the fundamental group of the graph of groups in Example 8.20. We represent this equality in the following picture where rectangles represent the relations, and, quadrilaterals are relations in the fundamental group of the graph of groups in Example 8.20.

Similarly, relations $g_{3,12} g_{3,7}=g_{2,12} g_{3,9} h_{3,10}$ and $g_{3,13} g_{3,6}=g_{2,13} g_{3,11} h_{3,12}$ are equal in the fundamental group of the graph of groups in Example 8.20.

By Example 7.27, $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}=\left\langle h_{2,1}, g_{2,2} \mid g_{2,2} g_{2,2}=h_{2,1} g_{2,2} h_{2,1}\right\rangle$. By Example 7.29, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord } 9, \phi_{9}\right)}=\left\langle h_{3,9}, g_{2,10} \mid h_{3,9} g_{2,10}=g_{2,10} h_{3,9}\right\rangle$. By

Example 8.20. $\mathcal{A M}_{1,1,1}$ is a quotient of the fundamental group of the graph of groups

where the monomorphisms of the edges are given in Example 8.20.
There are five relations corresponding to collapse e_{1} and e_{3} that need to be added in the fundamental group of the graph of groups above. From Example 7.27, Example 7.29 and Example 8.14, we can write these relations in the fundamental group of the graph of groups:

$$
\begin{aligned}
g_{3,2} g_{3,2}=g_{2,2} g_{3,1} h_{3,1} & \Rightarrow g_{3,1} g_{2,2}^{-1} g_{3,1} g_{2,2}^{-1}=g_{2,2} g_{3,1}, \\
g_{3,6} g_{3,13}=g_{2,6} g_{3,4} h_{3,5} & \Rightarrow g_{3,6} g_{3,12} h_{2,1}=g_{2,2} g_{3,1} g_{2,2}^{-1} h_{2,1}^{-1} g_{2,2}^{-1}, \\
g_{3,7} g_{3,11}=g_{2,7} g_{3,6} h_{3,13} & \Rightarrow g_{3,6} g_{3,9} g_{2,10}=g_{2,2} g_{3,6}, \\
g_{3,11} g_{3,12}=g_{2,11} g_{3,13} h_{3,6} & \Rightarrow g_{3,9} g_{2,10} g_{3,12}=h_{3,9} g_{2,10} g_{3,12} h_{2,1}, \\
g_{3,12} g_{3,7}=g_{2,12} g_{3,9} h_{3,10} & \Rightarrow g_{3,12} g_{3,6}=g_{3,9} .
\end{aligned}
$$

Recall, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)} \simeq \mathcal{A \mathcal { M }}_{1,0,1}$ by Proposition 6.13. Instead of a direct computation for the presentation for $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}$ as in Example 7.27, we can compute a presentation for $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$ by lifting a presentation for $\mathcal{A M}_{1,0,1}$. This lifting is obtained by declaring all h-generators of level 3 to be the identity. Then, all h-generators and g-generators of level 2 are identified and the relation in the presentation for $\mathcal{A \mathcal { M }}_{1,0,1}$ is lifted to a relation in $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)}$.

Recall, $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord9, } \phi_{9}\right)} \simeq \mathcal{A \mathcal { M }}_{0,1,2}$ by Proposition 6.13. Instead of a direct computation for the presentation for $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord }_{9}, \phi_{9}\right)}$ as in Example 7.29, we can compute a presentation for $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, \text { ord } 9, \phi_{9}\right)}$ by Theorem 8.16 applied one level deeper. Hence, we have a graph of groups with vertices corresponding to connected components of $\widehat{\mathbb{P}}_{1,1} \cap\left(\widehat{\operatorname{ord}}\left(\Gamma_{1,1}, v_{9,0}\right.\right.$, ord $\left.\left.9, \phi_{9}\right) ~-~ \widehat{\mathbb{T}}_{1,1}^{(1)}\right)$ and edges corresponding to connected components of $\widehat{\mathbb{P}}_{1,1} \cap\left(\widehat{\operatorname{ord}}_{1,1}^{\left(\Gamma_{9}, v_{9,0}, \operatorname{ord} 9, \phi_{9}\right)}-\left(\widehat{\mathbb{T}}_{1,1}^{(1)} \cup \widehat{\mathbb{T}}_{1,1}^{(1),(3)}\right)\right)$. See

Examples 8.7 and the beginning of this Example, respectively. We have the following graph of groups.

where $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord }_{9}, \text { ord }_{9}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,1,1}$ is the trivial group, $\mathcal{A M}_{1,1,1}^{\left(\Gamma_{12}, v_{12,0}, \text { ord }_{12}, \text { ord }_{12}\right),(1)} \simeq$ $\mathcal{A M}_{0,0,2}$ is a cyclic infinite group, and, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9,0}, \text { ord9,ord } 9\right),(1),(3)} \simeq \mathcal{A} \mathcal{M}_{0,0,1}$, $\mathcal{A} \mathcal{M}_{1,1,1}^{\left(\Gamma_{10}, v_{10,0,}, \operatorname{ord}_{10}, \operatorname{ord}_{10}\right),(1),(3)} \simeq \mathcal{A N}_{0,0,1}, \mathcal{A M}_{1,1,1}^{\left(\Gamma_{12}, v_{12,0}, \text { ord }_{12}, \operatorname{ord}_{12}\right),(1),(3)} \simeq \mathcal{A M}_{0,0,1}$ are the trivial group. Hence, we have the following graph of groups.

where the monomorphisms of the edges are trivial since the edge groups are trivial. The relations that need to be added are $h_{3,9} g_{2,10}=h_{3,11}^{-1} g_{2,11} h_{3,13}$ and $g_{2,12} h_{3,9}=h_{3,12} g_{2,13} h_{3,10}^{-1}$. Since $h_{3,10} g_{2,11}=g_{2,10} h_{3,12}, h_{3,13} g_{2,12}=g_{2,13} h_{3,11}$ and $h_{3,10}, h_{3,11} \in \mathcal{A}_{\mathcal{M}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord } 9, \phi_{9}\right),(1)}}=\{1\}$, we have a presentation for $\mathcal{A N}_{1,1,1}^{\left(\Gamma_{9}, v_{9}, 0, \text { ord } 9, \phi_{9}\right)}$.

9 Examples

For $i=1,2$, let $\mathfrak{p}_{i}=\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{g, p}}$ such that $\sigma\left(\mathfrak{p}_{i}\right)$ is a simplex of dimension $3 n-3=6 g+3 p-3$. Suppose $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(g, p-1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}\right.$, ord ${ }_{2}^{\downarrow}$) is a $(g-1, p+1)$-fat graph with a distinguished vertex. A presentation for $\mathcal{A}_{\mathcal{M}}^{g, p, 1}$ can be deduced by Theorem 8.16 by computing the monomorphisms of the edges and the relations
that need to be added.
Last two paragraphs in Example 8.28 can be generalised as follows. Recall $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{1}} \simeq \mathcal{A} \mathcal{M}_{g, p-1,1}$ and $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2}} \simeq \mathcal{A \mathcal { M }}_{g-1, p-1,2}$ are the vertices of the graph of groups for $\mathcal{A} \mathcal{M}_{g, p, 1}$. A presentation for $\mathcal{A} \mathcal{M}_{g, p-1,1}$ can be lifted to $\mathcal{A} \mathcal{M}_{g, p, 1}^{\mathfrak{p}_{1}}$. A presentation for $\mathcal{A} \mathcal{M}_{g, p, 1}^{p_{2}}$ can be computed by applying Theorem 8.16 one level deeper. In particular, connected components in $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{A}_{2}}-\widehat{\mathbb{T}}_{g, p}^{(1)}\right)$ correspond to vertices in the graph of groups for $\mathcal{A M}_{g, p, 1}^{\mathfrak{p}_{2}}$, and, connected components in $\widehat{\mathbb{P}}_{g, p} \cap\left(\widehat{\operatorname{ord}}_{g, p}^{\mathfrak{p}_{2}}-\left(\widehat{\mathbb{T}}_{g, p}^{(1)} \cup \widehat{\mathbb{T}}_{g, p}^{(1),(3)}\right)\right)$ correspond to edges in the graph of groups for $\mathcal{A N}_{g, p, 1}^{\boldsymbol{p}_{2}}$.
9.1 Example. By Theorem 8.16, $\mathcal{A N}_{0,4,1}$ is a quotient of the fundamental group of the following graph of groups.

where $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{0,4}}$. We can suppose $\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ is a simplex of dimension $6 g+3 p-3=9$. By Proposition 6.13, $\mathcal{A \mathcal { M }}_{0,4,1}^{\left(\Gamma_{1}, v_{1}, 0, \text { ord }_{1}, \phi_{1}\right)} \simeq$ $\mathcal{A} \mathcal{M}_{0,3,1}$. By results in Section 7, these isomorphisms are realised by declaring all h-generators of level 4 to be the identity and lifting relations from $\mathcal{A} \mathcal{M}_{0,3,1}$ to $\mathcal{A M}_{0,4,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$. Then, lifts of a generator in $\mathcal{A M}_{0,3,1}$ are identified in $\mathcal{A} \mathcal{M}_{0,4,1}^{\left(\Gamma_{1}, v_{1,0,0 r d}^{1}, \phi_{1}\right)}$. By Remark 8.5, $\mathcal{A M}_{0,4,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)} \simeq \mathcal{A M}_{0,2,1}$.

We choose $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{0,4}}$ such that there exist generators corresponding to collapse e_{1}, e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ and $\bar{e}_{3} \notin v_{2}^{*}$.

We choose $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{0,4}}$ to be a lift of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ in $\widehat{\operatorname{ordA}}_{0,3}$. Hence,

$$
\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, \bar{e}_{7}, \bar{e}_{5}\right) .
$$

If e_{6} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in \widehat{\operatorname{ord}}_{0,3}$ is lifted to the concatenation of both h-edges of level 4, we have

$$
\begin{gathered}
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, e_{9}, \bar{e}_{5}\right), \\
\left(\bar{e}_{6}, e_{10}, \bar{e}_{7}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{e}_{9}\right) .
\end{gathered}
$$

Then $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)=\left(e_{3}, e_{4}\right) ;\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, e_{9}, f\right),\left(\bar{e}_{7}, \bar{f}, e_{10}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{e}_{9}\right)$,
$\left(\Gamma_{1}^{\downarrow \downarrow}, v_{1,0}^{\downarrow \downarrow}, \operatorname{ord}_{1}^{\downarrow \downarrow}\right)=\left(e_{7}, e_{8}\right) ;\left(\bar{e}_{7}, g, e_{10}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{g}\right)$, and,

Γ_{1}	g-edge		h-edge	
	left	right	left	right
level 4	e_{1}	e_{2}	e_{5}	e_{6}
level 3	e_{3}	e_{4}	e_{9}	
level 2	e_{7}	e_{8}	\bar{e}_{10}	

A lift of a g-generator of level 3 in $\mathcal{A M}_{0,3,1}$ is obtained by collapsing e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. We have $\left(\Gamma_{1}^{e_{3}}, v_{1,0}^{e_{3}}, \operatorname{ord}_{1}^{e_{3}}\right)=\left(\Gamma_{2}^{e_{4}}, v_{2,0}^{e_{4}}, \operatorname{ord}_{2}^{e_{4}}\right)$ where

$$
\begin{gathered}
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, e_{8}, e_{9}\right), \\
\left(\bar{e}_{5}, \bar{e}_{9}, e_{10}\right),\left(\bar{e}_{7}, \bar{e}_{10}, \bar{e}_{8}\right) .
\end{gathered}
$$

We denote by $g_{3,2,1}$ the generator of $\mathcal{A} \mathcal{M}_{0,4,1}$ corresponding to collapse e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. Since e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord}}_{0,4}$ is a lift of e_{1} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in \widehat{\operatorname{ord}}_{0,3}, g_{3,2,1}$ is a lift of the generator $g_{3,2}$ in $\mathcal{A \mathcal { M }}_{0,3,1}$.

A lift of a g-generator of level 2 in $\mathcal{A N}_{0,3,1}$ is obtained by collapsing e_{7} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. We have $\left(\Gamma_{1}^{e_{7}}, v_{1,0}^{e_{7}}, \operatorname{ord}_{1}^{e_{7}}\right)=\left(\Gamma_{3}^{e_{7}}, v_{3,0}^{e_{7}}, \operatorname{ord}_{3}^{e_{7}}\right)$ where

$$
\begin{gathered}
\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{6}, e_{7}\right),\left(\bar{e}_{4}, e_{8}, \bar{e}_{5}\right), \\
\left(\bar{e}_{7}, e_{9}, e_{10}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{e}_{9}\right) .
\end{gathered}
$$

We denote by $g_{2,2,1}$ the generator of $\mathcal{A} \mathcal{M}_{0,4,1}$ corresponding to collapse e_{7} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$. Since e_{7} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord}}_{0,4}$ is a left g-edge of level 2, $g_{2,2,1}$ is a lift of the generator $g_{2,2}$ in $\mathcal{A M}_{0,3,1}$.

A presentations for $\mathcal{A} \mathcal{M}_{0,3,1}$ is given in Example 8.27. By lifting that presentation, we deduce $\mathcal{A}_{0}^{\left(\Gamma_{1,4,1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}=\left\langle g_{2,2,1}, g_{3,2,1} \mid g_{3,2,1} g_{3,2,1}=g_{2,2,1} g_{3,2,1} g_{2,2,1}\right\rangle$ and $\mathcal{A M}_{0,4,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right),(1)}=\left\langle g_{2,2,1} \mid\right\rangle$.

Notice $\left(\Gamma_{1}^{e_{1}}, v_{1,0}^{e_{1}}, \operatorname{ord}_{1}^{e_{1}}\right)=\left(\Gamma_{4}^{e_{2}}, v_{4,0}^{e_{2}}, \operatorname{ord}_{4}^{e_{2}}\right)$ where

$$
\begin{gathered}
\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, \bar{e}_{8}, e_{9}\right), \\
\left(\bar{e}_{5}, \bar{e}_{9}, e_{10}\right),\left(\bar{e}_{6}, \bar{e}_{10}, \bar{e}_{7}\right) .
\end{gathered}
$$

Hence, we have a g-generator of level 4 , denoted $g_{4,1}$, obtained by collapsing e_{1} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{0,4}}$. Then, $\mathcal{A \mathcal { M } _ { 0 , 4 , 1 }}$ is a quotient of the fundamental group of the following graph of groups

where the edge group is $\left\langle g_{2,2,1} \mid\right\rangle$.

It remains to describe the monomorphism of the edge in the graph of groups above and to find the relation that needs to be added.

Notice $\left(\Gamma_{3}^{e_{8}}, v_{3,0}^{e_{8}}, \operatorname{ord}_{3}^{e_{8}}\right)=\left(\Gamma_{2}^{e_{9}}, v_{2,0}^{e_{9}}, \operatorname{ord}_{2}^{e_{9}}\right), e_{8}$ is the left h-edge of level 3 in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$. Notice $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$ in $\widehat{\operatorname{ord}}_{0,4}$ is a lift of $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)$ in $\widehat{\operatorname{ord}}_{0,3}$. Hence, there exists a generator $h_{3,1,3}$ in $\mathcal{A M}_{0,4,1}$ corresponding to collapse e_{8} in $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)$.

Notice $\left(\Gamma_{2}^{e_{5}}, v_{2,0}^{e_{5}}, \operatorname{ord}_{2}^{e_{5}}\right)=\left(\Gamma_{1}^{e_{6}}, v_{1,0}^{e_{6}}, \operatorname{ord}_{1}^{e_{6}}\right)$ and e_{5} is the left h-edge of level 4 in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$. Hence, there exists a generator $h_{4,2}$ in $\mathcal{A} \mathcal{M}_{0,4,1}$ corresponding to collapse e_{5} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)$.

Then, $\mathcal{A N}_{0,4,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)}$ contains the automorphism $g_{2,2,1} h_{3,1,3} h_{4,2}$. It is easy to see that the monomorphism of the edge in the graph of groups is described by $g_{4,1}^{-1}\left(g_{2,2,1} h_{3,1,3} h_{4,2}\right) g_{4,1}=h_{3,2,1}^{-1} g_{3,2,1} g_{2,3,4}^{-1}$. By collapsing e_{7} and e_{9} in $\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}, \phi_{4}\right)$, we have the relation $g_{2,3,4} h_{3,1,3}^{-1}=h_{3,2,1}^{-1} g_{2,2,1}$. Hence, the monomorphism of the edge group is described by $g_{4,1}^{-1} g_{2,2,1} g_{4,1}=g_{3,2,1} g_{2,2,1}^{-1}$.

The relation that needs to be added is deduced by collapsing e_{1} and e_{3} in $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \in \widehat{\operatorname{ord} \mathbb{A}_{0,4}}$. Since $\left(\Gamma_{4}^{e_{1}}, v_{4,0}^{e_{1}}, \operatorname{ord}_{4}^{e_{1}}\right)=\left(\Gamma_{1}^{e_{2}}, v_{1,0}^{e_{2}}, \operatorname{ord}_{1}^{e_{2}}\right)$ and $\left(\Gamma_{2}^{e_{1}}, v_{2,0}^{e_{1}}, \operatorname{ord}_{2}^{e_{1}}\right)=\left(\Gamma_{2}^{e_{2}}, v_{2,0}^{e_{2}}, \operatorname{ord}_{2}^{e_{2}}\right)$, we have generators $g_{4,4}$ and $g_{4,2}$, respectively. And, the relation that needs to be added is $g_{4,1} g_{4,4}=g_{3,2,1} g_{4,2} h_{4,2}$. Collapsing e_{1} and e_{9} in $\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}, \phi_{4}\right) \in \widehat{\operatorname{ord}}_{0,4}$, we obtain the relation $h_{3,2,1} g_{4,4}=$ $g_{4,1} h_{3,2,1}$. Collapsing e_{1} and e_{5} in $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{0,4}}$, we obtain the relation $h_{4,2} g_{4,1}=g_{4,2} g_{2,3,4}^{-1}$. And, the relation that needs to be added is $g_{4,1} g_{4,1}=$ $g_{3,2,1} g_{4,1} g_{2,2,1}$.
9.2 Example. By Theorem 8.16, $\mathcal{A} \mathcal{M}_{1,2,1}$ is a quotient of the fundamental group of the following graph of groups.

where $\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right) \in \widehat{\operatorname{ord}} \mathbb{A}_{1,2}$, for $i=1, \ldots, 5$. We can suppose $\sigma\left(\Gamma_{i}, v_{i, 0}, \operatorname{ord}_{i}, \phi_{i}\right)$ is a simplex of dimension $6 g+3 p-3=9$, for $i=1, \ldots, 5$. By Proposition 6.13, $\mathcal{A M}_{1,2,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)} \simeq \mathcal{A \mathcal { M }}_{1,1,1}$ and $\mathcal{A N}_{1,2,1}^{\left(\Gamma_{2}, v_{2,0}, \text { ord }_{2}, \phi_{2}\right)} \simeq \mathcal{A} \mathcal{M}_{0,2,2}$. Notice $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a $(1,1)$-fat graph with a distinguished vertex and $\left(\Gamma_{2}^{\downarrow}, v_{2,0}^{\downarrow}, \operatorname{ord}_{2}^{\downarrow}\right)$
is a (0,3)-fat graph with a distinguished vertex.
A presentation for $\mathcal{A} \mathcal{M}_{1,1,1}$ can be lifted to $\mathcal{A \mathcal { M }}_{1,2,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$. By Re$\operatorname{mark} 8.5 . \mathcal{A N}_{1,2,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{1,0,1}, \mathcal{A M}_{1,2,1}^{\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{0,1,2}$ and $\left.\mathcal{A} \mathcal{M}_{1,2,1}^{\left(\Gamma_{4, v}, v_{4}, \text { ord }\right.} 4, \phi_{4}\right),(1) \simeq \mathcal{A} \mathcal{M}_{0,1,2}$. Notice $\left(\Gamma_{1}^{\downarrow \downarrow}, v_{1,0}^{\downarrow \downarrow}, \operatorname{ord}_{1}^{\downarrow \downarrow}\right)$ is a (1,0)-fat graph with a distinguished vertex, and, $\left(\Gamma_{3}^{\downarrow \downarrow}, v_{3,0}^{\downarrow \downarrow}, \operatorname{ord}_{3}^{\downarrow \downarrow}\right)$ and $\left(\Gamma_{4}^{\downarrow \downarrow}, v_{4,0}^{\downarrow \downarrow}, \operatorname{ord}_{4}^{\downarrow \downarrow}\right)$ are (0,2)-fat graphs with a distinguished vertex. We can take

$$
\begin{array}{r}
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, e_{9}, \bar{e}_{5}\right), \\
\left(\bar{e}_{6}, e_{10}, \bar{e}_{7}\right),\left(\bar{e}_{8}, \bar{e}_{9}, \bar{e}_{10}\right) \\
\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{5}\right),\left(\bar{e}_{4}, \bar{e}_{7}, e_{8}\right), \\
\left(\bar{e}_{6}, e_{9}, e_{10}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{e}_{9}\right) \\
\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, \bar{e}_{7}, e_{9}\right), \\
\left(\bar{e}_{5}, \bar{e}_{9}, e_{10}\right),\left(\bar{e}_{6}, \bar{e}_{10}, \bar{e}_{8}\right)
\end{array}
$$

Notice $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right) \operatorname{in} \widehat{\operatorname{ord}}_{1,2}$ is a lift of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \operatorname{in} \widehat{\operatorname{ord}}_{1,1}$; and, $\left(\Gamma_{3}, v_{3,0}, \operatorname{ord}_{3}, \phi_{3}\right)$ and $\left(\Gamma_{4}, v_{4,0}, \operatorname{ord}_{4}, \phi_{4}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{1,2}}$ are lifts of $\left(\Gamma_{9}, v_{9,0}, \operatorname{ord}_{9}, \phi_{9}\right)$ in ${\widehat{\operatorname{ord}} \mathbb{A}_{1,1}}$.

A presentation for $\mathcal{A} \mathcal{M}_{1,2,1}^{\left(\Gamma_{2}, v_{2,0}, \text { ord }_{2}, \phi_{2}\right)}$ can be obtained from a graph of groups with vertices $\mathcal{A N}_{1,2,1}^{\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right),(1)}$ and $\mathcal{A N}_{1,2,1}^{\left(\Gamma_{5}, v_{5}, 0, \text { ord }_{5}, \phi_{5}\right),(1)}$, and, one edge for every connected component of $\widehat{\mathbb{P}}_{1,2} \cap\left({\widehat{\operatorname{ord}} \mathbb{A}_{1,2}}_{\left(\Gamma_{2}, v_{2,0}, \text { ord }_{2}, \phi_{2}\right)}-\left(\widehat{\mathbb{T}}_{1,2}^{(1)} \cup \widehat{\mathbb{T}}_{1,2}^{(1),(3)}\right)\right)$. By
 The subgroups of the edges in the graph of groups of $\mathcal{A} \mathcal{M}_{1,2,1}^{\left(\Gamma_{2}, v_{2}, 0, \text { ord } 2, \phi_{2}\right)}$ are isomorphic to either $\mathcal{A} \mathcal{M}_{0,1,1}$ or $\mathcal{A} \mathcal{M}_{0,0,2}$. We can take

$$
\begin{gathered}
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, \bar{e}_{5}\right),\left(\bar{e}_{4}, e_{8}, e_{9}\right), \\
\left(\bar{e}_{6}, e_{10}, \bar{e}_{8}\right),\left(\bar{e}_{7}, \bar{e}_{9}, \bar{e}_{10}\right) \\
\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, e_{9}, \bar{e}_{6}\right), \\
\left(\bar{e}_{5}, e_{10}, \bar{e}_{7}\right),\left(\bar{e}_{8}, \bar{e}_{10}, \bar{e}_{9}\right)
\end{gathered}
$$

Notice $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ and $\left(\Gamma_{5}, v_{5,0}, \operatorname{ord}_{5}, \phi_{5}\right)$ in $\widehat{\operatorname{ord}} \mathbb{A}_{1,2}$ are lifts of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ in $\widehat{\operatorname{ord}}_{0,3}$.

It remains to describe the monomorphisms of the edges in the graph of groups for $\mathcal{A} \mathcal{M}_{1,2,1}$ and to find the eleven relations that need to be added.
9.3 Example. By Theorem $8.16, \mathcal{A \mathcal { M }}_{2,0,1}$ is a quotient of the fundamental group of the following graph of groups.

where $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right) \in{\widehat{\operatorname{ord}} \mathbb{A}_{2,0}}$. We can suppose $\sigma\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ and $\sigma\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ are simplices of dimension $6 g+3 p-3=9$. By Proposition 6.13. $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)} \simeq \mathcal{A}_{\mathcal{M}_{1,0,2}}$. Notice $\left(\Gamma_{1}^{\downarrow}, v_{1,0}^{\downarrow}, \operatorname{ord}_{1}^{\downarrow}\right)$ is a (1,1)-fat graph with a distinguished vertex.

A presentation for $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}$ can be obtained from a graph of groups with vertices $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right),(1)}$ and $\mathcal{A M}_{2,0,1}^{\left(\Gamma_{2}, v_{2,0}, \operatorname{orrd}_{2}, \phi_{2}\right),(1)}$, and, one edge for every connected component of $\widehat{\mathbb{P}}_{2,0} \cap\left({\widehat{\operatorname{ord}} \mathbb{A}_{2,0}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right)}}-\left(\widehat{\mathbb{T}}_{2,0}^{(1)} \cup \widehat{\mathbb{T}}_{2,0}^{(1),(3)}\right)\right)$. By Remark 8.5. $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{1}, v_{1,0}, \text { ord }_{1}, \phi_{1}\right),(1)} \simeq \mathcal{A \mathcal { M }}_{1,0,1}$ and $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{2, v}, 0,0 \operatorname{ord}_{2}, \phi_{2}\right),(1)} \simeq \mathcal{A} \mathcal{M}_{0,0,3}$. The subgroups of the edges in the graph of groups of $\mathcal{A} \mathcal{M}_{2,0,1}^{\left(\Gamma_{1}, v_{1}, 0, o r d_{1}, \phi_{1}\right)}$ are isomorphic to $\mathcal{A \mathcal { M }}_{0,0,2}$. We can take

$$
\begin{gathered}
\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, \bar{e}_{5}, e_{7}\right),\left(\bar{e}_{4}, e_{8}, e_{9}\right), \\
\left(\bar{e}_{6}, \bar{e}_{9}, e_{10}\right),\left(\bar{e}_{7}, \bar{e}_{8}, \bar{e}_{10}\right) \\
\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}\right)=\left(e_{1}, e_{2}\right) ;\left(\bar{e}_{1}, e_{3}, e_{4}\right),\left(\bar{e}_{2}, e_{5}, e_{6}\right),\left(\bar{e}_{3}, e_{7}, e_{8}\right),\left(\bar{e}_{4}, \bar{e}_{7}, e_{9}\right), \\
\left(\bar{e}_{5}, e_{10}, \bar{e}_{8}\right),\left(\bar{e}_{6}, \bar{e}_{9}, \bar{e}_{10}\right)
\end{gathered}
$$

Notice $\left(\Gamma_{1}, v_{1,0}, \operatorname{ord}_{1}, \phi_{1}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{2,0}}$ is a lift of $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{1,1}}$ and $\left(\Gamma_{2}, v_{2,0}, \operatorname{ord}_{2}, \phi_{2}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{2,0}}$ is a lift of $\left(\Gamma_{9}, v_{9,0}, \operatorname{ord}_{9}, \phi_{9}\right)$ in $\widehat{\operatorname{ord} \mathbb{A}_{1,1}}$.

It remains to describe the monomorphisms of the edges in the graph of groups for $\mathcal{A M}_{2,0,1}$ and to find the five relations that need to be added.

References

[1] Heather Armstrong, Bradley Forrest, and Karen Vogtmann. A presentation for $\operatorname{Aut}\left(F_{n}\right)$. J. Group Theory, 11(2):267-276, 2008.
[2] Lluís Bacardit. A combinatorial algorithm to compute presentations of mapping class groups of orientable surfaces with one boundary component. Groups Complex. Cryptol., 7(2):95-115, 2015.
[3] Warren Dicks and Edward Formanek. Algebraic mapping-class groups of orientable surfaces with boundaries. In Infinite groups: geometric, combinatorial and dynamical aspects. Based on the international conference on group theory: geometric, combinatorial and dynamical aspects of infinite groups, Gaeta, Italy, June 1-6, 2003., pages 57-116. Basel: Birkhäuser, 2005.
[4] Sylvain Gervais. A finite presentation of the mapping class group of a punctured surface. Topology, 40(4):703-725, 2001.
[5] John Harer. The second homology group of the mapping class group of an orientable surface. Invent. Math., 72:221-239, 1983.
[6] Allen Hatcher and Karen Vogtmann. Cerf theory for graphs. J. Lond. Math. Soc., II. Ser., 58(3):633-655, 1998.
[7] Allen E. Hatcher and William P. Thurston. A presentation for the mapping class group of a closed orientable surface. Topology, 19:221-237, 1980.
[8] Catherine Labruère and Luis Paris. Presentations for the punctured mapping class groups in terms of Artin groups. Algebr. Geom. Topol., 1:73-114, 2001.
[9] Makoto Matsumoto. A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities. Math. Ann., 316(3):401-418, 2000.
[10] James McCool. Some finitely presented subgroups of the automorphism group of a free group. J. Algebra, 35:205-213, 1975.
[11] James McCool. Generating the mapping class group. (An algebraic approach). Publ. Mat., Barc., 40(2):457-468, 1996.
[12] Bronislaw Wajnryb. A simple presentation for the mapping class group of an orientable surface. Isr. J. Math., 45:157-174, 1983.

E-mail address: lluisbcar@gmail.com

