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Using a 3D mean-field lattice-gas model, we analyze the effect of confinement on the nature of capillary
phase transition in granular aggregates with varying disorder and their inverse porous structures obtained
by interchanging particles and pores. Surprisingly, the confinement effects are found to be much less
pronounced in granular aggregates as opposed to porous structures. We show that this discrepancy can be
understood in terms of the surface-surface correlation length with a connected path through the fluid
domain, suggesting that this length captures the true degree of confinement. We also find that the liquid-gas
phase transition in these porous materials is of second order nature near capillary critical temperature,
which is shown to represent a true critical temperature, i.e., independent of the degree of disorder and the
nature of the solid matrix, discrete or continuous. The critical exponents estimated here from finite-size
scaling analysis suggest that this transition belongs to the 3D random field Ising model universality class as
hypothesized by F. Brochard and P.G. de Gennes, with the underlying random fields induced by local
disorder in fluid-solid interactions.
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The fluid behavior confined in a solid matrix is of
interest to a range of scientific and engineering fields,
including wet granular physics and poromechanics [1–3],
plant biology [4,5], carbon capture technologies [6],
catalysis [7,8], and optics [9]. The behavior of a confined
fluid contrasts significantly with that of a bulk fluid. This is
a consequence of pore morphology, topology, and the
relative strength of fluid-solid to fluid-fluid interactions
that alter the energy landscape of a fluid [10–17]. In
particular, the degree to which a fluid experiences confine-
ment results in a shifted liquid-gas phase transition
[12,18,19]. This effect is best captured through the concept
of “capillary criticality” that hinges on the existence of a
temperature Tcc below the bulk critical temperature beyond
which liquid-gas phase transitions become reversible.
For disordered porous materials, the nature of liquid-gas

phase transitions and the question of whether capillary
criticality is associated with a true critical point, i.e.,
termination of the liquidus line, are still unclear [20,21].
Additionally, a central issue is how the effective random
fields induced by structural and/or chemical disorder affect
the degree of confinement and critical exponents and thus
the universality class classification. Bulk liquid-gas phase
transitions are generally in the same universality class as the
Ising ferromagnet [22,23]. It was conjectured by F.
Brochard and P.G. de Gennes that the universality class

of liquid-gas phase transitions in disordered porous materi-
als should be that of the random-field Ising model (RFIM)
[24,25]. This argument is built on the stochastic nature of
effective wall separation in disordered porous media that
manifests itself as a quenched random variable in space.
Inspired by analogies between jammed granular pack-

ings and disordered porous solids highlighted recently via
studies on the mechanics of dry systems [26,27], we
explore in this Letter the capillary phase transition in
granular aggregates (discrete) and their inverse porous
structures as obtained by interchanging pores and particles
(continuous). Based on extensive lattice-gas simulations,
we examine (1) whether Tcc represents a true critical
temperature, (2) the nature of phase transition as
T → Tcc, and (3) Brochard and de Gennes’ hypothesis
[24,25] that the critical behavior of fluids in random porous
media can be mapped into the RFIM [28] universality class.
This has been only confirmed in colloid-polymer mixtures
confined in random porous media and via Monte Carlo
simulations [29–31]. As we shall see, the confinement
effects differ in the two types of structure, but in both cases
Brochard and de Gennes’ hypothesis holds and Tcc appears
to be a true critical temperature.
Let us consider a set of granular media (GM) composed of

rigid, nonoverlappingmonodisperse spherical particles, each
confined to a cubic box of sizeLx ¼ Ly ¼ Lz ¼ 80 nmwith
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a reservoir of lengthLres ¼ 5 nm added in all directions. The
first three structures A, B, C have Np ¼ 512 particles with
radius R ¼ 4.7 nm and a packing fraction of fs ¼ 0.43 but
exhibit contrasting pore sizes (rp), distributions (PSD), and
increasingly more spatial disorder. Structure D, which has
Np ¼ 955 particles and radius R ¼ 4 nm, exhibits a degree
of spatial disorder similar to that of structureC but a packing
fraction of fs ¼ 0.5 (see Supplemental Material for porous
structure generation and PSD characterization [32]). The
corresponding inverse or “negative” structures are porous
solids (PS) obtained by switching pores and particles. We
also consider a set of cylindrical pores (CP) of length Lx ¼
160 nm ≪ Ly ¼ Lz with pore radius rp ∈ f2; 4; 8g nm and
with reservoirs of length Lres ¼ 4 nm added to both ends.
We use a parallelized implementation of coarse-grained

lattice gas density functional theory (CGLT) [44,45] with
periodic boundary conditions in all directions on a simple
cubic lattice with coordination number c ¼ 6. In this mean-
field approach, the fluid is modeled in the grand canonical
ensemble via minimizing the grand potential Ω with the
normalized density field ρðx⃗Þ serving as the only order
parameter in the model:

Ω ¼ −wff

X

hi;ji
ρiρj − wsf

X

i;j

ρiηj − μ
X

i

ρi

þ kBT
X

i

½ρi lnðρiÞ þ ð1 − ρiÞ ln ð1 − ρiÞ�; ð1Þ

where ηi ¼ 0ð¼ 1Þ indicates occupancy of site i with solid
(fluid). wff and wsf represent fluid-fluid and solid-fluid
energy interaction parameters where y ¼ wsf=wff is set to
y ¼ 2.5, corresponding to a strong solid-fluid surface
affinity akin to methane in porous carbon or water in
cement [46].
Based on our lattice choice, the normalized bulk critical

temperature T̄3D
c ¼ kBT3D

c =wff ¼ c=4 ¼ 1.5, and the nor-
malized chemical potential corresponding to bulk liquid-gas
phase transition μ̄3Dsat ¼ μ3Dsat=wff ¼ −c=2 ¼ −3 is set. In the
continuum limit and with correct parameterization, CGLT
[Eq. (1)] approaches the Cahn-Hilliard model [47,48],
paving the way to capture the liquid-gas interface diffusively
[49,50]. This provides access to capillary stresses as a
tensorial field, σðx⃗Þ, via a Kortweg stress definition
[51,52] and subsequently a capillary pressure scalar field,
pðx⃗Þ ¼ ð1=3Þtrσðx⃗Þ (see Supplemental Material [32]):

σ ¼
�
p0ðρÞ −

κ

2
ð∇⃗ρÞ2

�
I þ κ∇⃗ρ ⊗ ∇⃗ρþ σ0; ð2Þ

where p0ðρÞ¼ μρþðcwff=2Þρ2−kBT½ρ lnðρÞþð1−ρÞ×
lnð1−ρÞ� is the asymptotic bulk value of the hydrostatic
pressure, I is the identity tensor, σ0 represents an arbitrary
constant tensor, κ ¼ a20wff, and a0 denotes lattice spacing.

For proper energy scaling in this mean-field approach, a0 is
determined from liquid-gas surface tension.
Figure 1(a) displays the calculated shift in critical

temperature for GM, PS, and CP as a function of the ratio
2σ=hrpi, with σ denoting the characteristic diameter of a
fluid molecule set equal to lattice spacing a0. It also shows
the data from experiments [11,53,54] and previous simu-
lations based on CGLT and grand canonical Monte Carlo
(GCMC) for cylindrical pores [55–57], e.g., MCM-41,
carbon nanotube, and disordered porous solids, i.e., Vycor,
and for a variety of substances such as xenon, argon,
and water. The one-to-one scaling between the shift in
capillary critical temperature and inverse mean pore size
suggests similar behaviors independently of fluid and solid
properties and pore connectivity. In this vein, we determine
Tcc with a resolution of ≈4 K for CP, GM, and PS with
a lattice spacing a0 ∈ f0.2; 0.25; 0.5; 1g nm for CP and
a0 ∈ f0.25; 0.5; 1g nm for GM and PS. For CP and PS, our
results are in full agreement with the data reported in the
literature [58] and shown in Fig. 1(a).
The CGLT is a mean-field approach that ignores thermal

fluctuations. Here it is based on nearest neighbor inter-
actions. This differs from the GCMC approach that accounts
for thermal fluctuations leading to a lower Tcc by ≈10 K.
This is what we observe for CP compared to those in the
literature based onGCMC andCGLT. However, the confine-
ment imposedbyGMseems insignificant and independent of
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FIG. 1. The degree of confinement represented by (a) shift in
capillary critical temperature Tcc as a function of the ratio
2σ=hrpi. Previous simulations (circle) and experimental (tri-
angle) data from the literature [58] along with our results (square)
for all the considered cylindrical pores (CP), porous solids (PS),
and granular media (GM) and for various space discretizations
a0, where a0 ∼ σ. (b), (c) Nf

s ðr ¼ 20 nmÞ of GM and PS,
respectively, for structure C. (d) Partial radial distribution
function for a fluid site at the pore-solid interface with a
connected path to a solid site at the pore-solid interface.
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the degree of spatial disorder sinceTcc ⪅ T3D
c . Let us explore

this contrast further.
The PSD in each considered PS has a peak that

corresponds to the monodisperse particle radii with no
variations around this peak. For the porous solids reported
in the literature such as Vycor, the PSD can be captured by
a Gaussian fit with a well-pronounced peak representing
the mean and a small variance around it [59]. However, the
PSD for GM exhibits a wide range and is not well
represented by the first moment of the distributions (see
Supplemental Material [32]). To further characterize these
distributions, we consider the proportion Nf

s ðrÞ of interface
solid sites in a spherical domain of radius r, assuming that
each site affects the evolution of a given interface fluid site
through a connected path in the fluid domain and normal-
ized by the total number of interface solid sites. Nf

s ðrÞ
represents the range of fluid-fluid correlations that can
develop from the pore surface. Therefore, it contains
information regarding correlation length for the adsorbed
fluid or surface-surface correlation length. The distributions
of Nf

s ðr ¼ 20 nmÞ as shown in Fig. 1(b),(c) for structure C
highlight the difference in confinement experienced by a
fluid site in a granular material as opposed to a porous
solid. For PS, each distribution is a Gaussian with a sharp
peak at the mean and a small variance around it. For GM,
the distributions are no longer Gaussian but distributed
widely and multimodally, with the largest peak having a
lower probability density than their porous solid counter-
parts. For PS, these distributions imply that every fluid site
at the pore-solid interface has a high probability of
interacting with a fixed number of solid sites, while this
probability is lower and the number of such interactions
more widespread for GM. This notion is also reiterated in
the partial radial distribution functions for fluid sites at the
pore-solid interface interacting with solid sites, as shown in
Fig. 1(d).
Thus, this disparity in adsorbed fluid correlation or

surface-surface correlation length emerging from “switch-
ing” solid curvature leads to more pronounced confinement
effects in PS, as opposed to their GM counterparts for
which the surface-surface correlation length approaches the
fluid-fluid correlation length in the bulk. Our results seem
to depart from the Monte Carlo-based study reported in
[60] for disordered granular packings with a similar
packing fraction, fs ¼ 0.386, as our study observed a
more pronounced shift in critical temperature. This can
be attributed to space discretization since, in our study, the
size ratio between the solid particle diameter (2R) and a
fluid molecule (σ) is ≈40∶1, while in [60] this ratio is
7.055∶1. Thus, our results suggest that bulk fluid behavior
prevails in granular media exhibiting at least 2R=σ⪆40.
We now turn our focus to capillary pressure fields inside

the pore domain Ωp, defined as all fluid sites with no solid
neighbors. Prior to any analyses, the average pressure of the
reservoir is subtracted from the capillary pressure field

pðx⃗Þ. The lattice spacing is chosen based on water-air
surface tension γlg ≈ wff=2a0 ≈ 72 mN=m at T ¼ 300 K
and thus a0 ∼ 0.25 nm [48], comparable to the size of a
water molecule. Having determined Tcc associated with
these physical parameters and for the granular aggregates
considered previously, we simulate capillary condensation
and evaporation for T̄ ¼ kBT=wff ∈ f1.0; 1.2; 1.4; 1.5g
with the corresponding adsorption and desorption iso-
therms, as shown in Fig. 2(a)–(d). The hysteresis loop is
present for T̄ ≤ 1.4, but it disappears at T̄ ¼ 1.5, with its
shape becoming less symmetric with increasing temper-
ature, a signature of disordered porous materials. A similar
observation regarding the disappearance of the hysteresis
loop can be made for CP (see Supplemental Material [32]).
Furthermore, there is a jump in mean density at T̄ ¼ 1.4,
while it evolves continuously at T̄ ¼ 1.5, suggesting a
second order phase transition in the latter.
The density fields at a given cross section for various

temperatures and for the relative humidity h ¼
exp ½ðμ − μ3Dsat Þ=kBT� ¼ 0.96 are shown in Fig. 3(a)–(d),

FIG. 2. Isotherms (a)–(d) and capillary pressure curves (e)–(h)
for granular packings at T̄ ¼ 1.0, T̄ ¼ 1.2, T̄ ¼ 1.4, and T̄ ¼ 1.5,
respectively.

FIG. 3. (a)–(d): spatial distribution of density fields, ρðx⃗Þ, for
granular packing C and at cross sections corresponding to
z ¼ 44 nm, h ¼ 0.96. (e)–(h): probability density for the density
fields (coarse-grained over L3 ¼ 1 nm3) for the same structure at
h ¼ 0.96 for T̄ ¼ 1.0, T̄ ¼ 1.2, T̄ ¼ 1.4, and T̄ ¼ 1.5,
respectively.
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which visualizes the extent of the diffusive interface
increasing as T̄ → T̄cc. Furthermore, the density distribu-
tions at a given h show a bimodal response for T̄ ≪ T̄cc as
expected for a first order phase transition, while its
bimodality progressively disappears with increasing T̄,
i.e., temperature as control parameter, a hallmark of a
second order phase transition [see Fig. 3(e)–(h)].
Capillary pressure is a manifestation of phase coexist-

ence. Capillary curves describe the relationship between
liquid saturation s ¼ hρiΩp

and capillary pressure pcðsÞ ¼
hpiΩg

− hpiΩl
, where Ωg and Ωl denote gas and liquid

domains, respectively [61]. Capillary pressure can be
estimated from Eq. (2) via the first moment of pressure
in the liquid domain, pc ≈ −hpiΩl

, given that hpiΩg
in the

gas domain is relatively negligible. The liquid domainΩl is
determined via a threshold for local density ρðx⃗iÞ with the
results for ρth ¼ 0.55 shown in Fig. 2(e)–(h). The choice of
local density threshold does not impact capillary curves
significantly (see Supplemental Material [32]). These
curves exhibit two distinct regimes: a sharp decrease with
s associated with the buildup of adsorbed film on the pore-
solid surfaces, followed by a smooth decrease for T̄ ≪ T̄cc.
In the vicinity of T̄ ≈ T̄cc, the capillary curves suggest pore
filling and emptying at zero capillary pressure with the first
regime absent, signaling the termination of phase coexist-
ence [Fig. 2(e)–(h)]. This can also be observed for CP (see
Supplemental Material [32]). Furthermore, both the iso-
therms and capillary curves show no particular dependence
on the degree of spatial disorder, although they do display a
pronounced dependence on fs as the behavior pertaining to
structure D consistently differs from structures A–C, given
that all studied structures, fs ∈ f0.43; 0.5g, can be classi-
fied as dilute suspensions. However, the higher order
cumulants of the capillary pressure fields are sensitive to
spatial disorder (see Supplemental Material [32]).
To further explore the nature of capillary phase tran-

sition, we carry out a finite-size scaling (FSS) analysis, and
the critical exponents ν and γ governing singularities in
correlation length and connected susceptibility are deter-
mined for PS and GM. To this end, connected susceptibility
χ ¼ L3ðhρ2i − hρi2Þ is computed for volumes of character-
istic length L chosen to provide a relatively large number of
realizations (N > 100) based on the diameter of the
particles (pores). For each realization x, χmaxðx; LÞ is
obtained. From χmaxðLÞ ¼ hχmaxðx; LÞi and its correspond-
ing chemical potential μ̄�ðLÞ ¼ hμ̄�ðx; LÞi, the critical
exponents are estimated and reported in Table I. The

quality of the fits are reasonable (see Supplemental
Material [32]), but obviously the accuracy increases with
a larger number of realizations and a larger set of coarse-
graining lengths that span at least a decade. The obtained
values of critical exponents lead to a reasonable collapse for
the susceptibility curves, with an example shown in Fig. 4.
With regard to the nature of phase transition near T̄cc, our

estimations for ν suggest a second order phase transition
given its discrepancy with the expected scaling for a first
order transition in a mean-field theory, i.e., ν ≈ 2=dð¼ 3Þ
[45]. This observation combined with the disappearance of
the bimodality of the density distribution, at a given h, as
temperature increases and the continuous evolution of
density near Tcc suggest a second order phase transition
near Tcc. Furthermore, our results for ν and γ are within the
range of those reported in the literature for 3D-RFIM for a
variety of idealized random fields and consistent with
universality of confined colloid-polymer mixture [29,30]
with ν ¼ 1.1� 0.1 and γ ¼ 2.02� 0.49. Additionally, the
reported critical exponents, ν and γ, for 3D-RFIM with an
underlying Gaussian distribution are ν ∈ ½0.96; 1.46� and
γ ∈ ½1.7; 2.51� [62–69], for a double Gaussian distribution
ν ∈ ½1.33; 2.68� and γ ∈ ½1.98; 4.0�, and for a Poisson
distribution ν ¼ 1.31� 0.08 and γ ¼ 1.95� 0.12 [69].
Given the limited options for coarse-graining lengths and
the inherent challenges in extracting critical exponents [30],
the agreements between the reported results and those in
the literature are very promising. Moreover, we observe that
even for the ordered structure A with periodic arrangement
of particles (pores), the critical exponents are in agreement
with those reported for 3D-RFIM. This is consistent with
Brochard and de Gennes’s conjecture as the underlying
random field is generated by the distribution of a wall
separation best captured by the pair distribution functions
shown in Fig. 1(d), which highlight the local disorder in
fluid-solid interactions. For the isolated spherical voids in
the PS, the associated pair distance distribution functions
are Gaussians [70], and hence the agreement between the
values reported in Table I and those in the literature with
underlying Gaussian random fields.

FIG. 4. (a) Susceptibility for structure C and T̄ ¼ 1.5 for
volumes of length L ¼ 12 (N ¼ 217), L ¼ 14 (N ¼ 126), and
L ¼ 16 (N ¼ 125). (b) Collapse of the susceptibility curves
(inset: a power law fit to estimate γ).

TABLE I. Critical exponents estimated from FSS.

A B C D

ðν; γÞGM (0.68,2.14) (0.77,2.43) (0.88,2.89) (0.81,2.54)
ðν; γÞPS (0.76,2.21) (0.82,2.42) (0.94,2.70) (0.47,1.39)
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To conclude, we demonstrated that confinement effects
are much less pronounced in the studied granular media as
opposed to their porous solid counterparts. This was shown
to be a consequence of the surface-surface correlation
length with a connected path through the fluid domain as
captured via the function Nf

s ðrÞ and not necessarily the
mean PSD. In granular aggregates, this correlation length
approaches that of the bulk fluid, recovering a bulk fluid
behavior. At the same time, critical exponents estimated
from FSS analysis map GM and PS into the 3D-RFIM as
previously hypothesized by Brochard and de Gennes
[24,25]. This implies that the universality class can be
resolved in the absence of strong confinement, with the
underlying effective random field being a consequence of
local disorder in fluid-solid interactions captured by their
pair distribution function and the associated pair distance
distribution function in the pore domain and not necessarily
the spatial arrangement of the particles (pores). Further-
more, our results suggest a first order phase transition for
T ≪ Tcc and a second order phase transition for T ≈ Tcc
irrespective of the degree of disorder and the nature of the
solid matrix, whether discrete or continuous. This is based
on the estimations for critical exponent ν, the evolution of
isotherms, the capillary pressure evolution with temper-
ature, and the distribution of density fields. Additionally,
from the capillary curves, the termination of phase coex-
istence occurs at T ≈ Tcc. This implies that Tcc represents a
true critical temperature that is insensitive to the degree of
disorder and the nature of solid matrix.
In the future, the critical behavior of random porous

materials should be examined beyond the dilute suspen-
sion limit with a stronger degree of heterogeneity, e.g.,
effective random fields with underlying Lévy stable dis-
tributions [71] accounting for chemical disorder and
including correlated structures. The scaling properties of
the hull of percolation [72–74] can be illuminating in
exploring surface-surface correlations in more complex
pore domains. Lastly, the role of solid deformability
on the nature of liquid-gas phase transition remains to
be explored.
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