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On presentations for mapping class groups of
orientable surfaces via Poincaré’s Polyhedron
theorem and graphs of groups

Lluis Bacardit

Abstract

The mapping class group of an orientable surface with one boundary
component, .S, is isomorphic to a subgroup of the automorphism group of
the fundamental group of S. We call these subgroups algebraic mapping
class groups. An algebraic mapping class group acts on a space called
ordered Auter space. We apply Poincaré’s Polyhedron theorem to this
action. We describe a decomposition of ordered Auter space. From these
results, we deduce that the algebraic mapping class group of S is a quo-
tient of the fundamental group of a graph of groups with, at most, two
vertices and, at most, six edges. Vertex and edge groups of our graph of
groups are mapping class groups of orientable surfaces with one, two or
three boundary components. A presentation for the mapping class group
of S can be obtained by adding, at most, 24 relations to the fundamental
group of our graph of groups.

2010 Mathematics Subject Classification. Primary: 57N05, 20F05; Secondary:
20F28, 20F34.

Key words. Mapping class groups, presentations, automorphism groups, Auter
space.

1 Introduction

Presentations for mapping class groups of orientable surfaces were obtained by
different authors after a seminal paper by Hatcher and Thurston [7], where a
method to deduce presentations was exposed although presentations themselves
were not given. Wajnryb [12] followed Hatcher and Thurston’s method, with
improvements introduced by Harer [5], to obtain explicit presentations for map-
ping class groups of orientable surfaces of finite genus without punctures and one
boundary component. Matsumoto [9] interpreted some of the relations in Wa-
jnryb’s presentations as equalities between centralizers in Artin groups. From



Wajnryb’s presentations, Gervais [4] deduced presentations for surfaces without
punctures and a finite number of boundary components. Labruere and Paris [§]
generalized Matsumoto’s presentation to orientable surfaces with a finite number
of punctures and a finite number of boundary components.

The Mapping class group of an orientable surface with exactly one boundary
component can be identified with a subgroup of the automorphism group of the
fundamental group of the surface. We call these subgroups algebraic mapping
class groups. Before Hatcher and Thurson’s paper appeared, McCool [10], [11]
had proved that algebraic mapping class groups are finitely presentable.

In 2], we followed Armstrong, Forrest and Vogtmann [I] to obtain an al-
gorithm which gives presentations for algebraic mapping class groups. That
algorithm gives explicit presentations, although a large number of generators
and relations are needed. We did not find an argument to sensibly reduce the
number of generators and relations.

In the present paper, we obtain a new algorithm which gives presentations
for algebraic mapping class groups. Although this new algorithm gives genera-
tors and relations, our presentations are described as quotients of fundamental
groups of graph of groups. For a genus 0 surface with at least three punctures,
the graphs of groups has one vertex and one edge; and, one relation needs to be
added. For a surface without punctures and genus at least 2, the graph of groups
has one vertex and two edges. For a genus 2 surface without punctures, five re-
lations need to be added. For a surface with genus at least 3 without punctures,
six relations need to be added. For a surface with genus at least 1 and at least
one puncture, the graph of groups has two vertices and no more than six edges;
no more than 24 relations need to be added. We only give explicit presentations
for some simple cases. Although we do not give explicit presentations in gen-
eral, a presentation for the mapping class group of an orientable surface with
one boundary components can be obtained by our method and an inductive ar-
gument. The obtained presentation has a reasonable number of generators and
relations.

As in [2], we consider an action of algebraic mapping class groups on a space
analogous to Auter space, called ordered Auter space. In [2], the Degree theorem
by Hatcher and Vogtmann [6] was applied to obtain a 2-dimensional complex
from which the algorithm was deduced. In the present paper, the new algorithm
is deduced from Poincaré’s Polyhedron theorem applied to the action of algebraic
mapping class groups on ordered Auter space. Since ordered Auter space is a
manifold, Poincaré’s Polyhedron theorem can be applied. Recall Auter space is
not a manifold. Hence, Poincaré’s Polyhedron theorem cannot be applied to the
action of the automorphism group of a free group on Auter space. We describe
a decomposition of ordered Auter space which gives the vertices of our graph of
groups. By refining once this decomposition, we obtain the edges of our graph
of groups. And, by refining the decomposition a second time, we obtain the
relations that need to be added to the fundamental group of the graph of groups.



The vertex groups of the graph of groups are algebraic mapping class group of
an orientable surface with one or two boundary components. Presentations for
the vertex groups of the graph of groups can be computed by our method either
by induction or by our method applied one level deeper. The edge groups of the
graph of groups are algebraic mapping class group of an orientable surface with
one, two or three boundary components.

The outline of the paper is the following. Section [2 contains notations
and definitions. Section 3| recovers some results which are needed to apply
Poincaré’s Polyhedron theorem, and, contains the algorithm obtained by ap-
plying Poincaré’s Polyhedron theorem to the action of algebraic mapping class
groups on ordered Auter space. Section [4] contains the description of a subcom-
plex of ordered Auter space which decomposes ordered Auter space. Section
describes a subcomplex of ordered Auter space which is a homotopy retract
of ordered Auter space. The latter subcomplex is more suitable for being de-
composed. Section [0] describes a decomposition of the subcomplex of ordered
Auter space described in Section [f| Section [7] gives an inductive argument in
two steps: generators and relations. Section |8] describes our presentations for
algebraic mapping class groups in terms of graphs of groups. Section [J] contains
examples.

2 Notation and Definitions

This section contains notation and definitions used through the paper.

2.1 Notation. Let X be a set. The cardinality of X will be denoted | X].

Let G be a group. For g, h € G, we write [g, h] = g~ *h~gh, the commutator
of g and h; and, g" = h~1gh, the conjugated of g by h. We write [g] = {¢" | h €
G}, the conjugacy class of g in G.

Let Aut(G) be the group of automorphisms of G, and, let Out(G) be the
automorphism group of G modulo inner automorphisms.

We fix an integer n > 1, and, non-negative integers g, p and b such that
n=29+p+b—-1>1.

Let S be a genus ¢ orientable surface with p punctures and b boundary com-
ponents. We consider homeomorphisms of S which fix the set of punctures and
whose restriction to each boundary component is the identity. Hence, such an
homeomorhism respects the orientation of S. The mapping class group of S,
denoted M(S), is the group of isotopy classes of such homeomorphisms, where
every isotopy leaves fixed the set of punctures and its restriction to each bound-
ary component is the identity. Since two orientable surfaces with the same genus
g, the same number of punctures p and the same number of boundary compo-
nents b, are homeomorphic; their mapping class groups are isomorphic. Hence,
we also denote M(S) by My, and we say that M, ,; is the mapping class group
of a genus g surface with p punctures and b boundary components.



We denote by m(S) the fundamental group of S. For (p, b) = (0, 0),
the Dehn-Nielsen-Baer theorem states that M, is isomorphic to an index
2 subgroup of Out(m(S)), the group of outer automorphisms of m(S). For
(p, b) # (0, 0), m1(S) is a free group of rank n = 29 + p+ b — 1, and, a gener-
alization of the Dehn-Nielsen-Baer theorem states that M, ,,; is isomorphic to a
subgroup of Out(m(5)).

For b > 1, it can be deduced from Dehn-Nielsen-Baer theorem that M, ; is
isomorphic to a subgroup of Aut(m(S) * (c1, ¢, ..., -1 |)) denoted AM, .
The following notation is needed in order to define AMy .

We consider the following presentation for 7 (.5)

Fg,p,b = <[L’1, Y1, T2, Y2, .- -, Lg, Yg, tla t27 CI tpa 21y 225 « -5 Rb | wg,p7b>a

where wg,p = [T1, y1][T2, Y2 . .. [2g, Ygltita. . . tp2z122. .. 2. Since b > 1, F, ,; is
a free group of rank n = 2g + p + b — 1 with basis x;,y; for 1 <1 < g, t; for
1<k<p,and, zpfor 1 <[l <b-—1.

For 1 <[ < b, let %; be a point in the [-th boundary component of S. From a
topological point of view, the presentation F,,; for m;(S) can be interpreted as
follows: wy , 1, represents a loop based at ;, around the b-th boundary component
of S, t; represents a loop based at *;, around the i-th puncture of S for 1 <7 <p
and b; represents a loop based at %, around the [-th boundary component of S
for 1 <1 < b—1. To distinguish between punctures and boundary components,
we introduce ¢, for 1 < [ < b — 1, which represents an arc from *, to *; such
that z;" represents a loop based at %, around the /-th boundary component. [

The following definition of algebraic mapping class group appears in [3], with
slightly different notation.

2.2 Definition. We denote by AM,,,; the subgroup of
Aut(Fgm,b * <C1, Coy ..., Cp_1 |>)

consisting of automorphisms ¢ of Fy ,; * (c1, ¢z, ..., cp—1 |) such that the fol-
lowing conditions hold:

(a) The subgroup Fj,; is invariant under ¢.

(b) The set of conjugacy classes {[t; '], [t3'],.. ., [t, ]} is fixed by ¢.

(c) The words z;*, for 1 <1 <b— 1, and the generator z, are fixed by ¢.
)

(d) For1 <1< (b—1), the image of ¢; under ¢ lies inside the right coset Fy , ;- ¢
Of ngp)b\(ngp’b * <cl7 027 A ,Cb_l |>)'

We call AM, ,, the algebraic mapping class group of an orientable genus g surface
with p punctures and b boundary components. O
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We will use the following definition for combinatorial graph.

2.3 Definitions. A combinatorial graph I is a three-tuple (V(I'), E(T"), V*(I"))
such that V(I') and E(I") are disjoint sets, called the vertex set and the edge set,
respectivebly; and V*(I') = {v* | v € V(I")} where v* is defined as follows. Let
E(T) be a set disjoint from E(T) and let = : E(I') — E(T') be a bijection which
extends to an involution * : E(I') U E(I') — E(T') U E(T). For every v € V, v*
is a subset of E(I') U E(T") such that V*(TI') = {v* | v € V(TI')} is a partition of
E(T) U E(D); that is, v} Nvj = 0 if v; # vy, and Usev v* = ET) U E(T).

A graph with a distinguished vertez is a two-tuple (I", vg) where T is a com-
binatorial graph and vy is a vertex of I'.

A fat graph with a distinguished vertez is a three-tuple (I",vg,ord) where
(', vp) is a graph with a distinguished vertex, and, ord is an order relation in v*
for each v € V(I'), denoted ord(v*), such that ord(vg) is a linear order and, for
v # vy, ord(v*) is a cyclic order.

Let (T, vg,ord) be a fat graph with a distinguished vertex. Suppose V(I") =
{vo,v1,..., 94}, |Uf| = 1r; and
(1) ord(v) = (e}, €5, ..., €'), for 0 <i <gq.

T

Consider the following element and conjugacy classes of m (I", vp):

(2) wyg = a(l)ag .. a?q
[w] = [ajay---af],  for1<i<p,

where af = ¢}, @}, = €., the subsequence (@}, a),,) appears in for every

1 < j < (lp — 1), the subsequence (@, a},,) appears in for every 1 < i <
p, 1 < j <; and subindices of a' are modulo [;. We require that every element
of E(I') U E(T') appears exactly once in (2). We denote by w(T', vy, ord) the set
{wo, [wi], [wal,...,[wy]}. We denote

We say that (I', vg, ord) is a fat graph with a distinguished vertex which has
genus g and p punctures, or, a (g, p)-fat graph with a distinguished verter. [

It can be seen that the genus ¢ is a non-negative integer. See [2, Lemma
4.10].

2.4 Notation. Let (', vy, ord) be a fat graph with a distinguished vertex. Sup-
pose V(I') = {vg,v1,...,v,}, |vf| =r; and

ord(vy) = (e}, €5, ..., €'), for 0 <i <gq.

Ti



To simplify notation, we will write

(I'; vg, ord, ¢) = ord(vg); ord(vy), . .., ord(v;)

= (e}, €3,...,€0); (e},eé,...,eil),...,(e?,e%,...,egq)

O

2.5 Example. Let I' = (V(I"), E(I"), V*(T")) be the combinatorial graph where

V(T) = {u1, ug, uz, us},
ET) ={ey,eq,...,e9},
uy = {e1, €1, €2, €3, €4},
uy = {es, €, €2, €3},
uy = {er, es, €4,€5, €7},
uy = {eg, €, €3, €9}

Let (I',ug) be the graph with the distinguished vertex vy = wuy and let
(', vg, ord) be the fat graph with a distinguished vertex where

ord(vy) = ord(uj) = (€9, €6, €3, €5),
ord(uj) = (e, €3, €4, €1, €2),
ord(uz) = (er, es,€7,€4,€5,),
(u3) = (

ord(u E8769a667€9)

With notation above, we write
(Fa Vo, Ord) = (627 667637 65); (617 €3, 647517 62)7 (677 €s, é7a 647557 )7 (687 697667 E9)
Then w(I, vy, ord) = {wy, [w1], [wa]} where

Wy = €2€1€265E9€6E3E4E5;
[wy] = [e1eseserey);

[wa] = [Ereseqes).

Notice (I, vp) is a free group of rank n = 6. Since w(I', vy, ord) has two cyclic
words, we have p =2 and g = (n — p)/2 = (6 — 2)/2 = 2. Hence, (I", vy, ord) is
a (2,2)-fat graph with a distinguished vertex. O

The following operations on graphs are well-known.

2.6 Definition. Let (I', vy, ord) be a fat graph with a distinguished vertex.
Let f € E(I') U E(I') and vy,ve € V(I'), v1 # vy, such that f € v}, f €
v3. Suppose vy # vy. We define the fat graph with a distinguished vertex



(Tf,vf, ord”) where

V() = v u{u} = {vi, 0}, ug V(D)
Ul#voév(};:vo;
V1 = Vy = U(J; = Uu;
ET)UEIY) = ET)UET) —{f, [}

For v € V(') — {v1, 12}, we define ord’(v*) = ord(v*). Suppose ord(v}) =
(et ey, ... et ), for i = 1,2. Since f € v}, there exists 1 < k; < r; such that

» g

f = ey, Since f € v, there exists 1 < ky < 7 such that f = ey, We define

Flax\ (o1 1 1
ord’ (u*) =(ey, ey, ..., €, 1,
2 2 2 2 2
€k2+1,6k2+2,...,€r2,61,€2,...,€k2_1,
1 1 1
a1 Chyg2s -+ Cry)-

We say that (Ff,vg,ordf) is obtained from (I',vg,ord) by collapsing the edge
[ 0

It is easy to see that collapsing an edge is well-defined and respects the genus
and the number of punctures. See [2, Lemma 3.5, Lemma 4.5].

2.7 Definition. Let v € V(I') such that |u*| = r. For 1 < ky < ko < 1,
(k1, ko) # (1,7), we define the fat graph with a distinguished vertex (I'*, v, ord")
where

V() =V(I)U{v, v} —{u}, v, v ¢ V(I),
u # vy = v = v,

U= vy = vy = V1,

E(") =BT U{f}, f¢ET)UED).

For v € V(I'*) — {vy, va}, we define ord“(v*) = ord(v*). Suppose ord(u*) =
(e1,€,...,¢e.). We define

ord“(vy) =(eq,e9,..., €51,
frhot1s oty €0),
ord(v3) =(Ff, €ry» Chrats - - - » Chy)-

We say that (I'*, v, ord") is obtained from (I',vg,ord) by splitting the vertex
U. O

It is easy to see that splitting a vertex is well-defined and respects the genus
and the number of punctures. See [2 Lemma 3.6, Lemma 4.8]. Often in the
literature, splitting a vertex is called blowing up an edge.
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2.8 Definition. Let (I, vg, ord, ¢) be a four-tuple where (I, vy, ord) is a (g, p)-fat
graph with a distinguished vertex such that:

(a) T'is a metric graph with total volume 1;

(b) T is finite and connected without separating edges;

(c) |v*| > 3 for every v € V(I') — {vo} whereas |vj| > 2;
)

(d) ¢ :m (L, v9) = F,p1 is an isomorphism called the marking.

We say that (I'y, v1 o, ordy, ¢1) is equivalent to (I'y, vo g, ords, ¢2) if there exists

an isometry h : I'y — I'y such that h(vyg) = vap, if ordy (v) = (e1, €2, ..., ¢€,) then
ordy(h(v)) = (h(e1), h(e2), ..., h(e,)) for every v € V(I'1), and the isomorphism
hy : 7Tl(F1, Ul,O) — 7Tl<F2, U2’0> satisfies ¢1 = (]52 o h,. ]

It is easy to see that being equivalent is an equivalence relations among
four-tuples (I, vy, ord, ¢) as in Definition [2.§|

Auter space is an analogous of Outer space for graphs with a distinguished
vertex. The following definition is an analogous of Auter space for four-tuples
(T, v, ord, ¢) as in Definition

2.9 Definition. We denote by ordA,, the space of equivalent classes of
four-tuples (T, vy, ord, ¢) as in Definition [2.§ where the isomorphism ¢ : (T, vg) —
Fyp1 and w(l, vy, ord) = {wo, [w1], [wa], ..., [w,]} satisty

¢(wo) = [xla yl][x% y2] co [l‘ga yg]tltZ ooty = wg,p,12’1_17

{lo(w))]; [p(wa)], -, [p(wp)]} = {[t ], [t2'],- - [t}

Let p be a point in ordA,, represented by (I, vy, ord, ¢). Suppose |E(I')| =
k + 1. Varying the length of the edges of I' defines an open k-simplex o(p) =
o(L,vg,ord, ¢) of ordA,,. Let A* be the standard open k-dimensional simplex
of R¥1. Then A* parametrizes the k-simplex o(p) = o (T, vy, ord, ¢) by saying
that (I's,vp,0rd, ¢) € o(p) is the point in ordA,, such that the length of the
edges of I'y equal the barycentric coordinates of s € A*. Since a non-trivial
isometry of I' permutes some edges of I', such an isometry gives a non-trivial
element of H;(I"). Hence, a non-trivial isometry changes ¢ in p = (I, v, ord, ¢)
and the parametrization above is a bijection.

Some faces of o(p) = (L', vy, ord, ¢) belong to ordA, ,. Let f € E(T'), vy,v, €
V(T), v; # vy, such that f € v* and f € vi. We can collapse f to obtain a
new graph (I'/, v{, ord”) with metric induced by the metric of (I, vy, ord) scaled
such that the total volume is one. There exists a quotient map p : (I", vy, ord) —
(Ff,vg,ordf). Since p, : m ([, v9) — Wl(Ff,vg) is an isomorphism, there ex-
ists a point p/ = (Ff,vg,ordf, ¢’) in ordA,,, where ¢ = ¢/ o p,. We say that
o(p!) = oI/, vf,ord!, ¢/) is a face of o(p) = (T, vy, 0rd, ¢). Faces of o(p/)

8



are faces of o(p). We cannot collapse an edge which is incident to a unique
vertex, i.e. v; = vy. Hence, some faces of o(p) = o(I", vy, ord, ¢) are missing. In
particular, ordA, , is not a simplicial complex.

The closure of o(p) = o(I', v, ord, ¢), denoted cl(o(p)) = cl(a(T, vy, ord, ¢)),
is the union of o(p) and all its faces. Notice cl(o(p)) is parametrized by the
closure of A* with some faces missing. The topology of cl(a(p)) is induced by
this parametrization. Since ordA,, can be seen as the disjoint union of all these
simplices cl(o(p)) after identifying equivalent points in the sense of Definition[2.8]
ordA, , has the quotient topology of the union of all these simplices cl(o(p)).

Thus, ordA,, is a topological space with a complex structure with open
simplices o(p) = o (I, vp, ord, ¢). Since the fat graph with a distinguished vertex
(', vg,ord) has a finite number of vertices and every vertex can be split in a
finite number of different manners, there exists a finite number of simplices
of ordA,, which have o(p) = o(L',vp,0rd, ¢) as a face. Since the fat graph
with a distinguished vertex (I',vy,ord) has a finite number of edges, o(p) =
o(T, v, 0rd, ¢) has a finite number of faces. Hence, the complex structure of
ordA,, is locally finite. O

2.10 Remark. Let p = (I', vy, ord, ¢) be a point in ordA,,. By an Euler charac-
teristic argument, the condition |v*| > 3 for all v € V(I') — {vo} whereas |u§| > 2
in Definition 2.8} implies |E(I")] < 6g + 3p — 2 = 3n — 2. Recall n = 2g + p.
Hence, ordA, , is a complex of dimension 6g + 3p — 3 = 3n — 3. O

Out(F},) acts on Outer space by “changing” the marking, and Aut(F},) acts
on Auter space in a similar manner. We define the same action of AM, ,; on
ordA .

2.11 Definition. AM, ,, acts on ordA,, via

pp=p- (F7U070rd7 ¢) = (F,Uo,OI‘d,gOO ¢)

where ¢ is an element of AM,,,; and p = (I, vy, ord, ¢) is a point in ordA,,,. O

3 Poincaré’s Polyhedron theorem

First, we recall some results from [2]. Some of these results are directly trans-
ferred from Outer space [6]. Then, we apply Poincaré’s Polyhedron theorem to
the action of AM,,; on ordA,, given in Definition [2.11] Since Poincaré’s Poly-
hedron theorem can be applied in different contexts under suitable hypothesis,
we give a proof of Poincaré’s Polyhedron theorem in our context. Finally, we
give two examples.

3.1 Remark. ordA,, is connected. See [2, Remark 4.20 (d)] O

3.2 Lemma. ordA,, is simply connected.

9



See [2l Remark 4.20 (g)].

3.3 Lemma. The action of AM, 1 on ordA,, is free. Hence, ANy, 1 is iso-
morphic to the fundamental group of AM, 1\ ordA,,.

See [2l Lemma 6.3, Remark 6.2].

Notice we replaced ordSA,, in [2, Remark 4.20(g), Lemma 6.3] by ordA, .
Since ordSA, ,, called the spine of ordA, ,, is a homotopy retract of ordA,,, this
replacement can be done.

3.4 Lemma. The ordered Auter space ordA,, is a (6g + 3p — 3)-dimensional
manifold with boundary of dimension 6g + 3p — 4.

See [2, Lemma 4.15]. We recall some facts in the proof of [2, Lemma 4.15]
which will be used in the statement and proof of Poincaré’s Polyhedron theorem.

3.5 Remark. Let o(p) = o(I", vy, ord, ¢) be a (6g+ 3p — 3)-dimensional simplex
of ordA,, and let f be an edge of I'. By collapsing f we obtain a codimension
one face of o(p) denoted o(pf) = o(IF,v{,ord”, ¢/). Notice (I'/,v{,ord’) has
a vertex v such that either v # o] and |[v*| = 4, or, v = v} and |v*| = 3. In
both cases, v can be split to obtain two different graphs. One of these graphs
is (I', vp, ord) and the other one is a graph which may have a separating edge.
Hence, o(p/) is either an interior face or a boundary face as follows.

(a) If there are exactly two (6g + 3p — 3)-dimensional simplices of ordA, , which
have o(p/) as a face, then o(p/) lies in the interior of ordA,,. We say that
o(p’) is an interior face.

(b) If o(p) is the unique (6g + 3p — 3)-dimensional simplex of ordA,, which has
o(p/) as a face, then o(p/) lies in the boundary of ordA,,. We say that
o(p’) is a boundary face.

O

We are interested in interior codimension one faces of (6g-+3p—3)-dimensional
simplices of ordA .

3.6 Definition. We denote by P,, C ordA,, a fundamental domain for the
action of AM, ,; on ordA, . O

Notice P,, is the finite union of the closure of (6g + 3p — 3)-dimensional
simplices of ordA,,. Hence, P, is a polyhedron.

The following theorem is Poincaré’s Polyhedron theorem applied to the action
of AM 1 on ordAg,. See Definition [2.11]
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3.7 Theorem. The group AM,, 1 is finitely presented.
The group AMg,1 has generators represented by interior codimension one
faces of (6g + 3p — 3)-dimensional simplices of Py ,,.

There are three sets of relations of AM, 1 which we describe.

Let O'(pl) = O'(Fl, V1,0, Ole, (bl) and O'(pg) = O'(FQ, V2.0, 07’d2, ¢2) be two (69 +
3p — 3)-dimensional simplices of ordA,, and e; € E(I'1), fo € E(I'y) such that

(3) U(p?) - U(Fila Ui107 O’I"dil, Tl) - 0-<F£27 Ug?(), 07”d£2, ¢22) - O-(ng)

Hence, o(p$*) = o (pl?) is an interior codimension one face of ordd,,, obtained by
either collapsing ey in (I'y1,v1 0, ordy) or collapsing fao in (I's, vay, ords). Suppose
o(p1) lies in Py ,. Then o(pi') represents a generator of AN, ;.

The first set of relations of AMg 1 is described by saying that if o(ps) lies
in Py, then the generator of AM,,1 represented by o(pi') is the identity.

The second set of relations of AM, 1 is described as follows. If o(ps) does
not lie in P, ,, then there exists a (6g + 3p — 3)-dimensional simplex o(ps) =
o(I's, vs0, ords, ¢3) C Py, which lies in the AM, ,1-orbit of o(p2). Hence, there
exists 1 € AM, 1 such that ¢ - o(pe) = o(ps). And there exists an isometry h
(T, va, ordy) — ('3, v, ords) realising this equality. Let fs = h(f2) € E(Ts).
Then, by @), the faces o(p7') and o(pl?) are in the same AM,,1-orbit. The
second set of relations is given by saying that the generator represented by the
face a(pg‘“’) of o(ps) C Py, is the inverse of the generator represented by the face
o(p5') of 7(1) C Py

The third set of relations of AMg, 1 correspond to codimension two sim-
plices. Let fi € E(T'y)—{ei} such that the face o(pl") = o(T], U{,lm ord™, ¢1*) of
o(py1) is interior. Suppose {ey, fi} are the edges of a forest in I'y. Equivalently,

there exists the codimension two face o(pS™") = J(F?’fl,vf}dﬁ, ordt T gy

obtained by collapsing either fi in I'{" or e in F{l. We can move from o(py)
to o(py) through the face o(p) = o(pl?). Then, fi is identified with an edge
ey of I'y. Since f1 can be collapsed in I'Tt, {ea, fo} are the edges of a forest
in T'y. Let o(ps) = o(I's, vs0, ords, ¢3) be a simplex in Py, which lies in the
AM, ,1-0rbit of o(p2) with isometry h : (I'y, va0, ordy) — (I's, vs0, ords). Let
es = h(ez), fs = h(f2). If o(p3*) = o(I's’, v5, ords’, ¢5°) is an interior face,
we can apply the same procedure to the (6g + 3p — 3)-dimensional simplez o(p3)
instead of o(p1), where ey, fi are replaced by es, fs, respectively. After a finite
number of times repeating this procedure either we will obtain a boundary face
or we will be back to o(p1) with pair of edges {e1, f1} and collapsing e;. Each
time we apply the procedure, we obtain a generator of AMg 1. The first time we
obtain the generator corresponding to the face o(pi') of o(p1), the second time
we obtain the generator corresponding to the face o(p5*) of o(ps), ete. If at some
point we obtain a boundary face, then we do not obtain a new relation. If we
go back to o(p1) with pair of edges {e1, f1} and we have to collapse e;; then we
obtain a relation which is the word described by the procedure.
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Proof. Let G be a group with presentation given in the statement. We have to
prove that G is isomorphic to AMy ;1. We will construct group homomorphisms
G — AM, 1 and AM,,, 1 — G such that both composition are the identity.

Let = be a generator of G represented by the interior codimension 1 face
o C Py, There exist two (6g + 3p — 3)-dimensional simplices o(p1) =
o(I'1,v10,0rdy, ¢1), o(p2) = (I, v90,0rds, o) and edges e; € E(I'y), fo €
E(Ty) such that o(p;) C Py, and ¢’ = o(p$*) = o(p)?). Since P,,, is a funda-
mental domain of the action of AM ;1 on ordA, ,, there exists 1 € AM, 1 such
that -0 (p2) C Py ,. We define the group homomorphism G' — AM .1, = — .

To see G — AM, ;1 is well-defined, we have to prove the three set of relations
of G hold in AM, ;.

If o(p2) C Py, then ¢ is the identity. Hence, the first set of relations of G
holds.

Since ¢ - o(p2) = o(ps) = o(I's, v30, 0rds, ¢3) C P, ,, there exists an isometry
h : (Ig,vg0,0rdy) — (I's, v30,0rds). Let h(fe) = f3. Since a(pg‘“’) is an interior
codimension one face of o (p3) C Py, and ¢~ - o(pf?) = v~ - o(pf?) = o(p$"),
we see a(p§3) represents x~'. Hence, the second set of relations of G holds.

Let xpxp_1--- 21 be a word given by applying the procedure in the third set
of relations. Let ¢, € AM, ,, such that x; — ;. Then 9, sends the interior
codimension 1 face o(p) = o(pd?) to o(pf*). Notice b - (o(p$*) N o (p)) =
Ui (0(pF) N o(p5?) = (1 o(pf)) N (U1 - 0(957) = o(p5"™) Nalps™)) =
0'(]3?;3) No(ps?). Next, we apply the procedure with o(p;) replaced by o(p3) and
e1, f1 replaced by es, fs, respectively. Hence, 1)y sends o(p5?) = a(pff*) to 0(p§5)
and ot - (a(p) Na(pF)) = ¥ - (a(p5) No(pd) = o(pf?) No(pg). The
procedure gives a relation if we go back to o(p;) with pair of edges {e1, f1}, or
equivalently, if ¢y, - - - Yoty - (0(p) N (pf")) = o (pf*) No(pS). In this case, since
AM, 1 acts freely on ordA, ,, ¥y - - - 91 is the identity.

Recall ordA,, is locally finite. Since generators of G are represented by
interior codimension 1 faces of P, ,, we see G is finitely generated. Since the
number of relations of the first and second sets are bounded by the number
of codimension 1 faces of P,,, and, the number of relations of the third set
is bounded by the number of codimension 2 faces of P, ,, we see G is finitely
presented.

Let p be a point such that o(p) is a (6g + 3p — 3)-dimensional simplex and
o(p) € Py, Let ¢ € AM,, 1. Since ordA,, is simply-connected and AM,
acts freely on ordA,,, we see ¢ is determined by any path v : [0, 1] — ordA,
from p to ¢ - p.

It is proved in [2] that ordA,, is a (6g + 3p — 3)-dimensional manifold. The
proof reduces to the following facts.

(a) Each codimension 1 simplex lies in at most the closure of two (6g + 3p —

3)-dimensional simplices. See Remark
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(b) If 0” is a simplex of ordA,, of codimension at least 1 and o, ¢’ are two
(6g + 3p — 3)-dimensional simplices of ordA,, such that ¢” is a face of both
o and o', then there exists a sequence of (6g+ 3p — 3)-dimensional simplices
of ordA, , such that the sequence starts with o and ends with ¢’, and, we can
move from one element of the sequence to the next element of the sequence
through a codimension 1 face which has ¢” as a face.

From @ and @ above, by a general position argument, we have the follow-
ing.

(i) ~ is isotopic, relative to v(0) = p and (1) = ¢ - p, to a path lying in the
interior of simplices of codimension at most one.

(ii) If v lies in the interior of simplices of codimension at most one and =y
bounds a disk D C ordA,,, then D is isotopic, relative to v = 0D, to a
disk lying in the interior of simplices of codimension at most two.

By (lil) above, we can suppose there exist a sequence of (6g+3p—3)-dimensional
open simplices o(p;) = o(I',vip,0rd;, ¢;), for 1 < ¢ < k, and there ex-
ist edges ¢; € E(I;) and fiy1 € E(I'yyq), for 1 < i < k — 1, such that

o(p;) = a(pliy') C cl(a(pi) Nel(o(pisr)) and

(4) yo.) (Y ep)uC |J  cle®i).

1<i<k 1<i<k—1

Without lost of generality, we can suppose p is the barycenter of o(p;) and
7([0,1]) is the concatenation of segments from the barycenter of o(p;) to the
barycenter of o(p;*) and from the barycenter of o(p*) = U(pfff) to the barycen-
ter of o(p;y1), for 1 <i<k—1.

Since P, , is a fundamental domain for the action of AM,,; on ordA,,, for
1 <i < k, there exists p; € AM, ;1 such that o(p;) C ¢; - P,,. Notice y; is
uniquely determined and ;- o (p$*), i} -J(p{jﬁl) are interior codimension one
faces of ;' a(ps), @iy - o(pis1) C Py, respectively. Let ¢; = il i € AM 1
for 1 <7<k —1. Notice

Loyt o (pf) = ekt - a(pF) = ik - o (plih).

Hence, 1; sends the interior of the face ¢; '-o(p§?) of P, to the interior of the face
i -a(p{fll) of P, . Since ¢; ' -a(pi?), piy ~0(p{f11) are codimension one faces
of P, ,, we see 1); is represented by ¢; ' -a(p$). From o(p;) C Py, it follows ¢ is
the identity and ¢ ¢y -y = (97 @2) - (051 03) - - (0pl190k) = 91 Pk = i
sends p € o(p1) to pr - p € @i - o(p1) = o(pg). Since AM,, ;1 acts freely
on ordA,,, we see p = Y| Lyt --1/1,;11. We define a group homomorphism
AM, 1 — G, o> oyt

Suppose v : [0,1] — ordA,, is a loop. To see AM,,,; — G is well defined we
have to prove xj_12j_2 - - - 21 is the identity. Since ordA ), is simply connected, v
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bounds a disk D. By (fi)) and above, we can suppose v = dD lies in the union
of simplices of codimension at most one, and, the interior of D lies in the union
of open simplices of codimension at most two. Then D has a complex structure
with 2-cells defined by D N o, 1-cells defined by D N ¢’ and O-cells defined by
DnNo”, where o is a (6g 4+ 3p — 3)-dimensional simplex, ¢’ is a codimension one
simplex and ¢” is a codimension two simplex. Since 7 is the boundary of D,
by (i) above, all O-cells are in the inetrior of D.

If D does not have any 0-cell, then the complex structure of D consist of
arcs which do not intersect themselves and join points in v = 9D. Then,
there exists an inner-most segment in  which joins points o(p;’) N v and

€i4+1

o(p, i) N~y. And there exists a subsequences of (6g + 3p — 3)-dimensional sim-
plices U(pi—l); O'(pi), 0'(]32'+1> such that U(pi—l) = O'(]JZ'+1). Hence, ©Yi+1 = Pi—1
and ¢; = go;rllgoi = ¢; i = ;Y. Thus, o312 271 can be reduced by re-
lations of the second set. Applying this relation to xj_1xx_o--- 1 is equivalent
to remove from D the 2-cell bounded by the arc of v = 0D from o(p;’) N~
to o(p;') Ny and the arc inside D from o(p{’) N~ to o(p;i}') N~. The same
argument can be applied to the new word.

If the complex structure of D has 0-cells, then there exisits a 1-cell which
joins a 0-cell ¢; to a point go € v = dD. Notice g2 = o(p;®) Ny = U(p{jﬁl) Ny
and q; = o(p;®’) N D for some f € E(T;). The relation obtained by applying
the procedure of the third set of relations to o(p;) with pair of edges {e;, f} and
collpasing e; is a word y192 - - - ¥, such that y; = x;. Then we can replace z; in
Tp_1Tp—o o1 by y='---yy'. The new word (_17p_o- - 2ip1) - (Yt 5 ') -
(;_1 - - - x1) represents a path which bounds a disk obtained from D by applying
an homotopy supported in D. The homotopy moves v beyond ¢; through the
arc from ¢, to ¢;. This new disk does not have ¢; in the interior. Hence, this
new disk has a O-cell fewer in the interior. The same argument can be applied
to the new word. O

3.8 Examples. (a) For (g,p,0) = (0,2,1), we have Pyo = cl(o(T', vy, ord, ¢))

where
V(F) = {U07U1,U2}7
E(F) = {617 €2, €3, 64},
ord(vy) = (e1, e2),
ord(vy) = (€1, e3, €4),
OI'd(U;) = (@2,54,53).
We write
(Fa Vo, Ol"d) = (617 62); (éla €3, 64)7 (527 E4753)'
Notice

U}(F7 Vo, OI‘d) = {6163@2, [616254], [6364]}.

14



By collapsing e; we have

(Felvvgla Ordel) = (637 €4, 62); (627547 53)

We can split vg', where ord” (vg') = (es, €4, €2), in two different manners.
Both of them give graphs without separating edges. Hence, o (!, v5*, ord®*, ¢°1)
is an interior face which represents a generator z; of AMg 2.

Similarly,
e e e o — =\, (=
(F 27 Vg 70rd 2) - (617 €4, 63), (617 €3, 64)7
is an interior face which represents a generator z, of AMq 2 1.

By collapsing e3 we have
(I, v, ord™) = (e1, e2); (€1, €2, €4, €4).

We can split the vertex corresponding to (€1, €z, €4, €4) in two manners, one
case gives a graph with a separating edge. Hence, o ('3, v5?, ord®, ¢) is a
boundary face. Similarly, o(I'*, vg*, ord®, ¢*) is a boundary face.

We see faces o (I, vg', ord®, ¢1) and o(I'*2, v5?, ord®?, ¢°2) are in the same
AMpg 2 1-orbit by the isometry he, ¢, : (I, o5t ord) — (I'°?, v5?, ord®) de-
scribed by

ey > €3,
hel,eg : e +— eq,
€4 > €4.

Hence, x1, the generator represented by o (I, v, ord®, ¢¢), is the inverse
of x5, the generator represented by o(I'°?, v3?, ord®, ¢?). We represent these
generators and this relation:

g X2
61(762 62(_761
r T

The only possible relation comes from the pair of edges {ei,es}. By
splitting vg' in (I'*, v5', ord®) we have (I',vp,0rd) and (I'y,v50,0rds) =
(es,€1); (€3,€2,€4), (€1, €4,€2). Then (I',vp, ord, @) and (I'y, v2 g, ords, ) are
in the same AMj o -orbit with isometry h : (I, va0,0rds) — (L', vg, 0rd)
such that

el = €9
€y — €3
h: ’
ez > e,
€4 — ey.



We have to apply the same procedure to (I',vg,ord) with edges h(es) =
€3, h(e1) = ey. Since o(I'*, v5?, ord®, ¢%) is a boundary face, we do not
obtain a relation and AM 2 is a free cyclic group generated by z;. Notice
the isometry h : (I'y,v90,0rds) — (I',v9,0rd) can be deduced from the
isometry he, ¢, @ (I, v5t, ord®) — (I'°?, v5?, ord®?) and e; — es.

For (g,p,b) = (1,0, 1), we have Py 5 = cl(o(I", v, ord’, ¢')) where
(Fla Ué]a Ord/) = (617 62); (617 €3, 64)(627 637 €4>
And,
w(T’, U6, ord/) = {6163?4@162536452}.
By collapsing e; and ey we have, respectively,
(Flelnglaord/el) = (e3,€4,€2); (€2, €3, 84),
(Fl627 U£)€27 Ord/eZ) = (elu 637 E4>7 (Ela €3, 64)-

. / / / / / / ! / .
Notice o(I", vy, ord ', ¢ ) and o(I"%,v,2, ord ©, ¢ “?) are in the same
. . / / ’ / / / .
AM; g 1-orbit. The isometry he, ¢, @ (I', vt ord 1) — (7%, v, ord ©?) is
described by

€y > €y,
Pe, ey : es — eq,
e4 +— es.

Hence, both faces are interior and they represent generators of AM, g1, one

inverse of the other. Let 2, be the generator represented by (I, v(/)el Lord !, ¢°)

and z, the generator represented by o (I, UE)EQ, ord 2, ¢'°?). Then, x5 = 27"
We represent these generators and this relations:

X1 X2
61('762 GZOel
I’ I’

By collapsing e3 and e4 we have, respectively,
(FIGB, 1;663, ord,e‘*) = (ey,€2); (€1, €4, o, €4),
(Fle‘*, 1;664, ord,e“) = (e1,€2); (€1, €3, €2, €3).
Notice O'(F,e3,1}£)e370rd/63,¢,63) and 0(F’e4,v£)e4,ord/e4,gz§/e4) are in the same

AM; g1-orbit. The isometry he, o, : (1'%, 0,2, ord ) — (I'¢4, v, ord ) is
sy y 3,64 0 0
described by

e — eq,
he3,e4 . €y > €9,
€4 > €es3.
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Hence, both faces are interior and they represent generators of AM1 0,1, one
inverse of the other. Let x3 be the generator represented by o(I'es v 3. ord L)
and x4 the generator represented by o (I Vg ord “apen). Then, Ty =13

We represent these generators and this relatlons.

I3 T4
63064 64(763
I’ I’

To deduce all relation, we have to consider the relations obtained from the
pair of edges {e1,es}, {e1,es}, {e1,e4}, {€a,e3} and {ey, e4} of (IV, v}, ord").
Notice the pair {e3,e,} cannot be considered, since ez and e4 are not the
edges of a forest in (I, vg, ord’).

From the pair {e1, s} we have the following.

1. We collapse e; in (I, v)), ord’) and we obtain (I'*!, v, ord ®*) which lies
in the AM, g 1-orbit of ("2, v, ord ©*). Hence, we obtain the generator
x1 and the pair of edges he, ¢,(€2) = €4, he, e(€1) = €2.

2. We collapse ey in (I, vy, ord') and we obtain (I'e4 £, ord ) which lies
in the AM, ¢ 1-orbit of (T'es v 3 ord® %). Hence, we obtain the generator
14 = 23" and the pair of edges he,es(€2) = h63164( 9) = €2, he,es(€4) =
h_ ( ) = €3.

e3,e4

3. We collapse e, in (I, v}, ord’) and we obtain (I, v, ord *?) which lies
in the AM, g 1-orbit of ("', v, ord ). Hence, we obtain the generator
7y = x7" and the pair of edges he, ., (e3) = helleQ(eg) = €4, hey e, (€2) =

hl ( )—61.

€1,€2

4. We collapse ey in (I, v)), ord’) and we obtain (I, v, ord ®) which lies
in the AM, g 1-orbit of (', v, ord ®). Hence, we obtain the generator
74 = 153" and the pair of edges he, ., (e1) = hele(e1) = eq, heyeq(es) =

1
h83,64( ) = €3.

5. We collapse e; in (I, v}, ord") and we obtain (F/el,véel,ordlel) which lies
in the AM; o ;-orbit of (T2 v, ord “?). Hence, we obtain the generator
x1 and the pair of edges he, ¢,(€3) = €1, he, ey(€1) = €.

We are back to (I, v}, ord’) with pair of edges {ey, €5} and we have to collapse
e1. Hence, we obtain the relation xlxg_l:pl_lxg Loy, We represent this relation:
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F/€1 EUl €9 1—v€1 }‘1 €9 T
€3 €4
T3 T3
€4 €3
I - I
€1 Ty (&)

Since we have used the pairs of edges {e1, e3}, {e1,es}, {€2,e3} and {es, 4},
there are no more relations and AM, o; has the presentation

(x1, 23 | ;g ey egta).

]

3.9 Remark. Let o(p) = o(I", vy, ord, ¢) be a (6g+ 3p — 3)-dimensional simplex
of P,, and let e, f € E(I') be the edges of a forest in I'. Suppose that applying
the procedure in Theorem to the pair of edges {e, f} and collapsing e we
obtain a relation 7.

(a)

(b)

4

If we apply the procedure in Theorem to the pair of edges {e, f} and
collapsing f, then we obtain the word r~!, the inverse of r.

If e, f are the edges of a tree in I'; then, after collapsing e and f in (I, vy, ord)
we obtain a graph (I'“/, v5/ ord®/) with a vertex v such that either |v*| = 5
if v £ vS! or, [v*] =4 if v = 057, In both cases there are, at most, 5 sim-
plices of dimension (6g+3p—3) which have o(p®/) = o(%F v57 ord®?, ¢e/)
as a face. Hence, r is a word of length five.

If e, f are the edges of two non-connected trees in (I', vy, ord); then, after
collapsing e and f in I' we obtain a graph (I'®/, vg’f ,ord®/ ) with two vertices
uy # uy such that either |uf| = |uj| = 4 if u; # 57 and uy # 057, or,
lut| = 3, |uf] = 4 if uy = v%7. In both cases there are, at most, 4 simplices
of dimension (6g + 3p — 3) which have o(p®/) = o(Ief v&! ord®?, po/) as
a face. Hence, r is a word of length four.

]

The subcomplex T, , of ordA

We define a connected subcomplex, denoted T, ,, of ordA,, which decomposes
ordA .
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4.1 Definition. Let (I',vy,ord) be a connected (g, p)-fat graph with a distin-
guished vertex. The standard labelling of (T',vg,ord) is a labelling of vertices
and edges of I' as follows. Recall ord(vf) is a linear order on vj. We label edges
incident to vy according to the order on vf, that is, ord(vf) = (e1,eq,...) or
ord(vy) = (e, €1,e€,...). Suppose we have labelled edges ey, e,...,¢e; € E(I)
and vertices vy, vy, ...,v; € V(I'). Let k, 1 <k <, be the least integer such that
e, € u* where v € V(I') has not been labelled by vy, v, ..., v;. Then we label u
by vji1. Suppose ord (v} ) = (€, f1, f2, ..., fr). Notice some edges fi, f2,... f;
may have been labelled by some €y.1,€x19,...,¢6;. We label by e;11,€;10,...
edges fi, fa, ..., fr which have not been labelled by €gi1,€r12,...,€;. Since
(T, vg, ord) is connected, we label every vertex by wvg, v, v, ... and every edge
by ey, e, €3, .. .. O

4.2 Example. Let (I, vp, ord) be a fat graph with a distinguished vertex where
V<F) = {U07 u17u27u3}7 E(F) = {f17 f27 ety f7} and

(T, vg, ord) = ord(vg); ord(uy), ord(wus), ord(u3)
= (f17 f2); <f37727 f4)7 (f57 f67?1774)7 (f7775777)737?6)'

The standard labelling of (I',vg,0rd) is obtained as follows. Since ord(v}) =
(f1, f2), f1 is labelled e; and fy is labelled e;. Hence, ord(v) = (e, €2). Since
€ = f, € u3, uy is labelled v; and ord(vi) = (e1, fy. f5, f). Then f, is la-
belled e3, f5 is labelled ey and fg is labelled e5. Hence, ord(vy) = (€1, e3, 4, €5).
Since € = f, € ul, u; is labelled vy and ord(vi) = (€s,€s, f3). Then f3
is labelled es. Hence, ord(vi) = (€3,@3,65). Since e3 € vi, &4 = f5 € ul,
uz is labelled vz and ord(vi) = (&4, f,8 €5, fz). Then f, is labelled er.
Hence, ord(vi) = (€4,e7, €, €5,€7). The standard labelling of (I",vg,ord) is
V(I') = {vo, v1,v9,v3}, E(I') = {e1,ea,...,e7} and

(T, vg, ord) = ord(vg); ord(vy), ord(v3), ord(v;)

= (e1,e9); (€1, €3, €4,€5), (€2, €3, €5), (€4, €7, €6, €5, €7).

]

4.3 Remark. Let p, = (I';,v;0,0rd;, ¢;),4 = 1,2 be two points in ordA,,.
Simplices o(p1) = o(I'1,v10,0rdys, ¢1) and o(p2) = 0(Ia, va0, ords, ¢2) are in the
same AM, , 1-orbit if and only if the standard labelling of (I'y, vy 0, 0rdy) equals
to the standard labelling of (I'y, v2, ords). O

4.4 Notation. From now on, we suppose that all fat graph with a distinguished
vertex (I',vg, ord) have the standard labelling. In particular, if |uj| = 2 and
V()| > 3, then ord(vf) = (e1,eq),ord(v) = (€1,...) and, either &, € v} or
ord(vi) = (€a,...). O
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4.5 Definition. Let (', vy, ord) be a connected (g, p)-fat graph with a distin-
guished vertex such that |vj| = 2. Suppose (g,p) # (0,1). Since (I",vp, ord)
has the standard labelling, ord(v$) = (e1,e2) and ord(vy) = (€y,...). Since
(I',vg) is connected and (g,p) # (0,1), we see e; # €. We define the fat
graph with a distinguished vertex (Fi,vé,ordi) obtained from (I',vg,ord) by
setting vf = vy, V(I'Y) = V(I') — {vo} and E(I*) = E(T) — {e1,ex}. We set
ord*(v) = ord(v) for v € V(I'V) — {v},u} where &, € u*. If & ¢ v}, then
u = vy and we set ord (v}) = (fL, f2,..., f1) and ord*(vy) = (f2,f2,...,f)
where ord(vy) = (e, fi, f3,...,f}) and ord(ve) = (eo, f2, f3,...,f?). If
e, € vf, then u = v; and we set ord*(v3) = (f1, for - -, foets fasts - - -, fr) where
ord(vi) = (€1, f1, fo, -+ -y fe—1,€2, frg1s -, fr)

Notice v§ = vy,u € E(I') may have valency two. If u # vy, then u is not
the distinguished vertex of (¥, v, ord%). If u # v, and |u*| = 2, then we set u
as the midpoint of a new edge defined by concatenating the two edges incident
to u € IV

If (T, vy, ord) is a metric graph with total volume one, then (I'*, v, ord%) has
a metric induced by the embedding (I, v§, ord%) < (T, vy, ord), vf — vy; and
scaling the metric of (', vy, ord) such that the total volume of (I'*, v}, ord") is
one. O

4.6 Remark. Notice (T, U(J]', ord*) may have separating edges. ]
4.7 Examples. (a) Let

(Fla Ul,O) Ordl) — (617 62); (617 €3, 64)7 (EQa €5, 66)7 (637667 67)7 <E4a 65767)‘
Notice (I'y, v1,0,0rd;) has the standard labelling and
’U)(Fl, ULO’ OI‘dl) = {6163@662, [61626567636465666764]}.

Since m(I'1,v10) is a rank-3 free-group, we see (I'y, v1,0rdy) is a (1, 1)-fat
graph with a distinguished vertex.

Then _
(Fll,a U%,O? Ord%) = (637 €4>; (63: fa 67)7 (547 faé7)'

where edges es, g have been concatenated to a unique edge f. We

have w(F{,vio,ordﬂ = {esferesesferes}. Since Wl(Ff,va) is a rank-2
free-group, we see (Ff,vfo,ord%) is a (1,0)-fat graph with a distinguished
vertex.

(b) Let

(F27 U2,07 Ord?) - <€17 62); (Eh €3, 64)7 (627 €s, 66)7 (637 €7, éﬁ)u (647 E5767)'
Notice (I'g, va ¢, 0rds) has the standard labelling and

U}(FQ, /UQ’O, Ol"dg) = {61636764516265576662, [63645566]}.
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Since m(I'2, v2) is a rank-3 free group, we see (I'y, v2 9, 0rdy) is a (1, 1)-fat

graph with a distinguished vertex.

Then

(P%, U%,Ov Ord‘QL) = (637 64); (637 €7, f)a (547 fvé7)

where edges €5, ¢ have been concatenated to a unique edge f. We have

w(Fé,viO, ord%) = {egereq, [esesf], [f€7]}. Since 7T1<F$, vio) is a rank-2 free

group, we see (TS, vio, ord}) is a (0,2)-fat graph with a distinguished vertex.
]

The following lemma generalises these examples.

4.8 Lemma. Let p = (I',vg, ord, ¢) be a point in ordA,, such that |vf| = 2.
Suppose w(L', vy, ord) = {wo, [w1], ..., [wy]}. Then wy = eqw,és and €1es appears
in w(T, vy, ord).

(i) If [wi] = [Ereaw!] for some 1 < i < p, then (D*, v}, ord") is a (g, p — 1)-fat
graph with a distinguished vertez.

(ii) If wy = eyulereav)es, then (TV, v}, ord®) is a (g — 1,p+ 1)-fat graph with a
distinguished vertex.

Proof. Notice there exists an embedding (I'V, v, ord%) < (I, vy, ord), v§ — v,
which induces an injective group homomorphism 1 (I, v) — 71 (T, v1). Then,
(T4, v}) is a free group of rank 29 +p—1=n — 1.

Since (I',wvp,0rd, ¢) has the standard labelling, we have w(I',vg,0rd) =

{wo, [wy], [wa], ..., [wy]} where wy = eywjes and the subword e;e; appears in
w(T, vy, ord).
If [w;] = [e1eqw}] for some 1 < i < p, then
w(riv Uév Ol"di) - {wéwg, [w1]7 [w2]7 R [wi—l]v [wi-i-l]? R [wp]}‘

If wy = eqwjes = eyugereav)es, then
w(T, vf, ord") = {uf, [vg], [wn], [wal, ., [w,]}.
O

4.9 Definition. Let T, be the set of all points (I', vp, ord, ¢) in ordA,, such
that |u| > 3. O

4.10 Remark. In |2, Remark 4.20 (d)], it is proved that ordA,, is connected
by proving that T, , is connected. O]

4.11 Remark. If a point p = (I',vp,ord, ¢) in ordAy, lies in T
open simplex o(p) lies in T,,. Hence, Ty, and (ordA,, — T
structure. In particular, we have the following.

¢p> then the

4.p) have a simplex
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If o(p) is a (6g + 3p — 3)-dimensional simplex, then |vj| = 2 and o(p) C
ordA,, — T, .

If o(p) C ordA,, is a simplex such that |vj| = 2, then a face o’ of o(p)
is missing in o(p) N (ordA,, — T, ) if and only if ¢’ is obtained from o(p) by
collapsing a forest of I" which contains either e; or e,. O]

4.12 Definition. Let p be a point in ordA,, — T, .
We denote by ordA¥ | the connected component of ordA,, — T, which con-
tains p.
We define
AM, = {p e AMy,1 | ¢ -p € ordA} }.

g9,p,1

4.13 Remarks. Let p be a point in ordA,, — T, ,.

‘AM;pal iS a Subgroup Of AMg,p,l Wthh acts on OrdA;p.

By Remark {4.11} ordA?  has a complex structure.

g.p,1 —

)
)

(c) Let ¢ € AM,,1. Then AM?? Q- .AJ\/[z’n1 cpL
)

Suppose g > 1, p > 1. Let p; = (I';,v;0,0rd;, ¢;), i = 1,2, be points in
ordA,, — T,, such that (T'}, vimordb is a (g,p — 1)-fat graph with a dis-
tinguished vertex and (F%,v%}o,ordé) is a (9 — 1,p + 1)-fat graph with a
distinguished vertex. Then ordAf! N ordAf2 = 0.

]

5 The reduced ordered Auter space

We define a subcomplex of ordA, ,,, called the reduced ordered Auter space. This
subspace, denoted o/rdT&g,p, is a homotopy retract of ordA,,. Since ordA,, is
simply connected, J&&xg,p is simply connected. The action of AM,,; on ordA, ),
restricts to an action on (ﬂg,p. On the other hand, @g,p is a (6g + 3p —
3)-dimensional manifold, and, Poincaré’s Polyhedron theorem can be applied to

the action of AM, ,; on ordA,,.

5.1 Definition. Let (I", vy, 0rd) be a connected (g, p)-fat graph with a distin-
guished vertex such that |vj| = 2 and |v*| = 3 for every v € V(T") — {wo}.

For 2g + p = 1, we say that (I', vy, ord) is a strongly non-separating graph if
there are not separating edges in (I', vy, ord).

For 2g + p > 2, we say that (I',vg,ord) is a strongly non-separating graph
if there are not separating edges in (I, vg, ord) and (Fi,vé,ordﬂ is a strongly
non-separating graph. O
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Recall a point p = (I', vy, ord, ¢) € ordA,,, defines a simplex o(p) of dimen-
sion 6g + 3p — 3 if and only if |vf| = 2 and |v*| = 3 for every v € V(I") — {vp}.

5.2 Definition. We define the reduced ordered Auter space, denoted on,\Ag,p, as
the closure of (6g+3p—3)-dimensional simplices o (p) = o(I', vy, ord, ¢) C ordA,,
such that (T, vg, ord) is a strongly non-separating graph. O]

5.3 Lemma. Let (I, vy, ord) be a fat graph with a distinguished vertex. Suppose
there are not separating edges in (I', vy, ord). Let uw € V(T') such that |u*| > 4 if
u # v, or, |u*| >3 if u =wvy. Then u can be split such that (I'*, v, ord") has
no separating edges.

Proof. Suppose |u] = r and ord(u) = (eq,eq,...,e,). We split u according to
1 < ki < ko <1, (ki k2) # (1,7). See Definition R.7] If (I', v, ord") has
separating edges, then, since (ki, ko) # (1,7), we can split u according to either
1<k —1<ky—1<rorl<k +1<ky+1<r and the new splitting gives
a graph with a distinguished vertex without separating edges. O]

5.4 Lemma. mg,p is a homotopy retract of ordA,,,.

Proof. Let p = (I',vwp,ord,¢) € ordA,, such that o(p) is a (69 + 3p —
3)-dimensional simplex, and p ¢ (;CTAW. Suppose (Fi,vé,ordi) has separat-
ing edges. The embedding (T, vé ,ord") < (T, vy, ord), vé — vy identifies every
edge of I'*, but one, with an edge of I', and one edge of I'¥ with the concate-
nation of two edges of I'. Since (I',vg,ord) does not have separating edges,
collapsing separating edges of (I'Y, vé , ordi) can be extend to collapsing the cor-
responding edges of (I, vy, ord). This defines a homotopy retraction which sends
p = (I, vp,0rd, ¢) to p’ = (I",v),0rd’,¢'). By Lemma [5.3] p’ lies in the closure
of a (6g + 3p — 3)-dimensional simplex o(p;) = o(I'y, v19,0rdy, ¢1) such that
(T}, vfo, ord!) does not have separating edges.

If (T, vé ,ord}) does not have separating edges, after a finite number of times
applying Definition 4.5 we obtain a graph with separating edges and the same
argument can be applied. The homotopy retraction can be extend to ordd,,. [

5.5 Remark. The action of AM,,; on ordA,, described in Definition [2.11]

gives an action of AMg, 1 on ordA,,. []

5.6 Lemma. ngp is a manifold of dimension 6g + 3p — 3 with boundary of
dimension 6g + 3p — 4.

Proof. 1t is proved in [2, Lemma 4.15] that ordA, , is a (6g+ 3p — 3)-dimensional
manifold. The proof reduces to the following facts.

(a) Each codimension 1 simplex lies, at most, in the closure of two (6g + 3p —

3)-dimensional simplices. See Remark [3.5]
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(b) If 0” is a simplex of ordA,, of codimension at least 1 and o, ¢’ are two
(6g + 3p — 3)-dimensional simplices of ordA,, which have ¢” is a face, then
there exists a sequence of (6g+ 3p — 3)-dimensional simplices of ordA, , such
that the sequence starts with o and ends with ¢/, and, we can move from
one element of the sequence to the next element of the sequence through a
codimension 1 face which has ¢ as a face.

Since o/rdT&g,p is a subcomplex of ordAg,, condition (a) above holds for
ordA, .

The proof of condition (b)) above is the same for ordA,, and (;d‘\(%g,p. O

5.7 Remark. By Lemma , cmw is simply connected. By Lemma ,

—_—

ordA,, is a manifold. Hence, Poincaré’s Polyhedron theorem can be applied to
the action of AM, ,; on ordA, . O

5.8 Definition. We define

B,, = ordA,, NP,,,
T,, = ordA,, N Ty,
For p = (', vy, ord, ¢) € &Eg,p — T‘QW we define

—p —
— p
ordA, , = ordA,, NordAf .

—

6 A decomposition for ordA,

6.1 Definitions. Let p = (I', vp, ord, ¢) be a point in @g,p — Tg7p.

Recall ord(vy) = (e1,e2). We say that edges ey, e; € E(I") are g-edges of
level n = 2g + p.

We denote by %—(;(i\&;p the subspace of (;d,\A;p consisting of points such
that the length of each g-edge of level n, e; and es, is %. O]
6.2 Lemma. Let p = (I', vy, ord, ¢) be a point in MM — Tg,p. Then %—M;p

—p
is a homotopy retract of ordA, .

Proof. We define an homotophy

0,1] x [0,1] x ordA, , — ordA., .

(57 t? (F,7 UE)? Ord/7 QS/)) '_> (F”7 U(’)? Ord/? ¢,)'
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such that (I, v}, ord’, ¢') equals (I, v}, ord’, ¢') excepts for the length of edges
as follows. If we denote the length of an edge e of T by fr(e), then lr/(ey) =
24+ (1 —s)lr(er), bro(er) = £+ (1 —t)lr(ez) and Lpn(f), where f € E(T") —
{e1,e2} = E(I") — {e1, ea}, equals I (f) scaled by a factor such that the sum of
lengths of all edges in E(I'”) is 1. O

6.3 Definition. Let p = (I",vg, 0rd, ¢) be a point in cﬁg,p — 'fq,p. Suppose
e € u*,ue V(D) and |u*| = 3. We say that edges in u* — {€,} are h-edges of
level n = 2g + p. O

6.4 Example. By Example , @072 = Poo = cl(o(I',vp,0rd, ¢)) where
(T, vg, 0ord) = (e, €2); (€1, €3, €4), (€2, €4, €3) and @170 =Py = cl(o(I", v}, 0rd’, ¢'))
where (I, v), ord’) = (ey, €2); (€1, €3, €4), (€2, €3,€4). In both cases, e; and e, are
g-edges of level 2, and, e3 and ey are h-edges of level 2. O

6.5 Remark. Let p = (I', vy, ord, ¢) be a point in onT&g,p — ﬁ'g,p. Suppose €; €
w*, w € V(I') and |u*| = 3. Notice the embedding ('Y, vy, ord¥) < (I, vy, ord),
vé — vy, identifies every edge of I' which is neither a g-edge nor an h-edge of
level n with an edge of T'*, and, identifies the concatenation of both h-edges of
level n with an edge of I'V. O

6.6 Lemma. Let p = (T',vg, ord, ) be a point in %—M%p. Suppose o(p)
1s a simplex of dimension 3n — 3 = 69 + 3p — 3. Let h,q be integers such
that (Fi,vé, ord) is a (h,q)-fat graph with a distinguished vertex. Let ¢
(T4 08) = Figa be an isomorphism such that pb = (I, v, ord*, ¢*) is a point
m M}LQ'

Then, a path in @h,q lying in simplices of codimension at most one and
starting at p¥ can be lifted to a unique path, up to h-edges of level n and length of
h-edges of level n, starting at p and lying in simplices of%—@;p of codimension
at most one.

Proof. By Lemma , (Fi,vé,ordi) is a (h, q)-fat graph where either (h,q) =
(9—1,p+1)or (h,q) = (g,p—1). By definition of ordA, ,, there exists a point

—

pt = (%, v5, ord*, ¢*) in ordA,,. By Remark , a path starting at p* in the
open simplex o(p*) can be lifted to a path starting at p inside the open simplex
o(p) such that the length of g-edges of level n of T" is constant. Notice such a
lift is unique up to the length of h-edges of level n of T'.

A path in onT%M which lies in simplices of codimension at most one is a
sequence of collapsing edges and splitting the vertex of valence four, if it is not
the distinguished vertex, or the vertex of Lal\ence three, if it is the distinguished
vertex. By Remark m, such a path in ordAy,, can be lifted to (mg’p if the
edge of I'* which is collapsed is not identified with the concatenation of both
h-edges of level n of (', vy, ord).
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Collapsing the edge of (I, v}, ord*) which is identified with the concatenation
of both h-edges of level n of I' can be lifted by previously collapsing one of the
two h-edges of level n and splitting the vertex of valence four. After this sequence
of collapsing and splitting, the edge of p* which is collapsed is not identified with
the concatenation of both h-edge of level n of p.

Notice the length of g-edges of level n can be left constant and the lifted
path lies in codimension at most one simplices. Hence, the lifted path lies in

/\p
1
5 ordAgyp. O

6.7 Proposition. Let p = (I',vg, 0rd, ) be a point in Jd,\Ag,p. Suppose
o(p) is a simplex of dimension 3n — 3 = 6g + 3p — 3. Let h,q be integers
such that (Fi,vé, ord) is a (h,q)-fat graph with a distinguished vertex. Let
o' m(THu}) — Fhga be an isomorphism such that p* = (T¥ vf, ord*, ¢%) is
a point in mh,q.

Then, there exists an onto and continuous map

/\p —_—
p:ordA, , — ordAy g,
P pt

such that p is constant on paths where any two points in the path have different
length of h-edges of level n.

Proof. By definition of the metric on (I'¥, vé ,ord*) and Remark , the assign-
ment p — p¥, extends to a continuous map between open simplices o(p) — o (p¥).
Notice this map is constant on points which only differ in the length of h-edges of
level n. By Remark and Remark 6.5, o(p) — o(p*) extends to faces of o(p)
obtained without collapsing none of the g-edges of level n. Hence, o(p) — o(p*)

/\p
extends to faces of o(p) lying in ordA, . By Remark , the continuous map
o(p) — a(pi) extends to a continuous map from simplices where o(p) is a face.

Since ordAgp is path-connected, we have defined u. We have to see that pu is
well-defined. g

Let v : [0,1] — ordA,, be a path such that v(0) = p = (', vp,0rd, ¢).
Recall v is a sequence of collapsing edges and splitting vertices. Let (1) =
(Ty,v10,0rdy, ¢1). Then ¢! - ¢ : (T, v9) — m (T, v10) is an isomorphism
obtained by the process of collapsing the edges and splitti/n\g the vertices de-
scribed in 7. Consider the path v* = p~y : [O 1] — ordA,, and (1) =
(Ff,vlo,ord%,gbﬂ. Notice (¢1)~' - ¢+ : m(TH vf) — m(TF, oF o) is the restric-
tion of ¢7' - ¢ to m (I, vf) under the inclusion induced by (I, v}, ord?) —
(T, vg,0rd), vf — wv1. Suppose v(1) = ~(0) = p. To see pu is well de-
fined, we have to see 7*(1) = +(0) = p*. Since ¥(1) = p = (T, vy, 0rd, @)
and (1) = (F%,vlo,ordfqbi), we see (I‘%,vio,ord%) = (T4, v, 0rd"). And
()" @F - m (T 0f) — m (T4, o) is the identity since it is the restriction
to m (I*, ug) of the identity of (I, vg).
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We can suppose both g-edges of level n of I have length }L. Since o?th,q is

path-connected by paths lying in codimension at most one simplices of ordAy, 4,
— —p

by Lemma , such a path in ordAy , starting at p* lifts to a path in %—ordA%p

staring at p. Then p maps the end point of the lifted path starting at p to the

end point of the path starting at pt. O

6.8 Remark. Notice p : &TA" — @hq, p — p* defined in Proposition
depends on the choice of the 1som0rphlsm ov (T4 v ) — F}, 41 which deﬁnes
pt = (T4, vg, ord, ¢%). O

6.9 Corollary. Let p = (T', vg, ord, ¢) be a point in Mg,p — Tg,p. Then @Z’p
18 simply connected.

Proof. Let v be a closed path in c;(r&;p. Then wy is a closed path in cm;w.
Since o?d?&h,q is simply connected, v bounds a disk. This disk can be lifted, by
Lemma , to a disk in (mz,p with boundary . O]

6.10 Lemma. Let p = (I, vy, ord, ¢) be a point in M%p - ifg,p. Suppose
the length of each g-edge is %1. Let h,q be integers such that (Fi,vé, ord") is a
(h,q)-fat graph with a distinguished vertex. Let p' = (I", v}, ord’, ¢') be a point
in sz\&h,q such that o(p’) is a simplex of dimension 3(n —1) —3 = 6h + 3q — 3.

Then a connected component of the anti-image of p' under p restricted to
%—Mzm 1s obtained by changing the length of h-edges of level n, collapsing
h-edges of level n and splitting the vertex of valence four, and, scaling the length
of every edge but g-edges and h-edges of level n such that the total volume is

one.

(i) Ifﬁz,\qp) = (g,p — 1), then the anti-image of p' under p restricted to
5-ordA, , is homeomorphic to [0, 1].

(i1) If (h,q) = (9 — 1,p+ 1), then the anti-image of p' under p restricted to

P
%—ordAgW is homeomorphic to the disjoint union of (p+ 1) copies of R.

Proof. Recall ordA » has dimension 3n—3 = 6g+3p—3, 3 ordA , has dimension
3n —5 = 6g + 3p — 5 and ordAh,q has dimension 3(n — 1) — 3 = 6g + 3p —

6. Let p; = (I'y,vi0,0rd;, ¢), for i = 1,2, be a point in 2 ordA , such that
o(p;) is a simplex of dimension 3n — 3 = 6g + 3p — 3 and ,u(p) = p for i =
1,2. Then (T}, fo,ordi) (I, vo,ord’) for ¢ = 1,2. Notice (I'1,v1,0rd;) and
(Fg, g0, 0rdy) are obtained from (I, v}, ord") by choosing an oriented edge which
corresponds to the concatenation of both h-edges of level n. Hence, h-edges of
level n of (I'y,v10,0rd;) and (I'g, va0,0rds) either are the same, possibly with

different lengths, or, are different edges. Since p is constant on paths where two
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points in the path only differ in the length of h-edges, if both points p; and po
are in the same component of the anti-image under p, then there is a sequence
of collapsing an h-edge and splitting the valence four vertex which transforms
p1 = (F1, V1,0, Ol"dl7 ¢1) into po = (Fg, 2,0, OI'dQ, qbg)

Suppose w(I”, v), ord") = {wp, [wh], [wy], ..., [w]]}.

If (h,q) = (g9,p — 1), then the chosen oriented edge appears in wj. Hence,
the anti-image is parametrized by [0, 1].

If (h,q) = (g — 1,p+ 1), then the chosen oriented edge appears in [w], for
1 <i <p+1. Hence, the anti-image is parametrized by (p+ 1) copies of R. [J

6.11 Proposition. Let p;, = (I';,v; 0, ord;, ¢;) € @gﬁp—'ﬂl\‘gﬁp, 1= 1,2, be points
such that (Tt vfo, ord?) is a (g,p — 1)-fat graph with a distinguished vertex and
(T%, U%,(), ordS) is a (g — 1, p+ 1)-fat graph with a distinguished vertex. Then

— ~ — P
ordA,, —T,, = U ( Uy, (@5 - ordAg’p)>,
i=1,2

i

b1 @ = 1,27 and every pair of sets on the

where p; ranges over AMg 1 /AM
right-hand side are disjoint.

Proof. Let p = (I',vg,0rd, ¢) € (ﬁgm — '/Iﬁ'gvp. Since |v§| = 2, by Lemma ,
(Fi,vé cord") is either a (g,p — 1)-fat graph with a distinguished vertex or a
(9 — 1,p+ 1)-fat graph with a distinguished vertex.

Suppose (Fi,vé,ordi) is a (g — 1,p + 1)-fat graph with a distinguished
vertex. Let ¢y : Wl(ré,’léﬁ) — F,_1p+11 be an isomorphism such that
py = (F%,vio,ordé,gbé) is a point in @g_l7p+1. By Proposition , there
exists a continuous map

/\pQ —_
[T ordAM — ordAg_1 pi1, P2 pé.

Let ¢* : i (T, 1@\—> F,_1 p+1,1 be an isomorphism suﬂlat pt = (T, vé, ord*, o)

is a point in ordA, 1,.;. Let 7% be a path in ordA, ;,,; from p} to p*

such that each simplex intersected by ~* has codimension at most one. By
: , ——p

Lemma , A+ lifts to a path ~ in %—ordA;p from py to p’ = (I, v}, ord’, ¢').

Then pu(p’) = p*. By Lemma [6.10} there exists p” = (I, v], ord”, ¢") € onT&;Qp
such that u(p”) = u(p’) = p* and (I, v, ord”) = (T, vp,0rd). Hence, p and p”
are in the same cﬁg,p—orbit and p” € (m;p.

If (T, vé ,ord") is a (g, p — 1)-fat graph with a distinguished vertex, the same
argument can be applied with py replaced by p;.

Every pair of sets on the right-hand side of the equality in the statement are
disjoint by definition and Remark [4.13|(d]). O
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6.12 Remark. Recall @g,p is a fundamental domain for the action of AM,
on o/rdT%g,p. Let p; = ([, v;0,0rd;, ¢;) € O?dSAg’p — 'ﬁ‘g,p,z’ = 1,2, be points
such that (I’%,vfo,ordb is a (g,p — 1)-fat graph with a distinguished vertex
and (F%,U;O, ord}) is a (g — 1, p + 1)-fat graph with a distinguished vertex. By
Proposition we can choose ]IADg,p such that

~ ~ ——p P2
Pyp—Ty, C ordAgﬁp U ordAg’p.

Since sets on the right-hand side above are disjoint, we have a decomposition of

~

Py, —T,p in two disjoint sets: IP’%pﬂordAg’lp and ordAgfpﬂIP’g,p. Notice P, ,NT,,
—p ~

lies in the closure of (6g 4+ 3p — 3)-dimensional simplices of ordAglp NP,, and

—p2 ~ ’

ordA, , NPy,

Recall AMY |, i = 1,2, is the subgroup of AM,, 1 consisting of au-

g:p,1?
— P

tomorphisms ¢ € AM,,; such that ¢ - p; € ordA, i = 1,2. Hence,

Pi

i = 1,2,

AMEf,,,p i = 1,2, is the subgroup of AM, ,, which leaves Jng’p,

invariant. By Theorem a presentation for AM'; 1= 1,2, can be deduced

P
~ ——pi
from Py, NordA, ,, i =1,2. O

p
g,p,1°

The following Proposition identifies AM

A~

6.13 Proposition. Let p = (I',vg, ord, ¢) be a point in Jng,p — T, such that
o(p) is a simplex of dimension 3n — 3 = 6g + 3p — 3.

(i) If (T4, 0}, ord*) is a (g,p — 1)-fat graph with a distinguished vertez, then
AM} 1 is isomorphic to AMg 1 5.

(ii) If (T v, ord*) is a (g—1,p+1)-fat graph with a distinguished vertex, then,
AM} 1 is isomorphic to AMg_1 5.

Proof. Suppose w(T, vg, ord) = {wq, [wi], [wa), . . ., [wy]}. Weidentify (T'*, v}, ord")
with its image under the embedding (I'*, v}, ord¥) < (T, v, ord), v§ — v;. Then
eymy (T4, v})ey is a free factor of (T, vg) and

m (T, v0) = (erm (T, v5)er) * (e170,2),

where 7,, is a path in 't CT from vé = vy to vy where €, € vJ.

Let ¢ € AM} . Recall ¢ : m(T,v9) — Fyp1 is an isomorphism. Notice
¢ Yo = ¢? is an automorphism of 7 (I',v9) which preserves wy and the set
of conjugacy classes {[w:], [wa],...,[w,]}. We will define an automorphism of

(I, vé ) with the appropriated properties in both cases.

Since AM, 1 acts freely on the simply connected space ordA, ,, we see ¢ is
—p — ~
determined by a path v : [0,1] — ordA  C ordA,, — Ty, from 7(0) = p to
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(1) = ¢ p = ([ v o0rd,¢) = (I';vg, ord, o 0 ). We can suppose ([0, 1])
lies in the union of simplices of codimension at most 1. Hence, there exists a
sequence of (6g+ 3p — 3)-dimensional open simplices o(p1), o(p2), ..., o(pr) such

that o(p) = o(p1), ¢ - o(p) = o(px) and
w0 (U aw)u( U (k) ndepna))).

where cl(o(p;)) Ncl(o(pi41)) contains a codimension 1 face of o(p;) and o(p;41).
Let p; = (I';,vi0,0rd;, ¢;) for 1 < ¢ < k. Then (Ff,vfo,ord%) = (DF, v}, ord").
Since the codimension one face in cl(o(p1)) N cl(o(p2)) is obtained without col-
lapsing none of the two g-edges of level n, moving from o (p;) to o(p2) through the
codimension one face in cl(o(py)) N cl(o(p2)) sends the subgraph (I}, Ufo, ord?)
of (I'1,v10,0rd;) to the subgraph (F%,Uio,ordé) of (I'y,v90,0rds), sends vy
to vy and sends ord;(vi ) to ordy(vyy). This process can be repeated until
o(pr) = o(Tk, vk, 0rdy, o) = o(I', vo, ord, pod) = o (- (I, vy, ord, @) = -0 (p).
Hence, the subgroup e;m(I'V, v3)e; = elm(Ff,vfo)él = elwl(Ft,vtO)él is in-
variant under ©? and the image of e;v,,6; under ¢ lies in the right coset
elﬂl(Fi,vé)El - (e17p,€2) of (elm(w,vé)él)\wl(r,vo). We define an automor-
phism p(p) of m (I, )

p(@) : m(THod) = m (T4 o), w = e¢?(eqwey ey

Let u € Wl(Fi,vé) such that ©?(e17,,€2) = €1U€; - €17,€. Recall wy =
e wye; - €17y, €2 and €1eq appears in w(I', vg, ord).

If €,e5 appears in [w;] for some 1 < i < p; then, by Lemma (T4, vg, ord")
is a (g,p — 1)-fat graph with a distinguished vertex, and, wy = e;w(e; - €17,,€2,
(w;] = [ea7,,e1 - exwle;] for some 1 < i < p where wy), w, € m (I, vg) and
[wi], [wa), ... [wi_1], [wis1], ..., [w,] are conjugacy classes in m; (IF, v). Then

p?(wo) = ®(e1wilr - €17,82)

= ¢’ (erwger) - ©”(er7u,2)

= @®(e1wyer) - eues - €17y,
0% (w)] = [¢% (€271 - crwien)]

= [¢?(ea7,,81) - ¢*(erwier)]

= [e27,,€1 - e1T €1 - 7 (eqwier)].

Since these equalities hold in the free group 1 (I', vo) = (e1m(T'%, v5)e1 ) * (€190, €2)
and ¢?(wo) = wo = e W)E - €172, [0?(w;)] = [wi] = [e27,,€1 - erwier], we see
©?(erwpey) = eqwpyey - e\ e

= elwgﬂ e1;
gp‘b(elwgél) = €1Ue - e1W;e;

/—
= €juw,éq.
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Hence,

¢’ (erwpwier) = o (eqwye - eywier)

= ¢ (erwper) - * (erwier)
= e Wyl €1 - E1UW, e

= e wyw,ey.

And,

{lp(p)(w1)], ..., [p()(wi-1)],
[p(p) (wira)]; - [p(@) (wp)]} = {[wi], ..., [wiza], [wisa], - -+, [wy]}-

We fix ¢t @ my (T4, vg) — F,, 11, independent of ¢, such that (T, g, ordb, oY) €
ordA,,_; and we have ¢*p(¢)(¢*) ™t € AM 11

If €165 appears in wy; then, by Lemma (T4, vl ord%) is a (g — 1, p+1)-fat
graph with a distinguished vertex, and,

/= — ! — — = ! — —
Wp = €1W)e1 * €1V, €2 = €1UYET * €27,,€1 * €1V€1 * €17, €2 € 7T1(F, Uo),

where uo, vy € m(T4 o) and [wy], [wal, ..., [w,] are conjugacy classes in
o (IY, UO) Then
©? (wo) = ¢ (eruges - €974, €1 * E1VHEL * €170, €2)

%
©?(eruger) - o (ea,,€1) - 9% (e1v5€1) - 9% (€170,E2)
@

/= JE— — — 13 /= — —
(61%61) T €27,,61 " €1U €1 - (61%61) $e1UC1 * €17y, E2.

Since this equality holds in the free group (T, vg) = (e17(T%, v})€1) * (€170,
_ _ > = = > -
and <P¢(w0) = Wp = €1Uge1 * €27, €1 - E1VpE1 * €17y, €2, WE SEE
/= /=
©?(eyupe;) = erupey,
= — /= — —
g0¢(elvoel) = €1Uue; - €1V€1 - €1 €1
= e uvyl ey,
@ ((exvher)”2%) = (equvgl ey )11 172

= (ervpm) .
Hence,

p()(ug

[o() (vg)

p(p)((v)™2) =

{lo(@)(w)], [p(@)(w2)], - ., [p() (wp)]}

)
] 6]
(’))%262617

[
(v
{[wnl, [wa], .., [wpl}-
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We fix ¢t = 7y (T%, v) — F,_1,41.1, independent of ¢, such that (T, vy, ord*, ¢*) €
ordA, 1 ,+1. We see ¢*p(p)(¢*)™1 € AM,_1,2 by considering that uy, v} rep-
resent boundary components and +,,€2e; represents an arc from the boundary
component represented by uy to the boundary component represented by vy. [

The following remarks gives an inductive description of H/ig,p.

6.14 Remark. Let p1 = (I'1, v10,0rdy, ¢1) € (;dT%M —'IAFM be a point such that
(T}, vt 0 ord!) is a (g p — 1)-fat graph with a distinguished vertex.
Let ¢t : m (F%, vY o) — Fyp-1,1 be an isomorphism such that pt = (It ot 0 ord!, ¢7)

is a point in ordAg,p 1. Recall there is a continuous map
—J1 — ~L
prordA, ;— ordAg 1, p1 > py

By Lemma [6.10] the anti- image of a (6g + 3(p — 1) — 3)-dimensional simplex
of IP’g »—1 under g restricted to ——ordA , is parametrized by [0, 1]. This restricted

anti-image is described by changlng the length of h-edges of level n and collapsing
h-edges of level n. We choose ]Pg » such that the anti-image of each (6g+3(p—1)—

3)-dimensional snnplex of IP’g »—1 1s contained in Pg »- Hence, every codimension
one face of ]P’g pﬂordA corresponding to collapse an h-edge of level n is interior

in ]P>g7p N ordAgjp. Since p is onto, we choose IP’” such that ]P’g,p N ordAg,p maps
onto Py ,_; under px. O

6.15 Example. We compute @0,3 following Remark .

By Definition and Example @, @072 = Pyo = cl(o(T', v, 0rd, ¢)),
where (T', vg, ord) = (e1,e2); (€1, €3, €4), (€2,€4,€3). We have to compute a con-
nected anti-image of (I',vg,ord,¢) by collapsing h-edges of level 3. Since
w(l; vy, ord) = {wy, [w1], [wa]}, wo = ereses, [w1] = [€1€2€4], [wa] = [E3e4], We
choose an oriented edge in wy = e1e3€, to be identified with h-edges of level 3.

If we choose e in wy = ejesey, we have

(F17 Ul,OJ Ordl) (617 62) (617 €3, 64) (627 65763)7 <€47 €6, 67)7 (55757756)'

Notice (F%,vlo,ordi) (I',vg,ord) and e; € E(I") is identified with the con-
catenation of e;, €3 € E(I'y), which are the h-edges of level 3 of (I'y, v o, ordy).
Collapsing €3 gives a boundary face of o(I'y, vy 0, 0rd;, ¢1). Hence, collapsing e
does not give a new simplex in the anti-image of (T',vg, ord, ¢) under pu. Col-
lapsing e gives an interior face of o(I'y, vy, 0rdy, ¢1). Then, collapsing es gives
a new simplex in the anti-image of (I', v, ord, ¢) under p as follows.

(Fisy ’Uf)Oa Ord?) = (ela 62); (ély €3, 64)7 (527 E7a éﬁa 63)7 (547 €6, 67)7
(F27 V2,0, Ord2> - (ela 62); (617 €3, 64)7 (627 é?a f)’ (?7 é6763)7 (647 €6, 67)

- (617 62); (Ela €3, 64)7 (627 €5, 66)7 (637667 67)7 (64767765)7
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where last notation of (I'y, v9, 0rds) is standard labelling. Notice e; and €3 are
h-egdes of level 3 in (I'y, v1 9, ord; ). Hence, there exist a generator corresponding
to collapse e5 in (I'y,v10,0rd;). We denote this generator by hs; since it is
represented by collapsing an h-edge of level 3 lying in (I'y, v, ordy).

Collapsing eg in (I'y, v9, 0rds) we go back to (I'y, v, 0rd;) and collapsing
es gives an interior face of o(I'y, vg 0, ords, ¢2) as follows.

(F§57 05?07 Ord;E)) = (617 62); <€17 €3, 64)7 (527 é47 E77 66)7 (537667 67)
(F37 03,07 Ord3) = (ela 62); (élv €3, 64)7 (627 547 f)? (77 E77 66)7 (637 567 67)

= (ela 62); (617 €3, 64)7 (627647 65), (E?n €6, 67)7 (65767766)7

where last notation of (I's,vs, ords) is standard labelling. Notice e; and eg are
h-egdes of level 3 in (I'y, v2 9, ordy). Hence, there exist a generator corresponding
to collapse e5 in (I'g, v90,0rdsy). We denote this generator by hso since it is
represented by collapsing an h-edge of level 3 lying in (I'y, v2 ¢, ords).

Collapsing es in (I's, v3,0rds) we go back to (I'g, ve,0rds) and collapsing
€4 gives a boundary face of o(I's, v3 0, 0rds, ¢3). Notice €4 and e5 are h-egdes of
level 3 in (I's, v3 0, ords).

We represent these generators:

€5 h’3,1 €6 és5 h372 és

Iy I

s

—— ('1,v1,0,0rdy1,01)

We have Py N ordA, 5 = U cl(a(Ty, vip,ord;, ¢;)) and
@073 = U2 cl(o(Ty, Vi 0, 0rd;, ;).
[
6.16 Remark. Let py = (I'g, v20, 0rds, @) € &TAW — '/Ifg,p be a point such that
(T3, 05’07 ord}) is a (g — 1, p 4 1)-fat graph with a distinguished vertex.

Let ¢5 - Wl(Fé,v;O) — F,_1p411 be an isomorphism such that pj =

(T3, U%,m ordy, ¢5) is a point in ordA, ;1. Recall there is a continuous map

— P2 —
W ordA(gyp) — ordAy_1 41, P2 — pﬁ.

By Lemma [6.10 the anti-image of a (6(g — 1) + 3(p + 1) — 3)-dimensional
simplex of I/Esg_l,pﬂ under g restricted to %—ordAZp is parametrized by p + 1

copies of R. A connected component of this anti-image restricted to %-@pr
is described by changing the length of h-edges of level n and collapsing h-edges
of level n. We choose P, ,, such that the anti-image of each (6(g—1)+3(p+1) —

3)-dimensional simplex of P;,_; ,11 has p+ 1 connected components contained in
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4.0~ Hence, for each simplex of dimension 3(n—1)—3 = 6(g—1)+3(p+1) —3 of

/) =)

. . ~ —— P2 .
9—1p+1, every codimension one face of Py, NordA  , corresponding to collapse
P2

g4.p> but one for every connected

an h-edge of level n is interior in @gyp N ordA

~ ~ ——p
component. Since p is onto, we choose P, , such that P, , N ordA;p has p + 1

connected components which map onto Py_; 1 under p. We explain how to
connect these p + 1 connected components in next section. 0

6.17 Example. We compute I/F\’Ll.

By Definition , and, Example @ and Example (@, @072 = Pyo =
cl(o(T, vy, ord, ¢)) and @1,0 = Py = cl(o(I",v),0rd’, ¢')) where (T, vg,ord) =
(61, 62); (él, €3, 64), (EQ, €4, 53) and (P/, Ué, OI‘d,) = (61, 62); (El, €3, 64), (627537 64).
We have to compute connected anti-images of (', vy, ord, ¢) and (IV, v, ord’, ¢')
by collapsing h-edges of level 3.

We follow Remark . Since w(I”, vf,ord’") = {w}}, w) = e1e3e4€;e9€3€4€2,
we choose the (oriented) edge e; which appears in wj to be the image of h-edges
of level 3; and we have

(Flv Ul,Oa Ordl) == (ela 62); (Eb €3, 64)7 (627 €5, 53)7 <€47 €6, 67)7 (557 667 57)
Notice (F%,vio,ordﬂ = (I",v},ord’) and e; € E(I") is identified with the con-
catenation of edges e5, €3 € F(I';) which are h-edges of level 3 in (I'y, vy o, ordy).

Collapsing €3 in (I'y,v10,0rd;) we have a boundary face. Collapsing e; in
(I'y,v1 0, 0rd;) we have

(Fy,v90,0rde) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €6, €7), (€4, €5, €7).
Collapsing e5 in (I'y, v2, ordy) we have

('3, v30,0rds) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €7,€5), (€4, €7, €6).
Collapsing e5 in (I's, v3, ords) we have

(L4, v40,0rds) = (€1, €2); (€1, €3, €4), (€2, €3, €5), (€4, €6, €7), (€5, €6, €7).
Collapsing €3 in (I'y, v40, 0rdy) we have

(s, v50,0rds) = (€1, €2); (€1, €3, €4), (€2, €5, €4), (€3, €6, €7), (€5, €6, €7).
Collapsing e5 in (I'5, v, ords) we have

(Ce,v6,0, 0rdg) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €5, €7), (€4, €6, €7).
Collapsing e5 in (I's, v, ordg) we have

(I'7,v70,0rd7) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €7, €6), (€4, €7, €5).
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Collapsing e5 in (I'7, v7, ord;) we have

(I's, vg0,0rdg) = (e1, €2); (€1, €3, €4), (€2, €4, €5), (€3, €6, €7), (€5, 6, 7).

Collapsing €, in (I's, vs,ords) we have a boundary face. We represent these
generators:

There is one connected anti-image of (I, v}, ord’, ¢') under u. We have Py ;N
—~—(T'1,v1,0,0rd1,01)

ordA = UL cl(a(Ty, vip,ord;, ¢;)).
We follow Remark [6.16, Since w(I',vp,ord) = {wy, [wi], [we]}, wy =
e1e38s, [w1] = [€1e084], [wa] = [Ese4], the anti-image of (T, vy, ord, ¢) has one

connected components for each cyclic word. We choose the oriented edge e;
which appears in [w;] = [€1e2¢4] to be the anti-image of h-edges of level 3; and
we have

(Cg,vg 0, 0rdg) = (€1, €2); (€1, €3, €4), (€2, €3, €5), (€4, €6, €7), (€5, €7, €6).
Collapsing €3 in (I'g, vg g, ordg) we have
(T'10, v10,0, 0rd1g) = (€1, €2); (€1, €3, €4), (€2, €5, €4), (€3, €6, €7), (€5, €7, €6).
Collapsing e5 in (I'1g, v10,0, 0rd1g) we have
(I'11, 0110, 0rd11) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €7, €5), (€4, €6, €7).

Collapsing e5 in (I'y1, v11,0, 0rd;1) we go back to (I'g, vg,0rdg). Hence, we have
computed a connected component of the anti-image of o(I", vy, ord, ¢). We rep-
resent these generators:

hs 11

€5 €5

h hs 1
ey B9 ¢, ey 1310 o

Fg > FlO > FH

Notice one of the three codimension one faces is not interior in 1@1,1.
To compute the other connected component, we choose €3 in [ws] = [E3e4] to
be the anti-image of h-edges of level 3; and we have

(F127 /Ul2707 OrdIZ) = (617 62); (Ela €3, 64)7 (éQa €5, 66)7 (637657 67)7 (é47 67766)-

Collapsing €5 in (Flg, V12,0, Ordlg) we have
(I'y3,v13,0, 0rds3) = (€1, €2); (€1, €3, €4), (€2, €5, €6), (€3, €7, €), (€4, €5, €7).
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Collapsing e; in (I'y3, v130, ord;3) we go back to (I'12, v12,, ords2). Hence, we have
computed another connected component of the anti-image of o(T', vy, ord, ¢). We
represent these generators:

hs3 13

€6 €5
es h3,12 e
o———I'13

Notice one of the two codimension one faces is not interior in @1,1.
These two connected anti-images of (I", vy, ord, ¢) under p need to be con-

nected through a codimension one face. We do this in next section. We deduce
——(T'9,v9,0,0rdg,¢9)

Pl 1 M OI'dAl 1 = U}igCl(O’(Fi, Ui’(), OI‘dZ', ¢z>>

To define ]P’l 1, it remains to declare which codimension one face is interior
—~(T'1,v1,0,0rd1,41)
in ]P’l 1 in order to connected the connected components IP’l 1N ordA1 1

———(I'9,v9,0,0rdg,¢9)
and P, 1 MordA, . This interior face of ]P’Ll corresponds to collapse a

g-edge of level 3. Then

@1,1 = U}il(:l(o-(Fia Ui,Oa Ord’ia ¢))

7 An inductive argument

For i = 1,2, let p; = (I';,v;0,01rd;,¢;) be a point in cﬂg’p — ﬁ‘g,p such
that (F%,vlo,ordf) is a (g,p — 1)-fat graph with a distinguished vertex and
(T5, v3 V305 ordi) isa (g —1,p+ 1)-fat graph with a distinguished vertex. We give
explicit descriptions of the 1somorphlsms AMPL AMyp-1,1 and AMQ b1 =
AM,_1 2 in Proposition [6.13]

Notice for p = 0 such a p; does not exist, and, for ¢ = 0 such a ps does not
exist. To avoid distinguished cases, we will consider points p; and p, as above
with the convention that if the point does not exist, there is no consideration.

gl =

7.1 Definition. Let p = (I", vy, ord, ¢) € ordAgp 4.p such that |u*| = 3 where
e € u*, u € V(I'). Then ord(v§) = (e1,ez) and ord( *) = (€2, f1, f2), for some
fi, f2 € E(T)U E(T"). We say that e; and f; are left edges, and, ey and f, are
right edges. O]

7.2 Example. By Example , @072 = cl(o(T, vy, ord, ¢)) where (I', vy, ord) =
(e1,€2); (€1, €3, €4), (€2,€4,€3). Thus, e; and €, are left edges, and, e; and €3 are
right edges of I'.
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Similarly, by Example , P1o = cl(o(I”, v}, ord’, ¢)) where (I", v}, ord’) =
(e1,€2); (€1, €e3,€4), (€2,€3,€4). Thus, e; and €53 are left edges, and, ey and €, are
right edges of I". ]

The following extends the definition above.

7.3 Definition. Suppose n > 3. Let p = (', vy, ord, ¢) € c@” such that o(p)
is a simplex of dimension 3n — 3 = 6g + 3p — 3. Notice, in (I'¥, UO, ord¥), there
are left and right g-edges, and, left and right h-edges of level n — 1.

A left (resp. right) g-edge of level n — 1 of (I', vy, ord) is an edge of I" which
is identified under the embedding (I, vy, ord%) — (I, vy, ord), vf — vy, with a
left (resp. right) g-edge of level n — 1 of T'*.

A left (resp. right) h-edge of level n — 1 of (I', vy, ord) is an edge of I' which
is identified under the embedding (T, v}, ord*) < (I, vy, ord), vg — vy, with a
left (resp. right) h-edge of level n — 1 of T'*.

For n > 4, we define left and right g-edges, and, left and right h-edges of level
kof I', where 2 < k <n—2, as edges which are identified under the embedding
(I, vo,ordi) < (T, v, 0rd), v§ — vy, with left and right g-edges, and, left and
right h-edges of level k of I'¥, respectively. O

7.4 Example. By Example Pos = U ,cl(o(Ty,vi0,0rds, ¢)) where
(Fly Ul 05 Ordl) = (ela 62); (61) €3, 64)7 (_527 €5, E?))a (647 €6, 67)7 (657 577 Eﬁ)a
(Fiv Uq ,00 Ord%) = (f7 64); (547 €6, 67)7 (f,é'y,é(;), and,

r g-edge h-edge
! left | right | left | right
level 3| e e es €3
level 2 €4 €6 er

(F27 UQ ,05 OrdQ) — (ela 62); (617 €3, 64)7 (627 €5a_66); (637667 67)7 (647 é7a E5)a
(I%? ) ,00 OI‘sz') - (637 64>; (637 f7 67)7 (647 677 f)7 andu

r g-edge h-edge
2 left | right | left | right
level 3| e e es g
level 2 | es3 e4 e

(T37U3 0,ords) = (e1, e2); (€1, es, eq), (_52754, es), (€3, es, e7), (€5, €7, €),
(1%7 V30> Ol"dé’) = (637 f)a (637 €6, 67)7 (fvé7766>7 and,

r g-edge h-edge
3 left | right | left | right
level 3 €1 €9 €4 €5
level 2 €3 ey €g

37



7.5 Example. By Example , Py = UB cl(o(Ty,vi0,0rds, ) where
(Fh Ul ,05 Ordl) (617 62)' (Elv €3, 64)7 (_627 €5, E?})? (647 €6, 67)7 <E57 Eﬁa E7)7
(F\lh U1 ,00 Ord}) (f 64) (€47 €6, 67)7 (f?éfhE?)’ andu

r g-edge h-edge
! left | right | left | right
level 3| e €9 es €3
level 2 ey €6 er

(F27 V2,0, Ord2) - (617 62); (Ely €3, 64)7 (627 €5, 66)7 (637667 67)7 (647 E57 €7>a

(1—%7 U%,O? Ord%) = (637 64); (637 f7 67)7 (64777 57)7 and,

r g-edge h-edge
2 left | right | left | right
level 3 €1 €9 €5 €6
level 2 | e3 ey €7

(F3,v3 0,ords) = (€1, e2); (€1, €3, €4), (€2, 65,_66)» (€3, €7,€5), (€4, €7, E),
<F§7 U3 0 Ord}&) = (637 64); (637 €7, f)? (547577 f)? and7

r g-edge h-edge
3 left | right | left | right
level 3| e €9 es €
level 2 | e3 ey €7

(F47 U4 05 Ord4) - (617 62); (Ela €3, 64)7 (_623 é3a 65)7 (647 €6, 67)7 (657 éﬁa E7)a
(F?h Uy 00 Ordi) - (f7 64); (647 €6, 67)a (f)667€7)7 anda

r g-edge h-edge
4 left | right | left | right
level 3| e €9 €3 es
level 2 e4 €6 er

(F57 U5 05 Ord5) (617 62); (éla €3, 64)7 (_627 €5, 64)7 (537 €6, 67)7 (657 éﬁa 67)7
(Fév Us,05 Ordi) (637 f)a (637 €6, 67)7 (fa€6a€7)7 and,

T g-edge h-edge
> left | right | left | right
level 3| e €9 €s €4
level 2 | e3 € €7
The remaining cases are similar. O
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7.1 Generators

—_— A~

We give a description of generators of AM;M where p is a point in ordA, , —T, .
These are generators of AM, ;1 but generators corresponding to collapse g-edges
of level n.

7.6 Remark. Let p = (', vg,0rd, ¢) € (mgp Suppose o(p) is a simplex of
dimension 3n — 3 = 6g + 3p — 3. Let h,q be integers such that (', vo, ord") is

a (h,q)-fat graph with a distinguished vertex. Let f be an edge of I' of level
less than n, and, let f* be the edge of I'* identified with f under the embedding
(T4, v, ord%) < (', vy, ord), v§ — vy. Then the following holds.

(a) fis aleft (resp. right) edge of level k < n if, and only if, f+ is a left (resp.
right) edge of level k.

(b) f is a g-edge (resp. h-edge) of level k < n if, and only if, f+ is a g-edge
(resp. h-edge) of level k.

]

7.7 Lemma. Let p; = (I';,vi0, ord;, ¢;), i = 1,2, be points in @g,p such that
o(pi), i = 1,2, are simplices of dimension 3n — 3 = 6g + 3p — 3. Let f; be edges
of Ty, i = 1,2, such that o(pl") = o(ps?).

Then, for 2 <k <mn, fi is a left g-edge (resp. h-edge) of level k if, and only
if, f2 is a right g-edge (resp. h-edge) of level k.

Proof. If f; is a left g-edge of level n, then |(v1 W) = 3. Since p;' =
(F{l,vlo,ord{1,¢{l) (F§2,U20,0rd£2, 2) = pf?, it follows |(v] ©)*| = 3. Then,
fa is a g-edge of level n. And, f; is a left edge if and only if f5 is a right edge.

If fi is a left h-edge of level n, then f; is incident to vy 2, where €; € v’{jz,
and |(U1 2) | = 4. Since py' = (F{l,vl 070rd{1a¢fl> (F£27U2 0,0rd§2,¢22) = pz )
we see |(v] 5)*| = 4, where €, € v5,, and f5 is an h-edge of level n. Then, f; is
a left edge if and only if f5 is a right edge.

Let k; be an integer such that f; € E(T;) has level k;,;i = 1,2. Suppose
ki > ko. We have proved that if k; = n, then the result holds. Suppose k; < n.
Let h,q be integers such that (Ff, fo,ordi) i = 1,2, are (h,q)-fat graphs. We
choose ¢F : w1 (T'y,v10) — Fhqa such that pt = (F%,vl 0,ordf,¢¢) is a point in
ordAy, g Let ¢% : m5(Ts, v0) = Fhgy such that u(ps) = (I, vk, ords, ¢5) = pi

where p : o?dT&fop — o?d?&hq, P — pf By induction hypothesis, the result
holds for ff and p (Fi v ordi,gbj),i = 1,2, where ff is identified with f;

i» Vs ,00
under the embedding (I’f, fo,ordi) — (', vi0, 0rd;), Uia — v;1, @ = 1,2. Then,
conclusions hold for f; and p; = (I';, v; 0, 0rd;, ¢;),7 = 1, 2. O

Since generators of AM, 1 correspond to collapse edges, we have the follow-
ing definition.
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7.8 Definition. A g-generator (resp. an h-generator) of level k of AM,, 4 is
a generator which corresponds to collapse a left g-edge (resp. h-edge) of level
k. O

7.9 Remark. By Lemmal7.7] the inverse of a g-generator (resp. an h-generator)
of level k corresponds to collapse a right g-edge (resp. h-generator) of level k. [J

7.10 Lemma. Let p = (T', vy, ord, ¢) € Mg’p such that o(p) is a simple:z: of
dimension 3n — 3 = 6g + 3p — 3. Let h,q be integers such that (1“i vo, ord") is
a (h,q)-fat graph with a dzstmguzshed verter, and, let ¢* : mi (T, vo) — Fpq1 be

an isomorphism such that p+ = (I'¥, UD, ord* ,¢%) is a point in ordAhq

Let f be a g-edge (resp. an h-edge) of T of level k <n, and, let f* be the edge
of T identified with f under the embedding (T%, vy, ord*) < (T, vy, ord), vy — v;.
Then there exists a g-generator (resp. an h-generator) of level k offlj\/[g’p’1 cor-
responding to collapse f in (I, vy, ord, ¢) if and only if there exists a g-generator
(resp. an h-generator) of level k of AMy, .1 corresponding to collapse f* in

(Fi,vé, ord", ot).

Proof. Since level of f is k < n, there exists f+* € E(I'¥) as in the statement. By
Proposition [6.7], there exists a continuous map which is onto

/\p —_—
p:ordA, ) — ordAy 4, p pt.

If there exists a generator corresponding to collapse f in (I", vg, ord, ¢), then
there exist a simplex o (p’) = o(IV, v}, ord’, @) of dimenswn 3n—3=69g+3p—3
which has the codimension one face o (p/) = o(I'/, v, ord’, ¢7). Hence, pu(p’) is
a simplex of dimension 3(n —1) —3 which has the codimension one face obtained
by collapsing f* in pt = (I, v§, ord*, ¢*).

Since y is onto, if there exists a generator corresponding to collapse f* in p¥,
then a similar argument can be applied. O

7.11 Definition. With the hypothesis of the Corollary above, we say the gen-
erator of AMgp , corresponding to collapse f in p = (', v, ord, ng) is a [ift of the

generator of AMj, 1 corresponding to collapse f+ in pt = (T, vo, ord, oY), O

7.12 Example. We compute generators of AMg 31 of level less than 3. By
Lemma and Example we have to lift generators of AMgo;. By Ex-
ample @), AMo21 = (z1 |), where z; corresponds to collapse e;. Recall
]IADO,Q = cl(o(T", vg, ord, ¢)), where (I', vg, ord) = (€1, e2); (€1, €3, €4), (€2,€4,€3). By
Example and Definition [7.1] e; is a left g-edge of level 2. Then, we denote
by g2 the generator z; of AMgo ;. Hence, AMoa1 = (g2 |)-

To lift go € AMy 2,1, we follow Example . Notice there is no left g-edge of
level 2 in (I'y, vy, 0rdy, ¢1), e is the left g-edge of level 2 in (I'y, v9, ords, ¢o)
and e3 is the left g-edge of level 2 in (I's, v3, ords, ¢3). By Lemma [7.10, AMq 3
has two g-generators of level 2 corresponding to collapse ez in (I'g, vo, orda, ¢2)
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and es in (I's, vs0,0rds, ¢3). To identify these generators we collapse left and
right g-edges of level 2.
Collapsing left g-edges of level 2 we have the following.

(I'5*, v5%, ordy’) = (€1, €2); (€1, €6, €7, €4), (€2, €5, €6), (€1, €7, €5)
= (e1,e2); (€1, e3,¢€4,€5), (€2, €6, €3), (€4 56, es)
); (€1 es), (€5, €7, €)
); ( ), (€3, €6, €4)

( (e
(F§3,v§?o,0rd§3) = (e1,e2); (€1, €6, €7, €4), (€2, 4, €5
( (e

= (€1,€2); Ela63764765)

ml

)
27€5a €6),

Collapsing right g-edges of level 2 we have the following.

(I'f*, vy, ord{*) = (e1, e2); (€1, €3, €6, €7), (€2, €5, €3), (€5, €7, €6)
, €3, €4, €5), (€2, €6, €3), (€4, €6, €5)
,€3,€7,65), (€2, €5, €6), (€3, €, €7)

). (e )

E1763764765 ) 2765766) (63766764

= (e1, €2); €
(F§47 US?O’ Ordg4) = (617 62)7 €
(€1, €2);
(

(€
(@
(@
= (e1, e2); (

Since (I'y?, vy, ordy®) = (I'}*, v1Y, ord(*) and ez is a left edge of (', vg 9, ordy),
we define the generator g, » which corresponds to collapse e3 in (I'y, v9 9, ords).

Since (I's’, v3%, ords®) = (5", v3h, ordy*) and ey is a left edge of (I's, vs 9, ords),
we define the generator g, 3 which corresponds to collapse e in (I's, v5 0, ords).
We represent these generators:

eq 922 e3 eq 923 es
Iy < 2 D 3

We denote these generators by a g, since they are lifts of the g-generator go
in AMp 2,1, and a second subindex which denotes the fat graph where the left
edge which needs to be collapsed lies. Hence, g2 is obtained by collapsing the
left g-edge of level 2 in (I'y, v9, ords) and g2 3 is obtained by collapsing the left
g-edge of level 2 in (I3, v3, ords). O

7.13 Remark. We complete Remark [6.16| Each of the p+ 1 connected compo-
~ —p =
nents in Py, N ordA;p which map onto P;_; ,+1 under u corresponds to a cyclic

—

word in w(Fz, 112 05 ordi) as follows. Each connected component in @g,p N ordAZ?p
contains points (I', v, ord, ¢) such that (N vg,ordt) = (F%,UQO,OI"di). By the
embedding (F%,UQO,ordé) — (I", vg, ord), U20 — w1, there is a cyclic word in

w(T3, v20,ord$) which does not appears in w(T, vy, ord). Recall (I'}, UQO,OId%')
is a (g — 1,p + 1)-fat graph and (T, v, ord) is a (g, p)-fat graph. There exists
a g-generator of level & < n in AM,_y ;41,1 whose corresponding left g-edge is
incident to this cyclic word. Then, the lift of this g-generator of level kK < n in
AM;p,l connects the connected component containing p with another connected
component.

]
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7.14 Example. We compute generators of AM, ;; of level less than 3. By
Lemma[7.10jand Example[6.17] we have to lift generators of AM; o1 and AMg 2 1.

By Example (]ED, AMi o1 = (1,23 | vi25 27 23 2,), where z; cor-
responds to collapse e;, and, x3 corresponds to collapse e3. Recall @1,0 =
cl(o(TV, vy, ord’, @), where (I, v}, ord’) = (eq, €2); (€1, €3, €4), (€2, €3,€4). By Ex-
ample [6.4) and Definition [7.1] e3 is a left h-edge of level 2, and, e; is a left g-edge
of level 2. Then, we denote by hy the generator x3 of AM;;, and, by g, the
generator z; of AM; ;. Hence, AM; o1 = (ha, g2 | gahs g5 " hy ' ga).

To lift hg, go € AM, 91, we have to complete Example . If we complete
Example (7.5, we will see eg is the left h-edge of level 2 in (I'y, vy o, ordy, ¢1), there
is no left h-edge of level 2 in (I'y, v9, 0rds, ¢2), €7 is the left h-edge of level 2
in (I's,v30,0rds, ¢3), e is the left h-edge of level 2 in (I'y, vy, 0rdy, ¢4), € is
the left h-edge of level 2 in (I's, vs5 0, ords, ¢5), there is no left h-edge of level 2
in (g, v, 0rdg, ¢6), €7 is the left h-edge of level 2 in (I'7, v7,0rds, ¢7), and,
€ is the left h-edge of level 2 in (I's, vg,ords, ¢s). By Lemma , AMy 11
has six h-generators of level 2 corresponding to collapse these left h-edges of
level 2. To identify these generators, we can collapse left and right h-edges
of level 2 in (I';,v;0,0rd;, ¢;), for i = 1,...,8. We denote by he; the gener-
ator corresponding to collapse eg in (I'y, vy 9,0rdy, ¢1), hes the generator cor-
responding to collapse €; in (I's,vs0,0rds, ¢3), he4 the generator correspond-
ing to collapse eg in (I'y, v40,0rdy, ¢4), hos the generator corresponding to col-
lapse €¢ in (I's,v50,0rds, ¢5), hoy the generator corresponding to collapse ér
in (I'7,v70,0rd7, ¢7), and, hes the generator corresponding to collapse € in
(s, vs 0, 0rds, ¢s). We represent these generators:

h271 h2,8

h2,4 h2,5
67066 67066 e ha er €6
7 €7
T, I

€6 h2,3€
[g—=—1% I's

Fl F267—<—7 Fg

On the other hand, there are neither left g-edge of level 2 in (I'y, vy o, ordy, ¢1)
nor in (I'y, vy, 0rdy, ¢4), and, es is the left g-edge of level 2 in (T';, v; o, ord;, @),
for i = 2,3,5,6,7,8. By Lemma [7.10] AM; 1, has six g-generators of level 2
corresponding to collapse these left g-edges of level 2. To identify this generators,
we can collapse left and right g-edges of level 2 in (I';, v, 0rd;, ¢;), for i =
1,...,8. We denote by g2, the generator corresponding to collapse left g-edges
of level 2 in (I';, v; 0, ord;, ¢;), for i = 2,3,5,6,7,8. We represent these generators:
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€4 €3

92,6

As in the previous example, AMp21 = (g2 |) where g corresponds to col-
lapse ey in (I', vg, ord) = (ey, e2); (€1, €3, €4), (€2,€4,€3). To lift go € AMg 21, we
follow Example Notice there is no left g-egde of level 2 in (I'y, vy 9, 0rdy, ¢1)
and eg is the left g-edge of level 2 in (I';, v; 0, 0rd;, ¢;), for i« = 10,...,13. By
Lemma , AM; 11 has four g-generators of level 2 corresponding to collapse
es in (I, v;0,0rd;, ¢;), for i = 10,...,13. To identify these generators, we can
collapse left and right g-edges of level 2 in (I';,v; 0, 0rd;, ¢;), for i = 9,...,13.
We denote by g¢2; the generator corresponding to collapse eg in (I';, v; 0, ord;, ¢;),

for + = 10,...,13. We represent these generators:
Ly 0. 110 I'1y
3
92,10 “
€4 92,11
€4
NP I3
Iy I'o I'1
€4 o4
92,12 92,13
ISP I'13

By Example , the first component of @0,2 contains I'g, I'1g, I'11 and the sec-
ond component contains I'y9, I'13. These two components are connected through
codimension one faces obtained by collapsing g-edges of level 2. O

7.2 Relations

We give a description of relations of AMY | where p is a point in ordA,, — Ty,

These are relations of AM, , 1 which do not involve g-generators of level n.
Notice h-generators of level n are described in Lemma [6.10] The following

lemma describes relations involving generators of level £ < n and h-generators
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of level n.

7.15 Lemma. Let p = (T vy, 0rd, 9) € ordh,, — T,,. Fori=1,2, letp; =

(L4, vi0, ord;, ¢;) be a point in ordAgp such that o(p;) is a simplex of dimension
3n —3 =6g+3p—3. Fori=1,2, let f; be a left g-edge (resp. h-edge) of
[y of level k < n such that there exists a g-generator (resp. an h-generator)
corresponding to collapse f; in p; = (I, v;0, ord;, ¢;).

If there exists a path v from py to ps such that v lies in simplices of codi-
mension at most one where every codimension one simplex intersected by v s
obtained by collapsing an h-edge of level n, then the generator corresponding to
collapse f1 in py = (I'1, v1, ordy, ¢1) is equal to the generator corresponding to
collapse fo in pa = (I'a, v20, 0rda, ¢2), up to h-generators of level n.

Proof. Let h,q be integers such that (Fi,vé,ordi) is a (h,q)-fat graph with a
distinguished vertex and let ¢ : Wl(Fi,vé) — Fj 41 be an isomorphism such
that (I, v}, ord, ¢*) is a point in (ﬂh,q.

By Proposition [6.7], there exists a continuous map

/\p —_—
p:ordA, ) — ordAy 4, p pt.

Since every codimension one simplex intersected by ~ is obtained by collapsing
an h-edge of level n, we can suppose p is constant on . Then

pip1) = plp2)

and v is homotopic to a path 7/ from pf1 = (F{l,vlo,ordfl,qb{l) to pf2 =
(Df2,vd%, ordf?, ¢f*) such that p is constant on 4/. Then 4/ lies in sim-
plices of codimension 1 or 2. The graph of each codimension 1 simplex
which contains a segment of v/ has a vertex of valence 4. This vertex can
be split in two manners. One manner gives a (3n — 3)-dimensional simplex
which contains a segment of 7. Since there exists generators correspond-
ing to collapse f; in p;, = (I, v;0,0rd;, ¢;), @ = 1,2, there exists simplices
o(p;) = o(I},vjy, ord;, ¢}), i = 1,2, such that U(Ff’, Zf}),ordfz,qﬁ{i) is a com-
mon face of both o(p;) and o(p;), i = 1,2. From u(pf") = pu(pf?) we see
u(p'y) = p(p’s). By Lemma the other manner to split the valence 4 vertex

gives a (3n —3)-dimensional simplex of o/r(;A;p which maps to o(u(p’;)) under p.
Then ~/ is homotopic to a path 4’ from p’; to p’, lying in simplices of codimen-
sion at most one where every codimension one simplex is obtained by collapsing
an h-edge of level n. For i = 1,2, let 8; be a path from p; to p’; through the

——( vo,ord,¢
codimension one face a(p '). Hence, there exists a disc in ordA bounded

by 51777 62 and /y O

7.16 Remark. Let p; = (I'1, v1,0,0rdy, ¢1) be a point in (m%p _'/]I\‘g,p' Suppose
(T}, vt 0 ord!) is a (g, p — 1)-fat graph with a distinguished vertex.
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Generators of AMpl 1 are h-generators of level at most n and g-generators
of level at most n — 1.

By Remark [6.14] all h-edges of level n of AM“ 1 are declared to be the
identity. See the ﬁrst set of relations in Theorem (3.7] - and Lemma [6.10

By Lemma and Definition | every generator of level at most n — 1
of AM’;}N is a lift of a generator of AMM,,M.

By Remark [6.14] all lifts of a generators of AM,,_; are connected through
codimension one simplices corresponding to collapse h-edges of level n. Then, by
Lemma - the set of generators of AMg 1 1s reduced to the set of generators
of AM gp—1,1- ]

7.17 Example. By Example AMy 31 has two lift of g» € AMp 21 denoted
g2.2 and go 3. Recall g2 and go 3 correspond to collapse the left g-edge of level
2 in ([, v, 0rds, ¢2) and (I's,vs0, ords, ¢3), respectively. By Example m,
0 (g, va,0rdy, o) and ('3, v3 0, ords, ¢3) are connected through a codimension
one face obtained by collapsing an h-edge of level 3. Then, by Lemma [7.15]
g22 and go 3 are equal, up to h-generators of level 3. We apply Theorem
to (I'g, va0,0rdy), the pair of edges {es, es} and collapsing e;. We obtain the
relation gs 2 hs 4 9, % h; % We represent this relation:

7

F2—>—F3

///

—>—
e o I

By Remark [6.14) in AMy3,, we have hg; = hss = 1. Then, relation
Go2hs 1 g{% hg_é reduces to gao = ¢23. Hence, AM(()yri’lvl’O’ordl’M) is generated
by g22. Since AMj o, is generated by g, this agrees with Remark O

7.18 Example. By Example AM 11 has six lifts of hy in AM; ;1 denoted
hy; for i = 1,3,4,5,7,8. Recall hy; corresponds to collapse the left h-edge of
level 2 in (', v; 9, 0rd;, @), for i = 1,3,4,5,7,8.

By Example fori = 1, ceay 7, O'(Fi, Ui,0, OI'di, ¢z) and U(Fi+17 Vi+1,0, OI'dH_l, (bi—l—l)
are connected through a codimension one face obtained by collapsing an h-edge
of level 3. We represent the relations involving h-generators of level 2 and 3 that

we obtain by Theorem [3.7]
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By Remark [6.16 in AM;,1;, we have hg; = 1,4 = 1,...,7. Then, the
obtained relations reduce to ho1 = ho3 = hoa = hos = ho7 = has.

By Example [7.14, AM; 1 has six lifts of g, in AM, o, denoted gs; for i =
2,3,5,6,7,8. Recall these generators correspond to collapse the left g-edge of
level 2 in (Fl, Ui.0, OI'di, ¢z); for i = 2, 3, 5, 6, 7, 8.

By Example 7 fori = 1, ceey 77 O'(FZ', Vi.0, Ol"dz', ¢z> and U(Pi+17 Vi+1,0, OI‘dZ'_|_1, ¢i+1)
are connected through a codimension one face obtained by collapsing an h-edge
of level 3. We represent the relations involving h-generators of level 3 and
g-generators of level 2 that we obtain by Theorem

By Remark |6.16] in AM, 11, we have hg, = 1,7 = 1,...,8. Then, the
obtained relations reduce to g2 2 = g23 = g25 = G2.6 = 92,7 = J2.8-

Hence, AngFf”fl’o’ordl’%) is generated by hg and goo. Since AMg o is gen-
erated by ho and g, this agrees with Remark [7.16} O

A~

7.19 Remark. Let py = (I'y, v3, ords, ¢2) be a point in o/rdT&gJ, —T,,. Suppose
(T%, U%,(), ord) is a (¢ — 1, p + 1)-fat graph with a distinguished vertex.

Generators of AM’;?M are h-generators of level at most n and g-generators of
level at most n— 1. By Remark|[6.16] for each (3(n— 1) — 3)-dimensional simplex
of @g_lyp_Fl, there are (p + 1) components connected through codimension one
faces obtained by collapsing h-edges of level n.

For each of these components, by Remark [6.16] all h-generators of level n of
AMY? | are declared to be the identity, but one. See the first set of relations in

Theorem [B.7] and Lemma [6.10]
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By Lemma [7.10] and Definition [7.11], every generator of level at most n — 1
of AMP?, | is a lift of a generator of AMy_1p411.

Hence, by Lemma , the set of generators of AMZ?M is reduced to a set
of p+ 1 h-generators of level n for each (3(n — 1) — 3)-dimensional simplex of
@g,l,pﬂ (one generator for every connected component), and, (p+1) lifts of each
generator of AM,_; 5111 (one lift for every connected component).

By Remark[7.13] there are p g-generators of level k& < n which are declareted
to be the identity. Recall that the corresponding edge of these g-generators must

connect two connected components. O

7.20 Example. By Example (Cg, vg 0, 0rdg, ¢9), (10, v10,0,0rd10, P10) and

(41, v11,0,0rd11, ¢11) in ordA;; are connected by two paths contained in sim-
plices of codimension at most one where every codimension one simplex is ob-
tained by collapsing an h-edge of level 3. Similarly, (12, v12,0, 0rd;s, ¢12) and
(43, v13,0, 0rdy3, ¢13) are connected by two paths contained in simplices of codi-
mension at most one where every codimension one simplex is obtained by col-
lapsing an h-edge of level 3.

By Remark , in AM, 1.1, we have hs10 = h311 = 1 and hs;3 = 1. Hence,
hso and hg 19 are the h-generators of level 3 which are not declared to the iden-
tity for the components containing (I'g, vg o, ordyg, ¢9) and (I'12, v12, ords2, ¢12),
respectively.

By Example [7.14 AM; 1 has four lifts of go in AMoz; denoted go; for
¢ = 10,...,13. Recall g5, corresponds to collapse the left g-edge of level 2 in
([y, vi0,0rd;, ¢;), for @ = 10,...,13. Notice ga10 and go 11 are the g-generators
of level 2 for the component containing (I'g, vg o, 0rdy, ¢9); g2,12 and g2 13 are the
g-generators of level 2 for the component containing (I'y2, v120, ordy2, ¢12).

By Theorem we obtain relations involving g 10 and g2 11: 92,10 fi3,12 9, %1 h; %0
and g2 10 hgjg 9a11 311 hag. We represent these relations.
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€5 €5
ez N9 ey
Fy—— Ty I'1y
€3
€3
92,10,
64/4\ 92,11
r es  hsaizes T €4
12 13

Since, in AM, 11, we have hg190 = hs11 = 1 and hsi3 = 1, these relations

reduce to ga10h3,12 = g2,11 and hz 99210 = go,11-
By Theorem we obtain relations involving g, 12 and g2 13: go. %2 hs12 9213 s 10 hg(},
and g5 15 Py 13 92.13 hs11. We represent these relations.

es D39 ey es  h310 e

[y > 1N > 'y
€4 ‘
4
2,12
92, 92,13
—_—
3,12
h3,11
€5 €5
. Iy 'y
4
€4
2,12
92, 92,13
es /4\
e hsa3 es €3
12 I'i3

Since, hg10 = hs11 = 1, hs13 = 1 hold in AM, ; 1, these relations reduce to
h3,1292,13 = 92,12h3,9 and 92,13 = g2,12-

Hence, AMff”lvl’O’ordl’%) is generated by two h-generators of leve 3: hsg, hg 19;
and, two g-generators of level 2: g 19, g2,12. Notice g-generators of level 2 connect
the two connected components. And one of the g-generators of level 2 needs to
declareted the identity to connect the two connected components. Since AM 21
is generated by a g-generator of level 2, this agrees with Remark [7.19] If we
declare 9212 = 1, then h3’9 = h3712 and gg’loh&g = h379g2,10. Il

7.21 Lemma. Let p = (', vy, ord, ¢) € M%p such that o(p) is a simplex
of dimension 3n —3 = 69 + 3p — 3. Let f; € E(I'), i = 1,2, such that there
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exists a codimention two face o(p/2) = g(DIef2 o[V orgftF2 gfif2) ip M;p
obtained by collapsing f1 and fy. Let h,q be integers such that (Fi,vé, ord") is

a (h,q)-fat graph with a distz'nguished vertez, and, let ¢ : m(Fi,vé) — Fp 41 be
an isomorphism such that (T'V, UO, ord*, ¢*) is a point in Mh,q. Let

—p —
o ordA, , — ordAp g, p pt.

be the map described in Proposition[6.7,

(i) If either f1 or fy is an h-edges of level n, then u(o(p+72)) is a codimention
one face of ordAy, 4.

(ii) If neither fi nor fa is an h-edge of level n, then u(o(p/t/2)) is a codimen-
tion two face of ordAy, 4.

Proof. Notice neither f; nor f, is a g-edge of level n.

(i) Suppose f; is an h-edge of level n.

If f, is an h-edge of level n, then there exists an edge f*in (T, v}, ord?)
identified under (I, v§, ordY) < (T, vp,0rd), v} +— vy, with the concatenation
fi and f, in (T, vy, ord). Hence, u sends the codimension two face o/1/2 to the
codimension one face of o(p¥) = o(T¥, vo, ord*, ¢*) obtained by collapsing f*.

If f; is not an h-edge of level n, then there exists an edge fi in (I, vy, ord")
identified under (I'*, v}, ord") — (F vg, ord), v§ — vy, with f, in (I, v, ord).
Hence, 4 sends the codimension two face 012 to the codimension one face of
o(pt) = o(TY, vé, ord*, ¢*) obtained by collapsing f%.

(ii) If neither f; nor f, is an h-edge of level n, then there exist edges ff , f% in
(T4, v}, ord¥) identified under (T, vy, ord¥) — (F vo, ord), v — vy, with f1, fo
in (I, vy, ord), respectively. Hence, u sends the codimension two face o/1:/2 to
the codimension two face of o(p¥) = (I, vo, ord*, ¢*) obtained by collapsing ff
and fy. [

7.22 Corollary. Let p = (I', vy, ord, ¢) € @g,p such that o(p) is a sz'mplex of
dimension 3n — 3 = 6g + 3p — 3. Let h,q be integers such that (F UO, ordi) 18
a (h,q)-fat graph with a dzstmguzshed vertez, and, let ¢* : 7T1(1“i vg) = Fhga be

an isomorphism such that p¥ = ('Y, vo, ord* , %) is a point in ordAhq
For i = 1,2, let f; € E(I') of level at most n—1, and, let ff be identified
with f; under (D%, v}, ord") < (T, vy, ord), v — v;.

(i) There exists the codimension two face o(p/t2) = g(Dff2 ylvl2 opghofz ghif)
—p
in ordA, , obtained by collapsing f1 and fy if, and only if, there exists

the codz’mensz’on two face in Jd,\lﬁkm obtained by collapsing ff and f% in

pt = (T4, o}, ord*, ¢Y).
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(ii) There exists a relation correspondz’ng to the codimension two face o(pf/2) =

o(Dvt2 o] b2 opgfifz L pfP2) in ordAgp obtained by collapsing f1 and f5 if,
and only zf, there exists a relation corresponding to the codimension two
ace in ordAy, , obtained by collapsing Y and fyin pt = (I v Eoordt, ¢b).
a 1 2 0

Proof. (i) If there exists the codimension two face o(p/*/2) of ordAgp, by
Lemma [7.21} F. there ex1sts the codimension two face corresponding to collapse
fli and fy in pt = (I, v ordi , Y.

If there exists the Codlmensmn two face corresponding to collapse fli and
fy in pt = (DY, v}, ordY, %), then f} and f; can be collapsed in ('Y, vy, ord").
Hence, fi and f5 can be collapsed in (I, vg, ord) and there exists the codimension
two face o/1:/2 of cﬁ;

(ii) Follows from (i)7above and Lemma [7.10] O

7.23 Definition. Let p = (I", v, 0rd, ¢) € @gp such that o(p) is a simplex
of dimension 3n — 3 = 6g + 3p — 3. Let h, g be integers such that (Fi vo, ord")
is a (h, q)-fat graph with a distinguished vertex, and, let ¢+ : 7 (¥, UO) — Fhga
be an isomorphism such that p+ = (I'V, vi ,ord*, ¢*) is a point in ordAhq

For i = 1,2, let f; € E(T'), such that there exists a codimention two face

. ——p
J(pf17f2) — O(Ffl’f27vgl’f2,Ordfl’f2,¢f1’f2) in OrdAg,p

and fy. Suppose f;, i = 1,2, 1S an edge of level at most n — 1, and, let ff be
identified with f; under (', L vg, ord%) < (T, vy, ord), v} — > U1

We say that the codimension two face o(p/t/2) of ordAgp is a [lift of the
codimension two face in ordAj, obtained by collapsing ff and f2i in pt =
(I, vo,ordi,qbi)

If there exists a relation r in AM} | deduced from the codimension two face
o(p//2), then we say that the relation r of AM} , is a lift of the relation of

‘AMZ,q,l deduced from the codimension two face obtained by collapsing fli and
fy inpt = (I, v5, ord*, o). O

obtained by collapsing f;

7.24 Corollary. Let p = (T', v, ord, ¢) € @g,p — ﬁfg,p.

(i) Every relation in AM 1 Obtained by Theorem which involves h-generators
of level n is deduced from Lemma

(ii) Every relation in AMP »1 obtained by Theorem |3.7 which does not in-
volve h- genemtors of level n is a lift of a relatzon in AMpq1, where
pt = (IY, UO, ord") is a (h,q)-fat graph with a distinguished vertex.

Proof. (i) Follows from Lemma [7.21](i).
(ii) Follows from Lemma and Definition [7.23] O
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7.25 Remark. Let p; = (I'1,v10,0rdy, 1) € o?ng,p — @g,p. Suppose p% =
(Tt vio, ord}) is a (g, p — 1)-fat graph with a distinguished vertex

By Proposition 6.13] AMP' | ~ AM,y, 1. Results on this section give
an explicit description of this isomorphism as follows. By Remark [7.16] there

is a bijection between generators of A.’MSTM and generators of AMy,_11. By

Corollary relations not involving h-generators of level n in J‘U\/[z’lp’1 are lifts
of relations in AM, ,_1 ;. O

7.26 Example. Recall AMy21 = (g2 |). Following Example [7.17, by Corol-
lary [7.24) AMSS 10 = (gy [) = AMo 1. O

7.27 Example. Recall AM,; = (hy, g2 | g2h3" g5 hy g2). The relation in

AM, o1 lifts to the following relations in AMffv’lvl’o’ordl’(bl): 92205195505 592.3;

923h 392 3ha 0250 G2.6haigagharger and gazhytgyshy gas. Following Exam-

ple [7.18] these relations reduce to the same relation. By Corollary [7.24]
I'1,v1,0,0rdy, 1 1.

-AMLll,ll’O Lo — (ha1, 922 | 92,2h2&92,5h2,%92,2> ~ AMi ;1. L

7.28 Remark. Let py = (I'y,v90,0rds, ¢2) € (;d,\Agm — ﬁI\‘g,p. Suppose p% =
(T3, vio, ords) is a (g — 1, p + 1)-fat graph with a distinguished vertex.

By Proposition [6.13] AMY? |~ AMg 1,2 Results on this section give an

explicit description of this isomorphism as follows. By Remark [7.16, AM? | is

9p,1
generated by (p+1) copies of the generators of AM, ,,_; 1 and (p+1) h-generators

of level n for each (3(n — 1) — 3)-dimensional simplex of @9—17134‘1‘ On the other

hand, relations not involving h-generators of level n in .AM’;?M are lifts of re-
~ —p

lations in AMy_1,41,1. Recall Py, N ordA;p has p + 1 connected components

which map onto P;_; 11 under p. Each of these connected components corre-
spond to a cyclic word in w (T3, vio, ord}). See and Remark . There are
p g-generators of level k& < n which are declareted to be the identity. O]

7.29 Example. Recall AMy21 = (g2 |). By Example and by Corol-
lary [7.24} AMflg,’lvg’oprde) = <h3,9, 92,10 | h3992,10 = 92,10h3,9>- O

8 g-generators of level n

We describe a refinement of the decomposition of o/rdT%g,p which gives g-generators
of level n and some relations involving g-generators of level n. We deduce AM, ;, 1
is a quotient of the fundamental group of a graph of groups. We define a second

refinement of the decomposition of ordA,, which gives the missing relations.

8.1 Definition. For i = 1,2, let '/JI\'E(;;, be the set of points p = (I', vy, ord, ¢) €
ordA,, — T, , such that |u*| > 4 where ¢; € u*, u € V(). O
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8.2 Remark. For ¢ = 1,2, if p = (I, vy, 0rd, ¢) € o?d?&g@ (’]I‘gp U ']I'(l)) then
lvg| = 2 and |vf| = 3. O

8.3 Definition. For i = 1,2, let p = (I", vp, 0rd, ¢) € o/rdT%g,p — ('ﬁ'g,p U 'ﬁ‘(ﬂ,)

We denote by ordA ;" the connected component of ordA, , — (T, ;U Tg},) which
contains .

We define
'AMP pl = ={peAMyp1 | p EordAgp }

]

8.4 Remark. For i = 1,2, let p = (I',vp,0rd, ¢) € (mgp — (Tg,p U 'ﬂl:’g%,)
Notice @ZZS) can be defined as the connected component of @:m — 'ﬂf‘%
which contains p.

Since cmZ:( C ordA we see AMP)

gp1 18 a subgroup of AMgp 1- [

9,p?

8.5 Remark. Let p = (F v, ord, @) € (mgp (']I‘gp U Tép) and, let h, ¢ be
integers such that (T, vo, ord") is a (h, ¢)-fat graph with a distinguished vertex.
Since p € ordAgp — (Tgp u T z))) we see |vf| = 2. Hence, we can consider
the (k,r)-fat graph with a distinguished vertex (F”,véﬂordu) where k,r are
integers such that either (k,r) = (h,q— 1) or (k,r) =(h —1,¢+ 1).

We consider the composition of embeddings

(F”,véi,ord”) — (N,vé,ordi) — (I, g, ord)
G

U(i] — U1

Notice eq, 9, €3,e4 € E(I') do not lie in the image of this composition.

We can obtain results for the composition above analogous to the results
obtained for the embedding (I'*, v}, ord") < (T, vy, ord), v — vy.

Let w(T, vg, ord) = {wo, [w1], ..., [wpy]}. Since

([, vg,ord) = (e1, €2); (€1, €3,€4), (€2,...),. ..

wy starts with ejes and ends with €, and, €,€1e5 and €3e4 appear in w(I', vy, ord).
Lemma [£.§ can be extended as follows.

() If wo = erezwjes, [w;] = [es€1eow]] for some 1 < ¢ < p, then (h,q) =
(g9,p — 1) and exactly one of the cases holds.

(a) If wy = upeseqvy, then (k,r) = (h—1,q+1) = (g—1,p). Hence, g and
p satisfy g > 1 and p > 1.

(b) If w; = ujeseqv], then (k,r) = (h—1,9q+1) = (g9 —1,p). Hence, g and
p satisfy ¢ > 1 and p > 1.
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(c) If [wj] = [ezeqv;] for some 1 < j < p,j # i, then (k,r) = (h,q—1) =
(g,p — 2). Hence, p satisfies p > 2.

Notice w(I, v§, ord%) = {wg, [wi], ..., [wi], [wirl], ..., [w}]} where wy =
eswywiey and, [wji] = [wj] for 1 < j < p, j # i. The three cases above are

deduced by considering where ese, appears.

(ii) If wy = ejeswjesereqwyes, then (h,q) = (g — 1,p + 1) and exactly one of
the cases holds.

(d) If w) = ujeseqvyy, then (k,r) =(h—1,g+1) = (g —2,p+2). Hence, g
satisfies g > 2.

(e) If wi = ujeseqv(, then (k,7) = (h,q—1) = (¢9—1,p). Hence, g satisfies
g=>1

(f) If [w;] = [esequ;] for some 1 < i < p, then (k,r) = (h,q—1) = (9—1,p).
Hence, g and p satisfy ¢ > 1 and p > 1.

Notice w(T™, of,ord?) = {ud, [wl],..., [w}], [wl, ]} where wh = equwfes,
[wiﬂ] = [w(] and [wj] = [wj] for 1 < j < p. The three cases above are
deduced by considering where e3ze4 appears.

Lemma . can be extended as follows. Let ¢ : (T, u) — Fi,1 be an
isomorphism such that pH = (I'H, v ord™, ¢¥) is a v point in ordA,, s Io(p)is
a (6g + 3p — 3)-dimensional surnplex7 then a path in ordAva lying in simplices of

. ) ) : . (1)
codimentions at most one and starting at p* can be lifted to a path in ordA

lying in simplices of codimension at most one and starting at p.
Proposition can be extended as follows. We can define a continuous map

—_ ,(1) —_
D ordA, = ordAy,, p s pt.

We see o/rcv%p’(l) is simply connected. See Corollary .

Since (m? has a complex structure, a presentatlon for AM 1 can be
obtained by Theorem applied to the action of AMP on ordA .

Proposition can be extended as follows. If (A, q) (9.0 — ) let p, =
(T, 08k 60), Py = (T, 0,01, ), B = (T v, 0nds ) € ondAy, — T80

such that (I'y, v40,0rd,), (I, vp 0, ord,) and (I, v g, ord.) satisfy conditions ,
and above, respectively. Then

—p A~ /\Pa,(l — P 7(1)
ordA, , — ’]I'é}; :< o (pa -ordA, )> ( Uy, (¢ - ordAgfp ))
1

U

U ( . (e - ordA)g
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/AMP“’ 1 @b ranges over AMP | /AM‘;Z’J(E) and .

o 1 ; and every pair of sets on the right-hand side are

where ¢, ranges over .AJ\/[g p 1

ranges over AM! ./ AMP
disjoint.
A similar result holds if (h, q) =(g—1,p+1) and p,, pp and p. are replaced

by Pd — (Fd7vd07ordda¢d) Pe = (F67/U6070rd67¢6) pf = (Pfuvf,()vordf7¢f) €
ordA - ']I‘(II), such that (I'y, va0,0rdg), (Te, veo,0rd,) and (I'f, vsp, ordy) satisty

Condltlons - ) and . above, respectively.
We can choose P, » such that there are at most three connected components

- —p 2 R ——
in Py, N (ordA, , — T')), one for every case above. Notice Py, N (ordA, , —

~ ~ —p
T(g}z);) can be computed from P, , NordA,, by removing codimension one faces
corresponding to collapse edges e3 and ey.

Proposition can be extended as follows, where pg, ps, P, Pa, pe and py are
as above.

(iii) T q) = (g,p— 1), then

AMES WD~ AN,y .

£ (h,
(a) AN,
(b) A 21}31 ~ AMy 1,12
(c) AMPSY ~ AM,, o1
(iv) If (h,q) = (9 — 1, p), then
(d) AMPEW ~ AN,y 5.
) A
)

,p,l -
(e

(

pe, ‘AMQ 1,p,1

gpl -

AMPEW ~ AN, s,

9,p)1

[]

8.6 Example. We apply Remark to (g,p) = (0,3). The case (h,q) =
(9 — 1,p + 1) is empty and the case (h,q) = (g,p — 1) does not satisfies nei-
ther nor . ) in Remark . Following Example and Example [7.12]

(T'1,v1,0,0rd1,01) ~ . - .
Pog N (ordAgo1 P Télg) has one component corresponding to in
—~—(I'1,v1,0,0rd1,61)
Remark |8.5. This component is computed from IPO 3 MNord 301 v by re-

moving Codlmensmn one faces obtained by Collapsmg edges e3 and e4. We obtain

(T'1,v1,0,0rd1,01),(1)
the following representation of IP’O 3N ordA3 0 .

es 31 oes ey M3z ey
Fl > FQ > F3

By in Remark AMOF;’lvl 0O M Ao is the trivial group.
[
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8.7 Example. We apply Remark to (g9,p) = (1,1). The case (h,q) =
(9,p — 1) does not satisfies in Remark [8.5] Following Example and

(FlfUl 0,0rd1,$1) ~(1) ~
Example [7.13] IP’l 1 N (01“dA1 X — Tj,) has two components: Py N
/\F7 ,I‘d,¢)(1) n F7 7rd7¢)()
ordA, e corresponding to ({ibf), and, IEDl 1 ﬂordA1 15 ORI corre-

(T'1,v1,0,0rd1,01)
spondmg to . These components are computed from IP’l 1N ordA1 1

by removing eodlmensmn one faces obtained by collapsing edges e3 and €4.
——(T'1,v1,0,0rd1,¢1),(1

IF’I 1N ordA 11 has the following representation.
ha1
670 ) Q
€5 h3,1 66 €5 h €6 €5 h3 3 €
I'y > Iy

By (iiib) in Remark Aerll’flo’ord1’¢1)’(l) ~ AMy 2 is a cyclic infinite

group generated by hg 1.

———~(T's5,05,0,0rd5,¢5),(1)
And, ]P’l 1 NordA, 15 PR Yas the following representation.

has
67(\)86 /\ Q
€5 h3,5 €6 es h €6 €5 h37 €
F5 >

By in Remark , AMff”lvs’O’ords’¢5)’(1) ~ AMy2 is a cyclic infinite
group generated by hg 5.
The case (h,q) = (¢g—1,p+1) does not satisfies condition (fid) in Remark 8.5

—— (Pg,vy, 070rd97¢9

Following Example [6.17|and Example |7.13] IF’I 1N (01“dA1 1 - 'ﬂfﬁ) has

——(Tg,v9,0,0rdg,¢9),(1)

two components: IP’l 1 NordA, 4 corresponding to , and, @171 N

——(T'12,v12,0,0rd12,¢12),(1)

ordA, ; corresponding to . These components are computed

——(T'9,v9,0,0rdg,¢9) . . . .
from IF’I 1 NordA, by removing codimension one faces obtained by

collapsing edges ez and ey.

(I'9,v9,0,0rdg, ¢9),
IP’l 1N ordA1 1 has the following representation.
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hs 11

€5 €5
h3 10 €6
Iy Flo—>— I'y

By ((ive) in Remark 8.5, AMj 4 Fg’vg 0.0rdo,d0). (1) AMy 11 is the trivial group.

F12,U12 0,01“d127¢12) (1)

And, ]P’l 1N ordA1 1 has the following representation.
hs,13
66/<\5
hs12 e
F12 13

By (ivl) in Remark [8.5) AM{ 137202420 o A0, 05 is a cyclic infinite

group generated by s 12h313.
O

8.8 Remark. For i = 1,2, let pz = (FZ’,’UZ"D,OI'di, ¢z) € @g7p — (']/I\‘gm U P]Tg:;;)
Suppose
(5) 0(]3?) = O(F?v Uil[b Ordil> il) = U(F;27 ’U;,Qov Ordgzv ;2) = O.(pgz)'
Then edges of (I'f',vi,ord") are identified with edges of (I'y*,v5%, ordy?)
through the codimension one face (5). In particular, the following identifica-
tions hold.

E(I) —{ei} ¢ E(Iz) — {e2}
es <> right h-edge of level n,
€3 <> €1,
es <> left h-edge of level n.

And, edges of (I'y, v1 0, ordy ) but ey, €3, 3, e4 are identified with edges of (I, vg9, ords)
but ey, eq, left h-edge of level n, right h-edge of level n. n

8.9 Lemma. Fori = 1,2, let p; = (I';,vip, ord;, ¢;) € Mgﬁp - ('ﬂf‘gﬁp U 'EI\‘%)
such that

o(pi') = o(I'T, 0Ty, ordy*, ¢7') = o (IS, v5%, o1dy?, ¢5°) = o (py’).
Then, there exist continuous maps

p17(1)
g9,p

—p 7(1) _ 7(2) — 7(2) —_
ordAgylp — ordAfp and ordAfp — ordA

. . —b ’(1) —b 7(2)
which are homotopy inverse. Hence, ordAg’lp and ordA;p are homotopy
equivalent.
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(1)
Proof. We define ordA — ordA . Let p = (I',vp,0rd, 9) € ordAp W

Then |vj| = 2 and |v}| = 3 hold in (F v, ord). We define the homotopy Wthh
reduces the length of e; to 0 and increases the length of e3 in the same proportion.
Since, in (I, vy, 0rd), |vj| = 2 and |vj| = 3, the distinguished vertex, vg', of
(I, vgt, ord®) has valency 3. Then vi' can be split in a unique manner to
produce points p’ = (I, v}, ord’, ¢') & o(p). We define a second homotopy which
splits gt such that the length of ey in (I, v), ord’) increases from 0 to the length
of ey in (T, v, ord), and the length of e; in (I”, v), ord’) decreases from sum of the
lengths of e; and ez in (I, vy, ord) to the length of e3 in (', v, ord). If (I, v{, ord’)

. . .. =22 .
is not a strongly non-separating graph, then p’ does not lie in ordA;p . In this

: . —ba(2) :
case, to obtain points in ordA ;= we have to collapse edges in (I, v, ord’) to

obtain a strongly non-separating graph.
2,(2)

op ordAph ) is defined similarly, by firstly col-

The inverse map o?d?& 7
/\pg,(Q)

lapsing €3 in p € ordA
It is clear that these maps are homotopy inverse. O

8.10 Corollary. Fori=1,2, let p; = (I';, v, 0, ord;, ¢;) € MW — (ﬁg,p U if‘%)
such that

a(pr') = o(I'7, vily, ordy, ¢1') = o(13*, va)y, 0rdy?, ¢3°) = o (p3?).

Then, AMPEW gnd AMP2P) gre isomorphic.

g:p,1 9:p,1

Proof. Follows from Proposition [8.9 and Definition O

8.11 Proposition. For i = 1,2,3,4, let p; = (', v,0, ord;, ¢;) € o/m’T%g,p such
that o(p;) is a simplex of dimension 69+ 3p —3 = 3n — 3. Suppose p1,ps € Py,

—p3,(1

— 1’(
ordA;p = ordA

a(p?) = U(F??Uiloa Ord? » P1 ) = U(F§27 Ug,zm OTdSQ, ¢§2) = U@?)?
and,
U(pgl) = O-(F??Ug,lov Ordel 61) = U(FZZ’ UZ?Ov OTdZZ’ bef) = U(p?)'

Let g1 be the generator of ANy, 1 corresponding to collapse ey in py, and,
let gn3 be the generator of AMgpl corresponding to collapse ey in ps. Then

Gn3 = Gnaw for some w € AMEQI; 1 C .AMpfn

Proof. Let v, be a path from p; to ps contained in IP’g »N ordA . The map

9 1 9
ordA, > N ordAp2
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in Lemma [8.9] gives a path 5 homotopic to v; from py to py. Let 51 be the path
from p; to py through the codimension one face o(p7') = o(ps?). And, let 3
be the path from pj3 to ps through the codimension one face o(p5') = o(p3?).

Then, 71 3357,5, bounds a disc in ordA,,. Notice 8; and 33 correspond to the
generators g, 1 and g, 3, respectively. We can suppose 7, and v, lie in simplices
of codimension at most 1. Since 7, is contained in P, ,, its corresponding word

. . . . . . . — P 7(2) .
is the identity. Smce v is contained in ordA;p , the word w corresponding to

72 lies in AM;ZI’) 1. Hence, the relation g, 3w ™! ggj holds in AM, 1. O]

8.12 Remark. For i = 1,2, let p; = (I';, v 0, 0rd;, ¢;) € @g,p — ('ﬂl\‘gﬁp U '/If‘g(,l,)))
Suppose (I}, vio, ord!) is a (g, p — 1)-fat graph with a distinguished vertex and
(F%,vm,ordé) is a (g — 1,p + 1)-fat graph with a distinguished vertex. By
Proposition and Proposition AM, 1 is generated by generators of
AMQ 'y for i = 1 2 and a g-generators of level n for each connected component

of B,,, N (rdA” — T) and B, 1 (ordh”, — T). N

8.13 Example. Recall ]IAD073 has three simplices of dimension 6g +3p —3 =6
described in Example m To compute g-generators of level 3 in AM 3, we
collapse edges e; and ey for each of these simplices.

(I, vily, ord(") = (es, €4, €2); (€3, €2, €5), (€4, €6, €7), (€5, €7, €6),
= (e1, €2, €3); (€1, €3, €4), (€2, €5, €6), (€4, s, €5).

(I'5', v5ly, ord3") = (e, €a, €2); (€3, €6, €7), (€4, €7, €5), (€2, €5, €6),
= (e1, €2, ¢3); (€1, €4, €5), (62,85, € 6),(53,56,54)-

(I'5', vsly, ord5") = (e, ea, €2); (€3, €6, €7), (€4, €5, €2), (€6, €5, €7),
= (e1,eg,¢3); (€ 1764765),( €2, €6,€3), (€4, €6, €5).

And,

(', v7%, ord®) = (e, e5,€3); (€1, €3, €4), (€5, €7, €), (€4, €6, €7),
= (e1, €2, ¢3); (€1, €3, ¢€4), (€2, €5, €6), (€4, s, €5)

(I'5?, v3%, ords®) = (e1, @5, €6); (€1, €3, €4), (€5, €4, €7), (€3, 86, €7),
(e1,e2,€3); (€1,¢€4,€5), (€2, €5, €6), (€3, €6, €4)

(I's?, v3%, ords®) = (e, eq, €5); (€1, €3, €4), (€5, €7, €), (€3, €6, €7),
= (e, e, €3); (€1, €4, €2), (€3, €5, €6), (€4, Cq, €5)

Since (I'{", viy, ordy") = (['*, v7%, ord(?) and (I'S', vy, ordy!) = (I'9*, v5%, ordy?),
there are two g-generators of level 3 denoted g3 ; and g3 o, respectively. By Exam-

~ —~(T'1,v1,0,0rd1,61) ~(1)
ple , Po.sN(ordA 5 —Tj 3) has one component and (I'y, vy, ordy, ¢1),
F,U 70rd7¢)() ..
(g, v90, 0rda, ¢2) € IF’O 3N ordAog1 PR can be joined by a path through
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the codimension one face (I'?,v{%,ord(®, ¢5°) = (I'5°, v5%), ords?, ¢5°) contained
—— (T'1,v1,0,0rd1,61),(1) i
in IF’og N ord 0.3 . By Proposition |8.11, g3; = gsow for some

w € AMopg’lvlo’ordl"ﬁl). If we apply Theorem to (I'y,v10,0rdy, ¢1), the pair
of edges {e1, e5} and collapsing e;; we have the relation gs 192_%93_%}%;% Since

in AMOFSl’lUI 00rdnd1) thore is the relation hs1 =1, we see g2 = g3105 2 Hence,

932 € g3, I‘AM[)F:J,I ,1v1 o,Ord1,¢1) ]

8.14 Example. Recall @1,1 has thirteen simplices of dimension 6g+3p —3 =6
described in Example To compute g-generators of level 3 in AM, ; 1, we
collapse edges e; and e;. We obtain the following ten g-generators of level 3:

g3 since (', 07y, ord(", ¢7") = (I'(?, v, ord{?, ¢7°),

gs.2 since (I'g', v5ly, ordy’, 5) = ('Y, V5%, ordy?, ),

g3,3 since (I'g', v3ly, ords', ¢5') = (I's*, vg), ords’, ¢5),

gs.4 since (F4av4070r 45 4):(F§2,050,or 55905,

g3.6 since (Fglﬂ Uﬁ 0 Ordglv ) - (F%7 U13 0’ Ord%? 1%)7

gs,7 since (F?,vm,or 7, 07) = (I, off 05 OT 11 011),

93,0 since (I'g", v} 00T OSES (F%vvlo 0, ordsg, 75),

gs11 since (7}, v} anrd?h 1) = (I3, vi3 O’Ord%a $13),

g312 since (I'fh, vi3 ,05 OF 13, 075) = (F?W?o’m 7, 07),

9313 since (I'73, U13,07 ordyy, ¢f3) = (ngv%,m ordg?, ¢g*).

(T'1,v1,0,0rd1,01) ~(1 =

By Example Pl 1N (ordA1 1 ’]I’g %) has two component: Py, N
o/rdTQFMH o,ord1,¢1) 1) and ]Pl 1ﬂ0rdA1F157U5 ,0,0rds,¢5),(1) _ And, Pl 1ﬂ(0rdA1F19’v9 o,Ord9,¢9)_
ifg 2) has two component: ]P’l 1ﬂordA1F19’v9 or0rdo.6a) (1) and Pl 1ﬂordA1F1127U12 oordizd). (1 ).
By Proposition(8.11} g3 2, ¢33, 934 € g3, 1AM1F11’17” o-ordi,d1) gs7 € gs, GAM(lrf’fgo’ordgm),
9311 € g, 9AM1FEEUQO70rd9’¢9)7 9313 € g, 12AM1F11’f1070rd1’¢1)- By Theorem .
it can be computed: gs 1922 = h31932, 932h 03 = = h32933, 933925 = h3393.4,
9369213 = h3,693,7, g399210 = h3,1193,11 and 93,12h2,7 = h3,1393,13- Recall

hs1 = hso = hss=hsg = hsi1 = hsi13 =1
O

8.15 Lemma. Fori = 1,2, let p; = (I';,vi0, ord;, ;) € @g,p — (?/fgp U ']/1:‘!(;%)
such that

a(pr') = (I, vily, ordy, ¢1') = o(13*, va)y, 0rdy?, ¢3°) = o (p3?).

Fori=1,2, let h;, q; be integers such that (F¢ + ordf) is a (h;, q;)-fat graph

i) z 0
with a distinguished vertez, and, w(T';,v; 0, ord;) = {wz’o, [Winl, ... [wipl}
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(i) If (h,q1) = (9,p—1), then w1 = erezw) o€, (w1 ;] = [Es81e0w) ;] for some
1 < j <p and exactly one of the cases holds.
(a) If wh o = Uy o€3eqv] g, then (he2,q2) = (g —1,p+1).
(b) If w ; = u) jeseqv) ;, then (hy, q2) = (g,p — 1).
(c) If [wix] = [esequip] for some 1 < k < pk # j, then (hy,q2) =
(i4) If (h1,q1) = (9—1,p+1), then wy o = erezw) ges€ieawy 42 and exactly one
of the cases holds.
(d) If wy = u’170€364v'170, then (ha,q2) = (g — 1,p+1).
(¢) If wiy = ujoesearyy, then (ha,q2) = (9 —1,p+1).
(f) If [w1 ;] = [Eseqv1 ;] for some 1 < j <p, then (he,q2) = (g,p — 1).
Proof. Notice (I'y,v90,0rdy) can be obtained from (I'y,v;,0rd;) by removing
the distinguished vertex v, declaring the concatenation of edges €; and e

a new edge denoted f, divinding es in two new edges denoted f; and f, and
declaring the new vertex inside e3 the new distinguished vertex vy .

(i) If (h1,q1) = (g,p — 1), then woy = flwé,ofﬂ, [wy,;] = [€4fwy ;] for some
1 < j < p and exactly one of the cases holds.

I = / I T !
o = / P i /
(b) If w) ; = uj ;@zeqv) ;, then wy ; = uh ; fofie4v} ;.

(c) If [wix] = [eseqvig] for some 1 < k < p,j # k, then [wyy] =

[f2f1€41)2,k].

(ii) If (h1,q1) = (9 — 1,p+ 1), then wyy = flwéyoafwg,o?% and exactly one
of the cases holds.

(d) If w) o = uf o€3e40] o, then w), = ub o fofreavhy.
(e) If wy o = uj geseqvy y, then wy oy = ug’ofgflewg,o.
(f) If [wy ;] = [ezeqv1 4] for some 1 < j < p, then [wy] = [fof €ava,].
]

8.16 Theorem. For i = 1,2, let p; = (I';, v, 0, ord;, ¢;) € gd,\Agyp — 'ifgp. Sup-
pose (Ff,vio,ordf) is a (g,p — 1)-fat graph with a distinguished vertexr and
(Fﬁ,v;m ordy) is a (g — 1,p + 1)-fat graph with a distinguished vertexr. Then
AMy 1 @5 a quotient of the fundamental group of the graph of groups
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(1 (1
AMPb (1) .AMpd (1)

9P, 9:p,1
Pa,(1
‘AMg p,1
P P
pr(1)
AMM’1
pu(l) e
AN AMP%

where p, = (I'a, Va0, 07da, 00), po = (L, Up0, 07dp, @p), pe = (L, vep, 0rd,, @) €
—P1 ~

ordAgyp—Té}}, andpq = (Lg, va0, 0rdg, ¢a),pe = (Le, Ve, 01de, de), pr = (L, v50, ordy, 5) €
—p ~

ordA;p — T% satisfy conditions , , , (fi1d)), and i Re-
mark respectively. For every edge, there exists a monomorphism which
goes from the subgroup that labels the edge to the subgroup that labels the vertex
where the edge points.

Proof. By definition, AMpl 1 and AMP? opa are subgroups of AM, ;1. By Re-
mark [8.12) AM, 1 is generated by these two subgroups and a g-generator of
level n for each connected component of @g,pm(@’;p—ﬁ‘(g}},) and I/P\’g pﬁ(c;crl%l32

/\pbv )

'/]1:'(1)) By Remark these connected components are o/l"d\Ap ,ordA, , and

— Ve, s e —ps,(1
ordAp ; and, ordApd , or dAp . and or dApf( ). Hence, AMp“’ AMpb’

9, p,
and AM’;CI’H are subgroups of AM’“ 1; and, AMpd’ 1 AMPE’ 1 and .AMgpl
are subgroups of AMQ Pl By Corollary 8.10}, the g- generator for each of these
connected component is a monomorphism from the corresponding subgroup to

the subgroup given by Lemma [8.15] [

8.17 Corollary. AM, 1 is a quotien of the fundamental group of the graph of
groups
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AMg_]wp_]-?z ‘AMg_27p73

AMy_1p-12
/_’_\
‘AMg,pfl,l AMgfl,pQ
\_‘_//
AMy1p-12
AMgp—21 AMgy_1p1
Proof. Follows from Theorem [8.16 Proposition and Remark [8.5] O

8.18 Example. Following Example[8.6, by Theorem AMy 31 is a quotient
of the fundamental group of the graph of groups

(T'1,v1,0,0rdq,0rdy)
AN oerh
0,3,1
AM(IH,vlyo,ord1,ord1)7(1)
0,3,1

where AM 0 & AN, Since AMGG RO~ AN s
the trivial group, the monomorphism corresponding to the edge is trivial. O

We can give an explicit description of the monomorphism of the edges in
Theorem [8.16]

8.19 Proposition. Fori = 1,2, let p; = (I';, v, ord;, ¢;) € gd,\Ag,p such that
o(p;) is a simplex of dimension 6g + 3p — 3 = 3n — 3. Suppose

a(pr) = o(I'7, vy, ordy, ¢1') = o(Ty*, 3y, ordy?, ¢5°) = o(p3?).

Let ¢ € AM?;’)(P, and, let 1) € .AM;?Z;E?) be the image of ¢ under the iso-

morphism AM;II; |~ AMEQZ’)? described in Corollary (8.10, Let wy; be a word
representing ¢ in AMglz;l , let wy o be a word representing ¢ in AMSQM and

let gn,1 be the generator of AMg, 1 corresponding to collapse ey in pi. Then
Qﬁ Wep,1 Gn,1 = Wy,2.

— P 7(1) — P 7(1)
Proof. Since ¢ € AMED e see Y-p1 E ordAng . Since ordAgfp is con-

pl )
nected, there exists a path v, C OrdAg?p from p; to ¢ - p; which represents
©.
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The map
©))

——p1,(1) — P2,
ordd, , —ordA
in Lemma 8.9 gives a path 4 homotopic to 71 from py to p’y = (T's, vag, ordy, ¢5).
— P 7(2) .
Hence, p’, € ordA;p and ¢ = ¢, o ¢ ! lies in AMP2®) Notice Py =1 po.

9,p,1
We can suppose 7; lies in simplices of codimension at most 1. Then w,
——2,(2)
is obtaiend from 7;. And wy o is obtained from a path contained in ordA >

homotopic to 2 and lying in simplices of codimension at most 1.

Let 8 be a path from p; to py which goes through the codimension one
simplex corresponding to collapse e; in p;. Notice ¢ - 5 is a path from 9 - p; to
1 - po which goes through the codimension one simplgc\corresponding to collapse
e1 in ¥ - p;. Then, B7:(¢ - B)7, bounds a disc in ordA,,. Hence, the relation
gﬁw%lgmlw@é holds in AM, 1. O

8.20 Example. Following Example 8.7, by Theorem AM, 1 is a quotient
of the fundamental group of the graph of groups

F7 K d7 71
-AMl 1117)1001' 1¢1)( )

(T's, Jords,¢s),(1
‘AMIISIUOO rds,¢5),(1)

(T'1,91,0,0rd1,61) (T'9,v9,0,0rdg,d9)
AM 1y AMi 1)

\_‘_/

(T12,v ,orda, 1
.AMl 1121 12,0,0rd12,012),(1)

(T9,v9,0,0rdg, 1
‘AMl,lg,l 9,0,0rdg,b9),(1)

where .AMfll”lvl’O’ordl’ordl) ~ AMl,O,l and ‘AMEI:‘]i’:I_vg’O’OIAdg’OI«dg) ~ -AMO,LZ-

Since AJV[fﬁ’fQ’O’Ordg’ordg)’(l) ~ AMj 1 1 is the trivial group, the monomorphism
corresponding to this edge is trivial. To describe the monomorphisms of the other
edges, we apply Proposition -to g-generators of level 3 given in Example 3. 14
and subgroups given in Example Notice .Aerf’lvl oerduerdi) (1) AMo .2,
AM1F15,1v5 o0rds,ords), (1) ~ AMyps and Ajv[lrlml,m o-ordizordiz) (1) ~ ANy are
cyché infinite groups.

The monomorph1sm for the edge labelled Aerll’fl oerdvord) () 4o Jescribed
by g3 such that 931 ha1 g3y = hay.

The monomorphlsm for the edge labelled Aerf’ e oerds.ords) () 4o described
by gs such that g hsshar gse = g2,1392.11-
The monomorphlsm for the edge labelled Aerf 21’U12‘°’0rd12’0rd12)’(1) is described

by g3,12 such that 93,12 h312h313 9312 = 92,7h2,7.
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T'1,v1,0,0rdy,ord 1 —17—

By Example |7.27 AMg,ill’O vordi) — <h2,1v 92,2 ’ 92,2h2,i92,%h2,192,2>-
T'g,v9 0,0rdg,

By Example |7.29| AMS,& nor0rdosde) — (h3.9, 92,10 | h3.992.10 = g2,10h3,9)-

By Example |7.18| hggho7 = he 1 and g277h2*} = 9272h27&. By Example ,
92,1392_7%1 = h3 90210 and hsi2hsi13 = hsg. Hence, the monomorphisms of the
edges are:

—1
931 h2,1 g31 = h2,1

-1 -
936 ha1 936 = 399210,

-1 -1
93,12 h3g gs,12 = 92,2h2,1-
]

8.21 Remark. To obtain a presentation for AM,, from Theorem [8.16] we
need to add relations from Theorem [3.7] corresponding to some codimension two
faces of simplices of dimension 6g + 3p — 3 = 3n — 3 of P,

Let p = (T, vg, ord, ¢) € @g,p such that o(p) is a simplex of dimension 6g+3p—

=3n — 3. Let fi, fo € E(I") such that there exists a relations corresponding
to the codimension two face o(p//2) = (Dfvf2 oyl ord™ %2 ¢fif2) obtained
by collapsing f; and f5. To simplify cases, we suppose that in the standard
labelling of (I", vy, ord), f; has been labelled before fy. For example, if f; = ey
then f2 7& €1, or, if f1 = €3 then fQ 7é €1, €9.

If f1 # ey, €9, then o(p/172) C (mz,p and the relation deduced form o (p/1/2)
appears in AM’;’p’l, a vertex group in the graph of groups in Theorem .

If f1 =e; and fo & {ea,e3,€4}, o1, f1 = €9 and fy ¢ {left h-edge of level n,
right h-edge of level n}; then the relation deduced form o (p/1/2) appears either
in Proposition [8.11] or in Proposition 8.19] In both cases, the relation deduced
form o(p/1+/2) appears in the monomorphism of the edges in the graph of groups
in Theorem [R.16l

We have to consider the cases where either f; = e; and fy € {eq, e3,¢e4}, or,
f1 = ey and fy € {left h-edge of level n,right h-edge of level n}. The relation
deduced from these codimension two faces can be computed by Remark and
represented as follows.

e1 gn,1 €9 e dns €9
Iy > I's > Ly
€s right h-edge of level n
n— ) hn
g 151 1 hn,3
or h, 5
e left h-edge of level n
r > r
i “ gn,Q €2 ’

Notice this relation is similar to relation of length 5 in Example (]ED
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If the left side of the rectangle above corresponds to the generator h, i,
then es3 € U; and (Fl, V1,0, Ol"dl) = (61, 62); (El, €3, 64)7 (62,63, 65), o It fOHOVVS7
(T2, v20,0rd2) = (€1, €2); (€1, €2, f), (f,€5,€4), ... Hence, (I'F,v7%, ord?, ¢7*) is
a boundary face and there is no such a relation.

If the left side of the rectangle above corresponds to the generator h;lQ and

n > 3, then e3 € vj and (I'y, v19,0rdy) = (e1,e2); (€1, e3,€4), (€2, €5,€3),.... It
fOHOWS <F27 V2,0, OI'dg) = (61, 62) (61, €5, fl) (fl? €2, 64), ... and (Pg, V3,0, Ordg) =
(5. 12); (Fas frs€2), (F1sPasea)s... Since n = 3, (T}, v}, ord}) has a separating

edge, (I'S", vgly, ordy!, ¢3') is a boundary face and there is no such a relation.
Hence, for n > 3, the relations that need to be added are

9n19n5 = gn—l,lgn,th,?r
We will see that no more than 24 of these relations need to be added. O
8.22 Definition. We denote by T%’(?’) the set of point p = (I",vpord, ¢) €

(;d,\Ag,p - (Tg,p UT)) such that |u*| > 4 where &5 € u*, u € V(D). O
8.23 Definition. Let p € ordA,, — (T,, U Tos U TE2®). We denote by
——p,(1),(3 s N

ordA;p o the connected component of ordA,, — (']I‘g,p U Té}}, U Tg}};(?’) ) which
contains p. O

8.24 Remark. Let p € ordA,, — (T,, UT\) UTS) @),

Notice |vj| = 2 and |vf| = 3. If €35 € v;, then |vi| = 3. If &5 € v}, then
N 1(1)’(3)
|| = 3. In both cases, ordAZ’p can be defined as the connected component
—p, 1 -~
of ordA;;) — T&Q;(?’) which contains p. O

8.25 Remark. Let p = (I',vp,0rd, ¢) € @g’p — (’ﬁ‘gm U ’ﬁ\‘éll); U 'ﬂl\‘é};’(?’)). Sup-
pose there exists a relation in AM,,; deduced from the codimension two face

o(peres) = o([re vg" ord®, ¢°13). Hence, (I, vy, ord) = (e1, e2); (€1, €3, €4), . . .

and ord(vi) = (es, f1,f2). Let w(I',vg,ord) = {wo, [wi],...,[wy]}. Then
wy = ejesfiwhes and es€ies, foesey, f1fo appear in w(l,vp,ord). It is show
in Lemma that there are at most two cases where e1e5 can appear. It is
shown in Remark [8.5] that for each of these two cases, there are at most three
cases where ese4 can appear. Similarly, for each of these six cases there are at
most four cases where f;f; can appear. For example, in Remark. . ) we have
wy = eresfrwhes, [w] = [Es€1eow!] and w) = up fyezeqv), under the condition
g > 1and p > 1. Then there are four cases according to whether f,f, appears
in ug, vy, w; or, [w;] for j #i. Notice f1f2 can appear in u), under the condition
g > 2 and f, f, can appear in [w,], for j ;é i, under the condition p > 2.

In general, @gp (’f'gp U ']I‘(l) U Tg,)g ) has, at most, 24 components with
relations corresponding to collapse e; and e3.

In particular, for g = 0, ]P’OJ, (Top U T( ) oY ']I‘( )3 )) has one component with
relations corresponding to collapse e; and 63
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For ¢ = 2 and p = 0, ]P’zo — (Tzo U ']I'( ) U ng ) has five components
with relatlons corresponding to collapse e and e3. And for ¢ > 3 and p = 0,
IP’g,O — (']I'g oU T(ga U ’]T(l) (3)) has six components with relations corresponding to

collapse e and es.
. ~ ——p,(1),(3) ~ ——p,(1) .
Notice Py, NordA can be computed from Py, NordA  ,~ by removing

codimesion one face corresponding to collapse edges f; and fo. Recall ord(v3) =

(€3, f1, f2)- O

The next Lemma expresses that all relations deduced from Theorem
Corresponding to collapse edges e; and e3 in a connected component of P, , —

(Tg »U Té 1)) U T(g ,); (3)) are equal in the fundamental group of the graph of groups
in Theorem R.16l

8.26 Lemma. Fori = 1,2, letp; = (Ts, vig, ords, ¢;) € Pyp— (T4, UTSHUTS )
) 7 ) —P 7(1)7(3)
such that ordApl = ordAg?p . If there exists the relation r; in AMgypq

corresponding to collapse ey and ez in (I, v, 0, ord;), fori=1,2, thenry =1y in
the fundamental group of the graph of groups in Theroem[8.10,

Proof. For ¢ = 1,2, the relation r; is deduced from the codimension two
face o(p;"®) of o(p;) obtained by collapsing e; and eg in (I';,v;9,0rd;) where

p§1,83 _ (Fel,e:‘s?UieB,es’ d€1,637¢61,63) and |U61’e3| — 4. Let v be a path from P to

’ ———p1,(1),(3)
po contained in IP’gp NordA ' . Notice 7 is a sequence of collapsing edges

and splitting vertices such that if 7 intersects o(p) = o (I, vg, ord, ¢), then o(p)
does not intersect Tgp UTH UTS® . Hence, |vg| = 2 and |v| = |[vi| = 3 in
(T, vg, ord, ¢); and, the subtree with edge e1, eq, €3, ¢4 and f1, f5 is left invariant
through the path . We conclude v is homotopic to a path v¢:¢ from o(p{"®®)
to o(p5~*) such that every simplex o(pe©3) = oI, Vg, ord e peres) 1n

tersected by v satisfies |(v5"®)*| = 4. Since v C IP’gp, the word in AM"-()

g:p,1
described by ~ is the identity and r; = r5 in the fundamental group of the graph
of groups in Theorem [8.16| O

8.27 Example We compute the connected components of IEDO 3= (Tg o U T(l)
ﬁ'glg )) by removing codimension one faces from IP’O 3— (Tg o UTY 0) See Exam-
ple B.6] From Example [6.15] we see that the codimension one faces that need
to be removed correspond to collapse €, and es in (Fl,vl 0 ordl) € and e in
(g, v90, 0rds), and, eg and e7 in (I's, v3 9, ords). Hence, IP’O 3—('11‘3 OUTg SUT( )3 ))
has the following connected components.

h32
T, T, € =7 & Ty

Since €3 € v} in (I'y, v1 9, ordy ), there is no relation corresponding to collapse
e; and ez in (I'y,v19,0rdy). The relation gsog32 = g22931h31 is deduced by
collapsing e; an ez in (I'y, va g, ordy).
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By Example 7.26, AMS 510" = (gy5 |). By Example .18, AMo3, is
a quotient of the fundamental group of the graph of groups

<g2,2 )

g3,2

where the edge group of g3 5 is the trivial group. By Example|S.13| g31 = ¢3.292.2.
The relation g32932 = 22932922 needs to be added in the fundamental group
of the graph of groups above. O]

8.28 Example. We compute the connected components of @171 — ('ﬁ'm U TTQ U
'/]1:'52’(3)) by removing codimension one faces from EA”H — (@171 U ’E‘ﬁ) See Ex-
ample 8.7, From Example [6.17] we see which codimension one faces need to

be removed. We conclude that Py ; — ('/JI\‘LI U Tﬁ U ?/I\‘ﬁ’(?’)) has eight connected
components represented as follows.

h2,1 h2,4
€7 €6 €7 €6
e h3,2
5 €6
Iy I'y———1T Iy
h
es 3,5 e e 3,7 es
Iy ————1% Iy ————1T%
es h3,10 e
Iy No—m—TI'n
h3,13
m5
I'io I'i3

Since €3 € v3 in (I'y, v10,0rdy), (I's, v40,0rds) and (g, vg g, 0rdy), there is no
relation corresponding to collapse e; and ez in these cases.

Collapsing e; and ez in (I'y, v, 0rds), we have the relation gso2g32 =
92,293,103 1;
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Collapsing e; and ez in (I's,vs30,0rds), we have the relation g¢s3gs3

92,393,2h3,2§

Collapsing e; and ez in (I's, vg0,0rds), we have the relation g¢s¢gs 13

92,693,4h3,5;

Collapsing e; and ez in (I'7,v70,0rd;), we have the relation g¢s7gs11

92,793,6h3,13;

Collapsing e; and es in (I'11,v11,0, 0rdy1), we have the relation gs119512 =

92,1193,13h3,63

Collapsing €1 and €3 in (Flg,l}lg’o,Ordlg), we have the relation 93,1293.7
92,1293,9h

Collapsing e; and es in (I'13, v13,0, 0rdy3), we have the relations g3 13936

3,10)

92,1393,1113,12.

By Lemma a relations g3 2032 = g2.293,1h3,1 and g33933 = g2393.2h32 are
equal in the fundamental group of the graph of groups in Example [8.20f We
represent this equality in the following picture where rectangles represent the
relations, and, quadrilaterals are relations in the fundamental group of the graph

of groups in Example [8.20]

93,2

€1 €9 €1 €9
Iy e g I'y g Iy
e > e e
3 7 6
(@
hs3 2 has 4
€6 €7 92,3
e g3.3 es & 93,3 es
T > > s €3
. 3 3 3
3
€6
o2y 92,3 hs o 4 hsa
€4 €5
r > I
€6 261 €2 :
gs3,2 es
h3,1
e4| es 92,2 es
€4
g31

Similarly, relations g3,129377 = 92,1293,9h3,10 and 93,13936 = 92,1393,11h3,12 are
equal in the fundamental group of the graph of groups in Example [8.20]

By Example

By Example

727 A

7.29

1,1,1

AM(FQ ,09,0,0rdg,¢9)

(T'1,v1,0,0rd1,¢1)
1,1,1
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= <h3,9;92,10 | h3,992,10 = 92,10]13,9). By

h2,192,2h2,1>-



Example [8.20, AM; 1, is a quotient of the fundamental group of the graph of
groups

g3,1
g3.6
<h2,17 92,2 ’ 922922 = h2,192,2h2,1> <h3,9>g2,10 ’ h3,992,10 = 92,10h3,9>
g3,12

g3,9

where the monomorphisms of the edges are given in Example [8.20]

There are five relations corresponding to collapse e; and es that need to be
added in the fundamental group of the graph of groups above. From Exam-
ple [7.27] Example and Example we can write these relations in the
fundamental group of the graph of groups:

932932 = 922931h31 = 31922931929 = 922031,
93,693,13 = 92,6934N35 = g3,693,12h2,1 = 92,293,192_,5%_&92_,57
93,793,11 = 92,793,6113,13 = 93,693,992,10 = §2,293,6
g3,1193,12 = 92,1193,13h3,6 = §3,992,1093,12 = h3,992,1093,12h271,
93,1293,7 = 92,1293.913,10 = 93.1293,6 = g3,9-

Recall, AMﬂi’fl’o’ordl’%) ~ AM; 1 by Proposition |6.13| Instead of a direct

computation for the presentation for AMff”lvl’O’ordl’m) as in Example [7.27, we

can compute a presentation for AMfll”lvl’O’ordl’(ﬁl) by lifting a presentation for

AM, 1. This lifting is obtained by declaring all h-generators of level 3 to be the
identity. Then, all h-generators and g-generators of level 2 are identified and the

relation in the presentation for AM; o is lifted to a relation in .AMff”lvl’o’()rdl’%).

Recall, AMfﬁ’fg‘o’ordg’(ﬁg) ~ AMjy12 by Proposition [6.13] Instead of a direct
(T9,v9,0,0rdg,¢9)

computation for the presentation for AM; as in Example [7.29) we
can compute a presentation for AMfﬁ’lvg’o’ordg’@) by Theorem |8.16| applied one

level deeper. Hence, we have a graph of groups with vertices corresponding to

~ /\(Fg,v970,0rdg,¢9) /\(1)
connected components of P ; N (ordA, , — T} ) and edges correspond-
. EN —— (I'9,v9,0,0rdg,¢9) (1) A(1),(3)
ing to connected components of P ; N (ordA, , —(Ty;UT; ™). See
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Examples and the beginning of this Example, respectively. We have the
following graph of groups.

(T'9,v9,0,0rdg,9),(1),(3)
AMI’IQJUQO 9,99

(F'1o,v rd10,410),(1),(3)
‘AMI,ll,Ol 10,0,0rd 10,910

I‘9,119 0,0rdg,¢9),(1) F12,v12,070rd127¢12)7(1)

\—‘_/

‘AM1F11217U12,070rd12 ,$12),(1),(3)

T'g,v9,0,0rdg,ordg) (T'12,v12,0,0rd12,0rd12),(1
where AM& pp R o AM 1, is the trivial group, AMl R 20
. P (Tg,v9,0,0rdg,ord 3
AMppoo is a cyclic infinite group, and, AMl P B ) (D:(3) ~ AMoo1,

.AMIFIH){UIO’O70rd1070rd10)7(1)7(3) ~ .AMQQJ, AMEFIQI,’UH 0,0rd12,0rd12) ~ AM001 are
the trivial group. Hence, we have the following graph of groups.

h39

)

92,10

T

{1} <h3,12, h3,13 ‘ h3,13>

\4_//

92,12

where the monomorphisms of the edges are trivial since the edge groups are
trivial. The relations that need to be added are hs9g210 = h3_71192711h3713 and
92, 12h3 9 = h3 1292, 13h§%o Since h3 1092,11 = 92, 1oh3 12, h3 1392,12 = g2, 13h3 11 and
hs 10, hs11 € AM(FQ’W 0,0rds,ds), = {1}, we have a presentation for Aerlg o -0rda go)
O

9 Examples

For i = 1,2, let p; = (I';, v,0,0rd;, ¢;) € cmgp such that o(p;) is a simplex
of dimension 3n — 3 = 6g + 3p — 3. Suppose (Ff,vlo,ord%) is a (g,p — 1)-fat

graph with a distinguished vertex and (I, v} 0 ord}) is a (g — 1, p+ 1)-fat graph
with a distinguished vertex. A presentation for AM,,; can be deduced by
Theorem by computing the monomorphisms of the edges and the relations
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that need to be added.

Last two paragraphs in Example [8.28 can be generalised as follows. Recall
AMM 1~ AMy 11 and AMgpl ~ AM,_1 12 are the vertices of the graph
of groups for AM,, pl A presentation for AM, ,_11 can be lifted to AM‘“ A

presentation for AMg 1 can be computed by applying Theorem m one level

~ —p ~
deeper. In particular, connected components in P ,MN (ordA;p —']I‘gl),) correspond

to vertices in the graph of groups for AMgpl, and, connected components in

Ing N (ordAgp - (Té’l), U Té,z),’( ))) correspond to edges in the graph of groups for
ANMP? |

9,p,1

9.1 Example. By Theorem AMy 4.1 is a quotient of the fundamental group
of the following graph of groups.

F17v1 J0,0ord1,é1)

I'1,v1,0,0rd1,¢1),(1)
Ao
0,4,1

where (I'y,v19,0rdy, ¢1) € 07(17&0,4. We can suppose o(I'y, vy g, 0rdy, ¢1) is a sim-
plex of dimension 6g + 3p — 3 = 9. By Proposition |6.13] AMOFi’lvlo’ordl’m)
AMy31. By results in Section , these isomorphisms are realised by declaring
all h-generators of level 4 to be the identity and lifting relations from AM, 31
to AMOFi whoordh9)  Then  lifts of a generator in AM031 are identified in
AMproerdidn) By Remark Amg{;fl oot o AN ).

We choose (I'y, vy g, ordy, gbl) € ordAOA such that there exist generators cor-
responding to collapse ey, e3 in (I'y, v1 0, 0rd;) and €5 ¢ v3.

We choose (I'1,vy9,0rdy, ¢1) in (@0,4 to be a lift of (I'g, ve,0rds, ¢o) in
@073. Hence,

(F%ﬂﬁ o,OTdi) (e1,€2); (€1, €3, €4), (€2, €5, €6), (€3, €6, €7), (€4, €7, E5).

If eg in (I'g, o, Ords, ¢o) € @073 is lifted to the concatenation of both h-edges
of level 4, we have

(Flv Ul,Oa Ordl) (617 62) (617 €3, 64) (627 €5, 66)7 (éi’n €7, €8>7 (647 69765)7

(€6, €10, €7), (€3, €10, €9)-

Then (F\{u Uio; ordf) = (€3, €4); (€3, €7, €8), (€1, €9, f), (€7, [, €10), (€3, €10, €9),
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(F%ﬂ Uti()v Ord%i) = (677 68); (é% g, 610)7 (587 E107 §)7 anda

r g-edge h-edge
! left | right | left | right
level 4 | e e es s
level 3| e3 €4 €9
level 2 €7 €g Elg

A lift of a g-generator of level 3 in AM, 3, is obtained by collapsing e3 in

(I'1,v1,0,0rdy). We have (I'f?, vy, ord(®) = (I'9", v3Y, ordy") where
<F27 V2.0, Ord2> - (617 €2>;(€17 €3, 64)7 (527 €s, 66)7 (637 667 67)7 (647 €s, 69)7
(557697 610)7 (577510758)'

We denote by g321 the generator of AMy 4, corresponding to collapse es
in (I'y,v10,0rd;). Since ez in (I'y,v10,0rd;, ¢1) € ordAgy is a lift of e; in
(Cy, v, 0rds, ¢2) € ordAg3, gs21 is a lift of the generator gs o in AMg 3.

A lift of a g-generator of level 2 in AM, 3, is obtained by collapsing e; in
(I'1,v1,0,0rdy). We have (I'{7, viy, ord(") = (I'5", v37, ord3”) where

(I'3, w30, 0rds) = (€1, €2);(€1, €3, €4), (€2, €5, €6), (€3, €6, €7), (€4, €3, €5),
(677 €9, 610)7 (5876107 éQ)

We denote by g2 the generator of AMj 4 corresponding to collapse e7 in

(I'y,v10,0rdy). Since e; in (I'y, vy g, 0rdy, 1) € ordAg 4 is a left g-edge of level 2,

9221 is a lift of the generator goo in AMp3 ;.
A presentations for AMj 3, is given in Example[8.27] By lifting that presen-
. I'1,v1,0,0rd1,
tation, we deduce AM&L{”OOT v (922159321 | 93219321 = 92.2193219221)
Iy, ,ordy, J(1
and AMS;;LO ordu o (1) <92,2,1 )
Notice (I'f", viy, ord(") = (I'f*, vg%, ordy®) where
(F47 /U4,O7 Ord4) = (617 62);(517 €3, 64)7 (E% €5, 66)7 (éi’n €7, 68)7 <E47€87 69)7
(€5, €9, €10), (€6, €10, €7)-
Hence, we have a g-generator of level 4, denoted g4 1, obtained by collapsing

epin (I'y,v10,0rdy, ¢1) € @074. Then, AMj 4,1 is a quotient of the fundamental
group of the following graph of groups

<92,2,1,93,2,1 | 93219321 = 92,2,193,2,192,2,1>

94,1

where the edge group is (g221 |)-
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It remains to describe the monomorphism of the edge in the graph of groups
above and to find the relation that needs to be added.

Notice (I's*,v5%,ordg®) = (I, v5%, 0ordy’), es is the left h-edge of level 3
in (I's, v30,0rds). Notice (I's, v3,0rds, ¢3) in @074 is a lift of (I'y, vy, 0rd;)
in (mo,g. Hence, there exists a generator hs ;3 in AMga; corresponding to
collapse eg in (I's, v5 0, ords).

Notice (I'y*, v57, ordy”) = (I'{°, v1%, ord(®) and es is the left h-edge of level 4
in (I'y, v90,0rds). Hence, there exists a generator hyo in AMg 41 corresponding
to collapse e5 in (I'y, v9 g, ords).

Then, Ang&vl’O’ordl’(ﬁl)’(l) contains the automorphism g¢oo1hsishso. It is
easy to see that the monomorphism of the edge in the graph of groups is de-
scribed by g;%(92’271h371?3h472)g4’1 = h3_,%,19372,1g2_,§,4' By Collapsing (4 and €9
in (I'y,v40,0rdy, ¢4), we have the relation g273,4h§i3 = h:;;lggg’l. Hence, the
monomorphism of the edge group is described by gﬁ 9221911 = 93219, %71.

The relation that needs to be added is deduced by collapsing e; and e
in (I'y,v10,0rdy, ¢1) € o/rdT%OA. Since (T'y', vgly,ordy") = (I'(*, 0%, ord{®) and
(5", vy, ordg') = (I'9?, g%, ordy? ), we have generators gy 4 and gy 9, respectively.
And, the relation that needs to be added is 41944 = g32.1942h42. Collapsing
e; and eg in (I'y,v40,0rdy, ¢ps) € orﬁm, we obtain the relation hso1944 =
gaahsaq. Collapsing ey and e; in (I'y, va,0rds, ¢2) € @074, we obtain the
relation hy 2941 = G429, ?1)74. And, the relation that needs to be added is g41941 =
93,2194,192,2,1- [

9.2 Example. By Theorem AM, 2 is a quotient of the fundamental group
of the following graph of groups.

(T'3,v3,0,0rd3,¢3),(1)
‘AMg,p,l
(T'4,v4,0,0rd4,¢4),(1)
‘AMg,p,l
(T'1,1,0,0rd1,01) (T'2,v2,0,0rd2,$2)
(T's,vs,0,0rds,05),(1)
AMg7p71
(Fl,UL0,0I‘dl,(ﬁl),(l) (FQ v2.0,0rds ¢2) (1)
ANy AMg 1"

where (I';, v; 0, 0rd;, ¢;) € (ﬂm, fori =1,...,5. We can suppose o(I';, v; o, ord;, ¢;)
is a simplex of dimension 6g +3p —3 = 9, for ¢« = 1,...,5. By Proposi-
tion |6.13] AM%B{TLdeh%) ~ AM, 11 and Aij’ij’o’ordQ’m) ~ AMp 2. Notice
(Tt vio, ord!) is a (1, 1)-fat graph with a distinguished vertex and (T'S, U%,o» ord})
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is a (0, 3)-fat graph with a distinguished vertex.

A presentation for AM;;; can be lifted to AMS&MO’OM“%). By Re-
mark 8.5, AN oW~ A, o AMf;f”"’Yd?’*{’S ~ AMp,, and
AMLF;’&“ oorda )0 ~ AMy,12. Notice (I'", vy, ordy*) is a (1,0)-fat graph with

a distinguished vertex, and, (I}, v30,ordu) and (T, v4o,ord“) are (0,2)-fat
graphs with a distinguished vertex. We can take

,e3,€e4), (€2, €5, €6), (€3, €7, €38), (€4, €9, €5),
, €10, €7), (€3, €9, €10

([y,v1,0,0rdy) = (€1, €2);(€1 (€3
(€ )
('3, v30,0rds) = (€1, €2);(€1, €3, €4), (€2, €5, €6), (€3, €7,€5), (€4, 7, €3),
(6 )
(@ (€
( 8)

cml

697610) (687610, €9
63,64) (62765766)

€5, €9, €10), (€6, €10, €

(F47U4,070rd4> - (617€2>7 67768>7 (54757769)7

Notice (I'y, vy, 0rdy, ¢1) in (mm is a lift of (I'y, v9 0, 0rds, ¢2) in (mm; and,
('3, v30, 0rds, ¢3) and (I'y, v4p,0rdy, ¢4) in @1,2 are lifts of (I'y, vg o, ordy, ¢g)
in o/rdT%Ll.

A presentation for AM?; v 00r®292) can be obtained from a graph of groups

(T'2,v2,0,0rd2, 1) I's,v5,0,0rds,¢5),(1
with vertices AM! on #>0) and AM! on ?>1) and, one edge for ev-
F2,1)2 0,0rdz,¢2)

ery connected component of P 2N (ordA1 2 (’]/fglg U @(1)’(3))). By
Remark . AMIF;’IW oord2d2) (1) AMg 2,1 and AM§F§’1”5 oords 951 (1) AMo 12

The subgroups of the edges in the graph of groups of AM%E’F 0:01d2:02) ave iso-

morphic to either AM 11 or AMg 2. We can take

(€1, €3, ¢€4), (€2, €5, €6), (€3, €7,€5), (€4, €3, €9),

( elOaES)a (677697610>
(I's, vs,0, 0rds) = (e1, €2);(€1, €3, €4), (€2, €5, €6), (€3

(es )

, €10, 67) (687 €10, €9

(F27U2,070rd2> = (61, 62);

, €74 68)7 (647 €9, 66)7

Notice (I'y, v2,9, ords, ¢2) and (I's, vs o, ords, ¢5) in (ml,g are lifts of (I'y, v9 9, ords, ¢2)
in (mo’g).

It remains to describe the monomorphisms of the edges in the graph of groups
for AM, 21 and to find the eleven relations that need to be added. O

9.3 Example. By Theorem AMsy 1 is a quotient of the fundamental group
of the following graph of groups.
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AM(F17U1 0,0rd1,¢1),(1)

9,p;1

.AM F1;'U1 Oyordlzd)l)

7p7

AM(F2 ,v2,0,0rd2,¢$2),(1)
7p7

where (I'1, v1,0, ordy, ¢1), (I, va0, 0rdy, ¢2) € (mz,o- We can suppose o(I'y, vy 9, ordy, ¢1)
and o(I's, va, ords, ¢9) are simplices of dimension 6g +3p—3=9. By Proposi-
tion [6.13] AMQFOI’lm 00rdLP) o AN, 0.2 Notice ('}, v} 0 ord}) is a (1,1)-fat graph

with a distinguished vertex.
(T'1,v1,0,0rd1,¢1)

A presentation for AM, ) can be obtained from a graph of groups

with vertices AMQFOIT Loordi 61).(1) and AM&F&” o0rd2:020() “and, one edge for ev-
——(T'1,v1,0,0rd1,91) ~(1) A(l) (3)

ery connected component of Pgo N (ordA20 — (Tyo U ’]I’ ). By

Remark . AMQFOI’lvl oordign) () AM, o1 and AM%% o ord262),(1) AMy 3.

The subgroups of the edges in the graph of groups of AMgolfl 0014101 56 igo-

morphic to AMg 2. We can take

(Fy,v10,0rdy) = (€1, €2);(€1, €3, €4), (€2, €5, €6), (€3, €5, €7), (€4, €5, €9),
(€6, €9, €10), (€7, €s, €10)

(F27/02,070rd2) == (61762)7( 63764> (62765766) ( 677€8>7 (64767769)7

(e )

5,610768) (66,697610

Notice (I'y,v19,0rdy, ¢1) in ordAZo is a lift of (I'y, va, 0rds, ¢2) in (ml’l and

(FQ, V2,0, OI'dQ, qbg) in O?(ﬂzg is a lift of (Fg, V9.0, Ol"dg, gbg) in O/I"CTALL
It remains to describe the monomorphisms of the edges in the graph of groups
for AMj5,1 and to find the five relations that need to be added. O
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