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Abstract: The Kummer surface was constructed in 1864. It corresponds to the desingularisation of1

the quotient of a 4-torus by 16 complex double points. Kummer surface is kwown to play a role in2

some models of quantum gravity. Following our recent model of the DNA genetic code based on the3

irreducible characters of the finite group G5 := (240, 105) ∼= Z5 o 2O (with 2O the binary octahedral4

group), we now find that groups G6 := (288, 69) ∼= Z6 o 2O and G7 := (336, 118) ∼= Z7 o 2O can be5

used as models of the symmetries in hexamer and heptamer proteins playing a vital role for some6

biological functions. Groups G6 and G7 are found to involve the Kummer surface in the structure of7

their character table. An analogy between quantum gravity and DNA/RNA packings is suggested.8

Keywords: Kummer surface, DNA genetic code, hexamers and pentamers, informationally complete9

characters, finite groups, hyperelliptic curve10

PACS: 02. 20.-a, 02.10.-v, 03.65.Fd, 82.39.Rt, 87.10.-e, 87.14.gk11

1. Introduction12

In a recent paper we found that the 22 irreducible characters of the group G5 := (240, 105) ∼=13

Z5 o 2O, with 2O the binary octahedral group, could be made in one-to-one correspondence with14

the DNA multiplets encoding the proteinogenic amino acids [1]. The cyclic group Z5 features the15

five-fold symmetry of the constituent bases, see Fig. 1a. An important aspect of this approach is that16

the irreducible characters of G5 may be seen as ‘magic’ quantum states carrying minimal and complete17

quantum information, see [1]-[3] for the meaning of these concepts. It was also shown that the physical18

structure of DNA was reflected in some of the entries of the character table including the Golden ratio,19

the irrational number
√

2, as well as the four roots of a quartic polynomial.20

In molecular biology, there exists an ubiquitous family of RNA-binding proteins called LSM21

proteins whose function is to serve as scaffolds for RNA oligonucleotides, assisting the RNA to22

maintain the proper three-dimensional structure. Such proteins organize as rings of six or seven23

subunits. The Hfq protein complex was discovered in 1968 as an Escherichia coli host factor that was24

essential for replication of the bacteriophage Qβ [4], it displays an hexameric ring shape shown in Fig.25

1b.26
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It is known that, in the process of transcription of DNA to proteins through messenger RNA27

sequences (mRNAs), there is an important step performed in the spliceosome [5]. It consists of28

removing the non-coding intron sequences for obtaining the exons that code for the proteinogenic29

amino acids. A ribonucleoprotein (RNP) –a complex of ribonucleic acid and RNA-binding protein–30

plays a vital role in a number of biological functions that include transcription, translation, the31

regulation of gene expression and the metabolism of RNA. Individual LSm proteins assemble into32

a six or seven member doughnut ring which usually binds to a small RNA molecule to form a33

ribonucleoprotein complex.34

Thus, while fivefold symmetry is inherent to the bases A, T, G, C –the building blocks of DNA–,35

six-fold and seven-fold symmetries turn out to be the rule at the level of the spliceosome [6]. Of the five36

small ribonucleoproteins, four of them called U1, U2, U4 and U5, contain an heptamer ring, whereas37

the U6 contains a specific Lsm2-8 heptamer with seven-fold symmetry. A specific Lsm heptameric38

complex Lsm1-7 playing a role in mRNA decapping is shown in Fig. 1c [7].39

Observe that six-fold rings are also present in other biological functions such as genomic DNA40

replication [8,9]. The minichromosome maintenance complex (MCM) hexameric complex (Mcm2–7)41

forms the core of the eukaryotic replicative helicase. Eukaryotic MCM consists of six gene products,42

Mcm2–7, which form a heterohexamer [9]. Deregulation of MCM function has been linked to genomic43

instability and a variety of carcinomas.44

Figure 1. (a) Five-fold symmetry in the DNA, (b) six-fold symmetry in the LSM protein complex Hfq
[4], (c) seven-fold symmetry of the Lsm1-7 complex in the spliceosome [7].

In this paper, in order to approach these biological issues –the hexamer and pentamer rings–, we45

generalize our previous model of the DNA/RNA, which has been based on the five-fold symmetry46

group G5, to models of DNA/RNA complexes, based on the six-fold symmetry group G6 := (288, 69) ∼=47

Z6 × 2O and the seven-fold symmetry group G7 := (336, 118) ∼= Z7 × 2O.48

What corresponds to the quartic curve, derived from some of the entries in the character table49

of G5, is a genus 2 hyperelliptic curve derived from the character table of G6 or G7, underlying the50

so-called Kummer surface, a gem of algebraic geometry [11]. The Kummer surface is a prototypic51

exemple of a K3 surface – a Calabi-Yau manifold of complex dimension two– and as such it is part of52

models in string theory and/or quantum gravity.53

Sec. 2.1 is a brief introduction to elliptic and hyperelliptic curves defined over any field. In Sec.54

2.2 and 2.3, the main objective is to describe a construction of the Kummer surface K based on the55

character table of the groups G6 or G7. One identifies the 16 double points of K as the 16 two-torsion56

points of a genus two hyperelliptic curve C and one provides an explicit description of the group law57

and of the Kummer surface.58
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In Sec. 3, a new encoding of the proteinogenic amino acids by the irreducible characters and the59

corresponding representations of the group G7 is described. It improves the description obtained in [1]60

from the 22 irreducible characters of group G5.61

In Sec. 4, we browse over some applications of the Kummer surface to models of quantum gravity.62

2. The hyperelliptic curve and the attached Kummer surface from groups G6 and G763

Let us first recall an important aspect of our previous work. Let G be a finite group with d64

conjugacy classes. An irreducible character κ = κr corresponding to a r-dimensional representation65

of G carries quantum information [1]-[3]. It may be calculated thanks to the action of elements of a66

d-dimensional Pauli group Pd acting on κ. In other words, the character κ may be seen as the ‘magic67

state’ of a quantum computation [2,10].68

In a concrete way, one defines d2 one-dimensional projectors Πi = |ψi〉 〈ψi|, where the |ψi〉 are69

the d2 states obtained from the action of Pd on κ, and one calculates the rank of the Gram matrix70

G with elements tr(ΠiΠj). A Gram matrix G with rank equal to d2 is the signature of a minimal71

informationally complete quantum measurement (or MIC), see e.g. [1, Sec. 3] for more details.72

As in our previous work, in a character table, we will display the measure of quantum information73

of a character κr = κ as the rank of the attached Gram matrix G.74

2.1. Excerpts about elliptic and hyperelliptic curves75

Let us consider a curve C defined with the algebraic equation y2 + h(x)y = f (x) where h(x) and76

f (x) are finite degree polynomials with elements in a field K.77

For an elliptic curve –let us use the notation E instead od C for this case–, polynomials h(x) and78

f (x) are of degrees 1 and 2, respectively and the genus of E is g = 1. In the Weierstrass form of an79

elliptic curve, one takes h(x) = a1x + a3 and f (x) = x3 + a2x2 + a4x + a6 so that E is specified with the80

sequence [a1, a2, a3, a4, a5] of elements of K. There is a rich literature about elliptic curves defined over81

rational fields Q, complex fields C, number fields or general fields. Explicit results are documented in82

tables such as the Cremona table [12] or can be obtained from a mathematical software such as Magma83

[13].84

An elliptic curve (as well as a hyperelliptic curve) may be viewed as embedded in a weighted85

projective space, with weights 1, g + 1 and 1, in which the points at infinity are non singular. In the86

present work, one meets genus 2 curves for which there exists a set of 16 double points leading to the87

construction of a Kummer surface. All curves of genus 2 are hyperelliptic but generic curves of genus88

g > 2 are not. Again references [12] and [13] are basic references for explicit results.89

There are plenty known invariants of a (hyper)elliptic curve C over a field. One of them is the90

conductor N of an elliptic curve E seen as an abelian variety A. For A defined over Q, the conductor is91

the positive integer whose prime factors are the primes where A has a bad reduction. The conductor92

characterizes the isogeny class of A so that the curves E over Q may be classified according to the93

isogeny classes. Another important invariant is the Mordell-Weil group of A which is the group A(Q)94

of Q-rational points of E . Weil proved that A(Q) is finitely generated with a unique decomposition95

of the form A(Q) ∼= ZrA ⊕ T, where the finite group T is the torsion subgroup and rA is the rank of96

A. This result was later generalized to the elliptic curves defined over any field K. For a hyperelliptic97

curve, the invariant in the Weierstrass equation of C called the discriminant ∆ may be defined over any98

field K. For an elliptic curve, this leads to the j-invariant j = c3
4/∆ with c4 a polynomial function of the99

coefficients in the Weierstrass form.100

The main applications of elliptic curves are in the field of public-key cryptography. For101

hyperelliptic curves, one makes use of the Jacobian as the abelian group in which to do arithmetic, as102

one uses the group of points on an elliptic curve.103

From now we describe how genus 1 curves (elliptic curves) and genus 2 curves (hyperelliptic104

curves of the Kummer type) arise in the character table of groups of signature Gi
∼= Zi o 2O, i = 5, 6105
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and 7. Other finite groups and curves of genus g > 2 built from the character table of a finite group G106

are worthwhile to be investigated in the future.107

Let us illustrate our description with the genus 1 hyperelliptic curve introduced in the context108

of our model of the genetic code based on the group G5 := (240, 105) in which h(x) = 0 and109

f (x) = x4 − x3 − 4x2 + 4x + 1 [1, Sec 5]. Seeing this curve over the rationals, one learns from Magma110

[13] that the conductor is N = 300 and the discriminant is ∆ = 18000. A look at the Cremona table111

for elliptic curves [12] allows us to put our curve in the isogeny class of Cremona reference ‘300d1’.112

The Weierstass form is y2 = x3 − x2 − 13x + 22 and the Mordell-Weil group is the group of infinite113

cardinality Z×Z2.114

Now we use this knowledge to investigate some properties of the character tables of group G6115

and G7.116

2.2. The group G6 := (288, 69) ∼= Z6 o 2O117

(288,69) dimension 1 1 1 1 2 2 2 2 2 2
Z6 o (Z2.S4) d-dit, d=30 31 796 867 867 882 882 880 897 897 880

char Cte Cte I I Cte Cte z1 z2 z2 z1

(288,69) dimension 2 2 2 2 2 2 4 4 4 4
d-dit, d=30 885 885 885 885 885 885 876 878 899 899
char z3 z3 z3 z3 z3 z3 Cte Cte I I

(288,69) dimension 4 4 4 4 4 4 6 6 6 6
d-dit, d=30 877 878 885 885 885 885 885 885 880 880
char Cte Cte z3 z3 z3 z3 z3 z3 Cte Cte

Table 1. For the group G6 := (288, 69) ∼= Z6 o 2O, the table provides the dimension of the
representation, the rank of the Gram matrix obtained under the action of the 30 -dimensional Pauli
group and the entries involved in the characters. All characters are neither faithful nor informationally
complete. The notation is I = exp(2iπ/4), z1 = −

√
2, z2 = I

√
2 and z3 = −2 ∗ cos(π/9).

One first considers the group G6 := (288, 69) ∼= Z6 o 2O, with 2O the binary octahedral group.118

The structure of the character table is shown in Table 1. All characters are neither faithful nor119

informationally complete since the rank of the Gram matrix is never d2 = 302 for any character.120

Some characters contain entries with complex numbers I or z2 = I
√

2. There are 12 characters121

containing entries with z3 = −2 ∗ cos(π/9) featuring the angle π/9. We now show an important122

characteristics of such characters. As an example, let us write the character number 11 as obtained123

from Magma [13]124

κ11 = [2, 2,−2,−2,−1, 2,−2, 0, 0, 1,−1, 1, 0, 0, 0, 0, z3, z3#2, z3#4,−1,

1,−z3#2,−z3#4,−z3#4, z3#2, z3,−z3, z3#4,−z3,−z3#2]

where # denotes the algebraic conjugation, that is #k indicates replacing the root of unity w by wk.125

The non constant (but real) entries are k±l = ±z3#l, with l = 1, 2 or 4. We obtain k1 = −2 ∗ cos(π/9)126

and k2,4 = cos(π/9)∓ cos(2π/9)± cos(4π/9) and k1 + k2 + k4 = 0.127

Following our approach in [1], we construct an hyperelliptic curve C6 of the form y2 = ∏±l(x−128

kl) = f (x). In an explicit way, it is129

C6 : y2 = x6 − 6x4 + 9x2 − 1, (1)

a genus 2 hyperelliptic curve. Using Magma [13], one gets the polynomial definition of the130

Kummer surface S(x1, x2, x3, x4) as131
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Figure 2. (a) A standard plot of the Kummer surface in its 3-dimensional projection, (b) a section at
constant x4 of the Kummer surface defined in Sec. 2.3.

S(x1, x2, x3, x4) = 36x4
1 + 4x3

1x4 − 24x2
1x2

2 + 220x2
1x2

3 − 36x2
1x3x4 − 8x1x2

2x3

+ 24x1x2
3x4 − 4x1x3x2

4 + 4x4
2 − 36x2

2x2
3 + x2

2x2
4 + 24x4

3 − 4x3
3x4.

The desingularisation of the Kummer surface is obtained in a simple way by restricting the132

product f (x) = ∏±l(x− kl) to the five first factors with indices ±1, ±2 and 4.133

One embeds C6 in a weighted projective plane, with weights 1, g + 1, and 1, respectively on134

coordinates x, y and z. Therefore, point triples are such that (x : y : z) = (µx : µy : µz), µ in the field of135

definition, and the points at infinity take the form (1 : y : 0). Below, the software Magma is used for136

the calculation of points of C6 [13]. For the points of C6, there is a parameter called ‘bound’ that loosely137

follows the heights of the x-coordinates found by the search algorithm.138

It is found that the corresponding Jacobian of C6 has 16 = 6 + 10 points as follows139

* the 6 points bounded by the modulus 1:140

Id := (1, 0, 0), K±1 := (x− k±1, 0, 1), K±2 := (x− k±2, 0, 1) and K4 = (k4, 0, 1).141

* the 10 points of modulus > 1:142

a1 := K−1 + K4, a2 := K1 + K−1, a3 := K1 + K−2, a4 := K1 + K−1 + K2, a5 := K1 + K−1 + K−2,143

a6 := K1 + K4, a7 := K−1 + K2, a8 := K1 + K−1 + K4, a9 := K−1 + K−2 and a10 := K1 + K−1 + K2,144

The 16 points organize as a commutative group isomorphic to the maximally abelian group Z4
2 as145

shown in the following Jacobian addition table146

where the blocks are given explicitely as147
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A B C D
B A D C
C D A B
D C B A

Table 2. The structure of the addition table for the 16 singular Jacobian points of the hyperelliptic
curves C6 and C7.

A :


Id K1 K−1 a2

K1 Id a2 K−1
K−1 a2 Id K1
a2 K−1 K1 Id

 , B :


K2 a10 a7 a4
a10 K2 a4 a7

a7 a4 K2 a10
a4 a7 a10 K2

 ,

C :


K−2 a3 a9 a5

a3 K−2 a5 a3

a9 a5 K−2 a3

a5 a9 a3 K−2

 , D :


a8 a1 a6 K4
a1 a8 K4 a6

a6 K4 a8 a1
K4 a6 a1 a8

 .

As a whole, one can check that there are only 48 points in the Jacobian J(C6). They148

organize at the group Z3 ×Z3
2, i.e. three copies of the group of singular points.149

2.3. The group G7 := (336, 118) ∼= Z7 × 2O150

Let us consider the group G7 := (336, 118) ∼= Z7 o 2O, with 2O the binary151

octahedral group. The structure of the character table is shown in the table of section152

3 about a refined model of the genetic code. Except for the singlets, the irreducible153

characters of G7 are informationally complete (with rank of the Gram matrix equal154

to d2 = 292 for any character). Only the first two singlets are exceptions. The entries155

involved in the characters are z1 = 2 cos(2π/7), z2 = 2z1, z3 = −6 cos(π/7), z4 =
√

2156

and z5 = 2 cos(2π/21) featuring the angles 2π/8 (in z4), 2π/7 and 2π/21. There are157

9 faithful characters over the 10 quartets.158

Character zi powers f (x) polynomial Cremona ref.
4-6 z1 : [1, 2, 3] x3 + x2 − 2x− 1 784i1

18-20 z1 : [1, 2, 3] . .
. z2 : [1, 2, 3] x3 + 2x2 − 8x− 8 3136x1
. z1,2 x6 + 3x5 − 8x4 − 21x3 + 6x2 + 24x + 8 Kummer

27-29 z1 : [1, 2, 3] . .
. z3 : [1, 2, 3] x3 + 3x2 − 18x− 27 1764j1
. z1,3 : [1, 2, 3] x6 + 4x5 − 17x4 − 52x3 + 6x2 + 72x + 27 Kummer

9-14&21-26 z1,2 . .
z5 : [1, 2, 4, 5, 8, 10] x6 − x5 − 6x4 + 6x3 + 8x2 − 8x + 1 Kummer

Table 3. The algebra for the character table of group G7 := (336, 118). In column 1 are the characters in
question. Column 2 provides the powers of the entries zi, i = 1, 2, 3 or 5. The zi are z1 = 2 cos(2π/7),
z2 = 2z1, z3 = −6 cos(π/7), z4 =

√
2 and z5 = 2 cos(2π/21). Column 3 explicits the polynomial f (x)

whose roots are the powers of a selected zi. When f (x) is an elliptic curve defined over the rationals
the Cremona reference is in column 4. If f (x) is a sextit polynomial it leads to a Kummer surface.
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A summary of the elliptic and genus 2 hyperelliptic curves that can be defined from G7 is in Table159

3.160

For instance, characters 4 to 6 as obtained from Magma [13] contains non constant entries with161

z1, z1#2 and z1#3. With the polynomial f (x) = (x− z1)(x− z1#2)(x− z1#3) one defines the elliptic162

curve y2 = f (x) over the rationals whose conductor N and discriminant ∆ are equal to 784 and whose163

j-invariant equals 1792. It corresponds to the isogeny class of the curve 784i1 in the Cremona table [12].164

There are 12 characters containing entries with z5. We now show an important characteristics of165

such characters. As an example, let us write the character number 9 as obtained from Magma [13]166

κ9 = [2, 2,−1, 2, 0,−1, z1#3, z1#2, z1, 0, 0, z1#2, z1#3, z1, z5, z5#4, z5#8,

z5#10, z5#2, z5#5, z1#2, z1, z1#3, z5#8, z5#5, z5#2, z5, z5#4, z5#10]

The hyperelliptic curve C7 : y2 = f (x) attached to the Kummer surface defined over the group167

G7 := (336, 118) is168

y2 = f (x) = (x− k)(x− l)(x−m)(x− n)(y− o)(y− p), (2)

with k = 2 cos(10π/21), l = 2 cos(4π/21), m = 2 cos(16π/21), n = 2 cos(2π/21) and o =169

−2 cos(π/21) (as above) and p = cos(π/21) + cos(8π/21)− cos(6π/21). The sum of roots of the170

sextic curve f (x) equals 1.171

The defining polynomial can be given an explicit expression over the rational field172

f (x) = x6 − x5 − 6x4 + 6x3 + 8x2 − 8x + 1,

leading to the Kummer surface173

K3(x1, x2, x3, x4) = 32x4
1 − 24x3

1x2 + 96x3
1x3 − 4x3

1x4 + 24x2
1x2

2

− 196x2
1x2x3 + 16x2

1x2x4 + 240x2
1x2

3 − 32x2
1x3x4 + 4x1x3

2 − 24x1x2
2x3

− 12x1x2x3x4 + 12x1x3
3 + 24x1x2

3x4− 4x1x3x2
4 − 4x4

2 + 32x3
2x3 − 32x2

2x2
3

+ x2
2x2

4 − 24x2x3
3 + 2x2x2

3x4 + 25x4
3.

A section at constant x4 of this Kummer surface is given in Fig. 2b using the MathMod software174

[14].175

The desingularisation of the Kummer surface is obtained by restricting the product in the176

polynomial f (x) to the five first factors. It is found that the corresponding Jacobian of C7 has 16 = 6+ 10177

points as follows178

* the 6 points bounded by the modulus 1:179

Id := (1, 0, 0), K := (x − k, 0, 1), L := (x − l, 0, 1), N := (x − n, 0, 1), M := (x − m, 0, 1) and180

O := (x− o, 0, 1).181

* the 10 points of modulus > 1: a1 := K + L, a2 := K + M, a3 := K + N, a4 := K +O, a5 := L + N,182

a6 := K + L + M, a7 := K + L + N, a8 := K + L + O, a9 := 2K + L + M and a10 := 2K + L + O.183

More explicitly, for instance, K + L = (x2 − (k + l)x + 2 cos(2π/7), 0, 2).184

The 16 points organize as a commutative group isomorphic to the maximally abelian group Z4
2 as185

shown in table 2 with the entries186
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A :


Id K L a1

K Id a1 L
L a1 Id K
a1 L K Id

 , B :


N a3 a5 a7

a3 N a7 a5

a5 a7 N a3

a7 a5 a3 N



C :


M a2 a9 a6

a2 M a6 a9

a9 a6 M a2

a6 a9 a2 M

 , D :


a8 a10 a4 O
a10 a8 O a4

a4 O a8 a10

O a4 a10 a8

 .

There are 12 points in the Jacobian of C7 bounded by the modulus 1: the 6 points in the Jacobian187

of C as above and 6 extra points, (1 : 1 : 0) (an extra point at infinity), (0 : 1 : 1), (0 : −1 : 1), (1 : 1 : 1),188

(1 : −1 : 1) (4 rational points) and the point P := (x− p, 0, 1).189

One finds 70 points bounded by the modulus 2 or 3, 694 points bounded by the modulus 4 and so190

on.191

3. The genetic code revisited192

Our theory of the genetic code takes its inspiration in the symmetries observed in the DNA193

double helix and the biological steps leading to the conversion of transfer RNA (tRNA) into the194

amino acids that code for proteins. While 5-fold symmetry is inherent to the DNA double helix, being195

present in all its constituents, as shown in Fig. 1a, the way to transcription into proteins needs an196

extra step in the spliceosome. The spliceosome is found within the nucleus of eukaryotic cells. Its197

role is to remove introns from the primary form of messenger RNA (mRNA) leaving the exons to198

be processed afterwards. This cutting process is called splicing. There is a heptamer ring, called the199

Lsm 1-7 complex, displaying a 7-fold symmetry in its protein constituents, as shown in Fig. 1c [7].200

Accounting for this observation, it is tempting to generalize our theory of the genetic code based on the201

22 irreducible characters of the group G5 := (240, 105) ∼= Z5 o 2O, displaying the 5-fold symmetry, to202

the 29 irreducible characters of the group G7 := (336, 118) ∼= Z7 o 2O, displaying the 7-fold symmetry.203

The group G6 is not an appropriate candidate for modeling the degeneracies of amino acids in the204

genetic code since none irreducible character of G6 is informationally complete, as shown in Table 1.205

In Table 5 of the appendix, we reproduce the structure of the character table of the group G5206

and the assignments of its conjugacy classes to the proteinogenic amino acids as given in Ref. [1].207

One drawback of the model is that there are only 2 sextets in the table while 3 of them are needed to208

fit the 3 sextets of the genetic code. In Table 4, this problem is solved since there are precisely three209

slots of degeneracy 6 in the character table of G7. Table 4 shows entries proportional to the cosines210

of angles involved in the characters as z1 = 2 cos(2π/7), z2 = 2z1, z3 = −6 cos(π/7), z4 =
√

2 and211

z5 = 2 cos(2π/21). Let us first concentrate on the 11 classes of degeneracy 2 of the group G. The212

character table contains the angle 2π/8 through the 2 entries with z4 = 2 cos(2π/8) =
√

2 as well as213

the angles 2π/7 and 2π/21 through the entries with z1 and z1,5, respectively. We choose not to assign214

amino acids to the 2 conjugacy classes with degeneracy 2 and 2π/8 angle. The entries containing z5215

correspond to the hyperelliptic curve y2 = f (x) in (2) and the related Kummer surface. Then, there216

are two conjugacy classes with degeneracy 1 (ignoring the class with a trivial character) and 3, as217

expected. There are 3 classes with degeneracy 6 with entries containing z3 and thus the angle 2π/7, as218

we would expect. Finally, there are 10 slots for quartets but only 5 slots with entries containing the219

entry z5 related to the Kummer surface. The first 4 slots are assigned to the 4 (degeneracy 4) amino220

acids and a slot is left empty. This leaves the freedom to assign this slot to the 21st proteinogenic acid221

Sec and the 22nd amino acid Pyl (compare to [1] or Table 5).222

Now comes a question. Is the Kummer surface an attribute of RNA packings or is the proposed223

theory just another musing about the biological reality? We are not aware of any experiment featuring224

the Kummer surface in the biological realm. The physical link between messenger RNA (mRNA) and225
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(336,118) dimension 1 1 1 2 2 2 2 2 2 2
Z7 o (Z2.S4) d-dit, d=29 29 785 d2 d2 d2 d2 d2 d2 d2 d2

∼= Z7 o 2O amino acid . Met Trp Cys Phe Tyr . . His Gln
order 1 2 3 4 4 6 7 7 7 8
char Cte Cte Cte z1 z1 z1 z4 z4 z1,5 z1,5
polar req. . 5.3 5.2 4.8 5.0 5.4 . . 8.4 8.6

(336,118) dimension 2 2 2 2 3 3 4 4 4 4
d-dit, d=29 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

amino acid Asn Lys Glu Asp Ile Stop . . . .
order 14 14 14 21 21 21 21 21 21 21
char z1,5 z1,5 z1,5 z1,5 Cte Cte Cte z1,2 z1,2 z1,2
polar req. 10.0 10.1 12.5 13.0 10 15 . . . .

(336,118) dimension 4 4 4 4 4 4 6 6 6
d-dit, d=29 d2 d2 d2 d2 d2 d2 d2 d2 d2

amino acid Val Pro Thr Ala Gly . Leu Ser Arg
order 28 28 28 42 42 42 42 42 42
char z2,5 z2,5 z2,5 z2,5 z2,5 z2,5 z1,3 z1,3 z1,3
polar req. 5.6 6.6 6.6 7.0 7.9 . 4.9 7.5 9.1

Table 4. For the group G7 := (336, 118) ∼= Z7 o 2O, the table provides the dimension of the
representation, the rank of the Gram matrix obtained under the action of the 29 -dimensional Pauli
group, the order of a group element in the class, the angles involved in the character and a good
assignment to an amino acid according to its polar requirement value. Bold characters are for faithful
representations. All characters are informationally complete except for the trivial character and
the one assigned to ‘Met’. The entries involved in the characters are z1 = 2 cos(2π/7), z2 = 2z1,
z3 = −6 cos(π/7), z4 =

√
2 and z5 = 2 cos(2π/21) featuring the angles 2π/8 (in z4), 2π/7 and 2π/21.

the amino acid sequence of proteins is a transfer RNA (tRNA). Corresponding to the three bases of226

an mRNA codon is an anticodon. Each tRNA has a distinct anticodon triplet sequence that can form227

three complementary base pairs to one or more codons for an amino acid. Some anticodons pair with228

more than one codon due to so-called wobble base pairing [15]-[18]. Considering the secondary and229

tertiary structure of tRNA, as well as the fact that the third position in the codon is not strictly red by230

the anticodon according to Watson-Crick pairing rules, Crick hypothesized that codon translation into231

a proteins is mainly due to the first two positions of the codon [15]. There are 16 groups of codons232

specified by the first two codonic positions and the level of degeneracy can be dermined by them233

according to Lagerkvist’s rules [16,17]. Our bet is that the 16 groups of codons correspond to the 16234

singularities (double points) of the Kummer surface.235

In the next section, we discuss the relevance of the Kummer surface in the context of 4-dimensional236

(space-time) quantum gravity.237

4. Kummer surface and quantum gravity238

The Kummer surface first made its appearance in the Fresnel wave equation for light in a biaxial239

crystal [19,20]. The four singularities corresponding to the two shells in the Fresnel surface for a biaxial240

crystal lead to internal conical refraction as predicted by Hamilton in 1832. It is also known that, for a241

magnetoelectric biaxial crystal, the Fresnel surface may display 16 real singular points, the maximal242

number permitted for a linear material whose dispersion relation is quartic in the frequency and/or243

wave number [20]. Although Kummer surface is relevant to electromagnetism, Ref. [21] discusses how244

it may also rely on gravity.245

A theory of quantum gravity needs to conciliate our view of space-time as described by the246

general relativity and our view of particles and fields as described by quantum mechanics or quantum247

field theory. How is the Kummer surface related to attempts of formulating a theory of quantum248

gravity?249
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If one follows the historical perspective, our derivation of the Kummer surface in Sec. 2 relies250

on the work of Felix Klein in 1870 [19,22]. He introduces a quadratic line complex as the intersection251

X = Gr(2, 4) ∩W of the Grassmann quadric Gr(2, 4) in the five-dimensional Plücker space with252

another quadratic hypersurface W. The set of lines in X is parametrized by the Jacobian Jac(C) of a253

Riemann surface of genus 2 ramified along 6 points corresponding to 6 singular quadrics. See [23] for254

the relation to string dualities.255

Nowadays, in the classification by algebraic geometry, the Kummer surface is an exemple of a K3256

surface built from the quotient of an abelian variety A by the action from a point a to its opposite −a,257

resulting in 16 singularities [24,25]. The minimal resolution is the Kummer surface. There are many258

constructions of a K3 surface Y and it is known that all of them are diffeomorphic to each other. A K3259

surface is a compact connected complex manifold of dimension 2 with trivial first Chern class c1(Y) = 0260

so that the second Chern class (which corresponds to the topological Euler characteristic) is c2(Y) = 24.261

Another important topological invariant of topological spaces is that of a Betti number bk. Roughly, b0 is262

the number of connected components, b1 is the number of one-dimensional ‘holes’, b2 is the number of263

two-dimensional ‘voids’, and so on. For a K3 surface, one has b0=b4=1, b1=b3=0 and b2=22. This defines264

Y as the unique unimodular even quadratic lattice of signature (3, 19) isomorphic to E8(−1)⊕2 ⊕U⊕3,265

where U the integral hyperbolic plane and E8 is the well known E8 lattice. It is also known that266

the elliptic genus of a K3 surface has a decomposition in terms of the dimensions of irreducible267

representations of the largest Mathieu group M24 [26], a concept named ‘umbral moonshine’. See also268

[27] for another view of the latter topic.269

In the forefront of differential geometry, there is a connection of K3 surfaces to quantum gravity270

in the concept of a Kähler manifold (with a Kähler metric). Such a manifold possesses a complex271

structure, a Riemannian structure and a symplectic structure. A K3 surface admits a Kähler ‘Ricci-flat272

metric’ although it is not known how to write it in an explicit way. It is worthwhile to mention that a273

K3 surface appears in string theory with the concept of ‘string duality’– how distinct string theories are274

related–, see Ref. [23,28]. Another work relating quantum gravity and K3 surfaces is in Ref. [29]-[31].275

5. Discussion276

Since the Kummer surface appears in our models of DNA/RNA packings of some protein277

complexes such as the hexamer and pentamer rings (the LSMs, MCMs and other biological complexes278

not given here) one can ask the question whether quantum gravity is relevant in such biological realms.279

It is a challenging question that we are not able to solve. Mathematics offers clues for models of nature.280

Biology is not an unified field as is quantum physics of elementary particles or the general relativity281

for the universe at large scales. We offered relationships between the n-fold symmetries (n = 5, 6 and282

7) found in DNA and some proteins and the mathematics of Kummer surfaces. It is time to quote283

earlier work devoted to the possible relation between the microtubules of cytoskeleton and the field of284

quantum consciousness, e.g. [32]. The 13-fold symmetry is found in tubulin complexes [33]. Using the285

same approach than the one for DNA and hexamer/pentamer complexes, we can associate a finite286

group G13 := (624, 134) ∼= Z13 × 2O to such a 13-fold symmetric complex. Such a group possesses287

50 conjugacy classes and the dimensions of representations are 1, to 2, 3, 4 and 6 as expected for this288

series of groups with factors Zn and 2O in the semidirect product. It is found that a Kummer surface289

may be derived from some characters of G13, as expected.290

To conclude, one can observe a mathematical analogy between the way DNA/RNA organize and291

some theories of quantum cosmology based on string dualities. Lessons from one field may lead to292

progress in the other field. Should we talk about a new paradigm of ‘biologic quantum cosmology’293

and revisit the philosophical foundations of quantum theory? A few papers are already written in this294

direction [34,35] and [36].295

Author Contributions: Conceptualization, M.P., F.F. and K.I.; methodology, D.C., M.P. and R.A.; software, M.P..;296

validation, D.C., R.A., F.F. and M.A..; formal analysis, M.P. and M.A.; investigation, D.C., M.P., F.F. and M.A.;297

writing–original draft preparation, M.P.; writing–review and editing, M.P.; visualization, D.C., F.F. and R.A.;298



Version January 6, 2021 submitted to Journal Not Specified 11 of 12

supervision, M.P. and K.I.; project administration, K.I..; funding acquisition, K.I. All authors have read and agreed299

to the published version of the manuscript.300

Funding: Funding was obtained from Quantum Gravity Research in Los Angeles,CA301

Conflicts of Interest: The authors declare no conflict of interest.302

References303

1. M. Planat, R. Aschheim, M. M. Amaral, F. Fang and K. Irwin, Complete quantum information in the DNA304

genetic code, Symmetry 12 1993 (2020).305

2. M. Planat and Z. Gedik, Magic informationally complete POVMs with permutations, R. Soc. open sci. 4306

170387 (2017).307

3. M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Informationally complete characters for quark and308

lepton mixings, Symmetry 12 1000 (2020).309

4. C. Sauter, J. Basquin and D. Suck, Sm-Like proteins in eubacteria: the crystal structure of the Hfq protein310

from Escherichia Coli, Nucleic Acids 31 4091 (2003), https://www.rcsb.org/structure/1HK9.311

5. W. C.L. Lührmann, Spliceosome, structure and function, Cold Spring Harbor Perspectives in Biology 3 a003707312

(2011).313

6. C. Kambach, S. Walke, R. Young, J. M. Avis, E. de la Fortelle, V. A. Raker, R. Lührmann, J. Li and K. Nagai,314

Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal315

snRNPs, Call 96 375–87 (1999).316

7. L. Zhou, Y. Zhou, J. Hang, R. Wan, G. Lu, C. Yan and Y. Shi, Crystal structure and biochemical analysis of the317

heptameric Lsm1-7 complex, Cell Research 24 497–500 (2014).318

8. Z. Kelman, J. Finkelstein and M. O’Donnel, Why have six-fold symmetry? Current Biology 5 1239–42 (1995).319

9. Y. Zhai, E. Cheng, H. Wu, N. Li, P. Y. Yung, N. Gao and B. K. Tye, Open-ringed structure of the Cdt1–Mcm2–7320

complex as a precursor of the MCM double hexamer, Nature Structural & Molecular Biology. 24 300–308 (2017).321

10. M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Group geometrical axioms for magic states of quantum322

computing, Mathematics 7 948 (2019).323

11. R. W.H.T. Hudson, Kummer’s quartic surface, Cambridge Univ. Press 1990, First published 1905.324

12. LMFDB-The Lf unctions and modular forms database. https://www.lmfdb.org/ accessed on 1 June 2020.325

13. Bosma, W.; Cannon, J. J.; Fieker, C. ; Steel, A. (eds). Handbook of Magma functions, Edition 2.23 (2017), 5914pp326

(accessed on 1 January 2019).327

14. https://sourceforge.net/projects/mathmod/ (accessed on 1 December 2020).328

15. F. HC Crick, Codon-anticodon pairing, the wobble hypothesis, J. Mol. Biol. 19 548–555 (1966).329

16. U. Lagerkvist, “Two out of tree": an alternative method for codon reading, Proc. Natl. Acad. Sci. 75 1759–1762330

(1978).331

17. J. Lehmann and A. Lichbaber, Degeneracy of the genetic code and stability of the base pair at the second332

position of the anticodon, RNA 14 1264–1269 (2008).333

18. D. L. Gonzalez, S. Giannerini and M. Rosa, On the origin of degeneracy in the genetic code, Interface Focus 9334

20190038(2019).335

19. I. Dolgachev, Kummer surfaces: 200 years of study, Notices of the AMS 67 1527–33 (2020).336

Preprint 1910.07650 [math.AG].337

20. A. Favaro and F. W. Hehl, Light propagation in local and linear media: Fresnel-Kummer wave surfaces with338

16 singular points, Phys. Rev. A 93 013844 (2016).339

21. P. Baekler, A. Favaro, Y. Itin and F. W. Hehl, The Kummer tensor density in electrodynamics and in gravity,340

Ann. Phys. 349 297-–324 (2014).341

22. C. Jessop, A treatise of the line complex (Cambridge University Press, 1903). [reprinted by Chelsea Pibl. Co.,342

N.Y., 1969).343

23. A. Clingher, A. Malmendier and T. Shaska, Six line confihurations and string dualities, Commun. Math. Phys.344

371 159–196 (2019).345

24. R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, Vol. 20346

(American Mathematical Society, Providence, Rhode Island, 1999).347

25. A. Scorpian, The wild world of 4-manifolds (American Mathematical Society, Providence, Rhode Island, 2011).348



Version January 6, 2021 submitted to Journal Not Specified 12 of 12

26. T. Eguchi, H. Ooguri and Y. Tachikawara, Notes on the K3 surface and the Mathieu group M24, Exp. Math.349

20 91–96 (2011).350

27. A. Marrani, M. Rios and D. Chester, Monstruous M-theory, Preprint Arxiv 2008.06742v1 [hep-th].351

28. P. S. Aspinwall, K3 surfaces and string duality, in C. Efthimiou and B. Greene, editors, “Fields, Strings and352

Duality, TASI 1996", pp 421–540, World Scientific, 1997 (Preprint hep-th/9611137).353

29. T. Asselmeyer-Maluga, Smooth Quantum Gravity: Exotic Smoothness and Quantum Gravity. In At354

the Frontiers of Spacetime: Scalar-Tensor Theory, Bell’s Inequality, Mach’s Principle, Exotic Smoothness ( T.355

Asselmeyer-Maluga, Ed.; Springer: Basel, Switzerland, 2016).356

30. T. Asselmeyer-Maluga, Braids, 3-manifolds, elementary particles, number theory and symmetry in particle357

physics, Symmetry 10 1297 (2019).358

31. M. Planat, R. Aschheim, M. M. Amaral and K. Irwin, Quantum computation and measurements from an359

exotic space-time R4, Symmetry 12 736 (2020).360

32. S. Hameroff and R. Penrose, Consciousness in the universe, a review of the ‘Orch OR’ theory, Phys. of Life361

Rev. 11 39–78 (2014).362

33. J. M. Kollmann, J. K. Polka, A. Zelter, T. N. Davis and D. Agard, Microtubule nucleating γTuSC assembles363

structures with 13-fold microtubule-like symmetry, Nature 466 879-882 (2012).364

34. Yi-Fang Chang, Calabi-Yau manifolds in biology and biological string-brane theory, 4 465–474 (2015).365

35. R. Pincak, K. Kanjamapornkul and E. Bartos, A theoretical investigation of the predictability of genetic366

patterns, Chem. Phys. 535 110764 (2020).367

36. K. Irwin, M. Amaral and D. Chester, The Self-Simulation hypothesis interpretation of quantum mechanics,368

Entropy 22 247 (2020).369

6. Appendix370

The table below was found in our paper [1]. An introduction to the DNA genetic code and the371

mention to some mathematical theories proposed before is discussed in this paper and not duplicated372

here.373

(240,105) dimension 1 1 2 2 2 2 2 2 2 2 2
Z5 o (Z2.S4) d-dit, d=22 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2 d2

∼= Z5 o 2O amino acid Met Trp Cys Phe Tyr His Gln Asn Lys Glu Asp
order 1 2 3 4 4 5 5 6 8 8 10
char Cte Cte Cte z1 z1 z4 z4 z1,5 z1,5 z1,5 z1,5
polar req. 5.3 5.2 4.8 5.0 5.4 8.4 8.6 10.0 10.1 12.5 13.0

(240,105) dimension 3 3 4 4 4 4 4 4 4 6 6
d-dit, d=22 d2 475 483 480 d2 d2 d2 d2 d2 d2 d2

amino acid Ile Stop Leu,Pyl,Sec Leu Val Pro Thr Ala Gly Ser Arg
order 10 15 15 15 15 20 20 30 30 30 30
char Cte Cte Cte z1,2 z1,2 z2,5 z2,5 z2,5 z2,5 z1,3 z1,3
polar req. 4.9 4.9 5.6 6.6 6.6 7.0 7.9 7.5 9.1

Table 5. For the group G5 := (240, 105) ∼= Z5 o 2O, the table provides the dimension of the
representation, the rank of the Gram matrix obtained under the action of the 22 -dimensional Pauli
group, the order of a group element in the class, the entries involved in the character and a good
assignment to an amino acid according to its polar requirement value. Bold characters are for faithful
representations. There is an ‘exception’ for the assignment of the sextet ‘Leu’ that is assumed to occupy
two 4-dimensional slots. All characters are informationally complete except for the ones assigned to
‘Stop’, ‘Leu’, ‘Pyl’ and ‘Sec’. The notation in the entries is as follows: z1 = −(

√
5 + 1)/2, z2 =

√
5− 1,

z3 = 3(1 +
√

5)/2, z4 =
√

2, z5 = −2 cos(π/15), compare [1, Table 7].
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