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On presentations for mapping class groups of
orientable surfaces via Poincaré’s Polyhedron

theorem and graphs of groups

Llúıs Bacardit

Abstract

The mapping class group of an orientable surface with one boundary
component, S, is isomorphic to a subgroup of the automorphism group of
the fundamental group of S. We call these subgroups algebraic mapping
class groups. An algebraic mapping class group acts on a space called
ordered Auter space. We apply Poincaré’s Polyhedron theorem to this
action. We describe a decomposition of ordered Auter space. From these
results, we deduce that the algebraic mapping class group of S is a quo-
tient of the fundamental group of a graph of groups with, at most, two
vertices and, at most, six edges. Vertex and edge groups of our graph of
groups are mapping class groups of orientable surfaces with one, two or
three boundary components. A presentation for the mapping class group
of S can be obtained by adding, at most, 24 relations to the fundamental
group of our graph of groups.

2010 Mathematics Subject Classification. Primary: 57N05, 20F05; Secondary:
20F28, 20F34.
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1 Introduction

Presentations for mapping class groups of orientable surfaces were obtained by
different authors after a seminal paper by Hatcher and Thurston [7], where a
method to deduce presentations was exposed although presentations themselves
were not given. Wajnryb [12] followed Hatcher and Thurston’s method, with
improvements introduced by Harer [5], to obtain explicit presentations for map-
ping class groups of orientable surfaces of finite genus without punctures and one
boundary component. Matsumoto [9] interpreted some of the relations in Wa-
jnryb’s presentations as equalities between centralizers in Artin groups. From
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Wajnryb’s presentations, Gervais [4] deduced presentations for surfaces without
punctures and a finite number of boundary components. Labruère and Paris [8]
generalized Matsumoto’s presentation to orientable surfaces with a finite number
of punctures and a finite number of boundary components.

The Mapping class group of an orientable surface with exactly one boundary
component can be identified with a subgroup of the automorphism group of the
fundamental group of the surface. We call these subgroups algebraic mapping
class groups. Before Hatcher and Thurson’s paper appeared, McCool [10], [11]
had proved that algebraic mapping class groups are finitely presentable.

In [2], we followed Armstrong, Forrest and Vogtmann [1] to obtain an al-
gorithm which gives presentations for algebraic mapping class groups. That
algorithm gives explicit presentations, although a large number of generators
and relations are needed. We did not find an argument to sensibly reduce the
number of generators and relations.

In the present paper, we obtain a new algorithm which gives presentations
for algebraic mapping class groups. Although this new algorithm gives genera-
tors and relations, our presentations are described as quotients of fundamental
groups of graph of groups. For a genus 0 surface with at least three punctures,
the graphs of groups has one vertex and one edge; and, one relation needs to be
added. For a surface without punctures and genus at least 2, the graph of groups
has one vertex and two edges. For a genus 2 surface without punctures, five re-
lations need to be added. For a surface with genus at least 3 without punctures,
six relations need to be added. For a surface with genus at least 1 and at least
one puncture, the graph of groups has two vertices and no more than six edges;
no more than 24 relations need to be added. We only give explicit presentations
for some simple cases. Although we do not give explicit presentations in gen-
eral, a presentation for the mapping class group of an orientable surface with
one boundary components can be obtained by our method and an inductive ar-
gument. The obtained presentation has a reasonable number of generators and
relations.

As in [2], we consider an action of algebraic mapping class groups on a space
analogous to Auter space, called ordered Auter space. In [2], the Degree theorem
by Hatcher and Vogtmann [6] was applied to obtain a 2-dimensional complex
from which the algorithm was deduced. In the present paper, the new algorithm
is deduced from Poincaré’s Polyhedron theorem applied to the action of algebraic
mapping class groups on ordered Auter space. Since ordered Auter space is a
manifold, Poincaré’s Polyhedron theorem can be applied. Recall Auter space is
not a manifold. Hence, Poincaré’s Polyhedron theorem cannot be applied to the
action of the automorphism group of a free group on Auter space. We describe
a decomposition of ordered Auter space which gives the vertices of our graph of
groups. By refining once this decomposition, we obtain the edges of our graph
of groups. And, by refining the decomposition a second time, we obtain the
relations that need to be added to the fundamental group of the graph of groups.
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The vertex groups of the graph of groups are algebraic mapping class group of
an orientable surface with one or two boundary components. Presentations for
the vertex groups of the graph of groups can be computed by our method either
by induction or by our method applied one level deeper. The edge groups of the
graph of groups are algebraic mapping class group of an orientable surface with
one, two or three boundary components.

The outline of the paper is the following. Section 2 contains notations
and definitions. Section 3 recovers some results which are needed to apply
Poincaré’s Polyhedron theorem, and, contains the algorithm obtained by ap-
plying Poincaré’s Polyhedron theorem to the action of algebraic mapping class
groups on ordered Auter space. Section 4 contains the description of a subcom-
plex of ordered Auter space which decomposes ordered Auter space. Section 5
describes a subcomplex of ordered Auter space which is a homotopy retract
of ordered Auter space. The latter subcomplex is more suitable for being de-
composed. Section 6 describes a decomposition of the subcomplex of ordered
Auter space described in Section 5. Section 7 gives an inductive argument in
two steps: generators and relations. Section 8 describes our presentations for
algebraic mapping class groups in terms of graphs of groups. Section 9 contains
examples.

2 Notation and Definitions

This section contains notation and definitions used through the paper.

2.1 Notation. Let X be a set. The cardinality of X will be denoted |X|.
Let G be a group. For g, h ∈ G, we write [g, h] = g−1h−1gh, the commutator

of g and h; and, gh = h−1gh, the conjugated of g by h. We write [g] = {gh | h ∈
G}, the conjugacy class of g in G.

Let Aut(G) be the group of automorphisms of G, and, let Out(G) be the
automorphism group of G modulo inner automorphisms.

We fix an integer n ≥ 1, and, non-negative integers g, p and b such that
n = 2g + p+ b− 1 ≥ 1.

Let S be a genus g orientable surface with p punctures and b boundary com-
ponents. We consider homeomorphisms of S which fix the set of punctures and
whose restriction to each boundary component is the identity. Hence, such an
homeomorhism respects the orientation of S. The mapping class group of S,
denoted M(S), is the group of isotopy classes of such homeomorphisms, where
every isotopy leaves fixed the set of punctures and its restriction to each bound-
ary component is the identity. Since two orientable surfaces with the same genus
g, the same number of punctures p and the same number of boundary compo-
nents b, are homeomorphic; their mapping class groups are isomorphic. Hence,
we also denote M(S) by Mg,p,b, and we say that Mg,p,b is the mapping class group
of a genus g surface with p punctures and b boundary components.
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We denote by π1(S) the fundamental group of S. For (p, b) = (0, 0),
the Dehn-Nielsen-Baer theorem states that Mg,0,0 is isomorphic to an index
2 subgroup of Out(π1(S)), the group of outer automorphisms of π1(S). For
(p, b) 6= (0, 0), π1(S) is a free group of rank n = 2g + p + b − 1, and, a gener-
alization of the Dehn-Nielsen-Baer theorem states that Mg,p,b is isomorphic to a
subgroup of Out(π1(S)).

For b ≥ 1, it can be deduced from Dehn-Nielsen-Baer theorem that Mg,p,b is
isomorphic to a subgroup of Aut(π1(S) ∗ 〈c1, c2, . . . , cb−1 |〉) denoted AMg,p,b.
The following notation is needed in order to define AMg,p,b.

We consider the following presentation for π1(S)

Fg,p,b = 〈x1, y1, x2, y2, . . . , xg, yg, t1, t2, . . . , tp, z1, z2, . . . , zb | wg,p,b 〉,

where wg,p,b = [x1, y1][x2, y2] . . . [xg, yg]t1t2 . . . tpz1z2 . . . zb. Since b ≥ 1, Fg,p,b is
a free group of rank n = 2g + p + b − 1 with basis xi, yi for 1 ≤ i ≤ g, tk for
1 ≤ k ≤ p, and, zl for 1 ≤ l ≤ b− 1.

For 1 ≤ l ≤ b, let ∗l be a point in the l-th boundary component of S. From a
topological point of view, the presentation Fg,p,b for π1(S) can be interpreted as
follows: wg,p,b represents a loop based at ∗b around the b-th boundary component
of S, ti represents a loop based at ∗b around the i-th puncture of S for 1 ≤ i ≤ p
and bl represents a loop based at ∗b around the l-th boundary component of S
for 1 ≤ l ≤ b− 1. To distinguish between punctures and boundary components,
we introduce cl, for 1 ≤ l ≤ b − 1, which represents an arc from ∗b to ∗l such
that zcll represents a loop based at ∗l around the l-th boundary component.

The following definition of algebraic mapping class group appears in [3], with
slightly different notation.

2.2 Definition. We denote by AMg,p,b the subgroup of

Aut(Fg,p,b ∗ 〈c1, c2, . . . , cb−1 |〉)

consisting of automorphisms ϕ of Fg,p,b ∗ 〈c1, c2, . . . , cb−1 |〉 such that the fol-
lowing conditions hold:

(a) The subgroup Fg,p,b is invariant under ϕ.

(b) The set of conjugacy classes {[t−1
1 ], [t−1

2 ], . . . , [t−1
p ]} is fixed by ϕ.

(c) The words zcll , for 1 ≤ l ≤ b− 1, and the generator zb are fixed by ϕ.

(d) For 1 ≤ l ≤ (b−1), the image of cl under ϕ lies inside the right coset Fg,p,b ·cl
of Fg,p,b\(Fg,p,b ∗ 〈c1, c2, . . . , cb−1 |〉).

We call AMg,p,b the algebraic mapping class group of an orientable genus g surface
with p punctures and b boundary components.
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We will use the following definition for combinatorial graph.

2.3 Definitions. A combinatorial graph Γ is a three-tuple (V (Γ), E(Γ), V ∗(Γ))
such that V (Γ) and E(Γ) are disjoint sets, called the vertex set and the edge set,
respectivebly; and V ∗(Γ) = {v∗ | v ∈ V (Γ)} where v∗ is defined as follows. Let
E(Γ) be a set disjoint from E(Γ) and let · : E(Γ)→ E(Γ) be a bijection which
extends to an involution · : E(Γ) ∪ E(Γ) → E(Γ) ∪ E(Γ). For every v ∈ V, v∗
is a subset of E(Γ) ∪ E(Γ) such that V ∗(Γ) = {v∗ | v ∈ V (Γ)} is a partition of
E(Γ) ∪ E(Γ); that is, v∗1 ∩ v∗2 = ∅ if v1 6= v2, and

⋃
v∈V (Γ) v

∗ = E(Γ) ∪ E(Γ).

A graph with a distinguished vertex is a two-tuple (Γ, v0) where Γ is a com-
binatorial graph and v0 is a vertex of Γ.

A fat graph with a distinguished vertex is a three-tuple (Γ, v0, ord) where
(Γ, v0) is a graph with a distinguished vertex, and, ord is an order relation in v∗

for each v ∈ V (Γ), denoted ord(v∗), such that ord(v∗0) is a linear order and, for
v 6= v0, ord(v∗) is a cyclic order.

Let (Γ, v0, ord) be a fat graph with a distinguished vertex. Suppose V (Γ) =
{v0, v1, . . . , vq}, |v∗i | = ri and

(1) ord(v∗i ) = (ei1, e
i
2, . . . , e

i
ri

), for 0 ≤ i ≤ q.

Consider the following element and conjugacy classes of π1(Γ, v0):

(2)
w0 = a0

1a
0
2 · · · a0

l0

[wi] = [ai1a
i
2 · · · aili ], for 1 ≤ i ≤ p,

where a0
1 = e0

1, a
0
l0

= e 0
r0

, the subsequence (a0
j , a

0
j+1) appears in (1) for every

1 ≤ j ≤ (l0 − 1), the subsequence (aij, a
i
j+1) appears in (1) for every 1 ≤ i ≤

p, 1 ≤ j ≤ li and subindices of ai are modulo li. We require that every element
of E(Γ) ∪ E(Γ) appears exactly once in (2). We denote by w(Γ, v0, ord) the set
{w0, [w1], [w2], . . . , [wp]}. We denote

g =
n− p

2
.

We say that (Γ, v0, ord) is a fat graph with a distinguished vertex which has
genus g and p punctures, or, a (g, p)-fat graph with a distinguished vertex.

It can be seen that the genus g is a non-negative integer. See [2, Lemma
4.10].

2.4 Notation. Let (Γ, v0, ord) be a fat graph with a distinguished vertex. Sup-
pose V (Γ) = {v0, v1, . . . , vq}, |v∗i | = ri and

ord(v∗i ) = (ei1, e
i
2, . . . , e

i
ri

), for 0 ≤ i ≤ q.
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To simplify notation, we will write

(Γ, v0, ord, φ) = ord(v∗0); ord(v∗1), . . . , ord(v∗q )

= (e0
1, e

0
2, . . . , e

0
r0

); (e1
1, e

1
2, . . . , e

1
r1

), . . . , (eq1, e
q
2, . . . , e

q
rq).

2.5 Example. Let Γ = (V (Γ), E(Γ), V ∗(Γ)) be the combinatorial graph where

V (Γ) = {u1, u2, u3, u4},
E(Γ) = {e1, e2, . . . , e9},
u∗1 = {e1, e1, e2, e3, e4},
u∗2 = {e5, e6, e2, e3},
u∗3 = {e7, e8, e4, e5, e7},
u∗4 = {e9, e6, e8, e9}.

Let (Γ, v0) be the graph with the distinguished vertex v0 = u2 and let
(Γ, v0, ord) be the fat graph with a distinguished vertex where

ord(v∗0) = ord(u∗2) = (e2, e6, e3, e5),

ord(u∗1) = (e1, e3, e4, e1, e2),

ord(u∗3) = (e7, e8, e7, e4, e5, ),

ord(u∗4) = (e8, e9, e6, e9).

With notation above, we write

(Γ, v0, ord) = (e2, e6, e3, e5); (e1, e3, e4, e1, e2), (e7, e8, e7, e4, e5, ), (e8, e9, e6, e9).

Then w(Γ, v0, ord) = {w0, [w1], [w2]} where

w0 = e2e1e2e6e9e6e3e4e5;

[w1] = [e1e3e5e7e4];

[w2] = [e7e8e9e8].

Notice π1(Γ, v0) is a free group of rank n = 6. Since w(Γ, v0, ord) has two cyclic
words, we have p = 2 and g = (n− p)/2 = (6− 2)/2 = 2. Hence, (Γ, v0, ord) is
a (2, 2)-fat graph with a distinguished vertex.

The following operations on graphs are well-known.

2.6 Definition. Let (Γ, v0, ord) be a fat graph with a distinguished vertex.
Let f ∈ E(Γ) ∪ E(Γ) and v1, v2 ∈ V (Γ), v1 6= v2, such that f ∈ v∗1, f ∈

v∗2. Suppose v2 6= v0. We define the fat graph with a distinguished vertex
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(Γf , vf0 , ordf ) where

V (Γf ) = V (Γ) ∪ {u} − {v1, v2}, u /∈ V (Γ);

v1 6= v0 ⇒ vf0 = v0;

v1 = v0 ⇒ vf0 = u;

E(Γf ) ∪ E(Γf ) = E(Γ) ∪ E(Γ)− {f, f}.

For v ∈ V (Γ) − {v1, v2}, we define ordf (v∗) = ord(v∗). Suppose ord(v∗i ) =
(ei1, e

i
2, . . . , e

i
ri

), for i = 1, 2. Since f ∈ v∗1, there exists 1 ≤ k1 ≤ r1 such that

f = e1
k1

. Since f ∈ v∗2, there exists 1 ≤ k2 ≤ r2 such that f = e2
k2

. We define

ordf (u∗) =(e1
1, e

1
2, . . . , e

1
k1−1,

e2
k2+1, e

2
k2+2, . . . , e

2
r2
, e2

1, e
2
2, . . . , ek2−1,

e1
k1+1, e

1
k1+2, . . . , e

1
r1

).

We say that (Γf , vf0 , ordf ) is obtained from (Γ, v0, ord) by collapsing the edge
f .

It is easy to see that collapsing an edge is well-defined and respects the genus
and the number of punctures. See [2, Lemma 3.5, Lemma 4.5].

2.7 Definition. Let u ∈ V (Γ) such that |u∗| = r. For 1 ≤ k1 < k2 ≤ r,
(k1, k2) 6= (1, r), we define the fat graph with a distinguished vertex (Γu, vu0 , ordu)
where

V (Γu) = V (Γ) ∪ {v1, v2} − {u}, v1, v2 /∈ V (Γ),

u 6= v0 ⇒ vu0 = v0,

u = v0 ⇒ vu0 = v1,

E(Γu) = E(Γ) ∪ {f}, f /∈ E(Γ) ∪ E(Γ).

For v ∈ V (Γu) − {v1, v2}, we define ordu(v∗) = ord(v∗). Suppose ord(u∗) =
(e1, e2, . . . , er). We define

ordu(v∗1) =(e1, e2, . . . , ek1−1,

f, ek2+1, ek2+2, . . . , er),

ord(v∗2) =(f, ek1 , ek1+1, . . . , ek2).

We say that (Γu, vu0 , ordu) is obtained from (Γ, v0, ord) by splitting the vertex
u.

It is easy to see that splitting a vertex is well-defined and respects the genus
and the number of punctures. See [2, Lemma 3.6, Lemma 4.8]. Often in the
literature, splitting a vertex is called blowing up an edge.
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2.8 Definition. Let (Γ, v0, ord, φ) be a four-tuple where (Γ, v0, ord) is a (g, p)-fat
graph with a distinguished vertex such that:

(a) Γ is a metric graph with total volume 1;

(b) Γ is finite and connected without separating edges;

(c) |v∗| ≥ 3 for every v ∈ V (Γ)− {v0} whereas |v∗0| ≥ 2;

(d) φ : π1(Γ, v0)→ Fg,p,1 is an isomorphism called the marking.

We say that (Γ1, v1,0, ord1, φ1) is equivalent to (Γ2, v2,0, ord2, φ2) if there exists
an isometry h : Γ1 → Γ2 such that h(v1,0) = v2,0, if ord1(v) = (e1, e2, . . . , er) then
ord2(h(v)) = (h(e1), h(e2), . . . , h(er)) for every v ∈ V (Γ1), and the isomorphism
h∗ : π1(Γ1, v1,0)→ π1(Γ2, v2,0) satisfies φ1 = φ2 ◦ h∗.

It is easy to see that being equivalent is an equivalence relations among
four-tuples (Γ, v0, ord, φ) as in Definition 2.8.

Auter space is an analogous of Outer space for graphs with a distinguished
vertex. The following definition is an analogous of Auter space for four-tuples
(Γ, v0, ord, φ) as in Definition 2.8.

2.9 Definition. We denote by ordAg,p the space of equivalent classes of
four-tuples (Γ, v0, ord, φ) as in Definition 2.8 where the isomorphism φ : (Γ, v0)→
Fg,p,1 and w(Γ, v0, ord) = {w0, [w1], [w2], . . . , [wp]} satisfy

φ(w0) = [x1, y1][x2, y2] · · · [xg, yg]t1t2 · · · tp = wg,p,1z
−1
1 ,

{[φ(w1)], [φ(w2)], . . . , [φ(wp)]} = {[t−1
1 ], [t−1

2 ], . . . , [t−1
p ]}.

Let p be a point in ordAg,p represented by (Γ, v0, ord, φ). Suppose |E(Γ)| =
k + 1. Varying the length of the edges of Γ defines an open k-simplex σ(p) =
σ(Γ, v0, ord, φ) of ordAg,p. Let ∆k be the standard open k-dimensional simplex
of Rk+1. Then ∆k parametrizes the k-simplex σ(p) = σ(Γ, v0, ord, φ) by saying
that (Γs, v0, ord, φ) ∈ σ(p) is the point in ordAg,p such that the length of the
edges of Γs equal the barycentric coordinates of s ∈ ∆k. Since a non-trivial
isometry of Γ permutes some edges of Γ, such an isometry gives a non-trivial
element of H1(Γ). Hence, a non-trivial isometry changes φ in p = (Γ, v0, ord, φ)
and the parametrization above is a bijection.

Some faces of σ(p) = σ(Γ, v0, ord, φ) belong to ordAg,p. Let f ∈ E(Γ), v1, v2 ∈
V (Γ), v1 6= v2, such that f ∈ v∗1 and f ∈ v∗2. We can collapse f to obtain a
new graph (Γf , vf0 , ordf ) with metric induced by the metric of (Γ, v0, ord) scaled
such that the total volume is one. There exists a quotient map p : (Γ, v0, ord)→
(Γf , vf0 , ordf ). Since p∗ : π1(Γ, v0) → π1(Γf , vf0 ) is an isomorphism, there ex-
ists a point pf = (Γf , vf0 , ordf , φf ) in ordAg,p where φ = φf ◦ p∗. We say that

σ(pf ) = σ(Γf , vf0 , ordf , φf ) is a face of σ(p) = σ(Γ, v0, ord, φ). Faces of σ(pf )
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are faces of σ(p). We cannot collapse an edge which is incident to a unique
vertex, i.e. v1 = v2. Hence, some faces of σ(p) = σ(Γ, v0, ord, φ) are missing. In
particular, ordAg,p is not a simplicial complex.

The closure of σ(p) = σ(Γ, v0, ord, φ), denoted cl(σ(p)) = cl(σ(Γ, v0, ord, φ)),
is the union of σ(p) and all its faces. Notice cl(σ(p)) is parametrized by the
closure of ∆k with some faces missing. The topology of cl(σ(p)) is induced by
this parametrization. Since ordAg,p can be seen as the disjoint union of all these
simplices cl(σ(p)) after identifying equivalent points in the sense of Definition 2.8,
ordAg,p has the quotient topology of the union of all these simplices cl(σ(p)).

Thus, ordAg,p is a topological space with a complex structure with open
simplices σ(p) = σ(Γ, v0, ord, φ). Since the fat graph with a distinguished vertex
(Γ, v0, ord) has a finite number of vertices and every vertex can be split in a
finite number of different manners, there exists a finite number of simplices
of ordAg,p which have σ(p) = σ(Γ, v0, ord, φ) as a face. Since the fat graph
with a distinguished vertex (Γ, v0, ord) has a finite number of edges, σ(p) =
σ(Γ, v0, ord, φ) has a finite number of faces. Hence, the complex structure of
ordAg,p is locally finite.

2.10 Remark. Let p = (Γ, v0, ord, φ) be a point in ordAg,p. By an Euler charac-
teristic argument, the condition |v∗| ≥ 3 for all v ∈ V (Γ)−{v0} whereas |v∗0| ≥ 2
in Definition 2.8, implies |E(Γ)| ≤ 6g + 3p − 2 = 3n − 2. Recall n = 2g + p.
Hence, ordAg,p is a complex of dimension 6g + 3p− 3 = 3n− 3.

Out(Fn) acts on Outer space by “changing” the marking, and Aut(Fn) acts
on Auter space in a similar manner. We define the same action of AMg,p,1 on
ordAg,p.

2.11 Definition. AMg,p,1 acts on ordAg,p via

ϕ · p = ϕ · (Γ, v0, ord, φ) = (Γ, v0, ord, ϕ ◦ φ).

where ϕ is an element of AMg,p,1 and p = (Γ, v0, ord, φ) is a point in ordAg,p.

3 Poincaré’s Polyhedron theorem

First, we recall some results from [2]. Some of these results are directly trans-
ferred from Outer space [6]. Then, we apply Poincaré’s Polyhedron theorem to
the action of AMg,p,1 on ordAg,p given in Definition 2.11. Since Poincaré’s Poly-
hedron theorem can be applied in different contexts under suitable hypothesis,
we give a proof of Poincaré’s Polyhedron theorem in our context. Finally, we
give two examples.

3.1 Remark. ordAg,p is connected. See [2, Remark 4.20 (d)]

3.2 Lemma. ordAg,p is simply connected.
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See [2, Remark 4.20 (g)].

3.3 Lemma. The action of AMg,p,1 on ordAg,p is free. Hence, AMg,p,1 is iso-
morphic to the fundamental group of AMg,p,1\ordAg,p.

See [2, Lemma 6.3, Remark 6.2].

Notice we replaced ordSAg,p in [2, Remark 4.20(g), Lemma 6.3] by ordAg,p.
Since ordSAg,p, called the spine of ordAg,p, is a homotopy retract of ordAg,p, this
replacement can be done.

3.4 Lemma. The ordered Auter space ordAg,p is a (6g + 3p − 3)-dimensional
manifold with boundary of dimension 6g + 3p− 4.

See [2, Lemma 4.15]. We recall some facts in the proof of [2, Lemma 4.15]
which will be used in the statement and proof of Poincaré’s Polyhedron theorem.

3.5 Remark. Let σ(p) = σ(Γ, v0, ord, φ) be a (6g+3p−3)-dimensional simplex
of ordAg,p and let f be an edge of Γ. By collapsing f we obtain a codimension

one face of σ(p) denoted σ(pf ) = σ(Γf , vf0 , ordf , φf ). Notice (Γf , vf0 , ordf ) has
a vertex v such that either v 6= vf0 and |v∗| = 4, or, v = vf0 and |v∗| = 3. In
both cases, v can be split to obtain two different graphs. One of these graphs
is (Γ, v0, ord) and the other one is a graph which may have a separating edge.
Hence, σ(pf ) is either an interior face or a boundary face as follows.

(a) If there are exactly two (6g+ 3p−3)-dimensional simplices of ordAg,p which
have σ(pf ) as a face, then σ(pf ) lies in the interior of ordAg,p. We say that
σ(pf ) is an interior face.

(b) If σ(p) is the unique (6g+ 3p− 3)-dimensional simplex of ordAg,p which has
σ(pf ) as a face, then σ(pf ) lies in the boundary of ordAg,p. We say that
σ(pf ) is a boundary face.

We are interested in interior codimension one faces of (6g+3p−3)-dimensional
simplices of ordAg,p.

3.6 Definition. We denote by Pg,p ⊆ ordAg,p a fundamental domain for the
action of AMg,p,1 on ordAg,p.

Notice Pg,p is the finite union of the closure of (6g + 3p − 3)-dimensional
simplices of ordAg,p. Hence, Pg,p is a polyhedron.

The following theorem is Poincaré’s Polyhedron theorem applied to the action
of AMg,p,1 on ordAg,p. See Definition 2.11.
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3.7 Theorem. The group AMg,p,1 is finitely presented.
The group AMg,p,1 has generators represented by interior codimension one

faces of (6g + 3p− 3)-dimensional simplices of Pg,p.
There are three sets of relations of AMg,p,1 which we describe.

Let σ(p1) = σ(Γ1, v1,0, ord1, φ1) and σ(p2) = σ(Γ2, v2,0, ord2, φ2) be two (6g +
3p− 3)-dimensional simplices of ordAg,p and e1 ∈ E(Γ1), f2 ∈ E(Γ2) such that

(3) σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γf22 , v

f2
2,0, ordf22 , φ

f2
2 ) = σ(pf22 ).

Hence, σ(pe11 ) = σ(pf22 ) is an interior codimension one face of ordAg,p obtained by
either collapsing e1 in (Γ1, v1,0, ord1) or collapsing f2 in (Γ2, v2,0, ord2). Suppose
σ(p1) lies in Pg,p. Then σ(pe11 ) represents a generator of AMg,p,1.

The first set of relations of AMg,p,1 is described by saying that if σ(p2) lies
in Pg,p, then the generator of AMg,p,1 represented by σ(pe11 ) is the identity.

The second set of relations of AMg,p,1 is described as follows. If σ(p2) does
not lie in Pg,p, then there exists a (6g + 3p − 3)-dimensional simplex σ(p3) =
σ(Γ3, v3,0, ord3, φ3) ⊆ Pg,p which lies in the AMg,p,1-orbit of σ(p2). Hence, there
exists ψ ∈ AMg,p,1 such that ψ · σ(p2) = σ(p3). And there exists an isometry h :
(Γ2, v2,0, ord2) → (Γ3, v3,0, ord3) realising this equality. Let f3 = h(f2) ∈ E(Γ3).

Then, by (3), the faces σ(pe11 ) and σ(pf33 ) are in the same AMg,p,1-orbit. The
second set of relations is given by saying that the generator represented by the
face σ(pf33 ) of σ(p3) ⊆ Pg,p is the inverse of the generator represented by the face
σ(pe11 ) of σ(p1) ⊆ Pg,p.

The third set of relations of AMg,p,1 correspond to codimension two sim-

plices. Let f1 ∈ E(Γ1)−{e1} such that the face σ(pf11 ) = σ(Γf11 , v
f1
1,0, ordf11 , φ

f1
1 ) of

σ(p1) is interior. Suppose {e1, f1} are the edges of a forest in Γ1. Equivalently,
there exists the codimension two face σ(pe1,f11 ) = σ(Γe1,f11 , ve1,f11,0 , orde1,f11 , φe1,f11 )

obtained by collapsing either f1 in Γe11 or e1 in Γf11 . We can move from σ(p1)
to σ(p2) through the face σ(pe11 ) = σ(pf22 ). Then, f1 is identified with an edge
e2 of Γ2. Since f1 can be collapsed in Γe11 , {e2, f2} are the edges of a forest
in Γ2. Let σ(p3) = σ(Γ3, v3,0, ord3, φ3) be a simplex in Pg,p which lies in the
AMg,p,1-orbit of σ(p2) with isometry h : (Γ2, v2,0, ord2) → (Γ3, v3,0, ord3). Let
e3 = h(e2), f3 = h(f2). If σ(pe33 ) = σ(Γe33 , v

e3
3,0, orde33 , φ

e3
3 ) is an interior face,

we can apply the same procedure to the (6g+ 3p− 3)-dimensional simplex σ(p3)
instead of σ(p1), where e1, f1 are replaced by e3, f3, respectively. After a finite
number of times repeating this procedure either we will obtain a boundary face
or we will be back to σ(p1) with pair of edges {e1, f1} and collapsing e1. Each
time we apply the procedure, we obtain a generator of AMg,p,1. The first time we
obtain the generator corresponding to the face σ(pe11 ) of σ(p1), the second time
we obtain the generator corresponding to the face σ(pe33 ) of σ(p3), etc. If at some
point we obtain a boundary face, then we do not obtain a new relation. If we
go back to σ(p1) with pair of edges {e1, f1} and we have to collapse e1; then we
obtain a relation which is the word described by the procedure.
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Proof. Let G be a group with presentation given in the statement. We have to
prove that G is isomorphic to AMg,p,1. We will construct group homomorphisms
G→ AMg,p,1 and AMg,p,1 → G such that both composition are the identity.

Let x be a generator of G represented by the interior codimension 1 face
σ′ ⊆ Pg,p. There exist two (6g + 3p − 3)-dimensional simplices σ(p1) =
σ(Γ1, v1,0, ord1, φ1), σ(p2) = σ(Γ2, v2,0, ord2, φ2) and edges e1 ∈ E(Γ1), f2 ∈
E(Γ2) such that σ(p1) ⊆ Pg,p and σ′ = σ(pe11 ) = σ(pf22 ). Since Pg,p is a funda-
mental domain of the action of AMg,p,1 on ordAg,p, there exists ψ ∈ AMg,p,1 such
that ψ ·σ(p2) ⊆ Pg,p. We define the group homomorphism G→ AMg,p,1, x 7→ ψ.

To see G→ AMg,p,1 is well-defined, we have to prove the three set of relations
of G hold in AMg,p,1.

If σ(p2) ⊆ Pg,p, then ψ is the identity. Hence, the first set of relations of G
holds.

Since ψ ·σ(p2) = σ(p3) = σ(Γ3, v3,0, ord3, φ3) ⊆ Pg,p, there exists an isometry

h : (Γ2, v2,0, ord2) → (Γ3, v3,0, ord3). Let h(f2) = f3. Since σ(pf33 ) is an interior

codimension one face of σ(p3) ⊆ Pg,p and ψ−1 · σ(pf33 ) = ψ−1ψ · σ(pf22 ) = σ(pe11 ),

we see σ(pf33 ) represents x−1. Hence, the second set of relations of G holds.
Let xkxk−1 · · ·x1 be a word given by applying the procedure in the third set

of relations. Let ψi ∈ AMg,p,1 such that xi 7→ ψi. Then ψ1 sends the interior

codimension 1 face σ(pe11 ) = σ(pf22 ) to σ(pf33 ). Notice ψ1 · (σ(pe11 ) ∩ σ(pf11 )) =

ψ1 · (σ(pf22 ) ∩ σ(pe22 )) = (ψ1 · σ(pf22 )) ∩ (ψ1 · σ(pe22 )) = σ(p
h(f2)
3 ) ∩ σ(p

h(e2)
3 ) =

σ(pf33 )∩ σ(pe33 ). Next, we apply the procedure with σ(p1) replaced by σ(p3) and
e1, f1 replaced by e3, f3, respectively. Hence, ψ2 sends σ(pe33 ) = σ(pf44 ) to σ(pf55 )
and ψ2ψ1 · (σ(pf11 ) ∩ σ(pe11 )) = ψ2 · (σ(pe33 ) ∩ σ(pf33 )) = σ(pf55 ) ∩ σ(pe55 ). The
procedure gives a relation if we go back to σ(p1) with pair of edges {e1, f1}, or
equivalently, if ψk · · ·ψ2ψ1 · (σ(pe11 )∩σ(pf11 )) = σ(pf11 )∩σ(pe11 ). In this case, since
AMg,p,1 acts freely on ordAg,p, ψk · · ·ψ2ψ1 is the identity.

Recall ordAg,p is locally finite. Since generators of G are represented by
interior codimension 1 faces of Pg,p, we see G is finitely generated. Since the
number of relations of the first and second sets are bounded by the number
of codimension 1 faces of Pg,p, and, the number of relations of the third set
is bounded by the number of codimension 2 faces of Pg,p, we see G is finitely
presented.

Let p be a point such that σ(p) is a (6g + 3p − 3)-dimensional simplex and
σ(p) ⊆ Pg,p. Let ϕ ∈ AMg,p,1. Since ordAg,p is simply-connected and AMg,p,1

acts freely on ordAg,p, we see ϕ is determined by any path γ : [0, 1] → ordAg,p

from p to ϕ · p.
It is proved in [2] that ordAg,p is a (6g + 3p− 3)-dimensional manifold. The

proof reduces to the following facts.

(a) Each codimension 1 simplex lies in at most the closure of two (6g + 3p −
3)-dimensional simplices. See Remark 3.5.
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(b) If σ′′ is a simplex of ordAg,p of codimension at least 1 and σ, σ′ are two
(6g+ 3p− 3)-dimensional simplices of ordAg,p such that σ′′ is a face of both
σ and σ′, then there exists a sequence of (6g+ 3p−3)-dimensional simplices
of ordAg,p such that the sequence starts with σ and ends with σ′, and, we can
move from one element of the sequence to the next element of the sequence
through a codimension 1 face which has σ′′ as a face.

From (a) and (b) above, by a general position argument, we have the follow-
ing.

(i) γ is isotopic, relative to γ(0) = p and γ(1) = ψ · p, to a path lying in the
interior of simplices of codimension at most one.

(ii) If γ lies in the interior of simplices of codimension at most one and γ
bounds a disk D ⊆ ordAg,p, then D is isotopic, relative to γ = ∂D, to a
disk lying in the interior of simplices of codimension at most two.

By (i) above, we can suppose there exist a sequence of (6g+3p−3)-dimensional
open simplices σ(pi) = σ(Γi, vi,0, ordi, φi), for 1 ≤ i ≤ k, and there ex-
ist edges ei ∈ E(Γi) and fi+1 ∈ E(Γi+1), for 1 ≤ i ≤ k − 1, such that

σ(peii ) = σ(p
fi+1

i+1 ) ⊆ cl(σ(pi)) ∩ cl(σ(pi+1)) and

(4) γ([0, 1]) ⊆ (
⋃

1≤i≤k

σ(pi)) ∪ (
⋃

1≤i≤k−1

cl(σ(peii ))).

Without lost of generality, we can suppose p is the barycenter of σ(p1) and
γ([0, 1]) is the concatenation of segments from the barycenter of σ(pi) to the

barycenter of σ(peii ) and from the barycenter of σ(peii ) = σ(p
fi+1

i+1 ) to the barycen-
ter of σ(pi+1), for 1 ≤ i ≤ k − 1.

Since Pg,p is a fundamental domain for the action of AMg,p,1 on ordAg,p, for
1 ≤ i ≤ k, there exists ϕi ∈ AMg,p,1 such that σ(pi) ⊆ ϕi · Pg,p. Notice ϕi is

uniquely determined and ϕ−1
i ·σ(peii ), ϕ−1

i+1 ·σ(p
fi+1

i+1 ) are interior codimension one
faces of ϕ−1

i ·σ(pi), ϕ
−1
i+1 ·σ(pi+1) ⊆ Pg,p, respectively. Let ψi = ϕ−1

i+1ϕi ∈ AMg,p,1

for 1 ≤ i ≤ k − 1. Notice

ψiϕ
−1
i · σ(peii ) = ϕ−1

i+1ϕiϕ
−1
i · σ(peii ) = ϕ−1

i+1 · σ(p
fi+1

i+1 ).

Hence, ψi sends the interior of the face ϕ−1
i ·σ(peii ) of Pg,p to the interior of the face

ϕ−1
i+1 ·σ(p

fi+1

i+1 ) of Pg,p. Since ϕ−1
i ·σ(peii ), ϕ−1

i+1 ·σ(p
fi+1

i+1 ) are codimension one faces
of Pg,p, we see ψi is represented by ϕ−1

i ·σ(peii ). From σ(p1) ⊆ Pg,p, it follows ϕ1 is
the identity and ψ−1

1 ψ−1
2 · · ·ψ−1

k−1 = (ϕ−1
1 ϕ2) ·(ϕ−1

2 ϕ3) · · · (ϕ−1
k−1ϕk) = ϕ−1

1 ϕk = ϕk
sends p ∈ σ(p1) to ϕk · p ∈ ϕk · σ(p1) = σ(pk). Since AMg,p,1 acts freely
on ordAg,p, we see ϕ = ψ−1

1 ψ−1
2 · · ·ψ−1

k−1. We define a group homomorphism
AMg,p,1 → G, ϕ 7→ x−1

1 x−1
2 · · · x−1

k−1.
Suppose γ : [0, 1]→ ordAg,p is a loop. To see AMg,p,1 → G is well defined we

have to prove xk−1xk−2 · · ·x1 is the identity. Since ordAg,p is simply connected, γ
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bounds a disk D. By (i) and (ii) above, we can suppose γ = ∂D lies in the union
of simplices of codimension at most one, and, the interior of D lies in the union
of open simplices of codimension at most two. Then D has a complex structure
with 2-cells defined by D ∩ σ, 1-cells defined by D ∩ σ′ and 0-cells defined by
D ∩ σ′′, where σ is a (6g+ 3p− 3)-dimensional simplex, σ′ is a codimension one
simplex and σ′′ is a codimension two simplex. Since γ is the boundary of D,
by (i) above, all 0-cells are in the inetrior of D.

If D does not have any 0-cell, then the complex structure of D consist of
arcs which do not intersect themselves and join points in γ = ∂D. Then,
there exists an inner-most segment in γ which joins points σ(peii ) ∩ γ and
σ(p

ei+1

i+1 ) ∩ γ. And there exists a subsequences of (6g + 3p− 3)-dimensional sim-
plices σ(pi−1), σ(pi), σ(pi+1) such that σ(pi−1) = σ(pi+1). Hence, ϕi+1 = ϕi−1

and ψi = ϕ−1
i+1ϕi = ϕ−1

i−1ϕi = ψ−1
i−1. Thus, xk−1xk−2 · · ·x1 can be reduced by re-

lations of the second set. Applying this relation to xk−1xk−2 · · ·x1 is equivalent
to remove from D the 2-cell bounded by the arc of γ = ∂D from σ(peii ) ∩ γ
to σ(p

ei+1

i+1 ) ∩ γ and the arc inside D from σ(peii ) ∩ γ to σ(p
ei+1

i+1 ) ∩ γ. The same
argument can be applied to the new word.

If the complex structure of D has 0-cells, then there exisits a 1-cell which
joins a 0-cell q1 to a point q2 ∈ γ = ∂D. Notice q2 = σ(pi

ei) ∩ γ = σ(p
fi+1

i+1 ) ∩ γ
and q1 = σ(pi

ei,f ) ∩ D for some f ∈ E(Γi). The relation obtained by applying
the procedure of the third set of relations to σ(pi) with pair of edges {ei, f} and
collpasing ei is a word y1y2 · · · yr such that y1 = xi. Then we can replace xi in
xk−1xk−2 · · · x1 by y−1

r · · · y−1
2 . The new word (xk−1xk−2 · · ·xi+1) · (y−1

r · · · y−1
2 ) ·

(xi−1 · · ·x1) represents a path which bounds a disk obtained from D by applying
an homotopy supported in D. The homotopy moves γ beyond q1 through the
arc from q2 to q1. This new disk does not have q1 in the interior. Hence, this
new disk has a 0-cell fewer in the interior. The same argument can be applied
to the new word.

3.8 Examples. (a) For (g, p, b) = (0, 2, 1), we have P0,2 = cl(σ(Γ, v0, ord, φ))
where

V (Γ) = {v0, v1, v2},
E(Γ) = {e1, e2, e3, e4},

ord(v∗0) = (e1, e2),

ord(v∗1) = (e1, e3, e4),

ord(v∗2) = (e2, e4, e3).

We write
(Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, e4, e3).

Notice
w(Γ, v0, ord) = {e1e3e2, [e1e2e4], [e3e4]}.
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By collapsing e1 we have

(Γe1 , ve10 , orde1) = (e3, e4, e2); (e2, e4, e3).

We can split ve10 , where orde1(ve10 ) = (e3, e4, e2), in two different manners.
Both of them give graphs without separating edges. Hence, σ(Γe1 , ve10 , orde1 , φe1)
is an interior face which represents a generator x1 of AM0,2,1.

Similarly,
(Γe2 , ve20 , orde2) = (e1, e4, e3); (e1, e3, e4),

is an interior face which represents a generator x2 of AM0,2,1.

By collapsing e3 we have

(Γe3 , ve30 , orde3) = (e1, e2); (e1, e2, e4, e4).

We can split the vertex corresponding to (e1, e2, e4, e4) in two manners, one
case gives a graph with a separating edge. Hence, σ(Γe3 , ve30 , orde3 , φe3) is a
boundary face. Similarly, σ(Γe4 , ve40 , orde4 , φe4) is a boundary face.

We see faces σ(Γe1 , ve10 , orde1 , φe1) and σ(Γe2 , ve20 , orde2 , φe2) are in the same
AM0,2,1-orbit by the isometry he1,e2 : (Γe1 , ve10 , orde1) → (Γe2 , ve20 , orde2) de-
scribed by

he1,e2 :


e2 7→ e3,
e3 7→ e1,
e4 7→ e4.

Hence, x1, the generator represented by σ(Γe1 , ve10 , orde1 , φe1), is the inverse
of x2, the generator represented by σ(Γe2 , ve20 , orde2 , φe2). We represent these
generators and this relation:

Γ

-
x1

e1 e2

=

Γ

-
x2

e2 e1

The only possible relation comes from the pair of edges {e1, e2}. By
splitting ve10 in (Γe1 , ve10 , orde1) we have (Γ, v0, ord) and (Γ2, v2,0, ord2) =
(e3, e1); (e3, e2, e4), (e1, e4, e2). Then (Γ, v0, ord, φ) and (Γ2, v2,0, ord2, φ2) are
in the same AM0,2,1-orbit with isometry h : (Γ2, v2,0, ord2) → (Γ, v0, ord)
such that

h :


e1 7→ e2

e2 7→ e3,
e3 7→ e1,
e4 7→ e4.
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We have to apply the same procedure to (Γ, v0, ord) with edges h(e2) =
e3, h(e1) = e2. Since σ(Γe3 , ve30 , orde3 , φe3) is a boundary face, we do not
obtain a relation and AM0,2,1 is a free cyclic group generated by x1. Notice
the isometry h : (Γ2, v2,0, ord2) → (Γ, v0, ord) can be deduced from the
isometry he1,e2 : (Γe1 , ve10 , orde1)→ (Γe2 , ve20 , orde2) and e1 7→ e2.

(b) For (g, p, b) = (1, 0, 1), we have P1,0 = cl(σ(Γ′, v′0, ord′, φ′)) where

(Γ′, v′0, ord′) = (e1, e2); (e1, e3, e4)(e2, e3, e4).

And,
w(Γ′, v′0, ord′) = {e1e3e4e1e2e3e4e2}.

By collapsing e1 and e2 we have, respectively,

(Γ
′e1 , v

′e1
0 , ord

′e1) = (e3, e4, e2); (e2, e3, e4),

(Γ
′e2 , v

′e2
0 , ord

′e2) = (e1, e3, e4); (e1, e3, e4).

Notice σ(Γ
′e1 , v

′e1
0 , ord

′e1 , φ
′e1) and σ(Γ

′e2 , v
′e2
0 , ord

′e2 , φ
′e2) are in the same

AM1,0,1-orbit. The isometry he1,e2 : (Γ
′e1 , v

′e1
0 , ord

′e1) → (Γ
′e2 , v

′e2
0 , ord

′e2) is
described by

he1,e2 :


e2 7→ e4,
e3 7→ e1,
e4 7→ e3.

Hence, both faces are interior and they represent generators of AM1,0,1, one

inverse of the other. Let x1 be the generator represented by σ(Γ
′e1 , v

′e1
0 , ord

′e1 , φ
′e1)

and x2 the generator represented by σ(Γ
′e2 , v

′e2
0 , ord

′e2 , φ
′e2). Then, x2 = x−1

1 .
We represent these generators and this relations:

Γ′

-
x1

e1 e2

=

Γ′

-
x2

e2 e1

By collapsing e3 and e4 we have, respectively,

(Γ
′e3 , v

′e3
0 , ord

′e3) = (e1, e2); (e1, e4, e2, e4),

(Γ
′e4 , v

′e4
0 , ord

′e4) = (e1, e2); (e1, e3, e2, e3).

Notice σ(Γ
′e3 , v

′e3
0 , ord

′e3 , φ
′e3) and σ(Γ

′e4 , v
′e4
0 , ord

′e4 , φ
′e4) are in the same

AM1,0,1-orbit. The isometry he3,e4 : (Γ
′e3 , v

′e3
0 , ord

′e3) → (Γ
′e4 , v

′e4
0 , ord

′e4) is
described by

he3,e4 :


e1 7→ e1,
e2 7→ e2,
e4 7→ e3.
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Hence, both faces are interior and they represent generators of AM1,0,1, one

inverse of the other. Let x3 be the generator represented by σ(Γ
′e3 , v

′e3
0 , ord

′e3 , φ
′e3)

and x4 the generator represented by σ(Γ
′e4 , v

′e4
0 , ord

′e4 , φ
′e4). Then, x4 = x−1

3 .
We represent these generators and this relations:

Γ′

-
x3

e3 e4

=

Γ′

-
x4

e4 e3

To deduce all relation, we have to consider the relations obtained from the
pair of edges {e1, e2}, {e1, e3}, {e1, e4}, {e2, e3} and {e2, e4} of (Γ′, v′0, ord′).
Notice the pair {e3, e4} cannot be considered, since e3 and e4 are not the
edges of a forest in (Γ′, v′0, ord′).

From the pair {e1, e2} we have the following.

1. We collapse e1 in (Γ′, v′0, ord′) and we obtain (Γ
′e1 , v

′e1
0 , ord

′e1) which lies
in the AM1,0,1-orbit of (Γ

′e2 , v
′e2
0 , ord

′e2). Hence, we obtain the generator
x1 and the pair of edges he1,e2(e2) = e4, he1,e2(e1) = e2.

2. We collapse e4 in (Γ′, v′0, ord′) and we obtain (Γ
′e4 , v

′e4
0 , ord

′e4) which lies
in the AM1,0,1-orbit of (Γ

′e3 , v
′e3
0 , ord

′e3). Hence, we obtain the generator
x4 = x−1

3 and the pair of edges he4,e3(e2) = h−1
e3,e4

(e2) = e2, he4,e3(e4) =
h−1
e3,e4

(e4) = e3.

3. We collapse e2 in (Γ′, v′0, ord′) and we obtain (Γ
′e2 , v

′e2
0 , ord

′e2) which lies
in the AM1,0,1-orbit of (Γ

′e1 , v
′e1
0 , ord

′e1). Hence, we obtain the generator
x2 = x−1

1 and the pair of edges he2,e1(e3) = h−1
e1,e2

(e3) = e4, he2,e1(e2) =
h−1
e1,e2

(e2) = e1.

4. We collapse e4 in (Γ′, v′0, ord′) and we obtain (Γ
′e4 , v

′e4
0 , ord

′e4) which lies
in the AM1,0,1-orbit of (Γ

′e3 , v
′e3
0 , ord

′e3). Hence, we obtain the generator
x4 = x−1

3 and the pair of edges he4,e3(e1) = h−1
e3,e4

(e1) = e1, he4,e3(e4) =
h−1
e3,e4

(e4) = e3.

5. We collapse e1 in (Γ′, v′0, ord′) and we obtain (Γ
′e1 , v

′e1
0 , ord

′e1) which lies
in the AM1,0,1-orbit of (Γ

′e2 , v
′e2
0 , ord

′e2). Hence, we obtain the generator
x1 and the pair of edges he1,e2(e3) = e1, he1,e2(e1) = e2.

We are back to (Γ′, v′0, ord′) with pair of edges {e1, e2} and we have to collapse
e1. Hence, we obtain the relation x1x

−1
3 x−1

1 x−1
3 x1. We represent this relation:
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Γ′ Γ′-e1 e2
x1

Γ′-e1 e2
x1

Γ′ Γ′
x1

-
e1 e2

6

e4

x3

e3

?

e3

x3

e4

Since we have used the pairs of edges {e1, e3}, {e1, e4}, {e2, e3} and {e2, e4},
there are no more relations and AM1,0,1 has the presentation

〈x1, x3 | x1x
−1
3 x−1

1 x−1
3 x1〉.

3.9 Remark. Let σ(p) = σ(Γ, v0, ord, φ) be a (6g+3p−3)-dimensional simplex
of Pg,p and let e, f ∈ E(Γ) be the edges of a forest in Γ. Suppose that applying
the procedure in Theorem 3.7 to the pair of edges {e, f} and collapsing e we
obtain a relation r.

(a) If we apply the procedure in Theorem 3.7 to the pair of edges {e, f} and
collapsing f , then we obtain the word r−1, the inverse of r.

(b) If e, f are the edges of a tree in Γ; then, after collapsing e and f in (Γ, v0, ord)
we obtain a graph (Γe,f , ve,f0 , orde,f ) with a vertex v such that either |v∗| = 5
if v 6= ve,f0 , or, |v∗| = 4 if v = ve,f0 . In both cases there are, at most, 5 sim-
plices of dimension (6g+3p−3) which have σ(pe,f ) = σ(Γe,f , ve,f0 , orde,f , φe,f )
as a face. Hence, r is a word of length five.

(c) If e, f are the edges of two non-connected trees in (Γ, v0, ord); then, after
collapsing e and f in Γ we obtain a graph (Γe,f , ve,f0 , orde,f ) with two vertices
u1 6= u2 such that either |u∗1| = |u∗2| = 4 if u1 6= ve,f0 and u2 6= ve,f0 , or,
|u∗1| = 3, |u∗2| = 4 if u1 = ve,f0 . In both cases there are, at most, 4 simplices
of dimension (6g + 3p − 3) which have σ(pe,f ) = σ(Γe,f , ve,f0 , orde,f , φe,f ) as
a face. Hence, r is a word of length four.

4 The subcomplex Tg,p of ordAg,p

We define a connected subcomplex, denoted Tg,p, of ordAg,p which decomposes
ordAg,p.

18



4.1 Definition. Let (Γ, v0, ord) be a connected (g, p)-fat graph with a distin-
guished vertex. The standard labelling of (Γ, v0, ord) is a labelling of vertices
and edges of Γ as follows. Recall ord(v∗0) is a linear order on v∗0. We label edges
incident to v0 according to the order on v∗0, that is, ord(v∗0) = (e1, e2, . . .) or
ord(v∗0) = (e1, e1, e2, . . .). Suppose we have labelled edges e1, e2, . . . , ei ∈ E(Γ)
and vertices v0, v1, . . . , vj ∈ V (Γ). Let k, 1 ≤ k ≤ i, be the least integer such that
ek ∈ u∗ where u ∈ V (Γ) has not been labelled by v1, v2, . . . , vj. Then we label u
by vj+1. Suppose ord(v∗j+1) = (ek, f1, f2, . . . , fr). Notice some edges f1, f2, . . . fr
may have been labelled by some ek+1, ek+2, . . . , ei. We label by ei+1, ei+2, . . .
edges f1, f2, . . . , fr which have not been labelled by ek+1, ek+2, . . . , ei. Since
(Γ, v0, ord) is connected, we label every vertex by v0, v1, v2, . . . and every edge
by e1, e2, e3, . . ..

4.2 Example. Let (Γ, v0, ord) be a fat graph with a distinguished vertex where
V (Γ) = {v0, u1, u2, u3}, E(Γ) = {f1, f2, . . . , f7} and

(Γ, v0, ord) = ord(v∗0); ord(u∗1), ord(u∗2), ord(u∗3)

= (f1, f2); (f3, f 2, f4), (f5, f6, f 1, f 4), (f7, f 5, f 7, f 3, f 6).

The standard labelling of (Γ, v0, ord) is obtained as follows. Since ord(v∗0) =
(f1, f2), f1 is labelled e1 and f2 is labelled e2. Hence, ord(v∗0) = (e1, e2). Since
e1 = f 1 ∈ u∗2, u2 is labelled v1 and ord(v∗1) = (e1, f 4, f5, f6). Then f 4 is la-
belled e3, f5 is labelled e4 and f6 is labelled e5. Hence, ord(v∗1) = (e1, e3, e4, e5).
Since e2 = f 2 ∈ u∗1, u1 is labelled v2 and ord(v∗2) = (e2, e3, f3). Then f3

is labelled e6. Hence, ord(v∗2) = (e2, e3, e6). Since e3 ∈ v∗2, e4 = f 5 ∈ u∗3,
u3 is labelled v3 and ord(v∗3) = (e4, f 7, e6, e5, f7). Then f 7 is labelled e7.
Hence, ord(v∗3) = (e4, e7, e6, e5, e7). The standard labelling of (Γ, v0, ord) is
V (Γ) = {v0, v1, v2, v3}, E(Γ) = {e1, e2, . . . , e7} and

(Γ, v0, ord) = ord(v∗0); ord(v∗1), ord(v∗2), ord(v∗3)

= (e1, e2); (e1, e3, e4, e5), (e2, e3, e6), (e4, e7, e6, e5, e7).

4.3 Remark. Let pi = (Γi, vi,0, ordi, φi), i = 1, 2 be two points in ordAg,p.
Simplices σ(p1) = σ(Γ1, v1,0, ord1, φ1) and σ(p2) = σ(Γ2, v2,0, ord2, φ2) are in the
same AMg,p,1-orbit if and only if the standard labelling of (Γ1, v1,0, ord1) equals
to the standard labelling of (Γ2, v2,0, ord2).

4.4 Notation. From now on, we suppose that all fat graph with a distinguished
vertex (Γ, v0, ord) have the standard labelling. In particular, if |v∗0| = 2 and
|V (Γ)| ≥ 3, then ord(v∗0) = (e1, e2), ord(v∗1) = (e1, . . .) and, either e2 ∈ v∗1 or
ord(v∗2) = (e2, . . .).

19



4.5 Definition. Let (Γ, v0, ord) be a connected (g, p)-fat graph with a distin-
guished vertex such that |v∗0| = 2. Suppose (g, p) 6= (0, 1). Since (Γ, v0, ord)
has the standard labelling, ord(v∗0) = (e1, e2) and ord(v∗1) = (e1, . . .). Since
(Γ, v0) is connected and (g, p) 6= (0, 1), we see e1 6= e2. We define the fat
graph with a distinguished vertex (Γ↓, v↓0, ord↓) obtained from (Γ, v0, ord) by
setting v↓0 = v1, V (Γ↓) = V (Γ) − {v0} and E(Γ↓) = E(Γ) − {e1, e2}. We set
ord↓(v) = ord(v) for v ∈ V (Γ↓) − {v↓0, u} where e2 ∈ u∗. If e2 /∈ v∗1, then
u = v2 and we set ord↓(v↓0) = (f 1

1 , f
1
2 , . . . , f

1
r ) and ord↓(v2) = (f 2

1 , f
2
2 , . . . , f

2
s )

where ord(v1) = (e1, f
1
1 , f

1
2 , . . . , f

1
r ) and ord(v2) = (e2, f

2
1 , f

2
2 , . . . , f

2
s ). If

e2 ∈ v∗1, then u = v1 and we set ord↓(v↓0) = (f1, f2, . . . , fk−1, fk+1, . . . , fr) where
ord(v1) = (e1, f1, f2, . . . , fk−1, e2, fk+1, . . . , fr)

Notice v↓0 = v1, u ∈ E(Γ↓) may have valency two. If u 6= v1, then u is not
the distinguished vertex of (Γ↓, v↓0, ord↓). If u 6= v1 and |u∗| = 2, then we set u
as the midpoint of a new edge defined by concatenating the two edges incident
to u ∈ Γ↓.

If (Γ, v0, ord) is a metric graph with total volume one, then (Γ↓, v↓0, ord↓) has
a metric induced by the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1; and
scaling the metric of (Γ, v0, ord) such that the total volume of (Γ↓, v↓0, ord↓) is
one.

4.6 Remark. Notice (Γ↓, v↓0, ord↓) may have separating edges.

4.7 Examples. (a) Let

(Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e5, e7).

Notice (Γ1, v1,0, ord1) has the standard labelling and

w(Γ1, v1,0, ord1) = {e1e3e6e2, [e1e2e5e7e3e4e5e6e7e4]}.

Since π1(Γ1, v1,0) is a rank-3 free-group, we see (Γ1, v1,0, ord1) is a (1, 1)-fat
graph with a distinguished vertex.

Then
(Γ↓1, v

↓
1,0, ord↓1) = (e3, e4); (e3, f, e7), (e4, f , e7).

where edges e5, e6 have been concatenated to a unique edge f . We
have w(Γ↓1, v

↓
1,0, ord↓1) = {e3f e7e3e4fe7e4}. Since π1(Γ↓1, v

↓
1,0) is a rank-2

free-group, we see (Γ↓1, v
↓
1,0, ord↓1) is a (1, 0)-fat graph with a distinguished

vertex.

(b) Let

(Γ2, v2,0, ord2) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e6), (e4, e5, e7).

Notice (Γ2, v2,0, ord2) has the standard labelling and

w(Γ2, v2,0, ord2) = {e1e3e7e4e1e2e5e7e6e2, [e3e4e5e6]}.

20



Since π1(Γ2, v2,0) is a rank-3 free group, we see (Γ2, v2,0, ord2) is a (1, 1)-fat
graph with a distinguished vertex.

Then
(Γ↓2, v

↓
2,0, ord↓2) = (e3, e4); (e3, e7, f), (e4, f , e7)

where edges e5, e6 have been concatenated to a unique edge f . We have
w(Γ↓2, v

↓
2,0, ord↓2) = {e3e7e4, [e3e4f ], [f e7]}. Since π1(Γ↓2, v

↓
2,0) is a rank-2 free

group, we see (Γ↓2, v
↓
2,0, ord↓2) is a (0, 2)-fat graph with a distinguished vertex.

The following lemma generalises these examples.

4.8 Lemma. Let p = (Γ, v0, ord, φ) be a point in ordAg,p such that |v∗0| = 2.
Suppose w(Γ, v0, ord) = {w0, [w1], . . . , [wp]}. Then w0 = e1w

′
0e2 and e1e2 appears

in w(Γ, v0, ord).

(i) If [wi] = [e1e2w
′
i] for some 1 ≤ i ≤ p, then (Γ↓, v↓0, ord↓) is a (g, p− 1)-fat

graph with a distinguished vertex.

(ii) If w0 = e1u
′
0e1e2v

′
0e2, then (Γ↓, v↓0, ord↓) is a (g − 1, p+ 1)-fat graph with a

distinguished vertex.

Proof. Notice there exists an embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1,
which induces an injective group homomorphism π1(Γ↓, v↓0) → π1(Γ, v1). Then,
π1(Γ↓, v↓0) is a free group of rank 2g + p− 1 = n− 1.

Since (Γ, v0, ord, φ) has the standard labelling, we have w(Γ, v0, ord) =
{w0, [w1], [w2], . . . , [wp]} where w0 = e1w

′
0e2 and the subword e1e2 appears in

w(Γ, v0, ord).
If [wi] = [e1e2w

′
i] for some 1 ≤ i ≤ p, then

w(Γ↓, v↓0, ord↓) = {w′0w′i, [w1], [w2], . . . , [wi−1], [wi+1], . . . , [wp]}.

If w0 = e1w
′
0e2 = e1u

′
0e1e2v

′
0e2, then

w(Γ↓, v↓0, ord↓) = {u′0, [v′0], [w1], [w2], . . . , [wp]}.

4.9 Definition. Let Tg,p be the set of all points (Γ, v0, ord, φ) in ordAg,p such
that |v∗0| ≥ 3.

4.10 Remark. In [2, Remark 4.20 (d)], it is proved that ordAg,p is connected
by proving that Tg,p is connected.

4.11 Remark. If a point p = (Γ, v0, ord, φ) in ordAg,p lies in Tg,p, then the
open simplex σ(p) lies in Tg,p. Hence, Tg,p and (ordAg,p − Tg,p) have a simplex
structure. In particular, we have the following.
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If σ(p) is a (6g + 3p − 3)-dimensional simplex, then |v∗0| = 2 and σ(p) ⊆
ordAg,p − Tg,p.

If σ(p) ⊆ ordAg,p is a simplex such that |v∗0| = 2, then a face σ′ of σ(p)
is missing in σ(p) ∩ (ordAg,p − Tg,p) if and only if σ′ is obtained from σ(p) by
collapsing a forest of Γ which contains either e1 or e2.

4.12 Definition. Let p be a point in ordAg,p − Tg,p.
We denote by ordAp

g,p the connected component of ordAg,p−Tg,p which con-
tains p.

We define
AM

p
g,p,1 = {ϕ ∈ AMg,p,1 | ϕ · p ∈ ordAp

g,p}.

4.13 Remarks. Let p be a point in ordAg,p − Tg,p.

(a) AM
p
g,p,1 is a subgroup of AMg,p,1 which acts on ordAp

g,p.

(b) By Remark 4.11, ordAp
g,p has a complex structure.

(c) Let ϕ ∈ AMg,p,1. Then AM
ϕ·p
g,p,1 = ϕ ·AM

p
g,p,1 · ϕ−1.

(d) Suppose g ≥ 1, p ≥ 1. Let pi = (Γi, vi,0, ordi, φi), i = 1, 2, be points in

ordAg,p − Tg,p such that (Γ↓1, v
↓
1,0, ord↓1) is a (g, p − 1)-fat graph with a dis-

tinguished vertex and (Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p + 1)-fat graph with a

distinguished vertex. Then ordAp1
g,p ∩ ordAp2

g,p = ∅.

5 The reduced ordered Auter space

We define a subcomplex of ordAg,p, called the reduced ordered Auter space. This

subspace, denoted ôrdAg,p, is a homotopy retract of ordAg,p. Since ordAg,p is

simply connected, ôrdAg,p is simply connected. The action of AMg,p,1 on ordAg,p

restricts to an action on ôrdAg,p. On the other hand, ôrdAg,p is a (6g + 3p −
3)-dimensional manifold, and, Poincaré’s Polyhedron theorem can be applied to

the action of AMg,p,1 on ôrdAg,p.

5.1 Definition. Let (Γ, v0, ord) be a connected (g, p)-fat graph with a distin-
guished vertex such that |v∗0| = 2 and |v∗| = 3 for every v ∈ V (Γ)− {v0}.

For 2g + p = 1, we say that (Γ, v0, ord) is a strongly non-separating graph if
there are not separating edges in (Γ, v0, ord).

For 2g + p ≥ 2, we say that (Γ, v0, ord) is a strongly non-separating graph
if there are not separating edges in (Γ, v0, ord) and (Γ↓, v↓0, ord↓) is a strongly
non-separating graph.
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Recall a point p = (Γ, v0, ord, φ) ∈ ordAg,p defines a simplex σ(p) of dimen-
sion 6g + 3p− 3 if and only if |v∗0| = 2 and |v∗| = 3 for every v ∈ V (Γ)− {v0}.

5.2 Definition. We define the reduced ordered Auter space, denoted ôrdAg,p, as
the closure of (6g+3p−3)-dimensional simplices σ(p) = σ(Γ, v0, ord, φ) ⊆ ordAg,p

such that (Γ, v0, ord) is a strongly non-separating graph.

5.3 Lemma. Let (Γ, v0, ord) be a fat graph with a distinguished vertex. Suppose
there are not separating edges in (Γ, v0, ord). Let u ∈ V (Γ) such that |u∗| ≥ 4 if
u 6= v0, or, |u∗| ≥ 3 if u = v0. Then u can be split such that (Γu, vu0 , ordu) has
no separating edges.

Proof. Suppose |u| = r and ord(u) = (e1, e2, . . . , er). We split u according to
1 ≤ k1 < k2 ≤ r, (k1, k2) 6= (1, r). See Definition 2.7. If (Γu, vu0 , ordu) has
separating edges, then, since (k1, k2) 6= (1, r), we can split u according to either
1 ≤ k1 − 1 < k2 − 1 ≤ r or 1 ≤ k1 + 1 < k2 + 1 ≤ r and the new splitting gives
a graph with a distinguished vertex without separating edges.

5.4 Lemma. ôrdAg,p is a homotopy retract of ordAg,p.

Proof. Let p = (Γ, v0, ord, φ) ∈ ordAg,p such that σ(p) is a (6g + 3p −
3)-dimensional simplex, and p /∈ ôrdAg,p. Suppose (Γ↓, v↓0, ord↓) has separat-

ing edges. The embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1 identifies every
edge of Γ↓, but one, with an edge of Γ, and one edge of Γ↓ with the concate-
nation of two edges of Γ. Since (Γ, v0, ord) does not have separating edges,
collapsing separating edges of (Γ↓, v↓0, ord↓) can be extend to collapsing the cor-
responding edges of (Γ, v0, ord). This defines a homotopy retraction which sends
p = (Γ, v0, ord, φ) to p′ = (Γ′, v′0, ord′, φ′). By Lemma 5.3, p′ lies in the closure
of a (6g + 3p − 3)-dimensional simplex σ(p1) = σ(Γ1, v1,0, ord1, φ1) such that

(Γ↓1, v
↓
1,0, ord↓1) does not have separating edges.

If (Γ↓, v↓0, ord↓) does not have separating edges, after a finite number of times
applying Definition 4.5, we obtain a graph with separating edges and the same
argument can be applied. The homotopy retraction can be extend to ordAg,p.

5.5 Remark. The action of AMg,p,1 on ordAg,p described in Definition 2.11

gives an action of AMg,p,1 on ôrdAg,p.

5.6 Lemma. ôrdAg,p is a manifold of dimension 6g + 3p− 3 with boundary of
dimension 6g + 3p− 4.

Proof. It is proved in [2, Lemma 4.15] that ordAg,p is a (6g+3p−3)-dimensional
manifold. The proof reduces to the following facts.

(a) Each codimension 1 simplex lies, at most, in the closure of two (6g + 3p −
3)-dimensional simplices. See Remark 3.5.
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(b) If σ′′ is a simplex of ordAg,p of codimension at least 1 and σ, σ′ are two
(6g + 3p− 3)-dimensional simplices of ordAg,p which have σ′′ is a face, then
there exists a sequence of (6g+3p−3)-dimensional simplices of ordAg,p such
that the sequence starts with σ and ends with σ′, and, we can move from
one element of the sequence to the next element of the sequence through a
codimension 1 face which has σ′′ as a face.

Since ôrdAg,p is a subcomplex of ordAg,p, condition (a) above holds for

ôrdAg,p.

The proof of condition (b) above is the same for ordAg,p and ôrdAg,p.

5.7 Remark. By Lemma 5.4, ôrdAg,p is simply connected. By Lemma 5.6,

ôrdAg,p is a manifold. Hence, Poincaré’s Polyhedron theorem can be applied to

the action of AMg,p,1 on ôrdAg,p.

5.8 Definition. We define

P̂g,p = ôrdAg,p ∩ Pg,p,

T̂g,p = ôrdAg,p ∩ Tg,p.

For p = (Γ, v0, ord, φ) ∈ ôrdAg,p − T̂g,p, we define

ôrdA
p

g,p = ôrdAg,p ∩ ordAp
g,p.

6 A decomposition for ôrdAg,p

6.1 Definitions. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p − T̂g,p.
Recall ord(v0) = (e1, e2). We say that edges e1, e2 ∈ E(Γ) are g-edges of

level n = 2g + p.

We denote by 1
2
-ôrdA

p

g,p the subspace of ôrdA
p

g,p consisting of points such
that the length of each g-edge of level n, e1 and e2, is 1

4
.

6.2 Lemma. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p− T̂g,p. Then 1
2
-ôrdA

p

g,p

is a homotopy retract of ôrdA
p

g,p.

Proof. We define an homotophy

[0, 1]× [0, 1]× ôrdA
p

g,p → ôrdA
p

g,p,

(s, t, (Γ′, v′0, ord′, φ′)) 7→ (Γ′′, v′0, ord′, φ′).
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such that (Γ′′, v′0, ord′, φ′) equals (Γ′, v′0, ord′, φ′) excepts for the length of edges
as follows. If we denote the length of an edge e of Γ by `Γ(e), then `Γ′′(e1) =
s
4

+ (1 − s)`Γ′(e1), `Γ′′(e2) = t
4

+ (1 − t)`Γ′(e2) and `Γ′′(f), where f ∈ E(Γ′′) −
{e1, e2} = E(Γ′)−{e1, e2}, equals `Γ′(f) scaled by a factor such that the sum of
lengths of all edges in E(Γ′′) is 1.

6.3 Definition. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p − T̂g,p. Suppose
e2 ∈ u∗, u ∈ V (Γ) and |u∗| = 3. We say that edges in u∗ − {e2} are h-edges of
level n = 2g + p.

6.4 Example. By Example 3.8, P̂0,2 = P0,2 = cl(σ(Γ, v0, ord, φ)) where

(Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, e4, e3) and P̂1,0 = P1,0 = cl(σ(Γ′, v′0, ord′, φ′))
where (Γ′, v′0, ord′) = (e1, e2); (e1, e3, e4), (e2, e3, e4). In both cases, e1 and e2 are
g-edges of level 2, and, e3 and e4 are h-edges of level 2.

6.5 Remark. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p − T̂g,p. Suppose e2 ∈
u∗, u ∈ V (Γ) and |u∗| = 3. Notice the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord),
v↓0 7→ v1, identifies every edge of Γ which is neither a g-edge nor an h-edge of
level n with an edge of Γ↓, and, identifies the concatenation of both h-edges of
level n with an edge of Γ↓.

6.6 Lemma. Let p = (Γ, v0, ord, φ) be a point in 1
2
-ôrdAg,p. Suppose σ(p)

is a simplex of dimension 3n − 3 = 6g + 3p − 3. Let h, q be integers such
that (Γ↓, v↓0, ord↓) is a (h, q)-fat graph with a distinguished vertex. Let φ↓ :
π1(Γ↓, v↓0)→ Fh,q,1 be an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓) is a point

in ôrdAh,q.

Then, a path in ôrdAh,q lying in simplices of codimension at most one and
starting at p↓ can be lifted to a unique path, up to h-edges of level n and length of

h-edges of level n, starting at p and lying in simplices of 1
2
-ôrdA

p

g,p of codimension
at most one.

Proof. By Lemma 4.8, (Γ↓, v↓0, ord↓) is a (h, q)-fat graph where either (h, q) =

(g− 1, p+ 1) or (h, q) = (g, p− 1). By definition of ôrdAg,p, there exists a point

p↓ = (Γ↓, v↓0, ord↓, φ↓) in ôrdAh,q. By Remark 6.5, a path starting at p↓ in the
open simplex σ(p↓) can be lifted to a path starting at p inside the open simplex
σ(p) such that the length of g-edges of level n of Γ is constant. Notice such a
lift is unique up to the length of h-edges of level n of Γ.

A path in ôrdAh,q which lies in simplices of codimension at most one is a
sequence of collapsing edges and splitting the vertex of valence four, if it is not
the distinguished vertex, or the vertex of valence three, if it is the distinguished

vertex. By Remark 6.5, such a path in ôrdAh,q can be lifted to ôrdAg,p if the
edge of Γ↓ which is collapsed is not identified with the concatenation of both
h-edges of level n of (Γ, v0, ord).
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Collapsing the edge of (Γ↓, v↓0, ord↓) which is identified with the concatenation
of both h-edges of level n of Γ can be lifted by previously collapsing one of the
two h-edges of level n and splitting the vertex of valence four. After this sequence
of collapsing and splitting, the edge of p↓ which is collapsed is not identified with
the concatenation of both h-edge of level n of p.

Notice the length of g-edges of level n can be left constant and the lifted
path lies in codimension at most one simplices. Hence, the lifted path lies in
1
2
-ôrdA

p

g,p.

6.7 Proposition. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p. Suppose
σ(p) is a simplex of dimension 3n − 3 = 6g + 3p − 3. Let h, q be integers
such that (Γ↓, v↓0, ord↓) is a (h, q)-fat graph with a distinguished vertex. Let
φ↓ : π1(Γ↓, v↓0) → Fh,q,1 be an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓) is

a point in ôrdAh,q.
Then, there exists an onto and continuous map

µ : ôrdA
p

g,p → ôrdAh,q,

p 7→ p↓.

such that µ is constant on paths where any two points in the path have different
length of h-edges of level n.

Proof. By definition of the metric on (Γ↓, v↓0, ord↓) and Remark 6.5, the assign-
ment p 7→ p↓, extends to a continuous map between open simplices σ(p)→ σ(p↓).
Notice this map is constant on points which only differ in the length of h-edges of
level n. By Remark 4.11 and Remark 6.5, σ(p)→ σ(p↓) extends to faces of σ(p)
obtained without collapsing none of the g-edges of level n. Hence, σ(p)→ σ(p↓)

extends to faces of σ(p) lying in ôrdA
p

g,p. By Remark 6.5, the continuous map
σ(p)→ σ(p↓) extends to a continuous map from simplices where σ(p) is a face.

Since ôrdA
p

g,p is path-connected, we have defined µ. We have to see that µ is
well-defined.

Let γ : [0, 1] → ôrdA
p

g,p be a path such that γ(0) = p = (Γ, v0, ord, φ).
Recall γ is a sequence of collapsing edges and splitting vertices. Let γ(1) =
(Γ1, v1,0, ord1, φ1). Then φ−1

1 · φ : π1(Γ, v0) → π1(Γ1, v1,0) is an isomorphism
obtained by the process of collapsing the edges and splitting the vertices de-

scribed in γ. Consider the path γ↓ = µ γ : [0, 1] → ôrdAh,q and γ↓(1) =

(Γ↓1, v
↓
1,0, ord↓1, φ

↓
1). Notice (φ↓1)−1 · φ↓ : π1(Γ↓, v↓0) → π1(Γ↓1, v

↓
1,0) is the restric-

tion of φ−1
1 · φ to π1(Γ↓, v↓0) under the inclusion induced by (Γ↓, v↓0, ord↓) ↪→

(Γ, v0, ord), v↓0 7→ v1. Suppose γ(1) = γ(0) = p. To see µ is well de-
fined, we have to see γ↓(1) = γ↓(0) = p↓. Since γ(1) = p = (Γ, v0, ord, φ)
and γ↓(1) = (Γ↓1, v

↓
1,0, ord↓1, φ

↓
1), we see (Γ↓1, v

↓
1,0, ord↓1) = (Γ↓, v↓0, ord↓). And

(φ↓1)−1 · φ↓ : π1(Γ↓, v↓0) → π1(Γ↓, v↓0) is the identity since it is the restriction
to π1(Γ↓, v↓0) of the identity of π1(Γ, v0).
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We can suppose both g-edges of level n of Γ have length 1
4
. Since ôrdAh,q is

path-connected by paths lying in codimension at most one simplices of ôrdAh,q,

by Lemma 6.6, such a path in ôrdAh,q starting at p↓ lifts to a path in 1
2
-ôrdA

p

g,p

staring at p. Then µ maps the end point of the lifted path starting at p to the
end point of the path starting at p↓.

6.8 Remark. Notice µ : ôrdA
p

g,p → ôrdAh,q, p 7→ p↓ defined in Proposition 6.7

depends on the choice of the isomorphism φ↓ : π1(Γ↓, v↓0)→ Fh,q,1 which defines

p↓ = (Γ↓, v↓0, ord↓, φ↓).

6.9 Corollary. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p− T̂g,p. Then ôrdA
p

g,p

is simply connected.

Proof. Let γ be a closed path in ôrdA
p

g,p. Then µγ is a closed path in ôrdAh,q.

Since ôrdAh,q is simply connected, µγ bounds a disk. This disk can be lifted, by

Lemma 6.6, to a disk in ôrdA
p

g,p with boundary γ.

6.10 Lemma. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p − T̂g,p. Suppose

the length of each g-edge is 1
4
. Let h, q be integers such that (Γ↓, v↓0, ord↓) is a

(h, q)-fat graph with a distinguished vertex. Let p′ = (Γ′, v′0, ord ′, φ′) be a point

in ôrdAh,q such that σ(p′) is a simplex of dimension 3(n− 1)− 3 = 6h+ 3q− 3.
Then a connected component of the anti-image of p′ under µ restricted to

1
2
-ôrdA

p

g,p is obtained by changing the length of h-edges of level n, collapsing
h-edges of level n and splitting the vertex of valence four, and, scaling the length
of every edge but g-edges and h-edges of level n such that the total volume is
one.

(i) If (h, q) = (g, p − 1), then the anti-image of p′ under µ restricted to
1
2
-ôrdA

p

g,p is homeomorphic to [0, 1].

(ii) If (h, q) = (g − 1, p + 1), then the anti-image of p′ under µ restricted to
1
2
-ôrdA

p

g,p is homeomorphic to the disjoint union of (p+ 1) copies of R.

Proof. Recall ôrdA
p

g,p has dimension 3n−3 = 6g+3p−3, 1
2
-ôrdA

p

g,p has dimension

3n − 5 = 6g + 3p − 5 and ôrdAh,q has dimension 3(n − 1) − 3 = 6g + 3p −
6. Let pi = (Γi, vi,0, ordi, φi), for i = 1, 2, be a point in 1

2
-ôrdA

p

g,p such that
σ(pi) is a simplex of dimension 3n − 3 = 6g + 3p − 3 and µ(pi) = p′, for i =
1, 2. Then (Γ↓i , v

↓
i,0, ord↓i ) = (Γ′, v′0, ord′), for i = 1, 2. Notice (Γ1, v1,0, ord1) and

(Γ2, v2,0, ord2) are obtained from (Γ′, v′0, ord′) by choosing an oriented edge which
corresponds to the concatenation of both h-edges of level n. Hence, h-edges of
level n of (Γ1, v1,0, ord1) and (Γ2, v2,0, ord2) either are the same, possibly with
different lengths, or, are different edges. Since µ is constant on paths where two
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points in the path only differ in the length of h-edges, if both points p1 and p2

are in the same component of the anti-image under µ, then there is a sequence
of collapsing an h-edge and splitting the valence four vertex which transforms
p1 = (Γ1, v1,0, ord1, φ1) into p2 = (Γ2, v2,0, ord2, φ2).

Suppose w(Γ′, v′0, ord′) = {w′0, [w′1], [w′2], . . . , [w′q]}.
If (h, q) = (g, p − 1), then the chosen oriented edge appears in w′0. Hence,

the anti-image is parametrized by [0, 1].
If (h, q) = (g − 1, p + 1), then the chosen oriented edge appears in [w′i], for

1 ≤ i ≤ p+ 1. Hence, the anti-image is parametrized by (p+ 1) copies of R.

6.11 Proposition. Let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p−T̂g,p, i = 1, 2, be points

such that (Γ↓1, v
↓
1,0, ord↓1) is a (g, p− 1)-fat graph with a distinguished vertex and

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p+ 1)-fat graph with a distinguished vertex. Then

ôrdAg,p − T̂g,p =
⋃
i=1,2

(
∪ϕi

(ϕi · ôrdA
pi

g,p)
)
,

where ϕi ranges over AMg,p,1/AM
pi
g,p,1, i = 1, 2; and every pair of sets on the

right-hand side are disjoint.

Proof. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − T̂g,p. Since |v∗0| = 2, by Lemma 4.8,

(Γ↓, v↓0, ord↓) is either a (g, p − 1)-fat graph with a distinguished vertex or a
(g − 1, p+ 1)-fat graph with a distinguished vertex.

Suppose (Γ↓, v↓0, ord↓) is a (g − 1, p + 1)-fat graph with a distinguished
vertex. Let φ↓2 : π1(Γ↓2, v

↓
2,0) → Fg−1,p+1,1 be an isomorphism such that

p↓2 = (Γ↓2, v
↓
2,0, ord↓2, φ

↓
2) is a point in ôrdAg−1,p+1. By Proposition 6.7, there

exists a continuous map

µ : ôrdA
p2

g,p → ôrdAg−1,p+1, p2 7→ p↓2.

Let φ↓ : π1(Γ↓, v↓0)→ Fg−1,p+1,1 be an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓)

is a point in ôrdAg−1,p+1. Let γ↓ be a path in ôrdAg−1,p+1 from p↓2 to p↓

such that each simplex intersected by γ↓ has codimension at most one. By

Lemma 6.6, γ↓ lifts to a path γ in 1
2
-ôrdA

p2

g,p from p2 to p′ = (Γ′, v′0, ord′, φ′).

Then µ(p′) = p↓. By Lemma 6.10, there exists p′′ = (Γ′′, v′′0 , ord′′, φ′′) ∈ ôrdA
p2

g,p

such that µ(p′′) = µ(p′) = p↓ and (Γ′′, v′′0 , ord′′) = (Γ, v0, ord). Hence, p and p′′

are in the same ôrdAg,p-orbit and p′′ ∈ ôrdA
p2

g,p.

If (Γ↓, v↓0, ord↓) is a (g, p−1)-fat graph with a distinguished vertex, the same
argument can be applied with p2 replaced by p1.

Every pair of sets on the right-hand side of the equality in the statement are
disjoint by definition and Remark 4.13(d).
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6.12 Remark. Recall P̂g,p is a fundamental domain for the action of AMg,p,1

on ôrdAg,p. Let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − T̂g,p, i = 1, 2, be points

such that (Γ↓1, v
↓
1,0, ord↓1) is a (g, p − 1)-fat graph with a distinguished vertex

and (Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p + 1)-fat graph with a distinguished vertex. By

Proposition 6.11, we can choose P̂g,p such that

P̂g,p − T̂g,p ⊆ ôrdA
p1

g,p ∪ ôrdA
p2

g,p.

Since sets on the right-hand side above are disjoint, we have a decomposition of

P̂g,p− T̂g,p in two disjoint sets: P̂g,p∩ ôrdA
p1

g,p and ôrdA
p2

g,p∩ P̂g,p. Notice P̂g,p∩ T̂g,p
lies in the closure of (6g + 3p − 3)-dimensional simplices of ôrdA

p1

g,p ∩ P̂g,p and

ôrdA
p2

g,p ∩ P̂g,p.
Recall AM

pi
g,p,1, i = 1, 2, is the subgroup of AMg,p,1 consisting of au-

tomorphisms ϕ ∈ AMg,p,1 such that ϕ · pi ∈ ôrdA
pi

g,p, i = 1, 2. Hence,

AM
pi
g,p,1, i = 1, 2, is the subgroup of AMg,p,1 which leaves ôrdA

pi

g,p, i = 1, 2,
invariant. By Theorem 3.7, a presentation for AM

pi
g,p,1, i = 1, 2, can be deduced

from P̂g,p ∩ ôrdA
pi

g,p, i = 1, 2.

The following Proposition identifies AM
p
g,p,1.

6.13 Proposition. Let p = (Γ, v0, ord, φ) be a point in ôrdAg,p − T̂g,p such that
σ(p) is a simplex of dimension 3n− 3 = 6g + 3p− 3.

(i) If (Γ↓, v↓0, ord↓) is a (g, p − 1)-fat graph with a distinguished vertex, then
AM

p
g,p,1 is isomorphic to AMg,p−1,1.

(ii) If (Γ↓, v↓0, ord↓) is a (g−1, p+1)-fat graph with a distinguished vertex, then
AM

p
g,p,1 is isomorphic to AMg−1,p,2.

Proof. Suppose w(Γ, v0, ord) = {w0, [w1], [w2], . . . , [wp]}. We identify (Γ↓, v↓0, ord↓)

with its image under the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1. Then
e1π1(Γ↓, v↓0)e1 is a free factor of π1(Γ, v0) and

π1(Γ, v0) = (e1π1(Γ↓, v↓0)e1) ∗ 〈e1γv2e2〉,

where γv2 is a path in Γ↓ ⊆ Γ from v↓0 = v1 to v2 where e2 ∈ v∗2.
Let ϕ ∈ AM

p
g,p,1. Recall φ : π1(Γ, v0) → Fg,p,1 is an isomorphism. Notice

φ−1ϕφ = ϕφ is an automorphism of π1(Γ, v0) which preserves w0 and the set
of conjugacy classes {[w1], [w2], . . . , [wp]}. We will define an automorphism of

π1(Γ↓, v↓0) with the appropriated properties in both cases.

Since AMg,p,1 acts freely on the simply connected space ôrdAg,p, we see ϕ is

determined by a path γ : [0, 1] → ôrdA
p

g,p ⊆ ôrdAg,p − T̂g,p from γ(0) = p to
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γ(1) = ϕ · p = ϕ · (Γ, v0, ord, φ) = (Γ, v0, ord, ϕ ◦ φ). We can suppose γ([0, 1])
lies in the union of simplices of codimension at most 1. Hence, there exists a
sequence of (6g+3p−3)-dimensional open simplices σ(p1), σ(p2), . . . , σ(pk) such
that σ(p) = σ(p1), ϕ · σ(p) = σ(pk) and

γ([0, 1]) ⊆
( ⋃

1≤i≤k

σ(pi)
)
∪
( ⋃

1≤i≤k−1

(
cl(σ(pi)) ∩ cl(σ(pi+1))

))
,

where cl(σ(pi))∩ cl(σ(pi+1)) contains a codimension 1 face of σ(pi) and σ(pi+1).
Let pi = (Γi, vi,0, ordi, φi) for 1 ≤ i ≤ k. Then (Γ↓1, v

↓
1,0, ord↓1) = (Γ↓, v↓0, ord↓).

Since the codimension one face in cl(σ(p1)) ∩ cl(σ(p2)) is obtained without col-
lapsing none of the two g-edges of level n, moving from σ(p1) to σ(p2) through the
codimension one face in cl(σ(p1)) ∩ cl(σ(p2)) sends the subgraph (Γ↓1, v

↓
1,0, ord↓1)

of (Γ1, v1,0, ord1) to the subgraph (Γ↓2, v
↓
2,0, ord↓2) of (Γ2, v2,0, ord2), sends v1,0

to v2,0 and sends ord1(v∗1,0) to ord2(v∗2,0). This process can be repeated until
σ(pk) = σ(Γk, vk,0, ordk, φk) = σ(Γ, v0, ord, ϕ◦φ) = σ(ϕ·(Γ, v0, ord, φ)) = ϕ·σ(p).

Hence, the subgroup e1π1(Γ↓, v↓0)e1 = e1π1(Γ↓1, v
↓
1,0)e1 = e1π1(Γ↓k, v

↓
k,0)e1 is in-

variant under ϕφ and the image of e1γv2e2 under ϕφ lies in the right coset
e1π1(Γ↓, v↓0)e1 · (e1γv2e2) of (e1π1(Γ↓, v↓0)e1)\π1(Γ, v0). We define an automor-
phism ρ(ϕ) of π1(Γ↓, v↓0)

ρ(ϕ) : π1(Γ↓, v↓0)→ π1(Γ↓, v↓0), w 7→ e1ϕ
φ(e1we1)e1.

Let u ∈ π1(Γ↓, v↓0) such that ϕφ(e1γv2e2) = e1ue1 · e1γv2e2. Recall w0 =
e1w

′
0e1 · e1γv2e2 and e1e2 appears in w(Γ, v0, ord).

If e1e2 appears in [wi] for some 1 ≤ i ≤ p; then, by Lemma 4.8, (Γ↓, v↓0, ord↓)
is a (g, p− 1)-fat graph with a distinguished vertex, and, w0 = e1w

′
0e1 · e1γv2e2,

[wi] = [e2γv2e1 · e1w
′
ie1] for some 1 ≤ i ≤ p where w′0, w

′
i ∈ π1(Γ↓, v↓0) and

[w1], [w2], . . . [wi−1], [wi+1], . . . , [wp] are conjugacy classes in π1(Γ↓, v↓0). Then

ϕφ(w0) = ϕφ(e1w
′
0e1 · e1γv2e2)

= ϕφ(e1w
′
0e1) · ϕφ(e1γv2e2)

= ϕφ(e1w
′
0e1) · e1ue1 · e1γv2e2,

[ϕφ(wi)] = [ϕφ(e2γv2e1 · e1w
′
ie1)]

= [ϕφ(e2γv2e1) · ϕφ(e1w
′
ie1)]

= [e2γv2e1 · e1u e1 · ϕφ(e1w
′
ie1)].

Since these equalities hold in the free group π1(Γ, v0) = (e1π(Γ↓, v↓0)e1)∗〈e1γv2e2〉
and ϕφ(w0) = w0 = e1w

′
0e1 · e1γv2e2, [ϕφ(wi)] = [wi] = [e2γv2e1 · e1w

′
ie1], we see

ϕφ(e1w
′
0e1) = e1w

′
0e1 · e1u e1

= e1w
′
0u e1;

ϕφ(e1w
′
ie1) = e1ue1 · e1w

′
ie1

= e1uw
′
ie1.
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Hence,

ϕφ(e1w
′
0w
′
ie1) = ϕφ(e1w

′
0e1 · e1w

′
ie1)

= ϕφ(e1w
′
0e1) · ϕφ(e1w

′
ie1)

= e1w
′
0u e1 · e1uw

′
ie1

= e1w
′
0w
′
ie1.

And,

ρ(ϕ)(w′0w
′
i) = w′0w

′
i,

{[ρ(ϕ)(w1)], . . . , [ρ(ϕ)(wi−1)],

[ρ(ϕ)(wi+1)], . . . , [ρ(ϕ)(wp)]} = {[w1], . . . , [wi−1], [wi+1], . . . , [wp]}.

We fix φ↓ : π1(Γ↓, v↓0)→ Fg,p−1,1, independent of ϕ, such that (Γ↓, v↓0, ord↓, φ↓) ∈
ordAg,p−1 and we have φ↓ρ(ϕ)(φ↓)−1 ∈ AMg,p−1,1.

If e1e2 appears in w0; then, by Lemma 4.8, (Γ↓, v↓0, ord↓) is a (g−1, p+ 1)-fat
graph with a distinguished vertex, and,

w0 = e1w
′
0e1 · e1γv2e2 = e1u

′
0e1 · e2γv2e1 · e1v

′
0e1 · e1γv2e2 ∈ π1(Γ, v0),

where u′0, v
′
0 ∈ π1(Γ↓, v↓0) and [w1], [w2], . . . , [wp] are conjugacy classes in

π1(Γ↓, v↓0). Then

ϕφ(w0) = ϕφ(e1u
′
0e1 · e2γv2e1 · e1v

′
0e1 · e1γv2e2)

= ϕφ(e1u
′
0e1) · ϕφ(e2γv2e1) · ϕφ(e1v

′
0e1) · ϕφ(e1γv2e2)

= ϕφ(e1u
′
0e1) · e2γv2e1 · e1u e1 · ϕφ(e1v

′
0e1) · e1ue1 · e1γv2e2.

Since this equality holds in the free group π1(Γ, v0) = (e1π(Γ↓, v↓0)e1) ∗ 〈e1γv2e2〉
and ϕφ(w0) = w0 = e1u

′
0e1 · e2γv2e1 · e1v

′
0e1 · e1γv2e2, we see

ϕφ(e1u
′
0e1) = e1u

′
0e1,

ϕφ(e1v
′
0e1) = e1ue1 · e1v

′
0e1 · e1u e1

= e1uv
′
0u e1,

ϕφ((e1v
′
0e1)e1γv2e2) = (e1uv

′
0u e1)e1ue1·e1γv2e2

= (e1v
′
0e1)e1γv2e2 .

Hence,

ρ(ϕ)(u′0) = u′0,

[ρ(ϕ)(v′0)] = [v′0],

ρ(ϕ)((v′0)γv2e2e1) = (v′0)γv2e2e1 ,

{[ρ(ϕ)(w1)], [ρ(ϕ)(w2)], . . . , [ρ(ϕ)(wp)]} = {[w1], [w2], . . . , [wp]}.
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We fix φ↓ : π1(Γ↓, v↓0)→ Fg−1,p+1,1, independent of ϕ, such that (Γ↓, v↓0, ord↓, φ↓) ∈
ordAg−1,p+1. We see φ↓ρ(ϕ)(φ↓)−1 ∈ AMg−1,p,2 by considering that u′0, v

′
0 rep-

resent boundary components and γv2e2e1 represents an arc from the boundary
component represented by u′0 to the boundary component represented by v′0.

The following remarks gives an inductive description of P̂g,p.

6.14 Remark. Let p1 = (Γ1, v1,0, ord1, φ1) ∈ ôrdAg,p− T̂g,p be a point such that

(Γ↓1, v
↓
1,0, ord↓1) is a (g, p− 1)-fat graph with a distinguished vertex.

Let φ↓1 : π1(Γ↓1, v
↓
1,0)→ Fg,p−1,1 be an isomorphism such that p↓1 = (Γ↓1, v

↓
1,0, ord↓1, φ

↓
1)

is a point in ôrdAg,p−1. Recall there is a continuous map

µ : ôrdA
p1

g,p → ôrdAg,p−1, p1 7→ p↓1

By Lemma 6.10, the anti-image of a (6g+ 3(p− 1)− 3)-dimensional simplex

of P̂g,p−1 under µ restricted to 1
2
-ôrdA

p1

g,p is parametrized by [0, 1]. This restricted
anti-image is described by changing the length of h-edges of level n and collapsing
h-edges of level n. We choose P̂g,p such that the anti-image of each (6g+3(p−1)−
3)-dimensional simplex of P̂g,p−1 is contained in P̂g,p. Hence, every codimension

one face of P̂g,p∩ ôrdA
p1

g,p corresponding to collapse an h-edge of level n is interior

in P̂g,p ∩ ôrdA
p1

g,p. Since µ is onto, we choose P̂g,p such that P̂g,p ∩ ôrdA
p1

g,p maps

onto P̂g,p−1 under µ.

6.15 Example. We compute P̂0,3 following Remark 6.14.

By Definition 5.8 and Example 3.8(a), P̂0,2 = P0,2 = cl(σ(Γ, v0, ord, φ)),
where (Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, e4, e3). We have to compute a con-
nected anti-image of (Γ, v0, ord, φ) by collapsing h-edges of level 3. Since
w(Γ, v0, ord) = {w0, [w1], [w2]}, w0 = e1e3e2, [w1] = [e1e2e4], [w2] = [e3e4], we
choose an oriented edge in w0 = e1e3e2 to be identified with h-edges of level 3.

If we choose e1 in w0 = e1e3e2, we have

(Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e3), (e4, e6, e7), (e5, e7, e6).

Notice (Γ↓1, v
↓
1,0, ord↓1) = (Γ, v0, ord) and e1 ∈ E(Γ) is identified with the con-

catenation of e5, e3 ∈ E(Γ1), which are the h-edges of level 3 of (Γ1, v1,0, ord1).
Collapsing e3 gives a boundary face of σ(Γ1, v1,0, ord1, φ1). Hence, collapsing e3

does not give a new simplex in the anti-image of (Γ, v0, ord, φ) under µ. Col-
lapsing e5 gives an interior face of σ(Γ1, v1,0, ord1, φ1). Then, collapsing e5 gives
a new simplex in the anti-image of (Γ, v0, ord, φ) under µ as follows.

(Γe51 , v
e5
1,0, orde51 ) = (e1, e2); (e1, e3, e4), (e2, e7, e6, e3), (e4, e6, e7),

(Γ2, v2,0, ord2) = (e1, e2); (e1, e3, e4), (e2, e7, f), (f, e6, e3), (e4, e6, e7)

= (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e7, e5),
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where last notation of (Γ2, v2,0, ord2) is standard labelling. Notice e5 and e3 are
h-egdes of level 3 in (Γ1, v1,0, ord1). Hence, there exist a generator corresponding
to collapse e5 in (Γ1, v1,0, ord1). We denote this generator by h3,1 since it is
represented by collapsing an h-edge of level 3 lying in (Γ1, v1,0, ord1).

Collapsing e6 in (Γ2, v2,0, ord2) we go back to (Γ1, v1,0, ord1) and collapsing
e5 gives an interior face of σ(Γ2, v2,0, ord2, φ2) as follows.

(Γe52 , v
e5
2,0, orde52 ) = (e1, e2); (e1, e3, e4), (e2, e4, e7, e6), (e3, e6, e7)

(Γ3, v3,0, ord3) = (e1, e2); (e1, e3, e4), (e2, e4, f), (f, e7, e6), (e3, e6, e7)

= (e1, e2); (e1, e3, e4), (e2, e4, e5), (e3, e6, e7), (e5, e7, e6),

where last notation of (Γ3, v3,0, ord3) is standard labelling. Notice e5 and e6 are
h-egdes of level 3 in (Γ2, v2,0, ord2). Hence, there exist a generator corresponding
to collapse e5 in (Γ2, v2,0, ord2). We denote this generator by h3,2 since it is
represented by collapsing an h-edge of level 3 lying in (Γ2, v2,0, ord2).

Collapsing e5 in (Γ3, v3,0, ord3) we go back to (Γ2, v2,0, ord2) and collapsing
e4 gives a boundary face of σ(Γ3, v3,0, ord3, φ3). Notice e4 and e5 are h-egdes of
level 3 in (Γ3, v3,0, ord3).

We represent these generators:

Γ1 Γ2
-

e5 e6
h3,1

Γ3
-

e5 e5
h3,2

We have P̂0,3 ∩ ôrdA
(Γ1,v1,0,ord1,φ1)

0,3 = ∪3
i=1cl(σ(Γi, vi,0, ordi, φi)) and

P̂0,3 = ∪3
i=1cl(σ(Γi, vi,0, ordi, φi)).

6.16 Remark. Let p2 = (Γ2, v2,0, ord2, φ2) ∈ ôrdAg,p− T̂g,p be a point such that

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p+ 1)-fat graph with a distinguished vertex.

Let φ↓2 : π1(Γ↓2, v
↓
2,0) → Fg−1,p+1,1 be an isomorphism such that p↓2 =

(Γ↓2, v
↓
2,0, ord↓2, φ

↓
2) is a point in ôrdAg−1,p+1. Recall there is a continuous map

µ : ôrdA
p2

(g,p) → ôrdAg−1,p+1, p2 7→ p↓2.

By Lemma 6.10, the anti-image of a (6(g − 1) + 3(p + 1) − 3)-dimensional

simplex of P̂g−1,p+1 under µ restricted to 1
2
-ôrdA

p2

g,p is parametrized by p + 1

copies of R. A connected component of this anti-image restricted to 1
2
-ôrdA

p2

g,p

is described by changing the length of h-edges of level n and collapsing h-edges
of level n. We choose P̂g,p such that the anti-image of each (6(g−1) + 3(p+ 1)−
3)-dimensional simplex of P̂g−1,p+1 has p+ 1 connected components contained in
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P̂g,p. Hence, for each simplex of dimension 3(n−1)−3 = 6(g−1)+3(p+1)−3 of

P̂g−1,p+1, every codimension one face of P̂g,p ∩ ôrdA
p2

g,p corresponding to collapse

an h-edge of level n is interior in P̂g,p ∩ ôrdA
p2

g,p, but one for every connected

component. Since µ is onto, we choose P̂g,p such that P̂g,p ∩ ôrdA
p2

g,p has p + 1

connected components which map onto P̂g−1,p+1 under µ. We explain how to
connect these p+ 1 connected components in next section.

6.17 Example. We compute P̂1,1.

By Definition 5.8, and, Example 3.8(a) and Example 3.8(b), P̂0,2 = P0,2 =

cl(σ(Γ, v0, ord, φ)) and P̂1,0 = P1,0 = cl(σ(Γ′, v′0, ord′, φ′)) where (Γ, v0, ord) =
(e1, e2); (e1, e3, e4), (e2, e4, e3) and (Γ′, v′0, ord′) = (e1, e2); (e1, e3, e4), (e2, e3, e4).
We have to compute connected anti-images of (Γ, v0, ord, φ) and (Γ′, v′0, ord′, φ′)
by collapsing h-edges of level 3.

We follow Remark 6.14. Since w(Γ′, v′0, ord′) = {w′0}, w′0 = e1e3e4e1e2e3e4e2,
we choose the (oriented) edge e1 which appears in w′0 to be the image of h-edges
of level 3; and we have

(Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e3), (e4, e6, e7), (e5, e6, e7).

Notice (Γ↓1, v
↓
1,0, ord↓) = (Γ′, v′0, ord′) and e1 ∈ E(Γ′) is identified with the con-

catenation of edges e5, e3 ∈ E(Γ1) which are h-edges of level 3 in (Γ1, v1,0, ord1).
Collapsing e3 in (Γ1, v1,0, ord1) we have a boundary face. Collapsing e5 in
(Γ1, v1,0, ord1) we have

(Γ2, v2,0, ord2) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e5, e7).

Collapsing e5 in (Γ2, v2,0, ord2) we have

(Γ3, v3,0, ord3) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e5), (e4, e7, e6).

Collapsing e5 in (Γ3, v3,0, ord3) we have

(Γ4, v4,0, ord4) = (e1, e2); (e1, e3, e4), (e2, e3, e5), (e4, e6, e7), (e5, e6, e7).

Collapsing e3 in (Γ4, v4,0, ord4) we have

(Γ5, v5,0, ord5) = (e1, e2); (e1, e3, e4), (e2, e5, e4), (e3, e6, e7), (e5, e6, e7).

Collapsing e5 in (Γ5, v5,0, ord5) we have

(Γ6, v6,0, ord6) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e5, e7), (e4, e6, e7).

Collapsing e5 in (Γ6, v6,0, ord6) we have

(Γ7, v7,0, ord7) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e6), (e4, e7, e5).
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Collapsing e5 in (Γ7, v7,0, ord7) we have

(Γ8, v8,0, ord8) = (e1, e2); (e1, e3, e4), (e2, e4, e5), (e3, e6, e7), (e5, e6, e7).

Collapsing e4 in (Γ8, v8,0, ord8) we have a boundary face. We represent these
generators:

Γ1
-

e5 e6

h3,1

Γ2
-

e5 e6

h3,2

Γ3
-

e5 e5

h3,3

Γ4
-

e3 e4

h3,4

Γ5
-

e5 e6

h3,5

Γ6
-

e5 e6

h3,6

Γ7
-

e5 e5

h3,7

Γ8

There is one connected anti-image of (Γ′, v′0, ord′, φ′) under µ. We have P̂1,1∩
ôrdA

(Γ1,v1,0,ord1,φ1)

1,1 = ∪8
i=1cl(σ(Γi, vi,0, ordi, φi)).

We follow Remark 6.16. Since w(Γ, v0, ord) = {w0, [w1], [w2]}, w0 =
e1e3e2, [w1] = [e1e2e4], [w2] = [e3e4], the anti-image of (Γ, v0, ord, φ) has one
connected components for each cyclic word. We choose the oriented edge e1

which appears in [w1] = [e1e2e4] to be the anti-image of h-edges of level 3; and
we have

(Γ9, v9,0, ord9) = (e1, e2); (e1, e3, e4), (e2, e3, e5), (e4, e6, e7), (e5, e7, e6).

Collapsing e3 in (Γ9, v9,0, ord9) we have

(Γ10, v10,0, ord10) = (e1, e2); (e1, e3, e4), (e2, e5, e4), (e3, e6, e7), (e5, e7, e6).

Collapsing e5 in (Γ10, v10,0, ord10) we have

(Γ11, v11,0, ord11) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e5), (e4, e6, e7).

Collapsing e5 in (Γ11, v11,0, ord11) we go back to (Γ9, v9,0, ord9). Hence, we have
computed a connected component of the anti-image of σ(Γ, v0, ord, φ). We rep-
resent these generators:

Γ9 Γ10
-

e3 e4
h3,9

Γ11
-

e5 e6
h3,10

�
h3,11

e5 e5

Notice one of the three codimension one faces is not interior in P̂1,1.
To compute the other connected component, we choose e3 in [w2] = [e3e4] to

be the anti-image of h-edges of level 3; and we have

(Γ12, v12,0, ord12) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e5, e7), (e4, e7, e6).

Collapsing e5 in (Γ12, v12,0, ord12) we have

(Γ13, v13,0, ord13) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e6), (e4, e5, e7).
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Collapsing e5 in (Γ13, v13,0, ord13) we go back to (Γ12, v12,0, ord12). Hence, we have
computed another connected component of the anti-image of σ(Γ, v0, ord, φ). We
represent these generators:

Γ12 Γ13
-

e5 e6
h3,12

�
h3,13

e6 e5

Notice one of the two codimension one faces is not interior in P̂1,1.
These two connected anti-images of (Γ, v0, ord, φ) under µ need to be con-

nected through a codimension one face. We do this in next section. We deduce

P̂1,1 ∩ ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 = ∪13
i=9cl(σ(Γi, vi,0, ordi, φi)).

To define P̂1,1, it remains to declare which codimension one face is interior

in P̂1,1 in order to connected the connected components P̂1,1 ∩ ôrdA
(Γ1,v1,0,ord1,φ1)

1,1

and P̂1,1 ∩ ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 . This interior face of P̂1,1 corresponds to collapse a
g-edge of level 3. Then

P̂1,1 = ∪13
i=1cl(σ(Γi, vi,0, ordi, φ)).

7 An inductive argument

For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) be a point in ôrdAg,p − T̂g,p such

that (Γ↓1, v
↓
1,0, ord↓1) is a (g, p − 1)-fat graph with a distinguished vertex and

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p+ 1)-fat graph with a distinguished vertex. We give

explicit descriptions of the isomorphisms AM
p1
g,p,1 ' AMg,p−1,1 and AM

p2
g,p,1 '

AMg−1,p,2 in Proposition 6.13.
Notice for p = 0 such a p1 does not exist, and, for g = 0 such a p2 does not

exist. To avoid distinguished cases, we will consider points p1 and p2 as above
with the convention that if the point does not exist, there is no consideration.

7.1 Definition. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p− T̂g,p such that |u∗| = 3 where
e2 ∈ u∗, u ∈ V (Γ). Then ord(v∗0) = (e1, e2) and ord(u∗) = (e2, f1, f2), for some
f1, f2 ∈ E(Γ) ∪ E(Γ). We say that e1 and f1 are left edges, and, e2 and f2 are
right edges.

7.2 Example. By Example 3.8, P̂0,2 = cl(σ(Γ, v0, ord, φ)) where (Γ, v0, ord) =
(e1, e2); (e1, e3, e4), (e2, e4, e3). Thus, e1 and e4 are left edges, and, e2 and e3 are
right edges of Γ.
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Similarly, by Example 3.8, P̂1,0 = cl(σ(Γ′, v′0, ord′, φ′)) where (Γ′, v′0, ord′) =
(e1, e2); (e1, e3, e4), (e2, e3, e4). Thus, e1 and e3 are left edges, and, e2 and e4 are
right edges of Γ′.

The following extends the definition above.

7.3 Definition. Suppose n ≥ 3. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p such that σ(p)

is a simplex of dimension 3n − 3 = 6g + 3p − 3. Notice, in (Γ↓, v↓0, ord↓), there
are left and right g-edges, and, left and right h-edges of level n− 1.

A left (resp. right) g-edge of level n− 1 of (Γ, v0, ord) is an edge of Γ which
is identified under the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with a
left (resp. right) g-edge of level n− 1 of Γ↓.

A left (resp. right) h-edge of level n− 1 of (Γ, v0, ord) is an edge of Γ which
is identified under the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with a
left (resp. right) h-edge of level n− 1 of Γ↓.

For n ≥ 4, we define left and right g-edges, and, left and right h-edges of level
k of Γ, where 2 ≤ k ≤ n− 2, as edges which are identified under the embedding
(Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with left and right g-edges, and, left and
right h-edges of level k of Γ↓, respectively.

7.4 Example. By Example 6.15, P̂0,3 = ∪3
i=1cl(σ(Γi, vi,0, ordi, φi)) where

(Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e3), (e4, e6, e7), (e5, e7, e6),

(Γ↓1, v
↓
1,0, ord↓1) = (f, e4); (e4, e6, e7), (f, e7, e6), and,

Γ1
g-edge h-edge

left right left right
level 3 e1 e2 e5 e3

level 2 e4 e6 e7

(Γ2, v2,0, ord2) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e7, e5),

(Γ↓2, v
↓
2,0, ord↓2) = (e3, e4); (e3, f, e7), (e4, e7, f), and,

Γ2
g-edge h-edge

left right left right
level 3 e1 e2 e5 e6

level 2 e3 e4 e7

(Γ3, v3,0, ord3) = (e1, e2); (e1, e3, e4), (e2, e4, e5), (e3, e6, e7), (e5, e7, e6),

(Γ↓3, v
↓
3,0, ord↓3) = (e3, f); (e3, e6, e7), (f, e7, e6), and,

Γ3
g-edge h-edge

left right left right
level 3 e1 e2 e4 e5

level 2 e3 e7 e6
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7.5 Example. By Example 6.17, P̂1,1 = ∪13
i=1cl(σ(Γi, vi,0, ordi, φi)) where

(Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e3), (e4, e6, e7), (e5, e6, e7),

(Γ↓1, v
↓
1,0, ord↓1) = (f, e4); (e4, e6, e7), (f, e6, e7), and,

Γ1
g-edge h-edge

left right left right
level 3 e1 e2 e5 e3

level 2 e4 e6 e7

(Γ2, v2,0, ord2) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e5, e7),

(Γ↓2, v
↓
2,0, ord↓2) = (e3, e4); (e3, f, e7), (e4, f , e7), and,

Γ2
g-edge h-edge

left right left right
level 3 e1 e2 e5 e6

level 2 e3 e4 e7

(Γ3, v3,0, ord3) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e7, e5), (e4, e7, e6),

(Γ↓3, v
↓
3,0, ord↓3) = (e3, e4); (e3, e7, f), (e4, e7, f), and,

Γ3
g-edge h-edge

left right left right
level 3 e1 e2 e5 e6

level 2 e3 e4 e7

(Γ4, v4,0, ord4) = (e1, e2); (e1, e3, e4), (e2, e3, e5), (e4, e6, e7), (e5, e6, e7),

(Γ↓4, v
↓
4,0, ord↓4) = (f, e4); (e4, e6, e7), (f, e6, e7), and,

Γ4
g-edge h-edge

left right left right
level 3 e1 e2 e3 e5

level 2 e4 e6 e7

(Γ5, v5,0, ord5) = (e1, e2); (e1, e3, e4), (e2, e5, e4), (e3, e6, e7), (e5, e6, e7),

(Γ↓5, v
↓
5,0, ord↓5) = (e3, f); (e3, e6, e7), (f, e6, e7), and,

Γ5
g-edge h-edge

left right left right
level 3 e1 e2 e5 e4

level 2 e3 e6 e7

The remaining cases are similar.
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7.1 Generators

We give a description of generators of AM
p
g,p,1 where p is a point in ôrdAg,p−T̂g,p.

These are generators of AMg,p,1 but generators corresponding to collapse g-edges
of level n.

7.6 Remark. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p. Suppose σ(p) is a simplex of

dimension 3n − 3 = 6g + 3p − 3. Let h, q be integers such that (Γ↓, v↓0, ord↓) is
a (h, q)-fat graph with a distinguished vertex. Let f be an edge of Γ of level
less than n, and, let f ↓ be the edge of Γ↓ identified with f under the embedding
(Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1. Then the following holds.

(a) f is a left (resp. right) edge of level k < n if, and only if, f ↓ is a left (resp.
right) edge of level k.

(b) f is a g-edge (resp. h-edge) of level k < n if, and only if, f ↓ is a g-edge
(resp. h-edge) of level k.

7.7 Lemma. Let pi = (Γi, vi,0, ordi, φi), i = 1, 2, be points in ôrdAg,p such that
σ(pi), i = 1, 2, are simplices of dimension 3n− 3 = 6g + 3p− 3. Let fi be edges
of Γi, i = 1, 2, such that σ(pf11 ) = σ(pf22 ).

Then, for 2 ≤ k ≤ n, f1 is a left g-edge (resp. h-edge) of level k if, and only
if, f2 is a right g-edge (resp. h-edge) of level k.

Proof. If f1 is a left g-edge of level n, then |(vf11,0)∗| = 3. Since pf11 =

(Γf11 , v
f1
1,0, ordf11 , φ

f1
1 ) = (Γf22 , v

f2
2,0, ordf22 , φ

f2
2 ) = pf21 , it follows |(vf22,0)∗| = 3. Then,

f2 is a g-edge of level n. And, f1 is a left edge if and only if f2 is a right edge.
If f1 is a left h-edge of level n, then f1 is incident to v1,2, where e2 ∈ v∗1,2,

and |(vf11,2)∗| = 4. Since pf11 = (Γf11 , v
f1
1,0, ordf11 , φ

f1
1 ) = (Γf22 , v

f2
2,0, ordf22 , φ

f2
2 ) = pf22 ,

we see |(vf22,2)∗| = 4, where e2 ∈ v∗2,2, and f2 is an h-edge of level n. Then, f1 is
a left edge if and only if f2 is a right edge.

Let ki be an integer such that fi ∈ E(Γi) has level ki, i = 1, 2. Suppose
k1 ≥ k2. We have proved that if k1 = n, then the result holds. Suppose k1 < n.
Let h, q be integers such that (Γ↓i , v

↓
i,0, ord↓i ), i = 1, 2, are (h, q)-fat graphs. We

choose φ↓1 : π1(Γ1, v1,0) → Fh,q,1 such that p↓1 = (Γ↓1, v
↓
1,0, ord↓1, φ

↓
1) is a point in

ôrdAh,q. Let φ↓2 : π2(Γ2, v2,0) → Fh,q,1 such that µ(p2) = (Γ↓2, v
↓
2,0, ord↓2, φ

↓
2) = p↓2

where µ : ôrdA
p1

g,p → ôrdAh,q, p1 7→ p↓1. By induction hypothesis, the result

holds for f ↓i and p↓i = (Γ↓i , v
↓
i,0, ord↓i , φ

↓
i ), i = 1, 2, where f ↓i is identified with fi

under the embedding (Γ↓i , v
↓
i,0, ord↓i ) ↪→ (Γi, vi,0, ordi), v

↓
i,0 7→ vi,1, i = 1, 2. Then,

conclusions hold for fi and pi = (Γi, vi,0, ordi, φi), i = 1, 2.

Since generators of AMg,p,1 correspond to collapse edges, we have the follow-
ing definition.
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7.8 Definition. A g-generator (resp. an h-generator) of level k of AMg,p,1 is
a generator which corresponds to collapse a left g-edge (resp. h-edge) of level
k.

7.9 Remark. By Lemma 7.7, the inverse of a g-generator (resp. an h-generator)
of level k corresponds to collapse a right g-edge (resp. h-generator) of level k.

7.10 Lemma. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p such that σ(p) is a simplex of

dimension 3n − 3 = 6g + 3p − 3. Let h, q be integers such that (Γ↓, v↓0, ord↓) is
a (h, q)-fat graph with a distinguished vertex, and, let φ↓ : π1(Γ↓, v↓0)→ Fh,q,1 be

an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓) is a point in ôrdAh,q.
Let f be a g-edge (resp. an h-edge) of Γ of level k < n, and, let f ↓ be the edge

of Γ↓ identified with f under the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1.
Then there exists a g-generator (resp. an h-generator) of level k of AM

p
g,p,1 cor-

responding to collapse f in (Γ, v0, ord, φ) if and only if there exists a g-generator
(resp. an h-generator) of level k of AMh,q,1 corresponding to collapse f ↓ in

(Γ↓, v↓0, ord↓, φ↓).

Proof. Since level of f is k < n, there exists f ↓ ∈ E(Γ↓) as in the statement. By
Proposition 6.7, there exists a continuous map which is onto

µ : ôrdA
p

g,p → ôrdAh,q, p 7→ p↓.

If there exists a generator corresponding to collapse f in (Γ, v0, ord, φ), then
there exist a simplex σ(p′) = σ(Γ′, v′0, ord′, φ′) of dimension 3n− 3 = 6g+ 3p− 3
which has the codimension one face σ(pf ) = σ(Γf , vf0 , ordf , φf ). Hence, µ(p′) is
a simplex of dimension 3(n−1)−3 which has the codimension one face obtained
by collapsing f ↓ in p↓ = (Γ↓, v↓0, ord↓, φ↓).

Since µ is onto, if there exists a generator corresponding to collapse f ↓ in p↓,
then a similar argument can be applied.

7.11 Definition. With the hypothesis of the Corollary above, we say the gen-
erator of AM

p
g,p,1 corresponding to collapse f in p = (Γ, v0, ord, φ) is a lift of the

generator of AMh,q,1 corresponding to collapse f ↓ in p↓ = (Γ↓, v↓0, ord↓, φ↓).

7.12 Example. We compute generators of AM0,3,1 of level less than 3. By
Lemma 7.10 and Example 6.15, we have to lift generators of AM0,2,1. By Ex-
ample 3.8(a), AM0,2,1 = 〈x1 |〉, where x1 corresponds to collapse e1. Recall

P̂0,2 = cl(σ(Γ, v0, ord, φ)), where (Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, e4, e3). By
Example 6.4 and Definition 7.1, e1 is a left g-edge of level 2. Then, we denote
by g2 the generator x1 of AM0,2,1. Hence, AM0,2,1 = 〈g2 |〉.

To lift g2 ∈ AM0,2,1, we follow Example 7.4. Notice there is no left g-edge of
level 2 in (Γ1, v1,0, ord1, φ1), e3 is the left g-edge of level 2 in (Γ2, v2,0, ord2, φ2)
and e3 is the left g-edge of level 2 in (Γ3, v3,0, ord3, φ3). By Lemma 7.10, AM0,3,1

has two g-generators of level 2 corresponding to collapse e3 in (Γ2, v2,0, ord2, φ2)
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and e3 in (Γ3, v3,0, ord3, φ3). To identify these generators we collapse left and
right g-edges of level 2.

Collapsing left g-edges of level 2 we have the following.

(Γe32 , v
e3
2,0, orde32 ) = (e1, e2); (e1, e6, e7, e4), (e2, e5, e6), (e4, e7, e5)

= (e1, e2); (e1, e3, e4, e5), (e2, e6, e3), (e4, e6, e5)

(Γe33 , v
e3
3,0, orde33 ) = (e1, e2); (e1, e6, e7, e4), (e2, e4, e5), (e5, e7, e6)

= (e1, e2); (e1, e3, e4, e5), (e2, e5, e6), (e3, e6, e4)

Collapsing right g-edges of level 2 we have the following.

(Γe41 , v
e4
1,0, orde41 ) = (e1, e2); (e1, e3, e6, e7), (e2, e5, e3), (e5, e7, e6)

= (e1, e2); (e1, e3, e4, e5), (e2, e6, e3), (e4, e6, e5)

(Γe42 , v
e4
2,0, orde42 ) = (e1, e2); (e1, e3, e7, e5), (e2, e5, e6), (e3, e6, e7)

= (e1, e2); (e1, e3, e4, e5), (e2, e5, e6), (e3, e6, e4)

Since (Γe32 , v
e3
2,0, orde32 ) = (Γe41 , v

e4
1,0, orde41 ) and e3 is a left edge of (Γ2, v2,0, ord2),

we define the generator g2,2 which corresponds to collapse e3 in (Γ2, v2,0, ord2).
Since (Γe33 , v

e3
3,0, orde33 ) = (Γe42 , v

e4
2,0, orde42 ) and e3 is a left edge of (Γ3, v3,0, ord3),

we define the generator g2,3 which corresponds to collapse e3 in (Γ3, v3,0, ord3).
We represent these generators:

Γ1 Γ2
�

e4 e3
g2,2

Γ3
�

e4 e3
g2,3

We denote these generators by a g2 since they are lifts of the g-generator g2

in AM0,2,1, and a second subindex which denotes the fat graph where the left
edge which needs to be collapsed lies. Hence, g2,2 is obtained by collapsing the
left g-edge of level 2 in (Γ2, v2,0, ord2) and g2,3 is obtained by collapsing the left
g-edge of level 2 in (Γ3, v3,0, ord3).

7.13 Remark. We complete Remark 6.16. Each of the p+ 1 connected compo-

nents in P̂g,p ∩ ôrdA
p2

g,p which map onto P̂g−1,p+1 under µ corresponds to a cyclic

word in w(Γ↓2, v
↓
2,0, ord↓2) as follows. Each connected component in P̂g,p ∩ ôrdA

p2

g,p

contains points (Γ, v0, ord, φ) such that (Γ↓, v↓0, ord↓) = (Γ↓2, v
↓
2,0, ord↓2). By the

embedding (Γ↓2, v
↓
2,0, ord↓2) ↪→ (Γ, v0, ord), v↓2,0 7→ v1, there is a cyclic word in

w(Γ↓2, v
↓
2,0, ord↓2) which does not appears in w(Γ, v0, ord). Recall (Γ↓2, v

↓
2,0, ord↓2)

is a (g − 1, p + 1)-fat graph and (Γ, v0, ord) is a (g, p)-fat graph. There exists
a g-generator of level k < n in AMg−1,p+1,1 whose corresponding left g-edge is
incident to this cyclic word. Then, the lift of this g-generator of level k < n in
AM

p
g,p,1 connects the connected component containing p with another connected

component.
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7.14 Example. We compute generators of AM1,1,1 of level less than 3. By
Lemma 7.10 and Example 6.17, we have to lift generators of AM1,0,1 and AM0,2,1.

By Example 3.8(b), AM1,0,1 = 〈x1, x3 | x1x
−1
3 x−1

1 x−1
3 x1〉, where x1 cor-

responds to collapse e1, and, x3 corresponds to collapse e3. Recall P̂1,0 =
cl(σ(Γ′, v′0, ord′, φ′)), where (Γ′, v′0, ord′) = (e1, e2); (e1, e3, e4), (e2, e3, e4). By Ex-
ample 6.4 and Definition 7.1, e3 is a left h-edge of level 2, and, e1 is a left g-edge
of level 2. Then, we denote by h2 the generator x3 of AM1,0,1, and, by g2 the
generator x1 of AM1,0,1. Hence, AM1,0,1 = 〈h2, g2 | g2h

−1
2 g−1

2 h−1
2 g2〉.

To lift h2, g2 ∈ AM1,0,1, we have to complete Example 7.5. If we complete
Example 7.5, we will see e6 is the left h-edge of level 2 in (Γ1, v1,0, ord1, φ1), there
is no left h-edge of level 2 in (Γ2, v2,0, ord2, φ2), e7 is the left h-edge of level 2
in (Γ3, v3,0, ord3, φ3), e6 is the left h-edge of level 2 in (Γ4, v4,0, ord4, φ4), e6 is
the left h-edge of level 2 in (Γ5, v5,0, ord5, φ5), there is no left h-edge of level 2
in (Γ6, v6,0, ord6, φ6), e7 is the left h-edge of level 2 in (Γ7, v7,0, ord7, φ7), and,
e6 is the left h-edge of level 2 in (Γ8, v8,0, ord8, φ8). By Lemma 7.10, AM1,1,1

has six h-generators of level 2 corresponding to collapse these left h-edges of
level 2. To identify these generators, we can collapse left and right h-edges
of level 2 in (Γi, vi,0, ordi, φi), for i = 1, . . . , 8. We denote by h2,1 the gener-
ator corresponding to collapse e6 in (Γ1, v1,0, ord1, φ1), h2,3 the generator cor-
responding to collapse e7 in (Γ3, v3,0, ord3, φ3), h2,4 the generator correspond-
ing to collapse e6 in (Γ4, v4,0, ord4, φ4), h2,5 the generator corresponding to col-
lapse e6 in (Γ5, v5,0, ord5, φ5), h2,7 the generator corresponding to collapse e7

in (Γ7, v7,0, ord7, φ7), and, h2,8 the generator corresponding to collapse e6 in
(Γ8, v8,0, ord8, φ8). We represent these generators:

Γ1

e7 e6

h2,1
�

Γ2
�

e7 e7

h2,3

Γ3 Γ4

e7 e6

h2,4
�

Γ5

e7 e6

h2,5
�

Γ6
�

e7 e7

h2,7

Γ7 Γ8

e7 e6

h2,8
�

On the other hand, there are neither left g-edge of level 2 in (Γ1, v1,0, ord1, φ1)
nor in (Γ4, v4,0, ord4, φ4), and, e3 is the left g-edge of level 2 in (Γi, vi,0, ordi, φi),
for i = 2, 3, 5, 6, 7, 8. By Lemma 7.10, AM1,1,1 has six g-generators of level 2
corresponding to collapse these left g-edges of level 2. To identify this generators,
we can collapse left and right g-edges of level 2 in (Γi, vi,0, ordi, φi), for i =
1, . . . , 8. We denote by g2,i the generator corresponding to collapse left g-edges
of level 2 in (Γi, vi,0, ordi, φi), for i = 2, 3, 5, 6, 7, 8. We represent these generators:
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Γ1
�

e4 e3

g2,2

Γ2
�

e4 e3

g2,3

Γ3

�
e4 e3

g2,5

Γ4

�
e4 e3

g2,6

Γ5 Γ6
�

e4 e3

g2,7

Γ7
�

e4 e3

g2,8

Γ8

As in the previous example, AM0,2,1 = 〈g2 |〉 where g2 corresponds to col-
lapse e1 in (Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, e4, e3). To lift g2 ∈ AM0,2,1, we
follow Example 7.5. Notice there is no left g-egde of level 2 in (Γ1, v1,0, ord1, φ1)
and e3 is the left g-edge of level 2 in (Γi, vi,0, ordi, φi), for i = 10, . . . , 13. By
Lemma 7.10, AM1,1,1 has four g-generators of level 2 corresponding to collapse
e3 in (Γi, vi,0, ordi, φi), for i = 10, . . . , 13. To identify these generators, we can
collapse left and right g-edges of level 2 in (Γi, vi,0, ordi, φi), for i = 9, . . . , 13.
We denote by g2,i the generator corresponding to collapse e3 in (Γi, vi,0, ordi, φi),
for i = 10, . . . , 13. We represent these generators:

Γ9 Γ10
�

���
���

��

�
���

���
��

�

e3

g2,10

e4

Γ11

�

e4

e3

g2,11

Γ12 Γ13

Γ9 Γ10
�

���
���

��

6

e4

g2,12

e3

Γ11

*

e3

e4

g2,13

Γ12 Γ13

By Example 6.17, the first component of P̂0,2 contains Γ9,Γ10,Γ11 and the sec-
ond component contains Γ12,Γ13. These two components are connected through
codimension one faces obtained by collapsing g-edges of level 2.

7.2 Relations

We give a description of relations of AM
p
g,p,1 where p is a point in ordAg,p−Tg,p.

These are relations of AMg,p,1 which do not involve g-generators of level n.
Notice h-generators of level n are described in Lemma 6.10. The following

lemma describes relations involving generators of level k < n and h-generators
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of level n.

7.15 Lemma. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − T̂g,p. For i = 1, 2, let pi =

(Γi, vi,0, ordi, φi) be a point in ôrdA
p

g,p such that σ(pi) is a simplex of dimension
3n − 3 = 6g + 3p − 3. For i = 1, 2, let fi be a left g-edge (resp. h-edge) of
Γi of level k < n such that there exists a g-generator (resp. an h-generator)
corresponding to collapse fi in pi = (Γi, vi,0, ordi, φi).

If there exists a path γ from p1 to p2 such that γ lies in simplices of codi-
mension at most one where every codimension one simplex intersected by γ is
obtained by collapsing an h-edge of level n, then the generator corresponding to
collapse f1 in p1 = (Γ1, v1,0, ord1, φ1) is equal to the generator corresponding to
collapse f2 in p2 = (Γ2, v2,0, ord2, φ2), up to h-generators of level n.

Proof. Let h, q be integers such that (Γ↓, v↓0, ord↓) is a (h, q)-fat graph with a
distinguished vertex and let φ↓ : π1(Γ↓, v↓0) → Fh,q,1 be an isomorphism such

that (Γ↓, v↓0, ord↓, φ↓) is a point in ôrdAh,q.
By Proposition 6.7, there exists a continuous map

µ : ôrdA
p

g,p → ôrdAh,q, p 7→ p↓.

Since every codimension one simplex intersected by γ is obtained by collapsing
an h-edge of level n, we can suppose µ is constant on γ. Then

µ(p1) = µ(p2)

and γ is homotopic to a path γf from pf1 = (Γf11 , v
f1
1,0, ordf11 , φ

f1
1 ) to pf2 =

(Γf22 , v
f2
2,0, ordf22 , φ

f2
2 ) such that µ is constant on γf . Then γf lies in sim-

plices of codimension 1 or 2. The graph of each codimension 1 simplex
which contains a segment of γf has a vertex of valence 4. This vertex can
be split in two manners. One manner gives a (3n − 3)-dimensional simplex
which contains a segment of γ. Since there exists generators correspond-
ing to collapse fi in pi = (Γi, vi,0, ordi, φi), i = 1, 2, there exists simplices

σ(p′i) = σ(Γ′i, v
′
i,0, ord′i, φ

′
i), i = 1, 2, such that σ(Γfii , v

fi
i,0, ordfii , φ

fi
i ) is a com-

mon face of both σ(pi) and σ(p′i), i = 1, 2. From µ(pf11 ) = µ(pf22 ) we see
µ(p′1) = µ(p′2). By Lemma 7.10, the other manner to split the valence 4 vertex

gives a (3n−3)-dimensional simplex of ôrdA
p

g,p which maps to σ(µ(p′1)) under µ.
Then γf is homotopic to a path γ′ from p′1 to p′2 lying in simplices of codimen-
sion at most one where every codimension one simplex is obtained by collapsing
an h-edge of level n. For i = 1, 2, let βi be a path from pi to p′i through the

codimension one face σ(pfii ). Hence, there exists a disc in ôrdA
(Γ,v0,ord,φ)

g,p bounded

by β1, γ
′, β2 and γ.

7.16 Remark. Let p1 = (Γ1, v1,0, ord1, φ1) be a point in ôrdAg,p− T̂g,p. Suppose

(Γ↓1, v
↓
1,0, ord↓1) is a (g, p− 1)-fat graph with a distinguished vertex.
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Generators of AM
p1
g,p,1 are h-generators of level at most n and g-generators

of level at most n− 1.
By Remark 6.14, all h-edges of level n of AM

p1
g,p,1 are declared to be the

identity. See the first set of relations in Theorem 3.7 and Lemma 6.10.
By Lemma 7.10 and Definition 7.11, every generator of level at most n − 1

of AM
p1
g,p,1 is a lift of a generator of AMg,p−1,1.

By Remark 6.14, all lifts of a generators of AMg,p−1,1 are connected through
codimension one simplices corresponding to collapse h-edges of level n. Then, by
Lemma 7.15, the set of generators of AM

p1
g,p,1 is reduced to the set of generators

of AMg,p−1,1.

7.17 Example. By Example 7.12, AM0,3,1 has two lift of g2 ∈ AM0,2,1 denoted
g2,2 and g2,3. Recall g2,2 and g2,3 correspond to collapse the left g-edge of level
2 in (Γ2, v2,0, ord2, φ2) and (Γ3, v3,0, ord3, φ3), respectively. By Example 6.15,
σ(Γ2, v2,0, ord2, φ2) and σ(Γ3, v3,0, ord3, φ3) are connected through a codimension
one face obtained by collapsing an h-edge of level 3. Then, by Lemma 7.15,
g2,2 and g2,3 are equal, up to h-generators of level 3. We apply Theorem 3.7
to (Γ2, v2,0, ord2), the pair of edges {e3, e5} and collapsing e3. We obtain the
relation g2,2 h3,1 g

−1
2,3 h

−1
3,2. We represent this relation:

Γ2 Γ3
-

e5 e5
h3,2

Γ1 Γ2
-

e5 e6h3,1

�
���

���
��

g2,2 �

e4

e3 �
���

���
��

g2,3
�

e4

e3

By Remark 6.14, in AM0,3,1, we have h3,1 = h3,2 = 1. Then, relation

g2,2 h3,1 g
−1
2,3 h

−1
3,2 reduces to g2,2 = g2,3. Hence, AM

(Γ1,v1,0,ord1,φ1)
0,3,1 is generated

by g2,2. Since AM0,2,1 is generated by g2, this agrees with Remark 7.16.

7.18 Example. By Example 7.14, AM1,1,1 has six lifts of h2 in AM1,0,1 denoted
h2,i for i = 1, 3, 4, 5, 7, 8. Recall h2,i corresponds to collapse the left h-edge of
level 2 in (Γi, vi,0, ordi, φi), for i = 1, 3, 4, 5, 7, 8.

By Example 6.17, for i = 1, . . . , 7, σ(Γi, vi,0, ordi, φi) and σ(Γi+1, vi+1,0, ordi+1, φi+1)
are connected through a codimension one face obtained by collapsing an h-edge
of level 3. We represent the relations involving h-generators of level 2 and 3 that
we obtain by Theorem 3.7.
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Γ1
-

e5 e6

h3,1

Γ2
-

e5 e6

h3,2

Γ3
-

e5 e5

h3,3

Γ4
-

e3 e4

h3,4

Γ5
-

e5 e6

h3,5

Γ6
-

e5 e6

h3,6

Γ7
-

e5 e5

h3,7

Γ8

Γ1
-

e5 e6

h3,1

Γ2
-

e5 e6

h3,2

Γ3
-

e5 e5

h3,3

Γ4
-

e3 e4

h3,4

Γ5
-

e5 e6

h3,5

Γ6
-

e5 e6

h3,6

Γ7
-

e5 e5

h3,7

Γ8

?h2,1

e6

e7

�
�

�
�

	h2,3

e7

e7

?h2,4

e6

e7

?h2,5

e6

e7

�
�

�
�

	h2,7

e7

e7

?h2,8

e6

e7

By Remark 6.16, in AM1,1,1, we have h3,i = 1, i = 1, . . . , 7. Then, the
obtained relations reduce to h2,1 = h2,3 = h2,4 = h2,5 = h2,7 = h2,8.

By Example 7.14, AM1,1,1 has six lifts of g2 in AM1,0,1 denoted g2,i for i =
2, 3, 5, 6, 7, 8. Recall these generators correspond to collapse the left g-edge of
level 2 in (Γi, vi,0, ordi, φi), for i = 2, 3, 5, 6, 7, 8.

By Example 6.17, for i = 1, . . . , 7, σ(Γi, vi,0, ordi, φi) and σ(Γi+1, vi+1,0, ordi+1, φi+1)
are connected through a codimension one face obtained by collapsing an h-edge
of level 3. We represent the relations involving h-generators of level 3 and
g-generators of level 2 that we obtain by Theorem 3.7.

Γ1
-

e5 e6

h3,1

Γ2
-

e5 e6

h3,2

Γ3
-

e5 e5

h3,3

Γ4
-

e3 e4

h3,4

Γ5
-

e5 e6

h3,5

Γ6
-

e5 e5

h3,6

Γ7

Γ2
-

e5 e6

h3,2

Γ3
-

e5 e5

h3,3

Γ4
-

e3 e4

h3,4

Γ5
-

e5 e6

h3,5

Γ6
-

e5 e6

h3,6

Γ7
-

e5 e5

h3,7

Γ8

�
�
�
�

	g2,2

e3

e4

�
�

�
�

	g2,3

e3

e4

���
���

����

�g2,5

e3

e4

��
����

����

�g2,6

e3

e4

�
�

�
�

	g2,7

e3

e4

�
�
�
�

	g2,8

e3

e4

By Remark 6.16, in AM1,1,1, we have h3,i = 1, i = 1, . . . , 8. Then, the
obtained relations reduce to g2,2 = g2,3 = g2,5 = g2,6 = g2,7 = g2,8.

Hence, AM
(Γ1,v1,0,ord1,φ1)
1,1,1 is generated by h2,1 and g2,2. Since AM0,2,1 is gen-

erated by h2 and g2, this agrees with Remark 7.16.

7.19 Remark. Let p2 = (Γ2, v2,0, ord2, φ2) be a point in ôrdAg,p− T̂g,p. Suppose

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p+ 1)-fat graph with a distinguished vertex.

Generators of AM
p2
g,p,1 are h-generators of level at most n and g-generators of

level at most n−1. By Remark 6.16, for each (3(n−1)−3)-dimensional simplex

of P̂g−1,p+1, there are (p + 1) components connected through codimension one
faces obtained by collapsing h-edges of level n.

For each of these components, by Remark 6.16, all h-generators of level n of
AM

p2
g,p,1 are declared to be the identity, but one. See the first set of relations in

Theorem 3.7 and Lemma 6.10.
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By Lemma 7.10 and Definition 7.11, every generator of level at most n − 1
of AM

p2
g,p,1 is a lift of a generator of AMg−1,p+1,1.

Hence, by Lemma 7.15, the set of generators of AM
p2
g,p,1 is reduced to a set

of p + 1 h-generators of level n for each (3(n − 1) − 3)-dimensional simplex of

P̂g−1,p+1 (one generator for every connected component), and, (p+1) lifts of each
generator of AMg−1,p+1,1 (one lift for every connected component).

By Remark 7.13, there are p g-generators of level k < n which are declareted
to be the identity. Recall that the corresponding edge of these g-generators must
connect two connected components.

7.20 Example. By Example 6.17, (Γ9, v9,0, ord9, φ9), (Γ10, v10,0, ord10, φ10) and

(Γ11, v11,0, ord11, φ11) in ôrdA1,1 are connected by two paths contained in sim-
plices of codimension at most one where every codimension one simplex is ob-
tained by collapsing an h-edge of level 3. Similarly, (Γ12, v12,0, ord12, φ12) and
(Γ13, v13,0, ord13, φ13) are connected by two paths contained in simplices of codi-
mension at most one where every codimension one simplex is obtained by col-
lapsing an h-edge of level 3.

By Remark 6.16, in AM1,1,1, we have h3,10 = h3,11 = 1 and h3,13 = 1. Hence,
h3,9 and h3,12 are the h-generators of level 3 which are not declared to the iden-
tity for the components containing (Γ9, v9,0, ord9, φ9) and (Γ12, v12,0, ord12, φ12),
respectively.

By Example 7.14, AM1,1,1 has four lifts of g2 in AM0,2,1 denoted g2,i for
i = 10, . . . , 13. Recall g2,i corresponds to collapse the left g-edge of level 2 in
(Γi, vi,0, ordi, φi), for i = 10, . . . , 13. Notice g2,10 and g2,11 are the g-generators
of level 2 for the component containing (Γ9, v9,0, ord9, φ9); g2,12 and g2,13 are the
g-generators of level 2 for the component containing (Γ12, v12,0, ord12, φ12).

By Theorem 3.7 we obtain relations involving g2,10 and g2,11: g2,10 h3,12 g
−1
2,11 h

−1
3,10

and g2,10 h
−1
3,13 g

−1
2,11 h3,11 h3,9. We represent these relations.

Γ10
�
���

���
��

�
���

���
��

�

e3

g2,10

e4

h3,10
-

e5 e6

h3,12

-
e5 e6

Γ11

�

e4

e3

g2,11

Γ12 Γ13
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Γ9 Γ10
���

���
���

���
���

���

�

e3

g2,10

e4

h3,11
�

e5 e5

h3,9
-

e3 e4

h3,13

�

e6 e5

Γ11

�

e4

e3

g2,11

Γ12 Γ13

Since, in AM1,1,1, we have h3,10 = h3,11 = 1 and h3,13 = 1, these relations
reduce to g2,10h3,12 = g2,11 and h3,9g2,10 = g2,11.

By Theorem 3.7 we obtain relations involving g2,12 and g2,13: g−1
2,12 h3,12 g2,13 h

−1
3,10 h

−1
3,9

and g−1
2,12 h

−1
3,13 g2,13 h3,11. We represent these relations.

Γ9 Γ10
���

���
���

*6

e4

g2,12

e3

h3,10
-

e5 e6
h3,9
-

e3 e4
Γ11

e3

e4

g2,13

h3,12

-
e5 e6

Γ12 Γ13

Γ9

6

��
���

����

*

e4

g2,12

e3

h3,11
�

e5 e5

h3,13

�

e6 e5

Γ11

e3

e4

g2,13

Γ12 Γ13

Since, h3,10 = h3,11 = 1, h3,13 = 1 hold in AM1,1,1, these relations reduce to
h3,12g2,13 = g2,12h3,9 and g2,13 = g2,12.

Hence, AM
(Γ1,v1,0,ord1,φ1)
1,1,1 is generated by two h-generators of leve 3: h3,9, h3,12;

and, two g-generators of level 2: g2,10, g2,12. Notice g-generators of level 2 connect
the two connected components. And one of the g-generators of level 2 needs to
declareted the identity to connect the two connected components. Since AM0,2,1

is generated by a g-generator of level 2, this agrees with Remark 7.19. If we
declare g2,12 = 1, then h3,9 = h3,12 and g2,10h3,9 = h3,9g2,10.

7.21 Lemma. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p such that σ(p) is a simplex
of dimension 3n − 3 = 6g + 3p − 3. Let fi ∈ E(Γ), i = 1, 2, such that there
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exists a codimention two face σ(pf1,f2) = σ(Γf1,f2 , vf1,f20 , ordf1,f2 , φf1,f2) in ôrdA
p

g,p

obtained by collapsing f1 and f2. Let h, q be integers such that (Γ↓, v↓0, ord↓) is
a (h, q)-fat graph with a distinguished vertex, and, let φ↓ : π1(Γ↓, v↓0)→ Fh,q,1 be

an isomorphism such that (Γ↓, v↓0, ord↓, φ↓) is a point in ôrdAh,q. Let

µ : ôrdA
p

g,p → ôrdAh,q, p 7→ p↓.

be the map described in Proposition 6.7.

(i) If either f1 or f2 is an h-edges of level n, then µ(σ(pf1,f2)) is a codimention

one face of ôrdAh,q.

(ii) If neither f1 nor f2 is an h-edge of level n, then µ(σ(pf1,f2)) is a codimen-

tion two face of ôrdAh,q.

Proof. Notice neither f1 nor f2 is a g-edge of level n.
(i) Suppose f1 is an h-edge of level n.
If f2 is an h-edge of level n, then there exists an edge f ↓ in (Γ↓, v↓0, ord↓)

identified under (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with the concatenation
f1 and f 2 in (Γ, v0, ord). Hence, µ sends the codimension two face σf1,f2 to the
codimension one face of σ(p↓) = σ(Γ↓, v↓0, ord↓, φ↓) obtained by collapsing f ↓.

If f2 is not an h-edge of level n, then there exists an edge f ↓2 in (Γ↓, v↓0, ord↓)
identified under (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with f2 in (Γ, v0, ord).
Hence, µ sends the codimension two face σf1,f2 to the codimension one face of
σ(p↓) = σ(Γ↓, v↓0, ord↓, φ↓) obtained by collapsing f ↓2 .

(ii) If neither f1 nor f2 is an h-edge of level n, then there exist edges f ↓1 , f
↓
2 in

(Γ↓, v↓0, ord↓) identified under (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1, with f1, f2

in (Γ, v0, ord), respectively. Hence, µ sends the codimension two face σf1,f2 to
the codimension two face of σ(p↓) = σ(Γ↓, v↓0, ord↓, φ↓) obtained by collapsing f ↓1
and f ↓2 .

7.22 Corollary. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p such that σ(p) is a simplex of

dimension 3n − 3 = 6g + 3p − 3. Let h, q be integers such that (Γ↓, v↓0, ord↓) is
a (h, q)-fat graph with a distinguished vertex, and, let φ↓ : π1(Γ↓, v↓0)→ Fh,q,1 be

an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓) is a point in ôrdAh,q.

For i = 1, 2, let fi ∈ E(Γ) of level at most n − 1, and, let f ↓i be identified
with fi under (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1.

(i) There exists the codimension two face σ(pf1,f2) = σ(Γf1,f2 , vf1,f20 , ordf1,f2 , φf1,f2)

in ôrdA
p

g,p obtained by collapsing f1 and f2 if, and only if, there exists

the codimension two face in ôrdAh,q obtained by collapsing f ↓1 and f ↓2 in

p↓ = (Γ↓, v↓0, ord↓, φ↓).
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(ii) There exists a relation corresponding to the codimension two face σ(pf1,f2) =

σ(Γf1,f2 , vf1,f20 , ordf1,f2 , φf1,f2) in ôrdA
p

g,p obtained by collapsing f1 and f2 if,
and only if, there exists a relation corresponding to the codimension two

face in ôrdAh,q obtained by collapsing f ↓1 and f ↓2 in p↓ = (Γ↓, v↓0, ord↓, φ↓).

Proof. (i) If there exists the codimension two face σ(pf1,f2) of ôrdA
p

g,p, by
Lemma 7.21(ii), there exists the codimension two face corresponding to collapse
f ↓1 and f ↓2 in p↓ = (Γ↓, v↓0, ord↓, φ↓).

If there exists the codimension two face corresponding to collapse f ↓1 and
f ↓2 in p↓ = (Γ↓, v↓0, ord↓, φ↓), then f ↓1 and f ↓2 can be collapsed in (Γ↓, v↓0, ord↓).
Hence, f1 and f2 can be collapsed in (Γ, v0, ord) and there exists the codimension

two face σf1,f2 of ôrdA
p

g,p.
(ii) Follows from (i) above and Lemma 7.10.

7.23 Definition. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p such that σ(p) is a simplex

of dimension 3n− 3 = 6g + 3p− 3. Let h, q be integers such that (Γ↓, v↓0, ord↓)
is a (h, q)-fat graph with a distinguished vertex, and, let φ↓ : π1(Γ↓, v↓0)→ Fh,q,1

be an isomorphism such that p↓ = (Γ↓, v↓0, ord↓, φ↓) is a point in ôrdAh,q.
For i = 1, 2, let fi ∈ E(Γ), such that there exists a codimention two face

σ(pf1,f2) = σ(Γf1,f2 , vf1,f20 , ordf1,f2 , φf1,f2) in ôrdA
p

g,p obtained by collapsing f1

and f2. Suppose fi, i = 1, 2, is an edge of level at most n − 1, and, let f ↓i be
identified with fi under (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1.

We say that the codimension two face σ(pf1,f2) of ôrdA
p

g,p is a lift of the

codimension two face in ôrdAh,q obtained by collapsing f ↓1 and f ↓2 in p↓ =

(Γ↓, v↓0, ord↓, φ↓).
If there exists a relation r in AM

p
g,p,1 deduced from the codimension two face

σ(pf1,f2), then we say that the relation r of AM
p
g,p,1 is a lift of the relation of

AM
p
h,q,1 deduced from the codimension two face obtained by collapsing f ↓1 and

f ↓2 in p↓ = (Γ↓, v↓0, ord↓, φ↓).

7.24 Corollary. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − T̂g,p.

(i) Every relation in AM
p
g,p,1 obtained by Theorem 3.7 which involves h-generators

of level n is deduced from Lemma 7.15.

(ii) Every relation in AM
p
g,p,1 obtained by Theorem 3.7 which does not in-

volve h-generators of level n is a lift of a relation in AMh,q,1, where

p↓ = (Γ↓, v↓0, ord↓) is a (h, q)-fat graph with a distinguished vertex.

Proof. (i) Follows from Lemma 7.21(i).
(ii) Follows from Lemma 7.21(ii) and Definition 7.23.
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7.25 Remark. Let p1 = (Γ1, v1,0, ord1, φ1) ∈ ôrdAg,p − T̂g,p. Suppose p↓1 =

(Γ↓1, v
↓
1,0, ord↓1) is a (g, p− 1)-fat graph with a distinguished vertex

By Proposition 6.13, AM
p1
g,p,1 ' AMg,p−1,1. Results on this section give

an explicit description of this isomorphism as follows. By Remark 7.16, there
is a bijection between generators of AM

p1
g,p,1 and generators of AMg,p−1,1. By

Corollary 7.24, relations not involving h-generators of level n in AM
p1
g,p,1 are lifts

of relations in AMg,p−1,1.

7.26 Example. Recall AM0,2,1 = 〈g2 |〉. Following Example 7.17, by Corol-

lary 7.24, AM
(Γ1,v1,0,ord1,φ1)
0,3,1 = 〈g2,2 |〉 ' AM0,2,1.

7.27 Example. Recall AM1,0,1 = 〈h2, g2 | g2h
−1
2 g−1

2 h−1
2 g2〉. The relation in

AM1,0,1 lifts to the following relations in AM
(Γ1,v1,0,ord1,φ1)
1,1,1 : g2,2h

−1
2,1g

−1
2,2h

−1
2,3g2,3;

g2,3h
−1
2,3g

−1
2,5h

−1
2,5g2,5; g2,6h

−1
2,4g

−1
2,6h

−1
2,7g2,7 and g2,7h

−1
2,7g

−1
2,8h

−1
2,8g2,8. Following Exam-

ple 7.18, these relations reduce to the same relation. By Corollary 7.24,

AM
(Γ1,v1,0,ord1,φ1)
1,1,1 = 〈h2,1, g2,2 | g2,2h

−1
2,1g

−1
2,2h

−1
2,1g2,2〉 ' AM1,0,1.

7.28 Remark. Let p2 = (Γ2, v2,0, ord2, φ2) ∈ ôrdAg,p − T̂g,p. Suppose p↓2 =

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p+ 1)-fat graph with a distinguished vertex.

By Proposition 6.13, AM
p2
g,p,1 ' AMg−1,p,2. Results on this section give an

explicit description of this isomorphism as follows. By Remark 7.16, AM
p2
g,p,1 is

generated by (p+1) copies of the generators of AMg,p−1,1 and (p+1) h-generators

of level n for each (3(n− 1)− 3)-dimensional simplex of P̂g−1,p+1. On the other
hand, relations not involving h-generators of level n in AM

p2
g,p,1 are lifts of re-

lations in AMg−1,p+1,1. Recall P̂g,p ∩ ôrdA
p2

g,p has p + 1 connected components

which map onto P̂g−1,p+1 under µ. Each of these connected components corre-

spond to a cyclic word in w(Γ↓2, v
↓
2,0, ord↓2). See 6.16 and Remark 7.13. There are

p g-generators of level k < n which are declareted to be the identity.

7.29 Example. Recall AM0,2,1 = 〈g2 |〉. By Example 7.20 and by Corol-

lary 7.24, AM
(Γ9,v9,0,ord9,φ9)
1,1,1 = 〈h3,9, g2,10 | h3,9g2,10 = g2,10h3,9〉.

8 g-generators of level n

We describe a refinement of the decomposition of ôrdAg,p which gives g-generators
of level n and some relations involving g-generators of level n. We deduce AMg,p,1

is a quotient of the fundamental group of a graph of groups. We define a second

refinement of the decomposition of ôrdAg,p which gives the missing relations.

8.1 Definition. For i = 1, 2, let T̂(i)
g,p be the set of points p = (Γ, v0, ord, φ) ∈

ôrdAg,p − T̂g,p such that |u∗| ≥ 4 where ei ∈ u∗, u ∈ V (Γ).
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8.2 Remark. For i = 1, 2, if p = (Γ, v0, ord, φ) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p), then

|v∗0| = 2 and |v∗i | = 3.

8.3 Definition. For i = 1, 2, let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p).

We denote by ôrdA
p,(i)

g,p the connected component of ôrdAg,p− (T̂g,p∪ T̂(i)
g,p) which

contains p.
We define

AM
p,(i)
g,p,1 = {ϕ ∈ AMg,p,1 | ϕ · p ∈ ôrdA

p,(i)

g,p }.

8.4 Remark. For i = 1, 2, let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p).

Notice ôrdA
p,(i)

g,p can be defined as the connected component of ôrdA
p

g,p − T̂(i)
g,p

which contains p.

Since ôrdA
p,(i)

g,p ⊂ ôrdA
p

g,p, we see AM
p,(i)
g,p,1 is a subgroup of AM

p
g,p,1.

8.5 Remark. Let p = (Γ, v0, ord, φ) ∈ ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p), and, let h, q be

integers such that (Γ↓, v↓0, ord↓) is a (h, q)-fat graph with a distinguished vertex.

Since p ∈ ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p), we see |v↓0| = 2. Hence, we can consider

the (k, r)-fat graph with a distinguished vertex (Γ↓↓, v↓↓0 , ord↓↓) where k, r are
integers such that either (k, r) = (h, q − 1) or (k, r) = (h− 1, q + 1).

We consider the composition of embeddings

(Γ↓↓, v↓↓0 , ord↓↓) ↪→ (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord)

v↓↓0 7→ v↓1
v↓0 7→ v1

Notice e1, e2, e3, e4 ∈ E(Γ) do not lie in the image of this composition.
We can obtain results for the composition above analogous to the results

obtained for the embedding (Γ↓, v↓0, ord↓) ↪→ (Γ, v0, ord), v↓0 7→ v1.
Let w(Γ, v0, ord) = {w0, [w1], . . . , [wp]}. Since

(Γ, v0, ord) = (e1, e2); (e1, e3, e4), (e2, . . .), . . .

w0 starts with e1e3 and ends with e2, and, e4e1e2 and e3e4 appear in w(Γ, v0, ord).
Lemma 4.8 can be extended as follows.

(i) If w0 = e1e3w
′
0e2, [wi] = [e4e1e2w

′
i] for some 1 ≤ i ≤ p, then (h, q) =

(g, p− 1) and exactly one of the cases holds.

(a) If w′0 = u′0e3e4v
′
0, then (k, r) = (h− 1, q+ 1) = (g− 1, p). Hence, g and

p satisfy g ≥ 1 and p ≥ 1.

(b) If w′i = u′ie3e4v
′
i, then (k, r) = (h− 1, q + 1) = (g− 1, p). Hence, g and

p satisfy g ≥ 1 and p ≥ 1.
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(c) If [wj] = [e3e4vj] for some 1 ≤ j ≤ p, j 6= i, then (k, r) = (h, q − 1) =
(g, p− 2). Hence, p satisfies p ≥ 2.

Notice w(Γ↓, v↓0, ord↓) = {w↓0, [w
↓
1], . . . , [w↓i−1], [w↓i+1], . . . , [w↓p]} where w↓0 =

e3w
′
0w
′
ie4 and, [w↓j ] = [wj] for 1 ≤ j ≤ p, j 6= i. The three cases above are

deduced by considering where e3e4 appears.

(ii) If w0 = e1e3w
′
0e4e1e2w

′′
0e2, then (h, q) = (g − 1, p + 1) and exactly one of

the cases holds.

(d) If w′0 = u′0e3e4v
′
0, then (k, r) = (h− 1, q+ 1) = (g− 2, p+ 2). Hence, g

satisfies g ≥ 2.

(e) If w′′0 = u′′0e3e4v
′′
0 , then (k, r) = (h, q−1) = (g−1, p). Hence, g satisfies

g ≥ 1.

(f) If [wi] = [e3e4ui] for some 1 ≤ i ≤ p, then (k, r) = (h, q−1) = (g−1, p).
Hence, g and p satisfy g ≥ 1 and p ≥ 1.

Notice w(Γ↓, v↓0, ord↓) = {w↓0, [w
↓
1], . . . , [w↓p], [w

↓
p+1]} where w↓0 = e3w

′
0e4,

[w↓p+1] = [w′′0 ] and [w↓j ] = [wj] for 1 ≤ j ≤ p. The three cases above are
deduced by considering where e3e4 appears.

Lemma 6.6 can be extended as follows. Let φ↓↓ : π1(Γ↓↓, v↓↓0 ) → Fk,r,1 be an

isomorphism such that p↓↓ = (Γ↓↓, v↓↓0 , ord↓↓, φ↓↓) is a point in ôrdAk,r. If σ(p) is

a (6g+ 3p− 3)-dimensional simplex, then a path in ôrdAk,r lying in simplices of

codimentions at most one and starting at p↓↓ can be lifted to a path in ôrdA
p,(1)

g,p

lying in simplices of codimension at most one and starting at p.
Proposition 6.7 can be extended as follows. We can define a continuous map

µ(1) : ôrdA
p,(1)

g,p → ôrdAk,r, p 7→ p↓↓.

We see ôrdA
p,(1)

(g,p) is simply connected. See Corollary 6.9.

Since ôrdA
p,(1)

(g,p) has a complex structure, a presentation for AM
p,(1)
g,p,1 can be

obtained by Theorem 3.7 applied to the action of AM
p,(1)
g,p,1 on ôrdA

p,(1)

g,p .
Proposition 6.11 can be extended as follows. If (h, q) = (g, p − 1), let pa =

(Γa, va,0, orda, φa), pb = (Γb, vb,0, ordb, φb), pc = (Γc, vc,0, ordc, φc) ∈ ôrdA
p

g,p− T̂(1)
g,p

such that (Γa, va,0, orda), (Γb, vb,0, ordb) and (Γc, vc,0, ordc) satisfy conditions (ia),
(ib) and (ic) above, respectively. Then

ôrdA
p

g,p − T̂(1)
g,p =

(
∪ϕa (ϕa · ôrdA

pa,(1)

g,p )
)
∪
(
∪ϕb

(ϕb · ôrdA
pb,(1)

g,p )
)

∪
(
∪ϕc (ϕc · ôrdA

pc,(1)

g,p )
)
,
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where ϕa ranges over AM
p
g,p,1/AM

pa,(1)
g,p,1 , ϕb ranges over AM

p
g,p,1/AM

pb,(1)
g,p,1 and ϕc

ranges over AM
p
g,p,1/AM

pc,(1)
g,p,1 ; and every pair of sets on the right-hand side are

disjoint.
A similar result holds if (h, q) = (g − 1, p+ 1) and pa, pb and pc are replaced

by pd = (Γd, vd,0, ordd, φd), pe = (Γe, ve,0, orde, φe), pf = (Γf , vf,0, ordf , φf ) ∈
ôrdA

p

g,p− T̂(1)
g,p such that (Γd, vd,0, ordd), (Γe, ve,0, orde) and (Γf , vf,0, ordf ) satisfy

conditions (iid), (iie) and (iif) above, respectively.

We can choose P̂g,p such that there are at most three connected components

in P̂g,p ∩ (ôrdA
p

g,p − T̂(1)
g,p), one for every case above. Notice P̂g,p ∩ (ôrdA

p

g,p −
T̂(1)
g,p) can be computed from P̂g,p ∩ ôrdA

p

g,p by removing codimension one faces
corresponding to collapse edges e3 and e4.

Proposition 6.13 can be extended as follows, where pa, pb, pc, pd, pe and pf are
as above.

(iii) If (h, q) = (g, p− 1), then

(a) AM
pa,(1)
g,p,1 ' AMg−1,p−1,2.

(b) AM
pb,(1)
g,p,1 ' AMg−1,p−1,2

(c) AM
pc,(1)
g,p,1 ' AMg,p−2,1.

(iv) If (h, q) = (g − 1, p), then

(d) AM
pd,(1)
g,p,1 ' AMg−2,p,3.

(e) AM
pe,(1)
g,p,1 ' AMg−1,p,1

(f) AM
pf ,(1)
g,p,1 ' AMg−1,p−1,2.

8.6 Example. We apply Remark 8.5 to (g, p) = (0, 3). The case (h, q) =
(g − 1, p + 1) is empty and the case (h, q) = (g, p − 1) does not satisfies nei-
ther (ia) nor (ib) in Remark 8.5. Following Example 6.15 and Example 7.12,

P̂0,3 ∩ (ôrdA
(Γ1,v1,0,ord1,φ1)

3,0 − T̂(1)
0,3) has one component corresponding to (ic) in

Remark 8.5. This component is computed from P̂0,3 ∩ ôrdA
(Γ1,v1,0,ord1,φ1)

3,0 by re-
moving codimension one faces obtained by collapsing edges e3 and e4. We obtain

the following representation of P̂0,3 ∩ ôrdA
(Γ1,v1,0,ord1,φ1),(1)

3,0 .

Γ1 Γ2
-

e5 e6
h3,1

Γ3
-

e5 e5
h3,2

By (iiic) in Remark 8.5, AM
(Γ1,v1,0,ord1,φ1),(1)
0,3,1 ' AM0,1,1 is the trivial group.
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8.7 Example. We apply Remark 8.5 to (g, p) = (1, 1). The case (h, q) =
(g, p − 1) does not satisfies (ic) in Remark 8.5. Following Example 6.17 and

Example 7.13, P̂1,1 ∩ (ôrdA
(Γ1,v1,0,ord1,φ1)

1,1 − T̂(1)
1,1) has two components: P̂1,1 ∩

ôrdA
(Γ1,v1,0,ord1,φ1),(1)

1,1 corresponding to (ib), and, P̂1,1∩ôrdA
(Γ5,v5,0,ord5,φ5),(1)

1,1 corre-

sponding to (ia). These components are computed from P̂1,1∩ ôrdA
(Γ1,v1,0,ord1,φ1)

1,1

by removing codimension one faces obtained by collapsing edges e3 and e4.

P̂1,1 ∩ ôrdA
(Γ1,v1,0,ord1,φ1),(1)

1,1 has the following representation.

Γ1

e7 e6

h2,1
�

-
h3,1e5 e6

Γ2
-
h3,2e5 e6

e7 e7

�
h2,3

Γ3
-
h3,3

Γ4

e7
e5 e5

e6

h2,4
�

By (iiib) in Remark 8.5, AM
(Γ1,v1,0,ord1,φ1),(1)
1,1,1 ' AM0,0,2 is a cyclic infinite

group generated by h2,1.

And, P̂1,1 ∩ ôrdA
(Γ5,v5,0,ord5,φ5),(1)

1,1 has the following representation.

Γ5

e7 e6

h2,5
�

-
h3,5e5 e6

Γ6
-
h3,6e5 e6

e7 e7

�
h2,7

Γ7
-
h3,7

Γ8

e7
e5 e5

e6

h2,8
�

By (iiia) in Remark 8.5, AM
(Γ5,v5,0,ord5,φ5),(1)
1,1,1 ' AM0,0,2 is a cyclic infinite

group generated by h2,5.
The case (h, q) = (g−1, p+1) does not satisfies condition (iid) in Remark 8.5.

Following Example 6.17 and Example 7.13, P̂1,1 ∩ (ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 − T̂(1)
1,1) has

two components: P̂1,1 ∩ ôrdA
(Γ9,v9,0,ord9,φ9),(1)

1,1 corresponding to (iie), and, P̂1,1 ∩

ôrdA
(Γ12,v12,0,ord12,φ12),(1)

1,1 corresponding to (iif). These components are computed

from P̂1,1 ∩ ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 by removing codimension one faces obtained by
collapsing edges e3 and e4.

P̂1,1 ∩ ôrdA
(Γ9,v9,0,ord9,φ9),(1)

1,1 has the following representation.

55



Γ9 Γ10 Γ11
-

e5 e6h3,10

�
h3,11

e5 e5

By (ive) in Remark 8.5, AM
(Γ9,v9,0,ord9,φ9),(1)
1,1,1 ' AM0,1,1 is the trivial group.

And, P̂1,1 ∩ ôrdA
(Γ12,v12,0,ord12,φ12),(1)

1,1 has the following representation.

Γ12 Γ13
-

e5 e6h3,12

�
h3,13

e6 e5

By (ivf) in Remark 8.5, AM
(Γ12,v12,0,ord12,φ12),(1)
1,1,1 ' AM0,0,2 is a cyclic infinite

group generated by h3,12h3,13.

8.8 Remark. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p).

Suppose

(5) σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ).

Then edges of (Γe11 , v
e1
1,0, orde11 ) are identified with edges of (Γe22 , v

e2
2,0, orde22 )

through the codimension one face (5). In particular, the following identifica-
tions hold.

E(Γ1)− {e1} ↔ E(Γ2)− {e2}
e2 ↔ right h-edge of level n,

e3 ↔ e1,

e4 ↔ left h-edge of level n.

And, edges of (Γ1, v1,0, ord1) but e1, e2, e3, e4 are identified with edges of (Γ2, v2,0, ord2)
but e1, e2, left h-edge of level n, right h-edge of level n.

8.9 Lemma. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p)

such that

σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ).

Then, there exist continuous maps

ôrdA
p1,(1)

g,p → ôrdA
p2,(2)

g,p and ôrdA
p2,(2)

g,p → ôrdA
p1,(1)

g,p

which are homotopy inverse. Hence, ôrdA
p1,(1)

g,p and ôrdA
p2,(2)

g,p are homotopy
equivalent.
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Proof. We define ôrdA
p1,(1)

g,p → ôrdA
p2,(2)

g,p . Let p = (Γ, v0, ord, φ) ∈ ôrdA
p1,(1)

g,p .
Then |v∗0| = 2 and |v∗1| = 3 hold in (Γ, v0, ord). We define the homotopy which
reduces the length of e1 to 0 and increases the length of e3 in the same proportion.
Since, in (Γ, v0, ord), |v∗0| = 2 and |v∗1| = 3, the distinguished vertex, ve10 , of
(Γe1 , ve10 , orde1) has valency 3. Then ve10 can be split in a unique manner to
produce points p′ = (Γ′, v′0, ord′, φ′) /∈ σ(p). We define a second homotopy which
splits ve10 such that the length of e2 in (Γ′, v′0, ord′) increases from 0 to the length
of e1 in (Γ, v0, ord), and the length of e1 in (Γ′, v′0, ord′) decreases from sum of the
lengths of e1 and e3 in (Γ, v0, ord) to the length of e3 in (Γ, v0, ord). If (Γ′, v′0, ord′)

is not a strongly non-separating graph, then p′ does not lie in ôrdA
p2,(2)

g,p . In this

case, to obtain points in ôrdA
p2,(2)

g,p we have to collapse edges in (Γ′, v′0, ord′) to
obtain a strongly non-separating graph.

The inverse map ôrdA
p2,(2)

g,p → ôrdA
p1,(1)

g,p is defined similarly, by firstly col-

lapsing e2 in p ∈ ôrdA
p2,(2)

g,p .
It is clear that these maps are homotopy inverse.

8.10 Corollary. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p)

such that

σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ).

Then, AM
p1,(1)
g,p,1 and AM

p2,(2)
g,p,1 are isomorphic.

Proof. Follows from Proposition 8.9 and Definition 8.3.

8.11 Proposition. For i = 1, 2, 3, 4, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p such

that σ(pi) is a simplex of dimension 6g+ 3p− 3 = 3n− 3. Suppose p1, p3 ∈ P̂g,p,

ôrdA
p1,(1)

g,p = ôrdA
p3,(1)

g,p ,

σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ),

and,

σ(pe13 ) = σ(Γe13 , v
e1
3,0, orde13 , φ

e1
3 ) = σ(Γe24 , v

e2
4,0, orde24 , φ

e2
4 ) = σ(pe24 ).

Let gn,1 be the generator of AMg,p,1 corresponding to collapse e1 in p1, and,
let gn,3 be the generator of AMg,p,1 corresponding to collapse e1 in p3. Then

gn,3 = gn,1w for some w ∈ AM
p2,(2)
g,p,1 ⊆ AM

p2
g,p,1.

Proof. Let γ1 be a path from p1 to p3 contained in P̂g,p ∩ ôrdA
p1,(1)

g,p . The map

ôrdA
p1,(1)

g,p → ôrdA
p2,(2)

g,p
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in Lemma 8.9 gives a path γ2 homotopic to γ1 from p2 to p4. Let β1 be the path
from p1 to p2 through the codimension one face σ(pe11 ) = σ(pe22 ). And, let β3

be the path from p3 to p4 through the codimension one face σ(pe13 ) = σ(pe24 ).

Then, γ1β3γ2β1 bounds a disc in ôrdAg,p. Notice β1 and β3 correspond to the
generators gn,1 and gn,3, respectively. We can suppose γ1 and γ2 lie in simplices

of codimension at most 1. Since γ1 is contained in P̂g,p, its corresponding word

is the identity. Since γ2 is contained in ôrdA
p2,(2)

g,p , the word w corresponding to

γ2 lies in AM
p2,(2)
g,p,1 . Hence, the relation gn,3w

−1g−1
n,1 holds in AMg,p,1.

8.12 Remark. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p).

Suppose (Γ↓1, v
↓
1,0, ord↓1) is a (g, p− 1)-fat graph with a distinguished vertex and

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p + 1)-fat graph with a distinguished vertex. By

Proposition 6.11 and Proposition 8.11, AMg,p,1 is generated by generators of
AM

pi
g,p,1 for i = 1, 2 and a g-generators of level n for each connected component

of P̂g,p ∩ (ôrdA
p1

g,p − T̂(1)
g,p) and P̂g,p ∩ (ôrdA

p2

g,p − T̂(1)
g,p).

8.13 Example. Recall P̂0,3 has three simplices of dimension 6g + 3p − 3 = 6
described in Example 6.15. To compute g-generators of level 3 in AM0,3,1, we
collapse edges e1 and e2 for each of these simplices.

(Γe11 , v
e1
1,0, orde11 ) = (e3, e4, e2); (e3, e2, e5), (e4, e6, e7), (e5, e7, e6),

= (e1, e2, e3); (e1, e3, e4), (e2, e5, e6), (e4, e6, e5).

(Γe12 , v
e1
2,0, orde12 ) = (e3, e4, e2); (e3, e6, e7), (e4, e7, e5), (e2, e5, e6),

= (e1, e2, e3); (e1, e4, e5), (e2, e5, e6), (e3, e6, e4).

(Γe13 , v
e1
3,0, orde13 ) = (e3, e4, e2); (e3, e6, e7), (e4, e5, e2), (e6, e5, e7),

= (e1, e2, e3); (e1, e4, e5), (e2, e6, e3), (e4, e6, e5).

And,

(Γe21 , v
e2
1,0, orde21 ) = (e1, e5, e3); (e1, e3, e4), (e5, e7, e6), (e4, e6, e7),

= (e1, e2, e3); (e1, e3, e4), (e2, e5, e6), (e4, e6, e5).

(Γe22 , v
e2
2,0, orde22 ) = (e1, e5, e6); (e1, e3, e4), (e5, e4, e7), (e3, e6, e7),

= (e1, e2, e3); (e1, e4, e5), (e2, e5, e6), (e3, e6, e4).

(Γe23 , v
e2
3,0, orde23 ) = (e1, e4, e5); (e1, e3, e4), (e5, e7, e6), (e3, e6, e7),

= (e1, e2, e3); (e1, e4, e2), (e3, e5, e6), (e4, e6, e5).

Since (Γe11 , v
e1
1,0, orde11 ) = (Γe21 , v

e2
1,0, orde21 ) and (Γe12 , v

e1
2,0, orde12 ) = (Γe22 , v

e2
2,0, orde22 ),

there are two g-generators of level 3 denoted g3,1 and g3,2, respectively. By Exam-

ple 8.6, P̂0,3∩(ôrdA
(Γ1,v1,0,ord1,φ1)

0,3 −T̂(1)
0,3) has one component and (Γ1, v1,0, ord1, φ1),

(Γ2, v2,0, ord2, φ2) ∈ P̂0,3 ∩ ôrdA
(Γ1,v1,0,ord1,φ1),(1)

0,3 can be joined by a path through
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the codimension one face (Γe51 , v
e5
1,0, orde51 , φ

e5
1 ) = (Γe62 , v

e6
2,0, orde62 , φ

e6
2 ) contained

in P̂0,3 ∩ ôrdA
(Γ1,v1,0,ord1,φ1),(1)

0,3 . By Proposition 8.11, g3,1 = g3,2w for some

w ∈ AM
(Γ1,v1,0,ord1,φ1)
0,3,1 . If we apply Theorem 3.7 to (Γ1, v1,0, ord1, φ1), the pair

of edges {e1, e5} and collapsing e1; we have the relation g3,1g
−1
2,2g

−1
3,2h

−1
3,1. Since

in AM
(Γ1,v1,0,ord1,φ1)
0,3,1 there is the relation h3,1 = 1, we see g3,2 = g3,1g

−1
2,2. Hence,

g3,2 ∈ g3,1AM
(Γ1,v1,0,ord1,φ1)
0,3,1 .

8.14 Example. Recall P̂1,1 has thirteen simplices of dimension 6g+ 3p− 3 = 6
described in Example 6.17. To compute g-generators of level 3 in AM1,1,1, we
collapse edges e1 and e2. We obtain the following ten g-generators of level 3:

g3,1 since (Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = (Γe21 , v

e2
1,0, orde21 , φ

e2
1 ),

g3,2 since (Γe12 , v
e1
2,0, orde12 , φ

e1
2 ) = (Γe22 , v

e2
2,0, orde22 , φ

e2
2 ),

g3,3 since (Γe13 , v
e1
3,0, orde13 , φ

e1
3 ) = (Γe23 , v

e2
3,0, orde23 , φ

e2
3 ),

g3,4 since (Γe14 , v
e1
4,0, orde14 , φ

e1
4 ) = (Γe25 , v

e2
5,0, orde25 , φ

e2
5 ),

g3,6 since (Γe16 , v
e1
6,0, orde16 , φ

e1
6 ) = (Γe213, v

e2
13,0, orde213, φ

e2
13),

g3,7 since (Γe17 , v
e1
7,0, orde17 , φ

e1
7 ) = (Γe211, v

e2
11,0, orde211, φ

e2
11),

g3,9 since (Γe19 , v
e1
9,0, orde19 , φ

e1
9 ) = (Γe210, v

e2
10,0, orde210, φ

e2
10),

g3,11 since (Γe111, v
e1
11,0, orde111, φ

e1
11) = (Γe212, v

e2
12,0, orde212, φ

e2
12),

g3,12 since (Γe112, v
e1
12,0, orde112, φ

e1
12) = (Γe27 , v

e2
7,0, orde27 , φ

e2
7 ),

g3,13 since (Γe113, v
e1
13,0, orde113, φ

e1
13) = (Γe26 , v

e2
6,0, orde26 , φ

e2
6 ).

By Example 8.7, P̂1,1 ∩ (ôrdA
(Γ1,v1,0,ord1,φ1)

1,1 − T̂(1)
1,1) has two component: P̂1,1 ∩

ôrdA
(Γ1,v1,0,ord1,φ1),(1)

1,1 and P̂1,1∩ôrdA
(Γ5,v5,0,ord5,φ5),(1)

1,1 . And, P̂1,1∩(ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 −

T̂(1)
1,1) has two component: P̂1,1∩ôrdA

(Γ9,v9,0,ord9,φ9),(1)

1,1 and P̂1,1∩ôrdA
(Γ12,v12,0,ord12,φ12),(1)

1,1 .

By Proposition 8.11, g3,2, g3,3, g3,4 ∈ g3,1AM
(Γ1,v1,0,ord1,φ1)
1,1,1 , g3,7 ∈ g3,6AM

(Γ9,v9,0,ord9,φ9)
1,1,1 ,

g3,11 ∈ g3,9AM
(Γ9,v9,0,ord9,φ9)
1,1,1 , g3,13 ∈ g3,12AM

(Γ1,v1,0,ord1,φ1)
1,1,1 . By Theorem 3.7,

it can be computed: g3,1g
−1
2,2 = h3,1g3,2, g3,2h

−1
2,3 = h3,2g3,3, g3,3g

−1
2,5 = h3,3g3,4,

g3,6g2,13 = h3,6g3,7, g3,9g2,10 = h3,11g3,11 and g3,12h2,7 = h−1
3,13g3,13. Recall

h3,1 = h3,2 = h3,3 = h3,6 = h3,11 = h3,13 = 1.

8.15 Lemma. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − (T̂g,p ∪ T̂(i)
g,p)

such that

σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ).

For i = 1, 2, let hi, qi be integers such that (Γ↓i , v
↓
i,0, ord↓i ) is a (hi, qi)-fat graph

with a distinguished vertex, and, w(Γi, vi,0, ordi) = {wi,0, [wi,1], . . . , [wi,p]}.
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(i) If (h1, q1) = (g, p−1), then w1,0 = e1e3w
′
1,0e2, [w1,j] = [e4e1e2w

′
1,j] for some

1 ≤ j ≤ p and exactly one of the cases holds.

(a) If w′1,0 = u′1,0e3e4v
′
1,0, then (h2, q2) = (g − 1, p+ 1).

(b) If w′1,j = u′1,je3e4v
′
1,j, then (h2, q2) = (g, p− 1).

(c) If [w1,k] = [e3e4v1,k] for some 1 ≤ k ≤ p, k 6= j, then (h2, q2) =
(g, p− 1).

(ii) If (h1, q1) = (g−1, p+ 1), then w1,0 = e1e3w
′
1,0e4e1e2w

′′
1,0e2 and exactly one

of the cases holds.

(d) If w′1,0 = u′1,0e3e4v
′
1,0, then (h2, q2) = (g − 1, p+ 1).

(e) If w′′1,0 = u′′1,0e3e4v
′′
1,0, then (h2, q2) = (g − 1, p+ 1).

(f) If [w1,j] = [e3e4v1,j] for some 1 ≤ j ≤ p, then (h2, q2) = (g, p− 1).

Proof. Notice (Γ2, v2,0, ord2) can be obtained from (Γ1, v1,0, ord1) by removing
the distinguished vertex v1,0, declaring the concatenation of edges e1 and e2

a new edge denoted f , divinding e3 in two new edges denoted f1 and f2 and
declaring the new vertex inside e3 the new distinguished vertex v2,0.

(i) If (h1, q1) = (g, p − 1), then w2,0 = f1w
′
2,0f f 2, [w2,j] = [e4fw

′
2,j] for some

1 ≤ j ≤ p and exactly one of the cases holds.

(a) If w′1,0 = u′1,0e3e4v
′
1,0, then w′2,0 = u′2,0f2f 1e4v

′
2,0.

(b) If w′1,j = u′1,je3e4v
′
1,j, then w′2,j = u′2,jf2f 1e4v

′
2,j.

(c) If [w1,k] = [e3e4v1,k] for some 1 ≤ k ≤ p, j 6= k, then [w2,k] =
[f2f 1e4v2,k].

(ii) If (h1, q1) = (g − 1, p + 1), then w2,0 = f1w
′
2,0e4fw

′′
2,0f f 2 and exactly one

of the cases holds.

(d) If w′1,0 = u′1,0e3e4v
′
1,0, then w′1,0 = u′2,0f2f 1e4v

′
2,0.

(e) If w′′1,0 = u′′1,0e3e4v
′′
1,0, then w′′2,0 = u′′2,0f2f 1e4v

′′
2,0.

(f) If [w1,j] = [e3e4v1,j] for some 1 ≤ j ≤ p, then [w2,j] = [f2f 1e4v2,j].

8.16 Theorem. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p − T̂g,p. Sup-

pose (Γ↓1, v
↓
1,0, ord↓1) is a (g, p − 1)-fat graph with a distinguished vertex and

(Γ↓2, v
↓
2,0, ord↓2) is a (g − 1, p + 1)-fat graph with a distinguished vertex. Then

AMg,p,1 is a quotient of the fundamental group of the graph of groups
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AM
p1
g,p,1

AM
pb,(1)
g,p,1
-

AM
pc,(1)
g,p,1

�

-

�

AM
pa,(1)
g,p,1

AM
pf ,(1)
g,p,1

AM
p2
g,p,1

AM
pd,(1)
g,p,1
-

AM
pe,(1)
g,p,1

�

where pa = (Γa, va,0, orda, φa), pb = (Γb, vb,0, ordb, φb), pc = (Γc, vc,0, ordc, φc) ∈
ôrdA

p1

g,p−T̂
(1)
g,p and pd = (Γd, vd,0, ordd, φd), pe = (Γe, ve,0, orde, φe), pf = (Γf , vf,0, ordf , φf ) ∈

ôrdA
p2

g,p − T̂(1)
g,p satisfy conditions (ia), (ib), (ic), (iid), (iie) and (iif) in Re-

mark 8.5, respectively. For every edge, there exists a monomorphism which
goes from the subgroup that labels the edge to the subgroup that labels the vertex
where the edge points.

Proof. By definition, AM
p1
g,p,1 and AM

p2
g,p,1 are subgroups of AMg,p,1. By Re-

mark 8.12, AMg,p,1 is generated by these two subgroups and a g-generator of

level n for each connected component of P̂g,p∩(ôrdA
p1

g,p−T̂
(1)
g,p) and P̂g,p∩(ôrdA

p2

g,p−

T̂(1)
g,p). By Remark 8.5, these connected components are ôrdA

pa,(1)

g,p , ôrdA
pb,(1)

g,p and

ôrdA
pc,(1)

g,p ; and, ôrdA
pd,(1)

g,p , ôrdA
pe,(1)

g,p and ôrdA
pf ,(1)

g,p . Hence, AM
pa,(1)
g,p,1 , AM

pb,(1)
g,p,1

and AM
pc,(1)
g,p,1 are subgroups of AM

p1
g,p,1; and, AM

pd,(1)
g,p,1 , AM

pe,(1)
g,p,1 and AM

pf ,(1)
g,p,1

are subgroups of AM
p2
g,p,1. By Corollary 8.10, the g-generator for each of these

connected component is a monomorphism from the corresponding subgroup to
the subgroup given by Lemma 8.15.

8.17 Corollary. AMg,p,1 is a quotien of the fundamental group of the graph of
groups
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AMg,p−1,1

AMg−1,p−1,2
-

AMg,p−2,1

�

-

�

AMg−1,p−1,2

AMg−1,p−1,2

AMg−1,p,2

AMg−2,p,3
-

AMg−1,p,1

�

Proof. Follows from Theorem 8.16, Proposition 6.13 and Remark 8.5.

8.18 Example. Following Example 8.6, by Theorem 8.16, AM0,3,1 is a quotient
of the fundamental group of the graph of groups

AM
(Γ1,v1,0,ord1,ord1)
0,3,1

AM
(Γ1,v1,0,ord1,ord1),(1)
0,3,1

�

where AM
(Γ1,v1,0,ord1,ord1)
0,3,1 ' AM0,2,1. Since AM

(Γ1,v1,0,ord1,ord1),(1)
0,3,1 ' AM0,1,1 is

the trivial group, the monomorphism corresponding to the edge is trivial.

We can give an explicit description of the monomorphism of the edges in
Theorem 8.16.

8.19 Proposition. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p such that
σ(pi) is a simplex of dimension 6g + 3p− 3 = 3n− 3. Suppose

σ(pe11 ) = σ(Γe11 , v
e1
1,0, orde11 , φ

e1
1 ) = σ(Γe22 , v

e2
2,0, orde22 , φ

e2
2 ) = σ(pe22 ).

Let ϕ ∈ AM
p1,(1)
g,p,1 , and, let ψ ∈ AM

p2,(2)
g,p,1 be the image of ϕ under the iso-

morphism AM
p1,(1)
g,p,1 ' AM

p2,(2)
g,p,1 described in Corollary 8.10. Let wϕ,1 be a word

representing ϕ in AM
p1,(1)
g,p,1 , let wψ,2 be a word representing ψ in AM

p2,(2)
g,p,1 and

let gn,1 be the generator of AMg,p,1 corresponding to collapse e1 in p1. Then
g−1
n,1wϕ,1 gn,1 = wψ,2.

Proof. Since ϕ ∈ AM
p1,(1)
g,p,1 , we see ϕ · p1 ∈ ôrdA

p1,(1)

g,p . Since ôrdA
p1,(1)

g,p is con-

nected, there exists a path γ1 ⊆ ôrdA
p1,(1)

g,p from p1 to ϕ · p1 which represents
ϕ.
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The map

ôrdA
p1,(1)

g,p → ôrdA
p2,(2)

g,p

in Lemma 8.9 gives a path γ2 homotopic to γ1 from p2 to p′2 = (Γ2, v2,0, ord2, φ
′
2).

Hence, p′2 ∈ ôrdA
p2,(2)

g,p and ψ = φ′2 ◦ φ−1
2 lies in AM

p2,(2)
g,p,1 . Notice p′2 = ψ · p2.

We can suppose γ1 lies in simplices of codimension at most 1. Then wϕ,1

is obtaiend from γ1. And wψ,2 is obtained from a path contained in ôrdA
p2,(2)

g,p

homotopic to γ2 and lying in simplices of codimension at most 1.
Let β be a path from p1 to p2 which goes through the codimension one

simplex corresponding to collapse e1 in p1. Notice ϕ · β is a path from ψ · p1 to
ψ ·p2 which goes through the codimension one simplex corresponding to collapse

e1 in ψ · p1. Then, βγ1(ϕ · β)γ2 bounds a disc in ôrdAg,p. Hence, the relation
g−1
n,1wϕ,1gn,1w

−1
ψ,2 holds in AMg,p,1.

8.20 Example. Following Example 8.7, by Theorem 8.16, AM1,1,1 is a quotient
of the fundamental group of the graph of groups

AM
(Γ1,v1,0,ord1,φ1)
1,1,1

AM
(Γ1,v1,0,ord1,φ1),(1)
1,1,1
-

-

�

AM
(Γ5,v5,0,ord5,φ5),(1)
1,1,1

AM
(Γ12,v12,0,ord12,φ12),(1)
1,1,1

AM
(Γ9,v9,0,ord9,φ9)
1,1,1

AM
(Γ9,v9,0,ord9,φ9),(1)
1,1,1

�

where AM
(Γ1,v1,0,ord1,ord1)
1,1,1 ' AM1,0,1 and AM

(Γ9,v9,0,ord9,ord9)
1,1,1 ' AM0,1,2.

Since AM
(Γ9,v9,0,ord9,ord9),(1)
1,1,1 ' AM0,1,1 is the trivial group, the monomorphism

corresponding to this edge is trivial. To describe the monomorphisms of the other
edges, we apply Proposition 8.19 to g-generators of level 3 given in Example 8.14

and subgroups given in Example 8.7. Notice AM
(Γ1,v1,0,ord1,ord1),(1)
1,1,1 ' AM0,0,2,

AM
(Γ5,v5,0,ord5,ord5),(1)
1,1,1 ' AM0,0,2 and AM

(Γ12,v12,0,ord12,ord12),(1)
1,1,1 ' AM0,0,2 are

cyclic infinite groups.

The monomorphism for the edge labelled AM
(Γ1,v1,0,ord1,ord1),(1)
1,1,1 is described

by g3,1 such that g−1
3,1 h2,1 g3,1 = h2,1.

The monomorphism for the edge labelled AM
(Γ5,v5,0,ord5,ord5),(1)
1,1,1 is described

by g3,6 such that g−1
3,6 h3,6h2,7 g3,6 = g2,13g2,11.

The monomorphism for the edge labelled AM
(Γ12,v12,0,ord12,ord12),(1)
1,1,1 is described

by g3,12 such that g−1
3,12 h3,12h3,13 g3,12 = g2,7h

−1
2,7.
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By Example 7.27, AM
(Γ1,v1,0,ord1,ord1)
1,1,1 = 〈h2,1, g2,2 | g2,2h

−1
2,1g

−1
2,2h

−1
2,1g2,2〉.

By Example 7.29, AM
(Γ9,v9,0,ord9,φ9)
1,1,1 = 〈h3,9, g2,10 | h3,9g2,10 = g2,10h3,9〉.

By Example 7.18, h3,6h2,7 = h2,1 and g2,7h
−1
2,7 = g2,2h

−1
2,1. By Example 7.20,

g2,13g
−1
2,11 = h3,9g2,10 and h3,12h3,13 = h3,9. Hence, the monomorphisms of the

edges are:

g−1
3,1 h2,1 g3,1 = h2,1

g−1
3,6 h2,1 g3,6 = h3,9g2,10,

g−1
3,12 h3,9 g3,12 = g2,2h

−1
2,1.

8.21 Remark. To obtain a presentation for AMg,p,1 from Theorem 8.16, we
need to add relations from Theorem 3.7 corresponding to some codimension two
faces of simplices of dimension 6g + 3p− 3 = 3n− 3 of P̂g,p.

Let p = (Γ, v0, ord, φ) ∈ P̂g,p such that σ(p) is a simplex of dimension 6g+3p−
3 = 3n − 3. Let f1, f2 ∈ E(Γ) such that there exists a relations corresponding
to the codimension two face σ(pf1,f2) = (Γf1,f2 , vf1,f20 , ordf1,f2 , φf1,f2) obtained
by collapsing f1 and f2. To simplify cases, we suppose that in the standard
labelling of (Γ, v0, ord), f1 has been labelled before f2. For example, if f1 = e2

then f2 6= e1, or, if f1 = e3 then f2 6= e1, e2.

If f1 6= e1, e2, then σ(pf1,f2) ⊆ ôrdA
p

g,p and the relation deduced form σ(pf1,f2)
appears in AM

p
g,p,1, a vertex group in the graph of groups in Theorem 8.16.

If f1 = e1 and f2 /∈ {e2, e3, e4}, or, f1 = e2 and f2 /∈ {left h-edge of level n,
right h-edge of level n}; then the relation deduced form σ(pf1,f2) appears either
in Proposition 8.11 or in Proposition 8.19. In both cases, the relation deduced
form σ(pf1,f2) appears in the monomorphism of the edges in the graph of groups
in Theorem 8.16.

We have to consider the cases where either f1 = e1 and f2 ∈ {e2, e3, e4}, or,
f1 = e2 and f2 ∈ {left h-edge of level n, right h-edge of level n}. The relation
deduced from these codimension two faces can be computed by Remark 8.8 and
represented as follows.

Γ1 Γ5
-

e1 e2
gn,1

Γ4
-

e1 e2
gn,5

Γ2 Γ3
gn,2

-
e1 e2

6

right h-edge of level n

hn,3

left h-edge of level n

?

e3

gn−1,1, hn,1

or h−1
n,2

e4

Notice this relation is similar to relation of length 5 in Example 3.8(b).

64



If the left side of the rectangle above corresponds to the generator hn,1,
then e3 ∈ v∗2 and (Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e3, e5), . . .. It follows,
(Γ2, v2,0, ord2) = (e1, e2); (e1, e2, f), (f, e5, e4), . . .. Hence, (Γe31 , v

e3
1,0, orde31 , φ

e3
1 ) is

a boundary face and there is no such a relation.
If the left side of the rectangle above corresponds to the generator h−1

n,2 and
n ≥ 3, then e3 ∈ v∗2 and (Γ1, v1,0, ord1) = (e1, e2); (e1, e3, e4), (e2, e5, e3), . . .. It
follows, (Γ2, v2,0, ord2) = (e1, e2); (e1, e5, f1), (f 1, e2, e4), . . . and (Γ3, v3,0, ord3) =

(e5, f2); (f 2, f1, e2), (f 1, e2, e4), . . .. Since n ≥ 3, (Γ↓3, v
↓
3,0, ord↓3) has a separating

edge, (Γe12 , v
e1
2,0, orde12 , φ

e1
2 ) is a boundary face and there is no such a relation.

Hence, for n ≥ 3, the relations that need to be added are

gn,1gn,5 = gn−1,1gn,2hn,3.

We will see that no more than 24 of these relations need to be added.

8.22 Definition. We denote by T̂(1),(3)
g,p the set of point p = (Γ, v0ord, φ) ∈

ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p) such that |u∗| ≥ 4 where e3 ∈ u∗, u ∈ V (Γ).

8.23 Definition. Let p ∈ ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p ). We denote by

ôrdA
p,(1),(3)

g,p the connected component of ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p ) which
contains p.

8.24 Remark. Let p ∈ ôrdAg,p − (T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p ).
Notice |v∗0| = 2 and |v∗1| = 3. If e3 ∈ v∗2, then |v∗2| = 3. If e3 ∈ v∗3, then

|v∗3| = 3. In both cases, ôrdA
p,(1),(3)

g,p can be defined as the connected component

of ôrdA
p,(1)

g,p − T̂(1),(3)
g,p which contains p.

8.25 Remark. Let p = (Γ, v0, ord, φ) ∈ P̂g,p − (T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p ). Sup-
pose there exists a relation in AMg,p,1 deduced from the codimension two face
σ(pe1,e3) = σ(Γe1,e3 , ve1,e30 , orde1,e3 , φe1,e3). Hence, (Γ, v0, ord) = (e1, e2); (e1, e3, e4), . . .
and ord(v∗3) = (e3, f1, f2). Let w(Γ, v0, ord) = {w0, [w1], . . . , [wp]}. Then
w0 = e1e3f1w

′
0e2 and e4e1e2, f 2e3e4, f 1f2 appear in w(Γ, v0, ord). It is show

in Lemma 4.8 that there are at most two cases where e1e2 can appear. It is
shown in Remark 8.5 that for each of these two cases, there are at most three
cases where e3e4 can appear. Similarly, for each of these six cases there are at
most four cases where f 3f4 can appear. For example, in Remark 8.5 (ia) we have
w0 = e1e3f1w

′
0e2, [wi] = [e4e1e2w

′
i] and w′0 = u′0f 2e3e4v

′
0, under the condition

g ≥ 1 and p ≥ 1. Then there are four cases according to whether f 1f2 appears
in u′0, v

′
0, w

′
i or, [wj] for j 6= i. Notice f 1f2 can appear in u′0 under the condition

g ≥ 2 and f 1f2 can appear in [wj], for j 6= i, under the condition p ≥ 2.

In general, P̂g,p − (T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p ) has, at most, 24 components with
relations corresponding to collapse e1 and e3.

In particular, for g = 0, P̂0,p− (T̂0,p ∪ T̂(1)
0,p ∪ T̂

(1),(3)
0,p ) has one component with

relations corresponding to collapse e1 and e3.
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For g = 2 and p = 0, P̂2,0 − (T̂2,0 ∪ T̂(1)
2,0 ∪ T̂(1),(3)

2,0 ) has five components
with relations corresponding to collapse e1 and e3. And for g ≥ 3 and p = 0,
P̂g,0 − (T̂g,0 ∪ T̂(1)

g,0 ∪ T̂
(1),(3)
g,0 ) has six components with relations corresponding to

collapse e1 and e3.

Notice P̂g,p ∩ ôrdA
p,(1),(3)

g,p can be computed from P̂g,p ∩ ôrdA
p,(1)

g,p by removing
codimesion one face corresponding to collapse edges f1 and f2. Recall ord(v∗3) =
(e3, f1, f2).

The next Lemma expresses that all relations deduced from Theorem 3.7
corresponding to collapse edges e1 and e3 in a connected component of P̂g,p −
(T̂g,p ∪ T̂(1)

g,p ∪ T̂(1),(3)
g,p ) are equal in the fundamental group of the graph of groups

in Theorem 8.16.

8.26 Lemma. For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ P̂g,p−(T̂g,p∪T̂(1)
g,p∪T̂(1),(3)

g,p )

such that ôrdA
p1,(1),(3)

g,p = ôrdA
p2,(1),(3)

g,p . If there exists the relation ri in AMg,p,1

corresponding to collapse e1 and e3 in (Γi, vi,0, ordi), for i = 1, 2, then r1 = r2 in
the fundamental group of the graph of groups in Theroem 8.16.

Proof. For i = 1, 2, the relation ri is deduced from the codimension two
face σ(pe1,e3i ) of σ(pi) obtained by collapsing e1 and e3 in (Γi, vi,0, ordi) where
pe1,e3i = (Γe1,e3i , ve1,e3i,0 , orde1,e3i , φe1,e3i ) and |ve1,e3i,0 | = 4. Let γ be a path from p1 to

p2 contained in P̂g,p ∩ ôrdA
p1,(1),(3)

g,p . Notice γ is a sequence of collapsing edges
and splitting vertices such that if γ intersects σ(p) = σ(Γ, v0, ord, φ), then σ(p)

does not intersect T̂g,p ∪ T̂(1)
g,p ∪ T̂(1),(3)

g,p . Hence, |v∗0| = 2 and |v∗1| = |v∗3| = 3 in
(Γ, v0, ord, φ); and, the subtree with edge e1, e2, e3, e4 and f1, f2 is left invariant
through the path γ. We conclude γ is homotopic to a path γe1,e3 from σ(pe1,e31 )
to σ(pe1,e32 ) such that every simplex σ(pe1,e3) = σ(Γe1,e3 , ve1,e30 , orde1,e3 , φe1,e3) in-

tersected by γe1,e3 satisfies |(ve1,e30 )∗| = 4. Since γ ⊆ P̂g,p, the word in AM
p1,(1)
g,p,1

described by γ is the identity and r1 = r2 in the fundamental group of the graph
of groups in Theorem 8.16.

8.27 Example. We compute the connected components of P̂0,3 − (T̂3,0 ∪ T̂(1)
3,0 ∪

T̂(1),(3)
3,0 ) by removing codimension one faces from P̂0,3− (T̂3,0 ∪ T̂(1)

3,0). See Exam-
ple 8.6. From Example 6.15, we see that the codimension one faces that need
to be removed correspond to collapse e2 and e5 in (Γ1, v1,0, ord1), e6 and e5 in

(Γ2, v2,0, ord2), and, e6 and e7 in (Γ3, v3,0, ord3). Hence, P̂0,3−(T̂3,0∪T̂(1)
3,0∪T̂

(1),(3)
3,0 )

has the following connected components.

Γ1 Γ2 Γ3
-

e5 e5
h3,2

Since e3 ∈ v∗2 in (Γ1, v1,0, ord1), there is no relation corresponding to collapse
e1 and e3 in (Γ1, v1,0, ord1). The relation g3,2g3,2 = g2,2g3,1h3,1 is deduced by
collapsing e1 an e3 in (Γ2, v2,0, ord2).
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By Example 7.26, AM
(Γ1,v1,0,ord1,ord1)
0,3,1 = 〈g2,2 |〉. By Example 8.18, AM0,3,1 is

a quotient of the fundamental group of the graph of groups

〈g2,2 |〉

g3,2

�

where the edge group of g3,2 is the trivial group. By Example 8.13, g3,1 = g3,2g2,2.
The relation g3,2g3,2 = g2,2g3,2g2,2 needs to be added in the fundamental group
of the graph of groups above.

8.28 Example. We compute the connected components of P̂1,1 − (T̂1,1 ∪ T̂(1)
1,1 ∪

T̂(1),(3)
1,1 ) by removing codimension one faces from P̂1,1 − (T̂1,1 ∪ T̂(1)

1,1). See Ex-
ample 8.7. From Example 6.17, we see which codimension one faces need to
be removed. We conclude that P̂1,1 − (T̂1,1 ∪ T̂(1)

1,1 ∪ T̂(1),(3)
1,1 ) has eight connected

components represented as follows.

Γ1

e7 e6

h2,1
�

Γ2
-
h3,2e5 e6

Γ3 Γ4

e7 e6

h2,4
�

Γ5
-
h3,5e5 e6

Γ6 Γ7
-
h3,7

Γ8

e5 e5

Γ9 Γ10 Γ11
-

e5 e6
h3,10

Γ12 Γ13

�
h3,13

e6 e5

Since e3 ∈ v∗2 in (Γ1, v1,0, ord1), (Γ4, v4,0, ord4) and (Γ9, v9,0, ord9), there is no
relation corresponding to collapse e1 and e3 in these cases.

Collapsing e1 and e3 in (Γ2, v2,0, ord2), we have the relation g3,2g3,2 =
g2,2g3,1h3,1;

67



Collapsing e1 and e3 in (Γ3, v3,0, ord3), we have the relation g3,3g3,3 =
g2,3g3,2h3,2;

Collapsing e1 and e3 in (Γ6, v6,0, ord6), we have the relation g3,6g3,13 =
g2,6g3,4h3,5;

Collapsing e1 and e3 in (Γ7, v7,0, ord7), we have the relation g3,7g3,11 =
g2,7g3,6h3,13;

Collapsing e1 and e3 in (Γ11, v11,0, ord11), we have the relation g3,11g3,12 =
g2,11g3,13h3,6;

Collapsing e1 and e3 in (Γ12, v12,0, ord12), we have the relation g3,12g3,7 =
g2,12g3,9h3,10;

Collapsing e1 and e3 in (Γ13, v13,0, ord13), we have the relations g3,13g3,6 =
g2,13g3,11h3,12.

By Lemma 8.26, relations g3,2g3,2 = g2,2g3,1h3,1 and g3,3g3,3 = g2,3g3,2h3,2 are
equal in the fundamental group of the graph of groups in Example 8.20. We
represent this equality in the following picture where rectangles represent the
relations, and, quadrilaterals are relations in the fundamental group of the graph
of groups in Example 8.20.

Γ2 Γ2
-

e1 e2
g3,2

Γ2
-

e1 e2
g3,2

Γ1 Γ1
g3,1

-
e1 e2

6

e6

h3,1

e5

?

e3

g2,2

e4
�
�
�
��

e5
�

e6

h3,1

e7

6
e7

h2,3

@
@
@
@@

e5

R e6

h3,2
�

�
�
��

e4

�

e3

g2,3

@
@

@
@@

e4

R
e3

g2,2

Γ3 Γ3
-

e1 e2
g3,3

Γ3
-

e1 e2
g3,3

Γ2 Γ2
g3,2

-
e1 e2

6

e6

h3,2

e5

?

e3

g2,3

e4

Similarly, relations g3,12g3,7 = g2,12g3,9h3,10 and g3,13g3,6 = g2,13g3,11h3,12 are
equal in the fundamental group of the graph of groups in Example 8.20.

By Example 7.27, AM
(Γ1,v1,0,ord1,φ1)
1,1,1 = 〈h2,1, g2,2 | g2,2g2,2 = h2,1g2,2h2,1〉.

By Example 7.29, AM
(Γ9,v9,0,ord9,φ9)
1,1,1 = 〈h3,9, g2,10 | h3,9g2,10 = g2,10h3,9〉. By
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Example 8.20, AM1,1,1 is a quotient of the fundamental group of the graph of
groups

〈h2,1, g2,2 | g2,2g2,2 = h2,1g2,2h2,1〉

g3,1
-

-

�

g3,6

g3,12

〈h3,9, g2,10 | h3,9g2,10 = g2,10h3,9〉

g3,9

�

where the monomorphisms of the edges are given in Example 8.20.
There are five relations corresponding to collapse e1 and e3 that need to be

added in the fundamental group of the graph of groups above. From Exam-
ple 7.27, Example 7.29 and Example 8.14, we can write these relations in the
fundamental group of the graph of groups:

g3,2g3,2 = g2,2g3,1h3,1 ⇒ g3,1g
−1
2,2g3,1g

−1
2,2 = g2,2g3,1,

g3,6g3,13 = g2,6g3,4h3,5 ⇒ g3,6g3,12h2,1 = g2,2g3,1g
−1
2,2h

−1
2,1g

−1
2,2,

g3,7g3,11 = g2,7g3,6h3,13 ⇒ g3,6g3,9g2,10 = g2,2g3,6,

g3,11g3,12 = g2,11g3,13h3,6 ⇒ g3,9g2,10g3,12 = h3,9g2,10g3,12h2,1,

g3,12g3,7 = g2,12g3,9h3,10 ⇒ g3,12g3,6 = g3,9.

Recall, AM
(Γ1,v1,0,ord1,φ1)
1,1,1 ' AM1,0,1 by Proposition 6.13. Instead of a direct

computation for the presentation for AM
(Γ1,v1,0,ord1,φ1)
1,1,1 as in Example 7.27, we

can compute a presentation for AM
(Γ1,v1,0,ord1,φ1)
1,1,1 by lifting a presentation for

AM1,0,1. This lifting is obtained by declaring all h-generators of level 3 to be the
identity. Then, all h-generators and g-generators of level 2 are identified and the

relation in the presentation for AM1,0,1 is lifted to a relation in AM
(Γ1,v1,0,ord1,φ1)
1,1,1 .

Recall, AM
(Γ9,v9,0,ord9,φ9)
1,1,1 ' AM0,1,2 by Proposition 6.13. Instead of a direct

computation for the presentation for AM
(Γ9,v9,0,ord9,φ9)
1,1,1 as in Example 7.29, we

can compute a presentation for AM
(Γ9,v9,0,ord9,φ9)
1,1,1 by Theorem 8.16 applied one

level deeper. Hence, we have a graph of groups with vertices corresponding to

connected components of P̂1,1∩ (ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 − T̂(1)
1,1) and edges correspond-

ing to connected components of P̂1,1 ∩ (ôrdA
(Γ9,v9,0,ord9,φ9)

1,1 − (T̂(1)
1,1 ∪ T̂

(1),(3)
1,1 )). See
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Examples 8.7 and the beginning of this Example, respectively. We have the
following graph of groups.

AM
(Γ9,v9,0,ord9,φ9),(1)
1,1,1

AM
(Γ9,v9,0,ord9,φ9),(1),(3)
1,1,1
-

-

�

AM
(Γ10,v10,0,ord10,φ10),(1),(3)
1,1,1

AM
(Γ12,v12,0,ord12,φ12),(1),(3)
1,1,1

AM
(Γ12,v12,0,ord12,φ12),(1)
1,1,1

where AM
(Γ9,v9,0,ord9,ord9),(1)
1,1,1 ' AM0,1,1 is the trivial group, AM

(Γ12,v12,0,ord12,ord12),(1)
1,1,1 '

AM0,0,2 is a cyclic infinite group, and, AM
(Γ9,v9,0,ord9,ord9),(1),(3)
1,1,1 ' AM0,0,1,

AM
(Γ10,v10,0,ord10,ord10),(1),(3)
1,1,1 ' AM0,0,1, AM

(Γ12,v12,0,ord12,ord12),(1),(3)
1,1,1 ' AM0,0,1 are

the trivial group. Hence, we have the following graph of groups.

{1}

h3,9
-

-

�

g2,10

g2,12

〈h3,12, h3,13 | h3,13〉

where the monomorphisms of the edges are trivial since the edge groups are
trivial. The relations that need to be added are h3,9g2,10 = h−1

3,11g2,11h3,13 and

g2,12h3,9 = h3,12g2,13h
−1
3,10. Since h3,10g2,11 = g2,10h3,12, h3,13g2,12 = g2,13h3,11 and

h3,10, h3,11 ∈ AM
(Γ9,v9,0,ord9,φ9),(1)
1,1,1 = {1}, we have a presentation for AM

(Γ9,v9,0,ord9,φ9)
1,1,1 .

9 Examples

For i = 1, 2, let pi = (Γi, vi,0, ordi, φi) ∈ ôrdAg,p such that σ(pi) is a simplex

of dimension 3n − 3 = 6g + 3p − 3. Suppose (Γ↓1, v
↓
1,0, ord↓1) is a (g, p − 1)-fat

graph with a distinguished vertex and (Γ↓2, v
↓
2,0, ord↓2) is a (g− 1, p+ 1)-fat graph

with a distinguished vertex. A presentation for AMg,p,1 can be deduced by
Theorem 8.16 by computing the monomorphisms of the edges and the relations
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that need to be added.
Last two paragraphs in Example 8.28 can be generalised as follows. Recall

AM
p1
g,p,1 ' AMg,p−1,1 and AM

p2
g,p,1 ' AMg−1,p−1,2 are the vertices of the graph

of groups for AMg,p,1. A presentation for AMg,p−1,1 can be lifted to AM
p1
g,p,1. A

presentation for AM
p2
g,p,1 can be computed by applying Theorem 8.16 one level

deeper. In particular, connected components in P̂g,p∩(ôrdA
p2

g,p−T̂
(1)
g,p) correspond

to vertices in the graph of groups for AM
p2
g,p,1, and, connected components in

P̂g,p ∩ (ôrdA
p2

g,p − (T̂(1)
g,p ∪ T̂(1),(3)

g,p )) correspond to edges in the graph of groups for
AM

p2
g,p,1.

9.1 Example. By Theorem 8.16, AM0,4,1 is a quotient of the fundamental group
of the following graph of groups.

AM
(Γ1,v1,0,ord1,φ1)
0,4,1

AM
(Γ1,v1,0,ord1,φ1),(1)
0,4,1

�

where (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4. We can suppose σ(Γ1, v1,0, ord1, φ1) is a sim-

plex of dimension 6g + 3p − 3 = 9. By Proposition 6.13, AM
(Γ1,v1,0,ord1,φ1)
0,4,1 '

AM0,3,1. By results in Section 7, these isomorphisms are realised by declaring
all h-generators of level 4 to be the identity and lifting relations from AM0,3,1

to AM
(Γ1,v1,0,ord1,φ1)
0,4,1 . Then, lifts of a generator in AM0,3,1 are identified in

AM
(Γ1,v1,0,ord1,φ1)
0,4,1 . By Remark 8.5, AM

(Γ1,v1,0,ord1,φ1),(1)
0,4,1 ' AM0,2,1.

We choose (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4 such that there exist generators cor-
responding to collapse e1, e3 in (Γ1, v1,0, ord1) and e3 /∈ v∗2.

We choose (Γ1, v1,0, ord1, φ1) in ôrdA0,4 to be a lift of (Γ2, v2,0, ord2, φ2) in

ôrdA0,3. Hence,

(Γ↓1, v
↓
1,0, ord↓1) = (e1, e2); (e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e7, e5).

If e6 in (Γ2, v2,0, ord2, φ2) ∈ ôrdA0,3 is lifted to the concatenation of both h-edges
of level 4, we have

(Γ1, v1,0, ord1) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e9, e5),

(e6, e10, e7), (e8, e10, e9).

Then (Γ↓1, v
↓
1,0, ord↓1) = (e3, e4); (e3, e7, e8), (e4, e9, f), (e7, f , e10), (e8, e10, e9),
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(Γ↓↓1 , v
↓↓
1,0, ord↓↓1 ) = (e7, e8); (e7, g, e10), (e8, e10, g), and,

Γ1
g-edge h-edge

left right left right
level 4 e1 e2 e5 e6

level 3 e3 e4 e9

level 2 e7 e8 e10

A lift of a g-generator of level 3 in AM0,3,1 is obtained by collapsing e3 in
(Γ1, v1,0, ord1). We have (Γe31 , v

e3
1,0, orde31 ) = (Γe42 , v

e4
2,0, orde42 ) where

(Γ2, v2,0, ord2) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e8, e9),

(e5, e9, e10), (e7, e10, e8).

We denote by g3,2,1 the generator of AM0,4,1 corresponding to collapse e3

in (Γ1, v1,0, ord1). Since e3 in (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4 is a lift of e1 in

(Γ2, v2,0, ord2, φ2) ∈ ôrdA0,3, g3,2,1 is a lift of the generator g3,2 in AM0,3,1.
A lift of a g-generator of level 2 in AM0,3,1 is obtained by collapsing e7 in

(Γ1, v1,0, ord1). We have (Γe71 , v
e7
1,0, orde71 ) = (Γe73 , v

e7
3,0, orde73 ) where

(Γ3, v3,0, ord3) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e6, e7), (e4, e8, e5),

(e7, e9, e10), (e8, e10, e9).

We denote by g2,2,1 the generator of AM0,4,1 corresponding to collapse e7 in

(Γ1, v1,0, ord1). Since e7 in (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4 is a left g-edge of level 2,
g2,2,1 is a lift of the generator g2,2 in AM0,3,1.

A presentations for AM0,3,1 is given in Example 8.27. By lifting that presen-

tation, we deduce AM
(Γ1,v1,0,ord1,φ1)
0,4,1 = 〈g2,2,1, g3,2,1 | g3,2,1g3,2,1 = g2,2,1g3,2,1g2,2,1〉

and AM
(Γ1,v1,0,ord1,φ1),(1)
0,4,1 = 〈g2,2,1 |〉.

Notice (Γe11 , v
e1
1,0, orde11 ) = (Γe24 , v

e2
4,0, orde24 ) where

(Γ4, v4,0, ord4) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e8, e9),

(e5, e9, e10), (e6, e10, e7).

Hence, we have a g-generator of level 4, denoted g4,1, obtained by collapsing

e1 in (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4. Then, AM0,4,1 is a quotient of the fundamental
group of the following graph of groups

〈g2,2,1, g3,2,1 | g3,2,1g3,2,1 = g2,2,1g3,2,1g2,2,1〉

g4,1

�

where the edge group is 〈g2,2,1 |〉.
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It remains to describe the monomorphism of the edge in the graph of groups
above and to find the relation that needs to be added.

Notice (Γe83 , v
e8
3,0, orde83 ) = (Γe92 , v

e9
2,0, orde92 ), e8 is the left h-edge of level 3

in (Γ3, v3,0, ord3). Notice (Γ3, v3,0, ord3, φ3) in ôrdA0,4 is a lift of (Γ1, v1,0, ord1)

in ôrdA0,3. Hence, there exists a generator h3,1,3 in AM0,4,1 corresponding to
collapse e8 in (Γ3, v3,0, ord3).

Notice (Γe52 , v
e5
2,0, orde52 ) = (Γe61 , v

e6
1,0, orde61 ) and e5 is the left h-edge of level 4

in (Γ2, v2,0, ord2). Hence, there exists a generator h4,2 in AM0,4,1 corresponding
to collapse e5 in (Γ2, v2,0, ord2).

Then, AM
(Γ1,v1,0,ord1,φ1),(1)
0,4,1 contains the automorphism g2,2,1h3,1,3h4,2. It is

easy to see that the monomorphism of the edge in the graph of groups is de-
scribed by g−1

4,1(g2,2,1h3,1,3h4,2)g4,1 = h−1
3,2,1g3,2,1g

−1
2,3,4. By collapsing e7 and e9

in (Γ4, v4,0, ord4, φ4), we have the relation g2,3,4h
−1
3,1,3 = h−1

3,2,1g2,2,1. Hence, the

monomorphism of the edge group is described by g−1
4,1g2,2,1g4,1 = g3,2,1g

−1
2,2,1.

The relation that needs to be added is deduced by collapsing e1 and e3

in (Γ1, v1,0, ord1, φ1) ∈ ôrdA0,4. Since (Γe14 , v
e1
4,0, orde14 ) = (Γe21 , v

e2
1,0, orde21 ) and

(Γe12 , v
e1
2,0, orde12 ) = (Γe22 , v

e2
2,0, orde22 ), we have generators g4,4 and g4,2, respectively.

And, the relation that needs to be added is g4,1g4,4 = g3,2,1g4,2h4,2. Collapsing

e1 and e9 in (Γ4, v4,0, ord4, φ4) ∈ ôrdA0,4, we obtain the relation h3,2,1g4,4 =

g4,1h3,2,1. Collapsing e1 and e5 in (Γ2, v2,0, ord2, φ2) ∈ ôrdA0,4, we obtain the
relation h4,2g4,1 = g4,2g

−1
2,3,4. And, the relation that needs to be added is g4,1g4,1 =

g3,2,1g4,1g2,2,1.

9.2 Example. By Theorem 8.16, AM1,2,1 is a quotient of the fundamental group
of the following graph of groups.

AM
(Γ1,v1,0,ord1,φ1)
g,p,1

AM
(Γ3,v3,0,ord3,φ3),(1)
g,p,1
-

AM
(Γ1,v1,0,ord1,φ1),(1)
g,p,1

�

-

�

AM
(Γ4,v4,0,ord4,φ4),(1)
g,p,1

AM
(Γ5,v5,0,ord5,φ5),(1)
g,p,1

AM
(Γ2,v2,0,ord2,φ2)
g,p,1

AM
(Γ2,v2,0,ord2,φ2),(1)
g,p,1

�

where (Γi, vi,0, ordi, φi) ∈ ôrdA1,2, for i = 1, . . . , 5. We can suppose σ(Γi, vi,0, ordi, φi)
is a simplex of dimension 6g + 3p − 3 = 9, for i = 1, . . . , 5. By Proposi-

tion 6.13, AM
(Γ1,v1,0,ord1,φ1)
1,2,1 ' AM1,1,1 and AM

(Γ2,v2,0,ord2,φ2)
1,2,1 ' AM0,2,2. Notice

(Γ↓1, v
↓
1,0, ord↓1) is a (1, 1)-fat graph with a distinguished vertex and (Γ↓2, v

↓
2,0, ord↓2)
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is a (0, 3)-fat graph with a distinguished vertex.

A presentation for AM1,1,1 can be lifted to AM
(Γ1,v1,0,ord1,φ1)
1,2,1 . By Re-

mark 8.5, AM
(Γ1,v1,0,ord1,φ1),(1)
1,2,1 ' AM1,0,1, AM

(Γ3,v3,0,ord3,φ3),(1)
1,2,1 ' AM0,1,2 and

AM
(Γ4,v4,0,ord4,φ4),(1)
1,2,1 ' AM0,1,2. Notice (Γ↓↓1 , v

↓↓
1,0, ord↓↓1 ) is a (1, 0)-fat graph with

a distinguished vertex, and, (Γ↓↓3 , v
↓↓
3,0, ord↓↓3 ) and (Γ↓↓4 , v

↓↓
4,0, ord↓↓4 ) are (0, 2)-fat

graphs with a distinguished vertex. We can take

(Γ1, v1,0, ord1) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e9, e5),

(e6, e10, e7), (e8, e9, e10)

(Γ3, v3,0, ord3) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e5), (e4, e7, e8),

(e6, e9, e10), (e8, e10, e9)

(Γ4, v4,0, ord4) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e7, e9),

(e5, e9, e10), (e6, e10, e8)

Notice (Γ1, v1,0, ord1, φ1) in ôrdA1,2 is a lift of (Γ2, v2,0, ord2, φ2) in ôrdA1,1; and,

(Γ3, v3,0, ord3, φ3) and (Γ4, v4,0, ord4, φ4) in ôrdA1,2 are lifts of (Γ9, v9,0, ord9, φ9)

in ôrdA1,1.

A presentation for AM
(Γ2,v2,0,ord2,φ2)
1,2,1 can be obtained from a graph of groups

with vertices AM
(Γ2,v2,0,ord2,φ2),(1)
1,2,1 and AM

(Γ5,v5,0,ord5,φ5),(1)
1,2,1 , and, one edge for ev-

ery connected component of P̂1,2 ∩ (ôrdA
(Γ2,v2,0,ord2,φ2)

1,2 − (T̂(1)
1,2 ∪ T̂(1),(3)

1,2 )). By

Remark 8.5, AM
(Γ2,v2,0,ord2,φ2),(1)
1,2,1 ' AM0,2,1 and AM

(Γ5,v5,0,ord5,φ5),(1)
1,2,1 ' AM0,1,2.

The subgroups of the edges in the graph of groups of AM
(Γ2,v2,0,ord2,φ2)
1,2,1 are iso-

morphic to either AM0,1,1 or AM0,0,2. We can take

(Γ2, v2,0, ord2) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e5), (e4, e8, e9),

(e6, e10, e8), (e7, e9, e10)

(Γ5, v5,0, ord5) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e9, e6),

(e5, e10, e7), (e8, e10, e9)

Notice (Γ2, v2,0, ord2, φ2) and (Γ5, v5,0, ord5, φ5) in ôrdA1,2 are lifts of (Γ2, v2,0, ord2, φ2)

in ôrdA0,3.
It remains to describe the monomorphisms of the edges in the graph of groups

for AM1,2,1 and to find the eleven relations that need to be added.

9.3 Example. By Theorem 8.16, AM2,0,1 is a quotient of the fundamental group
of the following graph of groups.
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AM
(Γ1,v1,0,ord1,φ1)
g,p,1

AM
(Γ1,v1,0,ord1,φ1),(1)
g,p,1
-

AM
(Γ2,v2,0,ord2,φ2),(1)
g,p,1

�

where (Γ1, v1,0, ord1, φ1), (Γ2, v2,0, ord2, φ2) ∈ ôrdA2,0. We can suppose σ(Γ1, v1,0, ord1, φ1)
and σ(Γ2, v2,0, ord2, φ2) are simplices of dimension 6g+ 3p− 3 = 9. By Proposi-

tion 6.13, AM
(Γ1,v1,0,ord1,φ1)
2,0,1 ' AM1,0,2. Notice (Γ↓1, v

↓
1,0, ord↓1) is a (1, 1)-fat graph

with a distinguished vertex.

A presentation for AM
(Γ1,v1,0,ord1,φ1)
2,0,1 can be obtained from a graph of groups

with vertices AM
(Γ1,v1,0,ord1,φ1),(1)
2,0,1 and AM

(Γ2,v2,0,ord2,φ2),(1)
2,0,1 , and, one edge for ev-

ery connected component of P̂2,0 ∩ (ôrdA
(Γ1,v1,0,ord1,φ1)

2,0 − (T̂(1)
2,0 ∪ T̂(1),(3)

2,0 )). By

Remark 8.5, AM
(Γ1,v1,0,ord1,φ1),(1)
2,0,1 ' AM1,0,1 and AM

(Γ2,v2,0,ord2,φ2),(1)
2,0,1 ' AM0,0,3.

The subgroups of the edges in the graph of groups of AM
(Γ1,v1,0,ord1,φ1)
2,0,1 are iso-

morphic to AM0,0,2. We can take

(Γ1, v1,0, ord1) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e5, e7), (e4, e8, e9),

(e6, e9, e10), (e7, e8, e10)

(Γ2, v2,0, ord2) = (e1, e2);(e1, e3, e4), (e2, e5, e6), (e3, e7, e8), (e4, e7, e9),

(e5, e10, e8), (e6, e9, e10)

Notice (Γ1, v1,0, ord1, φ1) in ôrdA2,0 is a lift of (Γ2, v2,0, ord2, φ2) in ôrdA1,1 and

(Γ2, v2,0, ord2, φ2) in ôrdA2,0 is a lift of (Γ9, v9,0, ord9, φ9) in ôrdA1,1.
It remains to describe the monomorphisms of the edges in the graph of groups

for AM2,0,1 and to find the five relations that need to be added.

References

[1] Heather Armstrong, Bradley Forrest, and Karen Vogtmann. A presentation
for Aut(Fn). J. Group Theory, 11(2):267–276, 2008.
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