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(3) Machine Learning Algorithms

Machine learning (ML) algorithms have been 
regaining momentum thanks to their ability to 
analyze substantial and complex data, 
supporting artificial intelligence decisions in 
cloud computing but also in near-sensor 
computing in endpoint devices. Both cloud and 
near-sensor computing are liable to radiation-
induced soft errors, especially in automotive 
and aerospace safety-critical applications. In 
this regard, this paper contributes by 
comparing the accuracy of two prominent 
machine learning algorithms running on a low-
power processor upset by radiation-induced 
soft errors. Both ML algorithms have been 
assessed with the help of a fault injection-
based method able to natively emulate soft 
errors directly in a development board. In 
addition, neutron radiation test results suggest 
the most critical situations in which mitigation 
solutions should address.

 

(4) Implementation (6) Fault Injection Campaign
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(7) Radiation Campaign

(5) Metrics
Methodology

All Registers.
All Register Bits.
Definite execution points.
    20%, 40%, 60%, 80%
On board fault injection.

ANN was tested
     Continuously executed.
     Score output from the board
     monitored.

Both our ANN and SVM implementations 
presented an intrinsic fault tolerance.
SVM presented a marginal advantage over ANN.
Crashes are proeminent, but they are 
detectable.
     Mostly caused faults on control registers, e.g. 
PC, LR.

(1) Motivation

Machine
Learning Radiation induced faults.

      Neutrons.
      Heavy Ions.

Machine Learning (ML) is more and more 
ubiquitous;
Can we use them for Safety
Critical Applications?

(2) Radiation effects in ML
Supervised

Learning

KNN

Neural 
Networks

Bayesian 
Machines

Random
Forest

Support Vector 
Machines

[Libano, 2018]
[Velazco, 1997]

[Coelho, 2017] [Trindade, 2019]

SVM Neural Network

Yields the optimal  linear 
classifier for binary problems.
Variable classifier size.
Made multiclass through the 
One-vs-One technique.

Iris Flower Dataset

Training Algorithm

Classifier Score

Inherently non-linear and 
multiclass.
Fixed classifier size.
May not be optimal
Overfitting issues.

Offline training
(Matlab for SVM, 
Keras for NN)

Classifier moder
extracted

Classifier coded
on board

Sample to infer 
class

Board outputs 
score given
by the 
algorithms

No Failure:
    No difference from golden
     reference;
Tolerable Failure:
    Mismatch but classification 
    still correct;
Critical Failure:
    Misclassification;
Computing Crash:
    Board stops executing.
    

Results

Majority of faults do not incur failure.
2% or less of critical failures without 
any protection .

High percentage of crahses.   
Differently than critical 
failures, they can be identified.

Methodology Results
24 faults identified.     
    19 Computing Crashes.
    2 Tolerable Failures.
    3 Critical Failures.
Results match those of the 
fault injection campaigns.

(7) Final Remarks

[Draghetti, 2019]
[Libano, 2020]

[dos Santos, 2019]
[Libano, 2019]

TOMOH9 neutron accelerator 
  1-2 MeV neutrons.
  (Institut Laue-Languevin - ILL)
Irradiation time: 4h 30min.
Cross-section: 8.23 *10-9 cm2.

Ongoing works: 
   + Further experimental fault-injection 
campaigns
           More execution points.
           Different datasets.
           Further comparisons between both 
ML algorithms.
   + Radiation campaigns. 


