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Abstract: A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from
lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available
in the market is given and compared with the lab scale production of droplets using pipettes and
syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with
non-solvent induced phase separation option is then discussed in the view of making wet particles.
The main steps of particle recovery and solvent exchange are briefly described in order to pass
through the final drying process. Various drying processes are overviewed and the importance
of supercritical drying is highlighted. In addition, we present the characterization techniques to
analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate,
cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of
polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects
of the potential scale-up methods for producing bio-aerogel particles.

Keywords: polysaccharide; droplets; particles; gel; drying; aerogel; mesoporous

1. Introduction

In 1931, S. S. Kistler discovered highly porous materials by replacing the liquid in a gel with a gas
in its supercritical state [1]. The latter allowed reducing shrinkage and solid network deformation
during drying, keeping open porosity and preserving the structure of the gel. Kistler coined the term
“aerogel” for these porous materials. Although almost forgotten for around four decades, the interest
in aerogels became vivid again after the development of the alkoxide route to prepare oxide aerogels
in the early seventies of the last century by Teichner [2]. In the last two decades new types of aerogels
were developed, based on polyurethane [3,4], polyimide [5–7], polyamide [8], and hybrids of these
with, for example, silica [9,10]. A new development took concurrently place: biopolymer aerogels
or bio-aerogels, were synthesized from polysaccharides and proteins. Although monoliths of these
aerogels were often studied, it became clear in the last years that particles or beads of polysaccharide
aerogels are very promising for many applications in the areas of medicine, pharma and food industry
and even as thermal insulating materials. This review is intended to give a brief overview on methods
to produce polysaccharide aerogel particles, their microstructure and properties.

Before we start, let us define more precisely the term “aerogel,” as we use it here. The usage
of this term is not standardized and therefore many porous materials are called “aerogels,” which
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can also be termed “open porous foams.” Aerogels differ from other porous materials. The existing
definitions in the literature [11–14] can be combined and modified to provide a full description of these
materials and their properties: An aerogel is an open porous, non-fluid/solid colloidal or polymeric
network and therefore exhibits a low density and a high specific surface area. Open porous foams
can be termed aerogel if the pores are also in the mesopores range, according to the IUPAC definition
of mesoporosity.

In recent years, the research and development of the variety of aerogels production is increasingly
growing due to their interesting physical and chemical properties such as sorption capabilities, thermal,
mechanical, acoustical and optical properties. However, only few of aerogel types are commercialized
so far [14,15]. There are many review articles reporting on aerogels structure and properties but
mainly focusing on the inorganic and synthetic polymer ones [16–18], with a limited discussion on
bio-aerogels [19–24].

Since 1931, after the invention of aerogels, metal oxide and synthetic polymer aerogels are
well-developed with good understanding of the chemistry of sol-gel syntheses and their correlation
with aerogel structure and properties [15,18]. Bio-aerogels are very “young” materials; their systematic
synthesis started at the beginning of the 21st century. The correlations between the type of
polysaccharide, synthesis pathways and resulting aerogel structure and properties are still far
from being understood. Biopolymer molecules with their strong inter- and intramolecular forces,
either physical or chemical interactions, tend to self-assemble on a molecular level producing
entangled or crosslinked polymeric networks. It results in the formation of microstructure with
interconnected nanofibrillar network. The essential difference between bio-aerogels and other organic
(resorcin-formaldehyde, melamin-formaldehyde) or inorganic (silica, alumina, titania and others)
ones is that the conventional aerogel synthesis starts with monomers, which react to form polymers
and polymeric particles most often by hydrolysis and/or polycondensation mechanisms whereas the
preparation of bio-aerogels starts with the dissolution of a polymer followed by solution gelation
during which polymer chains rearrange themselves into an open porous network.

The first attempt of bio-aerogels synthesis was reported by S. S. Kistler [1,25]. After some
trials [26–28], the earliest publication leading to a bio-aerogel was reported in 1988 [29] describing the
successful preparation of open porous cellulose particles from cellulose xanthate (viscose process).
Only in the last two decades, scientists began to systematically investigate biopolymer aerogels
from multiple sources such as agar, agarose, alginate, cellulose, chitin, chitosan, lignin, pectin,
proteins and starch. Figure 1 illustrates the general pathway of synthesis of bio-aerogels. Interest in
research, development and applications of the bio-aerogels with intriguing properties is rapidly
growing [19,30–69]. Mostly, they are used as carriers, catalysts and supporting or template materials.
Journal papers and reports on bio-aerogels describe their potential use for thermal insulation [43–51],
drug delivery systems [19,53], tissue engineering and regenerative medicine [52], as catalysts [65–69]
and sensors [54,55], adsorbents [56–58] and as well as raw materials for carbon aerogels [59–61] and
organic-inorganic composite aerogels [51,54,62,63].
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Figure 1. General pathway of synthesis of bio-aerogels from polysaccharide solutions via several steps,
including a gelation step, an exchange of the solvent fluid and eventually supercritical drying with
carbon dioxide.

Perceiving potential applications of bio-aerogels in different emerging areas, it is important
to look for their development on an industrial scale. Although the production of bio-aerogels in
the lab scale is reasonably well mastered and a wide gamut of methods is developed, it is a great
challenge to understand how to move from laboratory to industrial scale. Industries tend to adapt the
very best available methods and technologies with cost being the major concern. The production of
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biopolymer-based aerogels in the form of particles has a tremendous advantage reducing significantly
the process cost and time, especially with respect of the time needed for solvent exchange and
supercritical drying [14].

Bio-aerogel particles are today not produced even on pilot plant scale. The general way of
bio-aerogel production in particle form involves: droplet production, gelation, particle recovery,
solvent exchange and drying in supercritical conditions. In this review, the possible production
methods of bio-aerogel particles are discussed especially in view of their potential to be realized on
a larger scale. First, general methods used for making droplets will be overviewed. Then the transitions
from polysaccharide solution to a gel particle will be described followed by drying methods leading to
porous structures. The sections mentioned above will give only brief overviews as far as literature on
these topics is abundant. Finally, structure, properties and production of bio-aerogel particles will be
presented and discussed in detail.

2. Engineering the Production of Droplets

Engineering the production of polysaccharide droplets from polysaccharide solutions had already
been developed from laboratory experiments to industrial scale. The main objective of different methods
is the ability to control droplet size, their size distribution, shape and morphology. With well-known
particles’ production techniques, making polysaccharide droplets can be distinguished into two
main methods:

(a) Formation of droplets in a gaseous phase with subsequent fall in a bath that induces gelation.
(b) Formation of droplets in a liquid phase which is immiscible with the biopolymer solution and on

mixing leads to an emulsion.

In both cases, several parameters determine size and shape of the liquid droplets: the viscosity of
each phase, the surface tension of the polysaccharide solution with respect to the surrounding medium
(gas or liquid) and the dynamic interactions of the droplets with the matrix fluid (laminar or turbulent
flow). In case (a) surface tension between droplet and air is essential when the liquid comes out of
a nozzle while in case (b) the liquid is disintegrated in an immiscible fluid system into droplets with
additional control of the interfacial tension between dispersed and continuous phases by surface active
agents (surfactants). The main techniques for droplet production are described below.

2.1. Formation of Droplets in Gaseous Phase

2.1.1. Conventional Dropping Method

The droplets producing devices used mostly in the laboratory scale are tubes containing sharp
tips at one end where droplets are produced and wide mouth on the other side where the liquids
are filled, for example, pipettes and syringes (Figure 2a). In these dropping devices, the produced
droplets at the sharp tip (orifice) continue falling freely under the influence of gravity into gelation or
coagulation bath. As gravity is the only driving force to generate the droplet from orifice, these devices
produce big droplets of the size of few millimetres, which is usually bigger than the nozzle diameter.
The viscosity of the liquid and the nozzle diameter are important parameters defining the droplet
size. In the conventional dropping methods the shape and size of the particles are dependent on the
thermophysical properties of the solution such as surface tension, density and dynamic viscosity and
on process parameters such as nozzle geometry and gravitational force [70]. With these dropping
devices, the production capacity is very low which a serious disadvantage is. Multiplying the number
of nozzles may improve the droplets production capacity on the laboratory scale. In some devices,
the co-axial gas flow around the nozzle, but not spraying, was used to improve the speed of particles
disintegration from the orifice [71]. In fact, the particles size becomes smaller in comparison with
conventional dropping method as the gas induces shear at the nozzle tip and it is gently pushing the
liquids out of the orifice, supporting the gravitational force. This method is considered to be spraying
the droplets when the droplets size becomes smaller than 1 mm.
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Currently the improved dropping devices producing monodispersed droplets and present on the
market may be classified into the following groups according to the course of action breaking up the
liquid jet: vibrating nozzle, electrostatic and mechanical cutting method (Figure 2b–d).

2.1.2. Vibrating Nozzle Method

In this method, the monodispersed droplets are formed from a laminar liquid jet by applying
superimposed vibrations with an optimum frequency either on the nozzle or on the liquid which is
approaching the nozzle. These vibrations can be generated using sound waves [72,73]. Polysaccharide
solution is pressurized using a pump or gas through a nozzle in order to produce a liquid jet.
The superimposed vibrations destabilize the liquid jet (Rayleigh instability) and then the jet is
disintegrated into monodispersed liquid droplets. This technique is also known as the prilling
method in the literature [73,74]. In order to scale up the production of droplets, some companies
(Nisco Engineering AG (Zurich, Switzerland) and Brace GmbH (Karlstein am Main, Germany) provide
this technique with a multi-nozzle system. The major drawback of this technique is that this process can
work only for solution viscosity lower than few hundreds of mPa.s [71]. The droplet size is estimated
to be twice the diameter of the nozzle inner diameter and can be varied by changing the flow rate of
the liquid and nozzle diameter [72].

2.1.3. Electrostatic Method

In this method, the formation of droplets is enhanced by an electric field when the polysaccharide
solution is extruded through a charged nozzle. The electric field pulls the liquid as droplets from the
outlet of the orifice. The surface of the droplets of polysaccharide solution gets an induced electrostatic
charge when it is disrupted from the orifice. The electrostatic repulsion of liquid droplets in gas phase
prevents coalescence. The disintegration of the droplets and their size depends on the factors such as
solution viscosity, nozzle diameter, distance from the collecting bath and applied voltage. For example,
droplet size can be limited to few tens of micrometres by decreasing the nozzle diameter, reducing
the distance between the electrodes and increasing the applied voltage [75,76]. The high processing
capacity can be achieved using a multi-nozzle system [75,76]. This method of droplet formation is
similar to the electrostatic atomization. But unlike electrostatic atomization which uses significant
gauge pressure, the liquid droplets are produced from one low-velocity jet at the outlet orifice of
a narrow needle. In this method, the produced droplets have almost the same size. The applied
electrical potential can be a static or pulsed one [77]. This method is limited to low viscosity liquids.
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There are dropping devices with electrostatic acceleration of drop formation which allow to
supply two immiscible liquids at the same time and thus produce micro capsules directly at the outlet
orifice [78,79]. A schematic drawing of such device is shown in Figure 3.
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2.1.4. Mechanical Cutting Method

The preparation of particles with a size in the range between the few hundreds of micrometres and
a few millimetres with a high productivity and an economic efficiency is possible using the JetCutter
technology developed by Vorlop and Berford in 1996 at geniaLab® [80]. The essence of technology is
based on the mechanical cutting of a continuous liquid jet. The polysaccharide solution is pressurized
through a nozzle with high velocity to obtain a stable liquid jet. A rotating tool with strings/wires
cuts a liquid jet into cylinders of equal size which become almost spherical droplets during their flight
in air while falling down into the gelation bath. This JetCutter technique allows to prepare spherical
particles with a predetermined size by varying the parameters like cutting frequency, jet speed and
nozzle diameter. Compared to the classical dropping method this method has a high production rate
and allows to work with highly viscous liquids, dispersions and melts of preferably shear thinning
behaviour (viscosities between 0.2 Pa.s and 110 Pa.s) [81,82].

JetCutter technique is very favourable to produce particles in the range between 0.2 and 0.8 mm.
Two factors influence the productivity: (1) the rotating frequency of the spinning and cutting wheel
which determines the droplet generation rate and (2) the initial droplet diameter. Figure 4 shows that
a stream of droplets production can be modified from single- to multi-stream by varying the design of
cutting discs. Depending on the desired throughput, different installations can be carried out such as
multi-nozzle system, designing the cutting wires and multiunit installations [83].
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Figure 4. Image showing the table top JetCutter machine on the left and different Jet cutting tools
producing a single stream of droplets; image reproduced with permission from [83] (a) and multi-stream
of droplets (b).

A disadvantageous feature of the JetCutter technology is material loss, which stems from so
called cutting and spraying losses. While spraying losses can be minimized, cutting losses cannot be
minimized by modification of some cutting parameters like the inclination of the cutting disk and/or
the thickness of the cutting wires. Inclination angle depends on a liquid’s flow rate and a frequency of
cutter’s rotation. Prüsse et al. [84,85] mathematically described the process parameters in order to use
the JetCutter process in an efficient manner.

2.1.5. Spraying/Atomization

Atomization is a process of full disintegration of a stream or jet of an incompressible liquid leading
to the formation of poly- or monodispersed droplets in a gas phase or in vacuum, which is achieved
by atomizer nozzles. Figure 5a shows the stream of atomized droplets falling in the gelation bath.
In Figure 5b, the schematic diagram of one of the kind of atomizer nozzle is shown which was used for
the production of κ-carrageenan gel particles [86].
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Figure 5. Scheme showing atomization of a solution (a). The atomizer nozzle (b) showing one of
the example used for the production of κ-carrageenan gel particles using atomizing technique. Dl is
the diameter of the fluid nozzle exit and Dg is the diameter of the gas nozzle exit; reproduced with
permission from reference [86].
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Lord Rayleigh developed more than 100 years ago a first hydrodynamic model being able to
describe the break-up of a liquid jet into droplets, which was further developed by many authors [87,88].
Basically, atomization is a result of the competition between several factors with one of them being:
surface tension. The surface energy of a cylindrical jet can be reduced, if the liquid jet is transformed
into droplets of a certain size given by the Plateau-Rayleigh instability criterion for Newtonian liquids.
Second viscosity affects the break-up process, especially in non-Newtonian liquids. In most cases,
turbulent flow of the liquid jet, cavitation inside the nozzle, and aerodynamic interaction with the
surrounding gaseous medium contribute to atomization. Thus, atomization is a multi-stage process
and the production of the droplets depends on many operating parameters. Once droplets occur
after initial breakup of the liquid jet or sheet, the droplets themselves can be unstable and further
disintegrate into smaller ones. This process of self-disintegration of droplets can continue leading to
a cascade of finer and finer droplets. In this way, the droplet size characteristics of a spray are not
governed simply by the initial droplet sizes but mainly by the extent to which the largest of these drops
are further disintegrated during secondary atomization. Models have been developed to predict the
drops size spectrum and these equations can be applied to determine the volumetric bead diameters
for atomization processes with different types of nozzles [87–90].

Several atomizing devices are currently available. They may be divided into groups: Pressure Jet
Atomization, Fan Spray Atomization, Twin-fluid Atomization, Rotary Atomization, Effervescent
Atomization, Electrostatic Atomization, Vibration Atomization and Whistle Atomization. The fundamentals
of different atomization process can be found in the literature [91–93]. All these atomizing units are
widely used in the pilot scale production of wet spherical particles. Very recently it has been applied
for open porous particles production [94,95].

2.2. Formation of Liquid Droplets in Oil Phase

Emulsification is a process in which the dispersion of two immiscible liquids is stabilized by
an emulsifier which is often a surfactant. In this process, fluid may be shaped into spherical droplets in
an immiscible liquid phase. Continuous energy input such as stirring or agitation and adding suitable
surfactants keep the dispersed phase in the continuous phase as it is a dynamic process (Figure 6).
Once a stable emulsion is formed (for example, “water-in-oil,” w/o), chemical and/or physical impact
may trigger gelation and further stabilizes the droplets.
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Figure 6. Schematic representation of emulsification process: polysaccharide solution (aqueous phase)
is dispersed in oil phase (water-in-oil emulsion) followed by gelation of each individual droplet.

Water-to-oil ratio is one of the parameters influencing emulsification. This ratio usually ranges
from 1:2 to 1:10 at the lab scale. A transformation from lab to large scale production poses evidently
some questions like the optimal ratio as well as the oil recovery. Roughly, the ratio of the viscosities
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of the aqueous to the oil phase needs to be below 1 in order to break the droplets. The surfactant
concentration and its hydrophilic-lipophilic balance (HLB) value should also be taken into account
to stabilize the emulsion droplets. The most common recommendation for w/o emulsions is to keep
HLB value in the range of 3–6 [96].

This method of droplet production is often employed for polysaccharides soluble in the aqueous
phase. A stable emulsion and a steady average droplet size can be obtained within few minutes,
depending on various process parameters [97]. Poncelet et al. [98] has shown in the production of
alginate particles that the droplet size can be directly affected by the apparatus geometry. With all
other conditions kept constant, an increase of the mixing rate from 200 to 500 rpm leads to a decrease
in the particle size by a factor of 5.1 for a turbine with baffles, whereas only by a factor of 2.7 for
marine impeller.

To achieve the scale-up from lab-scale to pilot and industrial scale, several approaches should be
considered depending on the emulsion-gelation system. First of all, the viscosities of the continuous
and dispersed phases and of the emulsion itself (that is usually higher than that predicted by the
mixing rule) are very important. For the systems where the viscosities are relatively low, standard
scale-up strategies for stirred tank can be applied. Depending on the flow regime (laminar or turbulent),
the scale up can be performed keeping similar shear stresses (for laminar regime) or energy dissipation
rate (for turbulent regime) [99].

It should be noted that as the volume of a stirred tank increases, the trigger used to induce the
gelation in emulsion (heat, oil soluble or insoluble chemicals) can take a significant amount of time
required to reach the entire volume of the dispersed phase. If the same energy input (stirring intensity)
is used during the gelation step as during the emulsification, it is possible for gelled or gelling droplet
to be sheared thus losing their spherical shape [100]. If the stirring intensity is lowered to avoid such
problems, the non-gelled droplets have a chance to coalesce. To avoid such inhomogeneous gelation,
the gelation can be carried in-line, where the emulsion would be discharged in another vessel and the
gelation trigger added at the same time, allowing for better local homogeneity of the gelling system.

For systems that present relatively high viscosity, the appearance of dead volumes in stirred
tank (fraction of the fluid presenting no or low flow) impedes the emulsification process and favours
coalescence (thus reducing the fraction of the smallest droplets). In this case, the use of continuous
emulsification devices such as in-line toothed gear rotor stator machine or colloid mill could be
an alternative and is currently under investigation. Such emulsification devices are widely used in the
food industry [101], illustrating the validity of such approach. In this case the gelation could also be
induced in-line resulting in a fully continuous emulsion-gelation process.

3. Gelation of Polysaccharides Droplets to Produce Gel Particles

The gelation of polysaccharide droplets can be classified in a variety of ways and here we use
“gelation” in the sense of “formation of a network.” Among them are the factors inducing the structural
association of molecules such as: temperature (thermotropic; cryogelation), chemical crosslinking
(ionotropic; chemical modification), pH (changing pH of the solvent medium) and non-solvent induced
phase separation (coagulation). There are many review articles discussing the gelation mechanism of
polysaccharides [102–109]. Figure 7 illustrates the gelation methods of polysaccharides under different
conditions, showing a gelled particle as an example. So far reported in the literature, bio-aerogels
in particle form have been successfully prepared using agar, alginate, cellulose, chitin, chitosan,
κ-carrageenan, pectin and starch. The case studies of these polysaccharides’ gelation in the view of the
production of aerogel particles are briefly overviewed below.
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Figure 7. Illustration of the main mechanisms of formation of polysaccharide gel particles: (a) temperature-
induced (thermotropic) gelation in which the polysaccharides undergo structural transition from coil
to helix and then to double helix, (b) ions-induced (ionotropic) gelation in which the polysaccharide
molecules are crosslinked by ions, (c) covalent crosslinking approach in which the polysaccharide
chains are covalently crosslinked to form gel network, (d) pH-induced gelation and (e) non-solvent
approach to produce a non-solvent filled gel network.
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3.1. Temperature-Induced Gelation

Temperature-induced gelation is also called thermotropic gelation. In this process, polysaccharide
molecules associate themselves often into oriented form in response to temperature, usually upon
cooling (for example, agarose, κ- and ι-carrageenan). In the gelation mechanism of agarose and κ- and
ι-carrageenan, the polysaccharides undergo reversible structural transitions from helix to random coil
structure and vice versa upon heating and cooling of their solution (see Figure 7a). The association
of these helices leads to double helix formation, then proceeding to a gel network. In carrageenans
helices are stabilized by added metal ions while in agar helices are stabilized by hydrogen bonds.

Starch also undergoes thermal gelation but the mechanism is different from that of agar and
carrageenans. Starch is a combination of two polymers: amylose (linear) and amylopectin (branched).
When placed in water and upon heating, starch granules swell, lose their crystallinity and amylose is
leaching out. Gelatinization temperature, corresponding to the loss of granule integrity and melting
of amylopectin, strongly depends on starch source. Further cooling leads to molecules re-association
and formation of opaque gels; this process is not reversible and called retrogradation. Amylopectin
may re-crystallize thus increasing the rigidity of gels. The principles of starch gelatinization and
retrogradation mechanism are discussed in the literature [106,107]. The gelation process and gel
properties are highly depending upon starch source, composition, concentration, crystallinity and
processing conditions.

Contrary to agar, starch and κ-carrageenan solutions, cellulose dissolved in 7–9% NaOH in water
are gelling with temperature increase, and also with time [110]. The thermodynamic quality of this
aqueous sodium hydroxide solvent decreases with increasing temperature preferentially leading
to cellulose-cellulose inter- and intramolecular (and not cellulose-solvent) interactions. As a result,
cellulose coils contract in dilute state and solutions are gelling when being above polymer overlap
concentration. The additives such as urea [111], thiourea and ZnO [112] delay gelation but the
mechanism remains the same [113]. Cellulose gel can also be produced by cryogelation method.
It was recently reported that crosslinked cellulose nanofibrils are sprayed in liquid nitrogen to produce
frozen cellulose gel particles [94,95,114].

3.2. Crosslinking-Induced Gelation

3.2.1. Ions Crosslinking-Induced Gelation

In this process, the polysaccharides are crosslinked and form a gel network in the presence of
ions. This process is also called ionotropic gelation. Alginate, pectin, κ-carrageenan and chitosan are
polyelectrolytes having active functional groups, such as carboxylate, sulphate and amine which are
involved in this gelation process. Alginate and pectin form gels in the presence of divalent cations.
More in detail, divalent (often calcium) cations bind carboxylate functional groups present on polymer
backbone (1,4-linked-α-L-guluronic acid in the case of alginate and α-linked anhydrogalacturonic
acid in the case of pectin) forming the “egg-box” structures resulting in a gel (Figure 7b). For pectins,
calcium-induced gelation is more pronounced for lower-methylated pectins and at pH around 3–3.5 as
it depends on the degree of esterification.

Sulphate functional groups of κ-carrageenan, in its coil structure, bind to the specific cations
(such as potassium, rubidium or caesium) forming a hard gel. Gelation temperature depends on the
concentration of these specific cations. The co-ion of the specific cation, i.e., the specific anion can act
as potent helix stabilizer. Specific ions bind to the different classes of sites on the helix as revealed by
NMR experiments and applying the Poisson-Boltzmann model [115–118].

Chitosan with its amine functional group can undergo ionotropic gelation when anionic counter
ions such as tripolyphosphate, sulphate and citrate present in the solution. The formation of
electrostatic interactions, existing between cationic chitosan and anionic counter ions promotes gel
network formation [119–121].
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Two gelling polymers can also be mixed to form an interpenetrated network. For example,
pectin and alginate can be intermixed in the presence of calcium ions leading to “mixed gels.”
The gel network consists of heterogeneous interactions between two polymers where L-guluronate
and D-galacturonate bound by calcium ions [103,122].

3.2.2. Covalent Crosslinking-Induced Gelation

Gels can be formed via covalent cross-linking which leads to irreversible chemical networks.
However, many of cross-linking agents are not biocompatible and thus are not often used to cross-link
polysaccharides, as far as the latter are mainly used for food, feed, cosmetics and pharma.

An example of a cross-linking agent for cellulose is epichlorohydrin (ECH). Both cellulose and ECH
are dissolved in NaOH-water, mixed and gelation occurs in time via C2 hydroxyl groups. Cellulose
cross-linked with ECH and swollen in water after washing out NaOH has the highest degree of swelling
at anhydroglucose:ECH stoichiometric ratio and reaches 3000–4000 wt % [123]. Another example is
compounds that chemically cross-link cellulose in aqueous medium, they are used to reduce the
fibrillation of Lyocell fibres [124] (i.e., mild cross-linking of the surface layer of never-dried fibres) are:
dichlorohydroxytriazine, 1,3,5-triacryloylhexahydrotriazine, 2,4-diacrylamidobenzenesulphonic acid,
N-methylol resins and dialdehydes.

Chitosan microspheres are produced by mixing chitosan and glutaraldehyde solutions in oil
containing a surfactant [125–129]. Here, chitosan chains are covalently cross-linked by the glutaraldehyde
molecule (see Figure 7c). This is a Schiff base reaction between amine and aldehyde. In the same way,
other aldehydes such as glyoxal and formaldehyde are used for crosslinking chitosan chains [130,131].

To vary the mechanical properties of alginate gels various cross-linkers were used like adipic
dihydrazide, lysine, and poly(ethylene glycol)-diamines [132]. The type of cross-linking molecule and
the cross-linking density determines both the mechanical properties and the degree of swelling in
alginate hydrogels.

3.3. pH-Induced Gelation

The dissolved polysaccharides under alkaline or acidic condition can undergo gelation by
changing pH of the solvent medium. At the contact point of the acidic or alkaline solution and
a droplet of polysaccharide solution, the gelation starts to occur and immediately forms a shell.
Then the diffusion of ions through the shell promotes the complete gelation (Figure 7d). Usually a high
concentration of acidic or alkaline condition is maintained in the regeneration bath to ensure the
complete diffusion of ions and regeneration of polysaccharides. Chitosan, pectin and alginic acid gel
particles are mainly prepared by this method.

At low pH, the gelation of alginate and pectin solution is due to intermolecular hydrogen bonding
between protonated groups (carboxyl, hydroxyl). In the case of pectin, gelation is also stabilized by
hydrophobic interactions of methylated groups. Increasing the pH leads to deprotonation of acidic
groups which prevents aggregation of chains and eventually gelation. For example, alginic acid gels can
be prepared by protonating the sodium salt of carboxylate functional groups in acidic solution [133,134].
Herein the sodium salt of carboxylate functional groups becomes carboxylic acid promoting the
hydrogen bonding and network formation. It should be kept in mind that polymer degradation may
occur in solutions at pH ≤ 1.

Chitosan gel particles can be prepared at higher pH value. Chitosan can be dissolved under mild
acidic condition by protonating the amine functional group, usually using acetic acid and then gel
particles are produced under alkaline medium (NaOH solution) [67,133–138]. The pH value of the
alkaline solution was maintained above the pKa value (6.3) of –NH2 functional groups in order to
deprotonate the amine functional groups.
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3.4. Non-Solvent-Induced Phase Separation

Another way of making gel-like stable “wet” particles or “monoliths” from polysaccharides
is non-solvent induced phase separation. This is well known in preparation of membranes as
“immersion precipitation.” It is usually applied to a non-gelled solution, in order to shape it and
further proceed to drying. This approach is widely used in the processing of cellulose in fibre
spinning and film casting. The principle is as follows: a non-solvent is added to a polysaccharide
solution diffusing inside it. The solubility of the polymer decreases in as much as the non-solvent
proportion increases. This is a diffusion initiated phase separation of the polymer solution into
polymer-rich and polymer-lean regions [109]. The phase separation process was reported for
making bio-aerogels monoliths and particles from cellulose dissolved in the ionic liquid, EmimAc
(1-ethyl-3-methylimidazolium acetate) [139–141], in a hot solution of cellulose in NMMO (N-methyl
morpholine-N-oxide monohydrate) [32], in cellulose dissolved in NaOH [142], as well as in alginate [109]
and pectin [143] solutions. Sometimes these materials are called “hydrogels” if non-solvent is water
(case of cellulose) or “alcogels” if non-solvent is ethanol (case of most polysaccharides).

The process of non-solvent induced coagulation allows making particles if polysaccharide solution
is dropped (with a syringe or via atomisation) in a non-solvent bath. An interesting feature here
is that polysaccharide macromolecules are shrinking upon the addition of non-solvent, but not
completely collapsing if polymer concentration is above the overlap concentration. Polymer chains are
self-associating and forming a 3D self-standing network with non-solvent in the pores (see Figure 7e).
The nature of non-solvent and polysaccharide solution viscosity (which is dependent on polymer
molecular weight and concentration) play an important role in sample shrinkage and final aerogel
density and morphology.

Cellulose particles were obtained by coagulating cellulose from solution in aqueous
NaOH [142,144–147] (before gelation occurred) and in ionic liquids [148,149]. A similar approach
but applied to emulsions was reported in reference [150]: cellulose wet beads were obtained via
emulsification of cellulose-NaOH-urea-water solution with paraffin oil and Span-80 followed by
separation and coagulation of cellulose in aqueous medium. Usually strong acidic solutions are
employed to coagulate cellulose: H2SO4 [151], HNO3 [146], HCl [144,150,152]. In this case, aqueous
strong acidic medium is considered as non-solvent due to coagulation of cellulose and the gel-like
structure is induced by change in pH of the medium.

Chitin gel particles were prepared with a same approach by dissolving chitin in an ionic
liquid (1-butyl-3-methylimidazolium acetate) and extruding the solution through a nozzle into
a coagulating bath containing ethanol [153]. In another approach, polymer-grafted chitin polymer,
chitin-g-poly(4-vinylpyridine) particles were prepared by dropping the DMAc-LiCl solution into
a coagulation bath containing ethanol [154].

A combination of ionic gelation and non-solvent induced phase separation was reported to make
alginate/pectin aerogel particles [74]. The core(pectin)-shell(alginate) particles were made with the
prilling technique. The capsules were dropped in ethanol bath containing CaCl2 and further dried
with supercritical CO2. In this case pectin cross-linking with calcium ions occurred at the same time as
polymer coagulation.

Another way to shape non-gelling polysaccharide solutions in a 3D form (especially those
polysaccharides that are not easily soluble, such as cellulose and chitosan) is to perform chemical
modification (or derivatisation) of the polymer, dissolve it, shape and regenerate (or de-derivatise).
An example is the dissolution of a cellulose derivative like viscose, cellulose esters or ethers in a suitable
solvent and then cellulose regeneration is achieved in a bath whose chemical composition is tuned
to perform “de-derivatisation” (hydrolysis, deacetylation, etc.) [29,155–157]. Sometimes regeneration
and shaping is performed in the same coagulation bath. For example, dissolving cellulose acetate in
a water-miscible organic solvent like acetone or DMSO and dispersing this solution in a water bath
leads to the formation of particles [157]. Cellulose can then be regenerated by hydrolysis.



Materials 2018, 11, 2144 13 of 37

4. Particle Recovery/Solvent Exchange

When polysaccharide gel particles are formed, they have to be separated from the continuous
phase (either gelling bath, or coagulation bath, or oil). The particles are usually collected by filtration
or centrifugation. Most of polysaccharides particles are produced in aqueous media until or unless
the gelation happens in an organic solvent. The solvents, reagents and the additives, which are used
for gelation and emulsion stabilization, have to be completely removed through several washings.
Once the gel particles are confirmed to be pure, that means washing step is completed. If the gel
particles contain water, the solvent exchange is necessary to undergo supercritical drying as far as
water is not miscible with CO2.

The exposure of polysaccharide gels to highly concentrated organic non-solvents (>30–50%) as
it is done during a solvent exchange procedure leads, however, to a significant shrinkage and hence
a change of the microstructure of the resulting aerogels. Therefore, it is crucial to maintain a balance
between the amount of the organic non-solvent at the recovery step needed and the amount that wet
gels can tolerate. Comparing monoliths to particles, it is fortunate that gel particles are less sensitive to
the large concentration gradients during the solvent exchange. In the literature [35,74,133,134,158–161],
the successive immersion of hydrogel particles in a series of alcohol-water concentration has been
practiced. The interaction of the organic non-solvent with the gel matrix is a complex matter.
The number of the organic non-solvents presently used for the solvent exchange is very limited,
mainly alcohol and acetone being used as they are well miscible with CO2. However, principally all
organic solvents, which are suitable for the later steps of supercritical drying (or any other drying type),
can be applied. Thereby the interactions solvent-matrix can be quantified, for instance, with solubility
parameters as demonstrated in reference [162]. Solubility parameters are widely used to predict the
compatibility of polymers and affinities to surfaces to improve dispersion and adhesion. Even for
polymers insoluble in a certain solvent the solubility parameters can be correlated with swelling and
shrinkage. In case of alginates [162] a clear trend was observed for shrinkage behaviour of alginates in
16 different solvents: the alginate gels shrank less in the solvents with solubility parameters closer to
the one of alginate.

The kinetics of the solvent exchange and corresponding shrinkage of the gels can be modelled
by the approaches commonly used in polymer science. For instance pseudo second order kinetics,
normally used for the explanation of swelling kinetics, was successfully applied to describe the solvent
exchange in alginate gels, what leads to a conclusion that it includes simultaneous adsorption and
permeation processes [162]. Still comprehensive studies are required to clarify the interplay in the
process parameters and different polysaccharides in order to minimize the shrinkage and to maintain
the initial structure of the hydrogel.

In the view of the scale up of the production process, different techniques can be applied to
realize the solvent exchange on a larger scale. For example, polysaccharide particles can be pumped
as aqueous slurry to the solvent exchange vessels, where the concentration gradient can be realized
analogous to the chromatographic techniques. After the solvent exchange is completed, the particle
slurry can be analogously transferred to the drying vessel.

5. Drying of Particles

Drying of wet gel is a process being the last and the most critical step in aerogel production.
After solvent exchange, polysaccharide aerogel precursor, the wet gel, is a heterogeneous structure
with a high porosity and pores filled with a liquid. The volumetric pore fraction of the liquid is
generally more than 0.95. Removal of the pore liquid is termed drying. Since drying aims at preserving
the pore volume of the matrix, it is necessary to minimize shrinkage of the solid network and prevent
collapse during drying to obtain aerogels with properties desirable for a wide variety of applications.

Several drying processes, such as ambient, vacuum, freeze and supercritical drying are employed
in preparing dried gels. In general, the drying process collapses the microstructure of the gel body to
certain extent due to the surface tension that is created in the gel body between the solid-liquid-gas
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interfaces and, of course, capillary stress gradients stemming from the dispersion of pore sizes. It was
recently reported for monolithic gel bodies that the drying processes strongly influenced the materials
properties and the porous structures [140,163]. For polysaccharide wet gels, the ambient drying method
provides highly aggregated microstructure due to massive shrinkage leading to densely packed solid
with no porous structure [163]. However the porous structure may resist to collapse to a certain limit if
the wet gel body has organic solvent molecules like alcohol with low surface tension and low vapour
pressure [163]. The most probable reason is that biopolymers are intrinsically hydrophilic. Chemically
modifying the hydrophilic –OH functional groups to hydrophobic environment can assist the ambient
drying. Recently, low density, open porous and hydrophobic cellulose materials were prepared
via ambient drying by chemically modifying the –OH functional groups with tritylchloride [164].
In this method, depending upon the degree of substitution, the chemical modification may lead to
the development of unusual microstructure due to the different manner of self-assembly of cellulose
molecules and lack of hydrogen bonding.

In the case of freeze drying, the liquid in the gel body is frozen and sublimed under regulated
vacuum. Usually this is done when the fluid in the network pores is water. The volume shrinkage
can be limited to 40–50%. Unless special precautions are taken to prevent the growth of ice crystals,
freezing may destroy the pore structure and damage the nanostructured gel body as freezing always
implies the growth of crystals. Freezing is associated with the formation of a dendritic network of the
crystalline solvent phase. The dendrites are, depending on the cooling rate, typically in the range of
few up to a few tens of micrometres size; they push the walls of the network at the crystal boundaries
and thus destroy the morphology formed during gelation [165]. Therefore, freeze drying usually leads
to an open porous material with a pore size in the range of several micrometres. Although quite often
termed aerogels in the literature, they are better termed open porous foams (or cryogels).

In supercritical drying, the pore liquid from aerogel precursor after solvent exchange can be
extracted under supercritical condition. A fluid reaches its supercritical state when it is compressed and
heated above its critical temperature and pressure. Supercritical fluids have liquid-like densities and
gas-like viscosities [166]. Supercritical carbon dioxide is very attractive among other supercritical fluids
and most employed in many industries as it has relatively easy accessible critical conditions, is nontoxic,
environmentally friendly, widely available and cheap. Therefore, CO2 is used to extract organic solvent
from the gel pores (this process can be actually classified as supercritical fluid-liquid extraction) and
then vented out at constant temperature higher than its critical point. In this drying process, the gel
network can be preserved without cracks as there are no capillary stresses. With the great advantage
of this drying process, many industries produce commercial silica-based aerogel products in different
forms, mostly sheets or panels. The extraction time depends mainly on the thickness of the samples.
Therefore, it can be still reduced from the several hours needed for thick monoliths to only few minutes
for polysaccharide particles of millimetre size. In general, the production time of aerogel particles is
estimated to be a factor of 10 to 100 times shorter than for monolithic aerogels, since both the solvent
exchange and the drying time are much shorter due to the smaller diffusion length and possibility to
influence the mass transport by the suitable flow regime in the particle bed [14].

In the following chapter, aerogels produced from different biopolymers in the form of particles
are discussed along with their properties and production methods.

6. Characterization of Bio-Aerogels

Methods used to characterize the structure and properties of classical aerogels can be applied for
bio-aerogels with some precautions, as it will be mentioned below. The first property to report is bulk
density (ρbulk); it is usually determined by simply measuring sample mass (weighing) and volume
(dimensions). Another way is to use powder densitometer which allows measuring the volume of
samples of geometrically complex shapes. Skeletal density of open pores materials is measured with
helium pycnometer. The skeletal density ρskeletal of polysaccharides is known to be 1.5–1.7 g/cm3.
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The porosity ε of bio-aerogels can be then calculated from Equation (1) as follows:

ε =
Vpores

Vtotal
= 1− ρbulk

ρskeletal
(1)

Scanning electron microscopy (SEM) is a very useful tool to characterize aerogel morphology,
however, image analysis software cannot be used to measure pore sizes because of irregular shapes
of the pores. 3D tomography is also a way to visualize bio-aerogel morphology but it does not allow
building pore size distribution below few hundred nanometres.

Specific surface area (SBET), pore volume (Vpores) and pore size distribution are the main
parameters characterizing aerogel texture. As well as for classical aerogels, SBET of bio-aerogels
is determined using nitrogen adsorption technique and Brunauer–Emmett–Teller (BET) approach.

The standard methods applied for measuring pore volume and pore size distribution in classical
aerogels use Barrett-Joyner-Halenda (BJH) approach (for nitrogen adsorption) and/or mercury
porosimetry. Bio-aerogels possess mesopores and also small, large and very large macropores
(from several hundreds of nanometres up to several microns). Thus, the BJH approach, which considers
only mesopores and small macropores, cannot be applied to characterize pore size distribution
in bio-aerogels. It was demonstrated that BJH approach takes into account only 10–20% of the
total pore volume in bio-aerogels [44,50,133,167]. Pore size distributions in bio-aerogels are thus
clearly not limited to mesopores region. It may be possible that nitrogen condensation induces pores’
contraction [168] or bio-aerogels are simply compressed at higher nitrogen pressure. These limitations
in BJH approach for bio-aerogels should be kept in mind in order to avoid artefacts and wrong
understanding of bio-aerogel morphology. When mercury porosimetry is used, very often bio-aerogels
are compressed: mercury is not penetrating in the pores [44,169].

The problem with the applicability of BJH approach on bio-aerogels is reflected in the “measured”
pore volume: while the volume of mesopores, as obtained with BJH approach, is usually around
0.5–2.5 cm3/g, the total pore volume, calculated according to Equation (2), can reach several tens of
cm3/g due to macroporosity [44,50,133]:

Vpores =
1

ρbulk
− 1

ρskeletal
(2)

Thermoporosimetry was used for the determination of pore size distribution [141,170].
This approach is based on the measurement of the experimental shift of the melting point of
an interstitial liquid caused by its confinement in small pores. Differential scanning calorimeter
is used for this purpose and the method was applied to characterize cellulose aerogels. This approach
provided a good correlation with cellulose aerogel morphology seen by SEM; it also demonstrated
a significant difference with pore sizes predicted by BJH method.

Several other features, specific for bio-aerogels, should also be taken into account in order not to
obtain artefacts. Native polysaccharides are very sensitive to humidity (and several are hydrosoluble)
and thus adsorb water vapours. Bulk density and thermal conductivity of “aged” bio-aerogels increase
as compared to their corresponding values obtained on samples just after drying. A three to five
fold increase of thermal conductivity of freeze-dried cellulose II was demonstrated when relative
humidity increased from 0 to 60% [171]. It should be kept in mind that subsequent drying leads to
pores’ irreversible closing, for cellulose it is known as the “hornification” phenomenon. Pore closing
leads to aerogel shrinkage, change of density, morphology and decrease of specific surface area.
Unfortunately, no systematic data on bio-aerogel aging is available in literature. The mechanical
properties of bio-aerogels should also depend on “aging” time. Ideally, the sample storage and
characterisation should be performed in controlled temperature and humidity environment, and
sample “age” (time from drying to analysis) reported.
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7. State of the Art of Bio-Aerogel Particles

A detailed survey shows that the following polysaccharides were used to make aerogel particles,
as summarized in Table 1.

Table 1. Bio-aerogels in form of particles produced by different gelation methods and dried with
supercritical CO2.

Biopolymer Gelation Process Particles Preparation Method

Agar Thermotropic Syringe dropping method [133,134].

Alginate/Alginic acid Ionotropic and pH Syringe dropping method [35,133,134,158–160]; Emulsion
method [161]; Prilling method [74]; JetCutter [172].

Cellulose Non-solvent-induced
phase separation

Syringe dropping method [29,142,144,146,151,155,173];
Atomization method [94,95]; dispersion of wet-coagulated
cellulose [174]; JetCutter [151,175];

Chitin Non-solvent-induced
phase separation Syringe dropping method [153].

Chitosan Ionotropic and pH Syringe dropping method [35,66,67,133–135,158,176–184];
Dispersion of liquids method [185]; JetCutter [172].

K-carrageenan Thermotropic and
ionotropic

Syringe dropping method [35,133,134,186]; Emulsion
method [187].

Pectin Thermotropic and
ionotropic

Syringe dropping method [188]; Prilling method [74];
Emulsion method [189,190]; JetCutter [172].

Starch Thermotropic Syringe dropping method [191]; Emulsion method [19,190].

7.1. Agar Aerogel Particles

Agar is obtained from red algae and consists of two polymers, namely agarose and agaropectin.
Agarose is a linear polymer, made of two repeating units of agarobiose, which is a disaccharide made
up of D-galactose and 3,6-anhydro-L-galactopyranose. Agaropectin is a mixture of smaller molecules
made of alternating units of D-galactose and L-galactose modified with acidic side groups. It is
agarose that is responsible for structural transitions and thermotropic gel formation; it is used in
aerogel production.

Robitzer et al. [133,134] have prepared agarose aerogel particles by dropping 2 wt % hot solution
at 50 ◦C in a cooled water bath. Upon supercritical drying, the particles undergo volume shrinkage up
to 92%. Total pore volume was 7.5 cm3/g with mesopores volume 0.3 cm3/g and specific surface area
was 320 m2/g [133,134].

7.2. Alginate Aerogel Particles

Commercial grade sodium alginate with a concentration of guluronic acid 67% and mannuronic
acid 33% was mostly employed in alginate-based aerogel particles preparation due to high chemical
affinity of guluronic acid to di-cations. Quignard and her co-workers have prepared alginate
aerogel particles with the syringe dropping method. Most commonly, the solution of sodium
alginate is added at room temperature to a stirred solution of calcium chloride or copper chloride
(Figure 8a) [35,133,134,158–160].

Alginic acid gels can be prepared by protonating the droplets of sodium salt of alginate solution
with an aqueous acidic (1 M of HCl) solution [133,134]. This reversing pH method provides nanofibrillar
microstructures similar to calcium alginate gel particles. After drying, the volume shrinkage was
observed to be 22% and specific surface area was in the range 375–390 m2/g [133,134].

The production of alginate gel micro-particles with the emulsion-gelation method has been used
in numerous studies for encapsulation of active compound in alginate gel micro-particle [192,193] or
to be further processed to aerogel micro-particle (see Table 2) [161,190].
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Gelation of the alginate droplet after the emulsification step have been carried out according to
the diffusion [194] and the internal setting methods [195].Materials 2018, 11, x FOR PEER REVIEW  17 of 37 
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Figure 8. Optical and scanning electron microscopy (SEM) images of hydrogel state (first column)
and aerogel spheres (second column) after drying and of cross-sections of aerogel spheres (third and
fourth columns) of Cu-alginate (row a), chitosan (row b) and carrageenan (row c); reproduced with
permission from reference [35].

With the diffusion method, the alginate solution is emulsified in oil and when the desired droplet
size distribution is reached, a solution of calcium chloride is gradually added. Even though this method
produced gelled micro-particles in the 40 µm range, they were not spherical nor had regular shapes [161].

The internal setting is the most widely used method in the literature for alginate gel micro-particle
production and was reviewed by Reis et al. [196]. This method uses an insoluble calcium salt
(e.g., CaCO3) dispersed in the alginate solution as a vector for calcium ion. The alginate solution and
calcium salt mixtures are emulsified and the gelation is triggered via a pH reduction that solubilizes
the salt and frees the calcium ion that will form the calcium alginate gel. The most common pH
reduction strategy consists of adding acetic acid saturated oil to the emulsion, thus yielding the
alginate gel micro-particles.

Instead of adding the acid in the oil, Alnaief et al. [161] showed that it was possible to use
(Glucono-δ-lactone) GDL to achieve similar results. In that case, GDL was added to an alginate
solution and calcium carbonate mixture before the emulsification. In the presence of water GDL slowly
hydrolyses to form gluconic acid, gradually lowering the pH and dissolving the calcium carbonate
with time. The characteristics of aerogels are given in Table 2.
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Table 2. Physical properties of aerogels of alginate particles obtained from references [161,190].

Gelation Method Particle Size,
µm

Surface Area (BET),
m2/g

Mesopore Volume (BJH),
cm3/g Reference

Diffusion method
(calcium chloride) ~40 394 ± 71 10 ± 2 [161]

Internal setting
with acetic acid 150–1400 590 ± 80 15 ± 2 [161]

Internal setting
with GDL ~40 469 ± 54 13 ± 3 [161]

Internal setting
with acetic acid 116 ± 6 524 ± 26 - [190]

The further processing of the alginate gel micro-particle to aerogel micro-particle (solvent exchange
and supercritical drying) was achieved by Alnaief et al. and García-González et al. yielding aerogel
micro-particles with large surface area and large pore volume as illustrated in the Table 2.

7.3. Cellulose Aerogel Particles

Cellulose is a linear polysaccharide composed of D-glucose repeating unit linked by ß(1→4)
bonding. Its dissolution in common solvents is difficult because of numerous hydrogen intra- and
intermolecular bonds. Typical cellulose solvents are LiCl/dimethylacetamide, N-methylmorpholine-
N-oxide monohydrate, (7–9)% NaOH/water, Cu/ethylenediamine, NH3/SO2/DMSO, molten salt
hydrates and ionic liquids [113,197–203]. Two main ways of making cellulose aerogels via drying
under supercritical conditions are known. One corresponds to cellulose dissolution in a direct solvent,
like those mentioned above, resulting in cellulose II aerogels. The other is to use cellulose so-called
nanofibres, that is, either bacterial cellulose or nanofibrillated cellulose (NFC). Such NFCs are prepared
via mechanical disintegration of native cellulose, accompanied quite often by an enzymatic and/or
chemical treatment. These materials are initially in the form of a continuous “non-woven” network of
cellulose I nanofibers filled with water. Both ways were used to make cellulose aerogel beads.

The production of cellulose aerogel beads have been described for the first time in 1988 [29],
but materials were termed porous cellulose particles. They were prepared by dispersing cellulose
xanthate (viscose) into the coagulation bath containing alcohol and non-ionic surfactants at temperature
range 30–70 ◦C. Cellulose regeneration was achieved using a neutralization (acidic) medium. In other
words, cellulose xanthate was chemically converted to cellulose undergoing hydrolysis reaction in
acidic medium. In addition to cellulose-based aerogel particles preparation, cellulose xanthate was
used for crosslinking and chemical modification reactions. The obtained size of particles was less
than 500 µm. The cellulose-based wet particles were solvent exchanged and dried using supercritical
CO2. Cellulose crystallinity in aerogels was in the range 23–46%. The crystalline domain phase was
composed of type cellulose II phase and an amorphous phase. The pore diameter was in the range
between 6 nm to 1 µm.

Alternatively, cellulose aerogel particles were prepared with the JetCutter method. Cellulose was
dissolved in 8%NaOH/water and jet-cut into H2SO4 solution. Wet particles were washed from NaOH
in acidic aqueous solution, water replaced by acetone and finally they were dried with supercritical
CO2 [151]. The SEM images show the particle and the internal morphology (Figure 9).

The same jet-cutting technology was used to prepare cellulose aerogel particles using a cellulose
derivative, namely preparing a cellulose carbamate which was dissolved in NaOH/water [155].
Cellulose was regenerated from cellulose carbamate either by thermal or chemical treatment in
an acid-salt bath. Particles of about 0.5 mm were formed and dried using supercritical CO2. Depending on
the polymer concentration the specific surface area varied from 350 to 540 m2/g [155].
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Similar solvent, 7%NaOH/12%urea/water, was used to make cellulose particles via dropping 
method and particles size, shape and surface area were modified by coagulation bath conditions [146]. 

Figure 9. SEM micrographs of cellulose aerogel prepared from 5%Avicel/8%NaOH/water solutions
coagulated in 10% H2SO4 bath: (a) cellulose aerogel bead and (b) its cross-section. The pictures were
adapted from the Thesis of Dr. R. Gavillon, CEMEF, Mines Paris Tech; reproduced with permission
from Reference [151].

Sescousse et al. reported on using NaOH/water as cellulose solvent and making particles via
non-solvent induced phase separation pathway: by dropping cellulose solution in water, exchanging
water by acetone and drying with supercritical CO2. They showed that the shape of the particles can
vary from very flat plates to spheres (Figure 10—top row) [142]. The influence of the preparation
conditions on the shape of the particles, like cellulose concentration, delay time, bath temperature,
and the distance between the pipette and the bath surface was discussed. They were also able to
incorporate various inorganic powders into cellulose particles and thus to prepare organic-inorganic
aerogel particles (Figure 10—bottom row).
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Figure 10. Wet and dry (aerogels) cellulose particles: (i) top row—the photographic images of wet
cellulose particles (coagulated cellulose in water) of various shapes and (ii) bottom row—photographic
image of TiO2-encapsulated cellulose aerogel (a), its morphology by SEM (b) and SEM images of
the morphology of iron-encapsulated cellulose aerogel particles (c,d); reproduced with permission
from reference [142].

Similar solvent, 7%NaOH/12%urea/water, was used to make cellulose particles via dropping
method and particles size, shape and surface area were modified by coagulation bath conditions [146].
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After supercritical drying, their volume in the wet state was 8–20 mm3 and specific surface area was
330–470 m2/g. The same solvent was used to make particles via emulsion method; in wet state their
diameter varied from few microns to 1 mm; however, these particles were freeze dried resulting in
much lower specific surface area around 16 m2/g [150].

Another additive, ZnO, was used for enhancing the dissolution of cellulose in the mixture of
NaOH/urea/water [144]. Urea and ZnO are usually employed to delay cellulose gelation and improve
dissolution. The cellulose solution prepared from the solvent mixture, NaOH/ZnO/urea/water,
was dropped in an acidic aqueous medium. The studies showed that the addition of 0.5 wt % of ZnO
to the NaOH/urea/water mixture can effectively improve the specific surface area and microstructure
of cellulose aerogel particles (for example, BET specific surface area was 407 m2/g).

Omura et al. [204] have reported the spongy cellulose particles which can be used for the
encapsulation of hydrophilic and hydrophobic fluorescent molecules. Cellulose was dissolved in
ionic liquid, 1-butyl-3-methylimidazolium chloride and N,N-dimethylformamide. The particles were
prepared by dispersing the cellulose solution in n-hexane containing a dissolved surfactant in order to
make spherical droplets. The particles were then washed in protic non-solvent medium, 1-butanol.
The specific surface area of supercritically dried samples showed a higher value of 371 m2/g in
comparison with vacuum dried sample (a dense structure having < 1 m2/g).

1-allyl-3-methylimidazolium chloride, an ionic liquid was used as solvent to prepare cellulose
particles from cellulose paper wastes [173]. Using a syringe, the cellulose solution was dropped into
a water coagulation medium. The specific surface area was varied from 101 to 478 m2/g. The authors
employed different drying techniques and compared the microstructures. The aerogels showed open
porous nanofibrillar structure with high surface area in comparison with oven-dried and air-dried
samples. In addition, aerogels showed high loading capacity of dye molecule, curcumin, which is
about 0.55 mg/g.

Another ionic liquid, 1,5-diazabicyclo[4.3.0]non-5-enium propionate ([DBNH][CO2Et]) and
Jet-cutting methods was used recently to produce cellulose aerogel beads (Figure 11) [175].
The importance of the rheological properties of cellulose solutions in jet-cutting was demonstrated.
The size of particles varied from 0.5 to 1.8 mm depending on cellulose concentration, density was
0.04–0.07 g/cm3 and specific surface area was 240–300 m2/g.
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A special case of highly porous nanofibrillated cellulose particles should be mentioned: using
a combination of atomization and freeze drying, named spray-freeze drying, the production of finely
distributed cellulose nanofibril aerogels was reported [94,95]. The TEMPO ((2,2,6,6-Tetramethylpiperidin-
1-yl)oxyl) oxidized cellulose nanofibrils were crosslinked with Kymene and then the suspension was
sprayed at 40 MPa pressure through a 1 mm inner diameter steel nozzle into the liquid nitrogen bath.
After freeze drying, the crosslinked cellulose nanofibrils aerogels showed high specific surface area
390 m2/g with a cellulose nanofibril concentration of 0.6% [94]. The size of aerogel particles was in the
range of 2–7 µm (Figure 12) [95].
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Beamount et al. [174] produced cellulose II particles by dispersing enzymatically pre-treated
TENCEL® gel (coagulated in water wet cellulose from cellulose-NMMO solution, Lyocell process)
using a high pressure homogenizer. The latter broke TENCEL® gel into particles. The enzymatic
treatment significantly reduced cellulose molecular weight down to 19 kg/mol. The particles were
then either freeze-dried from water or water was exchanged to tert-butanol and then freeze-dried.
This method provides the particles with irregular shape having particle size in the range between 0.5
to 10 µm. After freeze drying from tert-butanol medium, the particles showed the continuous open
porous structure having nanofibrillar network with high specific surface area of 298 m2/g. The particles
were termed cryogels by the authors. The particles obtained by freeze-drying from water showed
sheet-like morphology, as in [140,163], with no considerable specific surface area (10 m2/g).

7.4. Chitin and Chitosan Aerogel Particles

Chitin is a linear polysaccharide having N-acetyl-D-glucosamine repeating units linked by ß(1→4)
bonding. The copolymer containing N-acetyl-glucosamine and N-glucosamine units are also called
chitin when the polymer chain has more than 50% N-acetyl-D-glucosamine units. Chitosan is one of
the most important derivatives of chitin with the degree of deacetylation of N-acetyl-glucosamine
units higher than 50%. While chitin is very difficult to dissolve, chitosan offers water solubility under
mild acidic condition by protonation of amine functional groups (pKa = 6.3). The increase of pH above
pKa leads to polymer micro-phase separation, similar to that when placing cellulose solution in water,
and a “wet” chitosan network is formed.

In the literature only one reference can be found for chitin aerogel particle production [153].
Silva et al. [153] have reported the production of chitin and chitin-silica composite aerogel particles by
employing a non-solvent phase separation method in which ionic liquid, 1-butyl-3-methylimidazolium
acetate, was used as the solvent medium to dissolve the chitin powder. Particles were made by simple
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syringe dropping method in ethanol. Though supercritical CO2 drying was employed, the porosity
was reported to be rather low, 66–67.3% and pore size distribution was in the range 257–359 µm [153].

Quignard, Valentin and co-workers [35,67,133–135,158] used squid-pen and crab-shell chitosan
with a high degree of amine groups to prepare chitosan aerogel particles. Chitosan was dissolved
in acetic acid and the solution was dropped in an aqueous solution of sodium hydroxide through
syringe needle with a nozzle diameter of 0.8 mm. Gelation occurred immediately at the droplet surface.
Aerogel particles preparation then proceeds as usual: washing with water, exchange with ethanol
and drying with supercritical carbon dioxide. The aerogel particles had a fibrillar microstructure
(see Figure 8b), exhibited a volumetric shrinkage upon drying of around 50% and specific surface area
from 150 to 300 m2/g.

Recently, León et al. has demonstrated supercritical drying of chitosan-tripolyphosphate
nanoparticles [185]. The nanoparticles diameter was in the range of 70 to 180 nm (polydispersity index
= 0.36). Unfortunately, the supercritically dried nanoparticles (aerogels) showed low specific surface
area of around 11 m2/g; freeze-dried chitosan-tripolyphosphate nanoparticles had even lower specific
surface area.

Chitosan was used to prepare organic-inorganic hybrid aerogel microparticles. To achieve this,
first the inorganic components are hybridized with the chitosan polymer using either a co-gelation or
a post gelation method [66,176–182,184]. Chitosan-montmorillonite clay hybrid aerogels microparticles
were recently reported [176,177]. In these the organic and inorganic components are well mixed together
before the gelation occurred. Montmorillonite belongs to the class of sodium-aluminium layer silicates,
is quite abundant in nature (part of bentonite). The layer structure and its hydrophilicity make it
interesting for nanoreinforcment of certain polymers. A hybrid with chitosan is achieved by mixing
an acidic aqueous solution of chitosan with sodium salt of montmorillonite. Being a cationic polymer
in the acidic medium, the ammonium ions of chitosan can intercalate the layers of montmorillonite and
thus increase the interlayer spacing. When this acidic dispersion is dropped into an alkaline solution,
the gel microparticles of chitosan-montmorillonite are formed. Washing and supercritical drying of
the hydrogels yield aerogels. These hybrid aerogels have low specific surface area in comparison
with chitosan aerogels. However, these hybrid aerogels showed enhanced thermal properties
with the degradation delay in the order of chitosan < chitosan-graphene oxide < chitosan-clay
aerogels [176,177,183].

In post gelation method, chitosan gel particles prepared by dropping method in alkaline solution
are utilized to form organic-inorganic composite microspheres by impregnation of the second phase
into chitosan network. Chitosan gel particles are dipped in the precursors of metal oxide sol for 12 to
48 h. Sol-gel process occurred in the organic matrix of microparticles to form composite materials.
After washing, the particles are dried by supercritical CO2 yielding organic-inorganic composite
aerogel microparticles [66,178–182].

7.5. K-Carrageenan Aerogel Particles

K-carrageenan is a sulphated polysaccharide belonging to carrageenan family. Quignard and her
co-workers used syringe dropping method to prepare κ-carrageenan aerogel particles [35,133,134,186].
The hot solution of κ-carrageenan was taken in a thermostated syringe and dropped into a cold saline
(KCl) solution. SEM image in Figure 8c shows the very closely packed fibrillar network. The aerogels
showed 95% of volume shrinkage and specific surface area of about 200 m2/g. The volume shrinkage
can be reduced if the specific ions are chosen to be potent helix stabilizers [205]. The reports also
demonstrated that the massive volume shrinkage can be limited to almost no shrinkage when the
nanofibers of κ-carrageenan were impregnated with silica sol particles [186].

Alnaief et al. [187] have prepared κ-carrageenan aerogel particles by emulsion method in which
the influences of parameters such as specific cations and anions have been studied. Using specific
ions, potassium cation and carbonate anion was shown to produce better aerogel textural properties in
comparison with other cations (Ca2+ and Al3+) and anions (Cl− and I−). Using potassium carbonate
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as specific ions for gelation, the results showed a specific surface area of 167 m2/g, a pore volume of
about 0.54 cm3/g and about 13 nm as a pore diameter [187].

7.6. Pectin Aerogel Particles

Pectin is linear polysaccharide mainly consisting of galacturonic acid units which are connected via
α-(1-4) bonds. Three types of pectin are to be differentiated: (1) low methoxyl (LM) pectin, where less
than 50% of galacturonic acid groups are esterified with methyl groups; (2) high methoxyl (HM) pectin,
where more than 50% of existing galacturonic acid groups are esterified with methyl groups; and (3)
amidated pectin, where acid groups are partly amidated. Gelling properties highly depend on the
ratio of esterified and amidated acid groups [206].

Veronovski et al. [188] prepared multilayer amidated LM pectin aerogel particles via ionotropic
gelation by dropping 2% pectin solutions through a needle (0.8 mm in diameter) into calcium chloride
(CaCl2) solution. After gelation, obtained hydrogel particles were dropped into a 1% pectin solution to
form membranes (layers) around the core, and again were gelled with CaCl2. Three membranes were
produced around the core. Solvent was exchanged in successive ethanol-water baths and particles
were dried with supercritical CO2. These aerogel particles were loaded with theophylline and nicotinic
acid; the drugs were directly dissolved in the initial pectin solution and the same procedure of
multi-layer preparation was repeated. Multilayer pectin aerogel particles with diameter of 8.0 and
9.8 mm, depending on the source of pectin (apple and citrus, respectively), were produced. Specific
surface area of obtained cores and membranes varied from 469 to 593 m2/g depending on source of
pectin and initial pectin concentration. The release of both theophylline and nicotinic acid from citrus
pectin turned out to be slower than that from apple pectin, around 7 h versus 1.5 h, respectively. It was
shown that release is controlled by swelling and dissolution of pectin matrix.

De Cicco et al. [74] combined amidated LM pectin with alginate to produce core-shell aerogel
particles. A core of pectin was covered with a layer of alginate using the co-axial prilling method.
Ionotropic gelation was performed via diffusion method in an ethanolic CaCl2 solution. Smooth,
spherical aerogel core-shell particles with diameters between 3.23 and 3.26 mm were obtained.
The particles were loaded with doxycycline hyclate which was dissolved in pectin solution. The density
of aerogel particles was around 0.3 g/cm3.

García-Gonzáles et al. [189] produced HM pectin aerogel microspheres via emulsification in oil at
313 K for 30 min followed by coagulation in ethanol. Highly spherical pectin aerogel particles with
specific surface area of 440–480 m2/g and particle diameter between 100 and 2000 µm, depending
on the oil:water ratio, were obtained. Pectin solution was mixed with maghemite nanoparticles and
magnetic pectin aerogels were produced (Figure 13). The incorporation of nanoparticles slightly
increased specific surface area and aerogel density. The same production method was used later
by García-Gonzáles et al. [190] to produce HM pectin aerogel microspheres with mean mesopore
diameters 14–18 nm. Hereby, pectin aerogel microspheres with specific surface area of 379 m2/g and
mean particle diameter before drying of 498 µm were obtained.
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7.7. Starch Aerogel Particles

As described in Section 3.1. “Gelation of polysaccharide solutions,” starch granules swell in
hot water and gelatinization occurs. Retrograded starch gels can then be the precursor for making
starch aerogels.

The first starch based aerogels, called “microcellular foams,” were reported by Glenn and Irving
in 1995 [207]. The density was around 0.22–0.23 g/cm3. More than a decade later, starch aerogels in
the shape of cylinders were prepared via dissolution-retrogradation solvent exchange-supercritical
CO2 drying route and suggested to be used as matrices for drug delivery applications [195].
For potato-based aerogels the density was rather high, around 0.3–0.45 g/cm3 and specific surface area
was rather low, around 70–90 m2/g [195]. Later publications report aerogels from wheat starch with
density varying from 0.05–0.3 g/cm3 and specific surface area around 50–60 m2/g [208]; low density
and high specific surface area was reported for high amylose corn starch: 0.14 g/cm3 and 254 m2/g,
respectively [49].

Starch aerogel particles were prepared from corn and pea starches via emulsion-gelation
method: first, by making starch solution/oil emulsion at 393 K and then retrograding starch in the
droplets [190,209] at 318 K. Aerogel particles were of 400–800 µm in diameter with densities of 0.1–0.25
g/cm3 and specific surface area in the range of 100–240 m2/g. These particles were used as matrices to
deliver ketoprofen and benzoic acid which were loaded in starch matrix under supercritical CO2.

Starch aerogel particles with high amylose-fatty acid complexes were reported by Kenar et al. [191].
The retrograding property of amylose was controlled by blending starch with the sodium palmitate
where the polyelectrolyte property of amylose-complexed sodium palmitate prevents the gel formation.
The hydrogels were prepared by dropping the solution of amylose corn starch-sodium palmitate using
syringe into the hydrochloric acid solution. Specific surface area of aerogels was in the range between
313 and 361 m2/g.
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8. Applications of Polysaccharide Aerogel Particles

Application of aerogels and in particular polysaccharide aerogel particles is a subject of growing
interest and stimulating research. Progress over the last two decades has been recently summarized in
several review articles [14,19,24,210,211]. Here we intend to highlight those applications where the
use of particles plays a crucial role. Polysaccharide aerogel beads with their physical, chemical and
functional properties can be used in applications such as separation techniques, catalysis or as carriers
for drug delivery.

Perhaps the most studied application area suggested for polysaccharide aerogels is drug delivery.
Pioneered in early 2000’s for silica aerogels [212,213], the use of aerogels as carrier matrices for
drugs had expanded over the years to include many new aerogel classes, mainly biopolymers [19].
Being largely mesoporous solids, aerogels can accommodate drugs in the amorphous state suppressing
re-crystallization [214]. This feature along with the high specific surface area and rapid pore collapse
upon contact with liquid media gives rise to unusually fast drug release. The enhanced drug release has
clearly been shown for classical silica aerogels [215], whereas for the case of biopolymer, other factors
such as pH-dependent swelling and degradation, also contribute to the overall release kinetics [188,190].
Furthermore, release profiles vary with the particle size—a useful effect for the modulation of the
release kinetics but often overlooked when reporting such kinetic data. As discussed in the previous
sections, a variety of particle generation and gelation techniques are reported to date. They can
potentially cover the size requirements for a specific administration route allowing for a reasonably high
throughput. Oral [190,216,217], mucosal [218], and most recently pulmonary [219] drug delivery routes
have been exemplified in the literature. Furthermore, thanks to high pore volume and swelling ability
both pristine and drug-loaded polysaccharide aerogel particles have been suggested as superabsorbent
and for wound healing applications [56,74].

Another active line of research is the use of polysaccharide aerogels as advanced food
materials [220]. Edibility, renewability, sustainability and relatively low cost of polysaccharides make
them an attractive starting material for functional food. When used as food, polysaccharide aerogels
could function as dietary fibre (e.g., cellulose) or as a source of energy (e.g., starch). Analogously
to drug carriers, aerogels may serve as a hosting matrix for active compounds and nutraceuticals
(e.g., vitamins, microelements), see [221]. They can also be utilized as mechanical support structures in
food packaging and water absorbents in active packaging [220].

Beyond that, polysaccharide-derived aerogels demonstrate a thermal conductivity in the range of
16–22 mW/m·K [24], which is lower than for conventional biomass-derived materials and comparable
with well-studied silica-based aerogels. Although the explicit use of polysaccharide aerogel particles
in thermal insulation applications is unknown, to the best of our knowledge, particulate silica
aerogels have widely been investigated for this purpose [222,223]. With the newest advances such as
hydrophobization [14] and reinforcement [224] methods as well as post-functionalization (e.g., coating,
see [225,226]) and fast supercritical drying [227–229] we may expect this area to expand in importance
in the upcoming years.

Further application fields embrace environmental remediation and catalysis, both of them
have been comprehensively reviewed very recently [210,211]. Functionalized nanofibrillar network
of polysaccharide aerogel beads have been utilized as promising reusable filter materials for the
applications in environment control system [172,230,231]. High specific surface area of nano-network
and chelating functional groups of polysaccharide aerogels offer hosting property and they can be
utilized for catalysis applications [65–68]. For instance, it was demonstrated that alginate and chitosan
aerogels can act as supports in heterogeneous catalysts as the carboxylate anion in the alginate and
amine groups in chitosan aerogels can offer the guest binding properties, coordinating the metal
nanoparticles or complexes [65,66].
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9. Conclusions and Perspectives on the Potential Scale-up Production of Bio-Aerogel Particles

Table 3 shows an overview of the processes applicable for the production of gel particles which
can be later solvent exchanged and dried to obtain aerogels.

Table 3. An overview of the processes applicable for production of polysaccharide gel particles
(after drying, aerogels can be produced).

Dropping JetCutter Spraying Atomization Emulsion Gelation

Particle size 0.2–10 mm 0.2–10 mm 1–500 µm 10–500 µm

Scale of the process
(productivity)

1 g/min
(10 nozzle
system) a

Technical scale
(several kg/h)

Productivity depends on
the nozzle Technical scale possible

Needs of additives No No No Surfactants and oil

Advantages Very simple

Versatile systems, simple,
commercially available
apparatus; monodispersed
particles

Different sizes possible
depending on the nozzle

Simple apparatus
Particle size can be
regulated by stirring and
surfactants

Limitations Limited
productivity

Not suitable to produce
small particles (<200 µm);
limited processing
window in terms of the
rheological properties of
solutions

Clogging, polydispersed
particles

Washing from oil;
Polydispersed particles

a the droplets are freely falling under the gravitation force; viscosity of fluid is 1.8 Pa.s at a shear rate of 1 s−1.

The easiest way to prepare particles is the simple dropping process: particles are made by
dropping a solution into a gelation bath using a syringe or pipette. This elegant process facilitates
an easy way to study and understand in depth the influence of various parameters, like biopolymer
concentration, type of solvent, solution viscosity and bath parameters on the formation of particles,
meaning especially their size, shape and morphology. Whenever a new system is prepared the
application of this method is inevitable and builds the background for further up-scaling steps. Going to
a larger scale, the “dropping” method must be replaced by other methods like spraying, jet-cutting
or atomization. Then, of course, the processing parameters have to be adjusted. The jet-cutting
process has been successfully employed for the preparation of micrometre and millimetre sized
particles. The jet-cutting technique is recommended for polysaccharide solutions in terms of large
scale productivity of particles. Production rates of up to hundreds of kilograms of gel particles per
hour seem adequate considering the number of particles needed for a pilot plant. It should be noted
that the JetCutter technology for making gel beads is already approved for large scale by geniaLab®.
Although the JetCutter technology looks as if it is the appropriate choice for biopolymer solutions of
high viscosity, it has a drawback for solutions of low viscosities in the range of 200–300 mPa.s: the
spray losses increase with decreasing viscosity. In the spraying atomization small particles can be
prepared, however the viscosity of the solutions is a main issue along with the pipe blockage due to
the occasional gelation therein. Spraying atomization is widely used in the pharmaceutical industry so
that the scalability is already proved.

In emulsion gelation method, agitation or stirring can create steady-state conditions, such that
sol-droplets are kept in suspension indefinitely, or as long as needed to complete the gelation reaction
within the sol-droplets. The production of particle sizes of 1 to 1500 µm using the emulsion gelation
method can easily be realized. Spherical particles can generally be obtained. As in the case of the simple
dropping method, the influence of process parameters has to be carefully examined using physical
and/or design of experiments approaches. Prior to any process design it is necessary to acquire
physico-chemical data of the systems to be used, like densities, viscosities, partition coefficients,
gelation kinetics and their temperature dependence. Therefore, particles of different sizes can be
produced applying the suitable method, as summarized in Figure 14. Therefore, we are optimistic that
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in the very near future the aerogel production in form of particles would make a significant progress.
This topic is extensively studied in the EU project NanoHybrids.Materials 2018, 11, x FOR PEER REVIEW  27 of 37 
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Massart, B.; Nastruzzi, C.; et al. Comparison of different technologies for alginate beads production.
Chem. Pap. 2008, 62, 364. [CrossRef]

82. Prüsse, U.; Jahnz, U.; Wittlich, P.; Breford, J.; Vorlop, K.-D. Bead production with JetCutting and rotating
disc/nozzle technologies. Landbauforschung Völkenrode 2002, SH241, 1–10.

83. Prüsse, U.; Jahnz, U.; Wittlich, P.; Vorlop, K.-D. Scale-up of the JetCutter technology. Chem. Ind. 2003, 57,
636–640. [CrossRef]

84. Prüsse, U.; Fox, B.; Kirchhoff, M.; Bruske, F.; Breford, J.; Vorlop, K.-D. New Process (Jet Cutting Method) for
the Production of Spherical Beads from Highly Viscous Polymer Solutions. Chem. Eng. Technol. 1998, 21,
29–33. [CrossRef]

85. Prüsse, U.; Bruske, F.; Breford, J.; Vorlop, K.-D. Improvement of the Jet Cutting Method for the Preparation
of Spherical Particles from Viscous Polymer Solutions. Chem. Eng. Technol. 1998, 21, 153–157. [CrossRef]

86. Perrechil, F.A.; Sato, A.C.K.; Cunha, R.L. k-Carrageenan–sodium caseinate microgel production by
atomization: Critical analysis of the experimental procedure. J. Food Eng. 2011, 104, 123–133. [CrossRef]

87. Lykov, M.V.; Leonchik, B.I. Raspylitel’nye Sushilki. Osnovy Teorii i Rascheta; Mashinostroenie: Moscow, Russia, 1966.
88. Mushtaev, V.I.; Ulyanov, V.M. Sushka Dispersnykh Materialov; Khimiya: Moscow, Russia, 1988.
89. Havkin, Y.I. Centrobezhnye Forsunki; Mashinostroenie: Leningrad, Russia, 1976; p. 168.
90. Lund, M.T.; Sojka, P.E.; Lefebvre, A.H.; Gosselin, P.G. Effervescent atomization at low mass flow rates. Part 1:

The influence of Surface Tension. At. Sprays 1993, 3, 77–89. [CrossRef]
91. Lightfoot, M.D.A. Fundamental classification of atomization processes. At. Sprays 2009, 19, 1065–1104.

[CrossRef]
92. Walzel, P. Atomizing of liquids. Chem. Ing. Tech. 1990, 62, 983–994. [CrossRef]
93. Lefebvre, A.H. Atomization and Sprays; Taylor & Francis: New York, NY, USA, 1989; p. 423.
94. Cai, H.; Sharma, S.; Liu, W.; Mu, W.; Liu, W.; Zhang, X.; Deng, Y. Aerogel Microspheres from Natural

Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules 2014, 15, 2540–2547.
[CrossRef] [PubMed]

95. Zhang, F.; Ren, H.; Dou, J.; Tong, G.; Deng, Y. Cellulose Nanofibril Based-Aerogel Microreactors: A High
Efficiency and Easy Recoverable W/O/W Membrane Separation System. Sci. Rep. 2017, 7, 40096. [CrossRef]
[PubMed]

96. Boyd, J.; Parkinson, C.; Sherman, P. Factors affecting emulsion stability, and the HLB concept. J. Colloid
Interface Sci. 1972, 41, 359–370. [CrossRef]

97. Arshady, R. Albumin microspheres and microcapsules: Methodology of manufacturing techniques.
J. Control. Release 1990, 14, 111–131. [CrossRef]

http://dx.doi.org/10.1016/j.ijpharm.2005.05.041
http://www.ncbi.nlm.nih.gov/pubmed/16102925
http://dx.doi.org/10.1016/j.carbpol.2016.04.031
http://www.ncbi.nlm.nih.gov/pubmed/27178955
http://dx.doi.org/10.1007/BF00902725
http://dx.doi.org/10.1002/aic.690400613
http://www.ncbi.nlm.nih.gov/pubmed/7827774
http://dx.doi.org/10.1039/C6LC00848H
http://www.ncbi.nlm.nih.gov/pubmed/27869911
http://dx.doi.org/10.1098/rsif.2009.0348
http://www.ncbi.nlm.nih.gov/pubmed/19828501
http://dx.doi.org/10.2478/s11696-008-0035-x
http://dx.doi.org/10.2298/HEMIND0312636P
http://dx.doi.org/10.1002/(SICI)1521-4125(199801)21:1&lt;29::AID-CEAT29&gt;3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1521-4125(199802)21:2&lt;153::AID-CEAT153&gt;3.0.CO;2-8
http://dx.doi.org/10.1016/j.jfoodeng.2010.12.004
http://dx.doi.org/10.1615/AtomizSpr.v3.i1.40
http://dx.doi.org/10.1615/AtomizSpr.v19.i11.50
http://dx.doi.org/10.1002/cite.330621203
http://dx.doi.org/10.1021/bm5003976
http://www.ncbi.nlm.nih.gov/pubmed/24894125
http://dx.doi.org/10.1038/srep40096
http://www.ncbi.nlm.nih.gov/pubmed/28059153
http://dx.doi.org/10.1016/0021-9797(72)90122-1
http://dx.doi.org/10.1016/0168-3659(90)90149-N


Materials 2018, 11, 2144 32 of 37

98. Poncelet, D.; Lencki, R.; Beaulieu, C.; Halle, J.P.; Neufeld, R.J.; Fournier, A. Production of alginate beads by
emulsification/internal gelation. I. Methodology. Appl. Microbiol. Biotechnol. 1992, 38, 39–45. [CrossRef]
[PubMed]

99. Hemrajani Ramesh, R.; Tatterson Gary, B. Mechanically Stirred Vessels. In Handbook of Industrial Mixing;
Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004;
pp. 345–390.

100. Alnaief, M.; Smirnova, I. In situ production of spherical aerogel microparticles. J. Supercrit. Fluids 2011, 55,
1118–1123. [CrossRef]

101. Almeida-Rivera, C.; Bongers, P. Modelling and experimental validation of emulsification processes in
continuous rotor–stator units. Comput. Chem. Eng. 2010, 34, 592–597. [CrossRef]

102. Gamini, A.; Civitarese, G.; Cesàro, A.; Delben, F.; Paoletti, S. gelation mechanism of ionic polysaccharides.
Makromol. Chem. Macromol. Symp. 1990, 39, 143–154. [CrossRef]

103. Rinaudo, M. Gelation of polysaccharides. J. Intell. Mater. Syst. Struct. 1993, 4, 210–215. [CrossRef]
104. Tako, M. The principle of polysaccharide gels. Adv. Biosci. Biotechnol. 2015, 6, 22–26. [CrossRef]
105. Morris, E.R. Molecular interactions in polysaccharide gelation. Br. Polym. J. 1986, 18, 14–21. [CrossRef]
106. Tako, M.; Tamaki, Y.; Teruya, T.; Takeda, Y. The Principles of Starch Gelatinization and Retrogradation.

Food Nutr. Sci. 2014, 5, 280–291. [CrossRef]
107. Zobel, H.F.; Stephen, A.M. Starch: Structure, Analysis, and Applicaiton. In Food Polysaccharides and Their

Applications, 2nd ed.; Stephen, A.M., Phillips, G.O., Williams, P.A., Eds.; CRC Press, Taylor & Francis Group:
New York, NY, USA, 2006.

108. Braudo, E.E.; Muratalieva, I.R.; Plashchina, I.G.; Tolstoguzov, V.B.; Markovich, I.S. Studies on the mechanisms
of gelation of kappa-carrageenan and agarose. Colloid Polym. Sci. 1991, 269, 1148–1156. [CrossRef]

109. Gurikov, P.; Smirnova, I. Non-Conventional Methods for Gelation of Alginate. Gels 2018, 4, 14. [CrossRef]
110. Roy, C.; Budtova, T.; Navard, P. Rheological Properties and Gelation of Aqueous Cellulose-NaOH Solutions.

Biomacromolecules 2003, 4, 259–264. [CrossRef] [PubMed]
111. Cai, J.; Zhang, L. Unique Gelation Behavior of Cellulose in NaOH/Urea Aqueous Solution. Biomacromolecules

2006, 7, 183–189. [CrossRef] [PubMed]
112. Liu, W.; Budtova, T.; Navard, P. Influence of ZnO on the properties of dilute and semi-dilute

cellulose-NaOH-water solutions. Cellulose 2011, 18, 911–920. [CrossRef]
113. Budtova, T.; Navard, P. Cellulose in NaOH-water based solvents: A review. Cellulose 2016, 23, 5–55.

[CrossRef]
114. Syverud, K.; Kirsebom, H.; Hajizadeh, S.; Chinga-Carrasco, G. Cross-linking cellulose nanofibrils for potential

elastic cryo-structured gels. Nanoscale Res. Lett. 2011, 6, 626. [CrossRef] [PubMed]
115. Piculell, L. Gelling Carrageenans. In Food Polysaccharides and Their Applications, 2nd ed.; Stephen, A.M.,

Phillips, G.O., Williams, P.A., Eds.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2006.
116. Belton, P.S.; Morris, V.J.; Tanner, S.F. Interaction of group I cations with iota, kappa and lambda carrageenans

studied by multinuclear nmr. Int. J. Biol. Macromol. 1985, 7, 53–56. [CrossRef]
117. Nilsson, S.; Piculell, L. Helix-coil transitions of ionic polysaccharides analyzed within the Poisson-Boltzmann

cell model. 4. Effects of site-specific counterion binding. Macromolecules 1991, 13, 3804–3811. [CrossRef]
118. Zhang, W.; Piculell, L.; Nilsson, S. Effects of specific anion binding on the helix-coil transition of lower

charged carrageenans. NMR data and conformational equilibria analyzed within the Poisson-Boltzmann cell
model. Macromolecules 1992, 25, 6165–6172. [CrossRef]

119. Shu, X.Z.; Zhu, K.J. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic
gelation. J. Microencapsul. 2001, 18, 237–245. [PubMed]

120. Vorlop, K.-D.; Klein, J. Formation of spherical chitosan biocatalysts by ionotropic gelation. Biotechnol. Lett.
1981, 3, 9–14. [CrossRef]

121. Shu, X.Z.; Zhu, K.J. A novel approach to prepare tripolyphosphate/chitosan complex beads for controlled
release drug delivery. Int. J. Pharm. 2000, 201, 51–58. [CrossRef]

122. Toft, K.; Grasdalen, H.; Smidsrod, O. Synergistic Gelation of Alginates and Pectins. In Chemistry and Function
of Pectins; Fishman, M.L., Jen, J.J., Eds.; ACS Symposium Series; American Chemical Society: Washington,
DC, USA, 1986; Volume 310, pp. 117–132.

http://dx.doi.org/10.1007/BF00169416
http://www.ncbi.nlm.nih.gov/pubmed/1369009
http://dx.doi.org/10.1016/j.supflu.2010.10.006
http://dx.doi.org/10.1016/j.compchemeng.2010.01.017
http://dx.doi.org/10.1002/masy.19900390113
http://dx.doi.org/10.1177/1045389X9300400210
http://dx.doi.org/10.4236/abb.2015.61004
http://dx.doi.org/10.1002/pi.4980180105
http://dx.doi.org/10.4236/fns.2014.53035
http://dx.doi.org/10.1007/BF00654123
http://dx.doi.org/10.3390/gels4010014
http://dx.doi.org/10.1021/bm020100s
http://www.ncbi.nlm.nih.gov/pubmed/12625720
http://dx.doi.org/10.1021/bm0505585
http://www.ncbi.nlm.nih.gov/pubmed/16398514
http://dx.doi.org/10.1007/s10570-011-9552-9
http://dx.doi.org/10.1007/s10570-015-0779-8
http://dx.doi.org/10.1186/1556-276X-6-626
http://www.ncbi.nlm.nih.gov/pubmed/22152032
http://dx.doi.org/10.1016/0141-8130(85)90067-4
http://dx.doi.org/10.1021/ma00013a010
http://dx.doi.org/10.1021/ma00049a012
http://www.ncbi.nlm.nih.gov/pubmed/11253940
http://dx.doi.org/10.1007/BF00127253
http://dx.doi.org/10.1016/S0378-5173(00)00403-8


Materials 2018, 11, 2144 33 of 37

123. Ciolacu, D.; Rudaz, C.; Vasilescu, M.; Budtova, T. Physically and chemically cross-linked cellulose cryogels:
Structure, properties and application for controlled release. Carbohydr. Polym. 2016, 151, 392–400. [CrossRef]
[PubMed]

124. Bates, I.; Maudru, E.; Phillips, D.A.S.; Renfrew, A.H.M.; Su, Y.; Xu, J. Cross-linking agents for
the protection of lyocell against fibrillation: Synthesis, application and technical assessment of
2,4-diacrylamidobenzenesulphonic acid. Color. Technol. 2004, 120, 293–300. [CrossRef]

125. Hassan, E.E.; Parish, R.C.; Gallo, J.M. Optimized Formulation of Magnetic Chitosan Microspheres Containing
the Anticancer Agent, Oxantrazole. Pharm. Res. 1992, 9, 390–397. [CrossRef] [PubMed]

126. Denkbas, E.B.; Seyyal, M.; Piskin, E. 5-Fluorouracil loaded chitosan microspheres for chemoembolization.
J. Microencapsul. 1999, 16, 741–749. [PubMed]

127. Dini, E.; Alexandridou, S.; Kiparissides, C. Synthesis and characterization of cross-linked chitosan
microspheres for drug delivery applications. J. Microencapsul. 2003, 20, 375–385. [CrossRef] [PubMed]

128. Emir Baki, D.; Mehmet, O.; Ebru, K.; Özdemir, N. Human Serum Albumin (HSA) Adsorption with Chitosan
Microspheres. J. Appl. Polym. Sci. 2002, 86, 3035–3039.

129. Pavanetto, F.; Perugini, P.; Conti, B.; Modena, T.; Genta, I. Evaluation of process parameters involved in
chitosan microsphere preparation by the o/w/o multiple emulsion method. J. Microencapsul. 1996, 13,
679–688. [CrossRef] [PubMed]

130. Rinki, K.; Dutta, P.K.; Hunt, A.J.; Macquarrie, D.J.; Clark, J.H. Chitosan Aerogels Exhibiting High Surface
Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study. Int. J. Polym. Mater.
2011, 60, 988–999. [CrossRef]

131. Rinki, K.; Dutta, P.K.; Hunt, A.J.; Clark, J.H.; Macquarrie, D.J. Preparation of Chitosan Based Scaffolds Using
Supercritical Carbon Dioxide. Macromol. Symp. 2009, 277, 36–42. [CrossRef]

132. Lee, K.Y.; Rowley, J.A.; Eiselt, P.; Moy, E.M.; Bouhadir, K.H.; Mooney, D.J. Controlling Mechanical and
Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density.
Macromolecules 2000, 33, 4291–4294. [CrossRef]

133. Robitzer, M.; Renzo, F.D.; Quignard, F. Natural materials with high surface area. Physisorption methods for
the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater.
2011, 140, 9–16. [CrossRef]

134. Robitzer, M.; Tourrette, A.; Horga, R.; Valentin, R.; Boissière, M.; Devoisselle, J.M.; Di Renzo, F.; Quignard, F.
Nitrogen sorption as a tool for the characterisation of polysaccharide aerogels. Carbohydr. Polym. 2011, 85,
44–53. [CrossRef]

135. Valentin, R.; Molvinger, K.; Quignard, F.; Brunel, D. Supercritical CO2 dried chitosan: An efficient intrinsic
heterogeneous catalyst in fine chemistry. New J. Chem. 2003, 27, 1690–1692. [CrossRef]

136. Lim, L.Y.; Wan, L.S.C.; Thai, P.Y. Chitosan microspheres prepared by emulsification and ionotropic gelation.
Drug Dev. Ind. Pharm. 1997, 23, 981–985. [CrossRef]

137. Chandy, T.; Sharma, C.P. Chitosan matrix for oral sustained delivery of ampicillin. Biomaterials 1993, 14,
939–944. [CrossRef]

138. Tokumitsu, H.; Ichikawa, H.; Fukumori, Y. Chitosan-Gadopentetic Acid Complex Nanoparticles for
Gadolinium Neutron-Capture Therapy of Cancer: Preparation by Novel Emulsion-Droplet Coalescence
Technique and Characterization. Pharm. Res. 1999, 16, 1830–1835. [CrossRef] [PubMed]

139. Sescousse, R.; Gavillon, R.; Budtova, T. Aerocellulose from cellulose-ionic liquid solutions: Preparation,
properties and comparison with cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 2011, 83,
1766–1774. [CrossRef]

140. Buchtová, N.; Budtova, T. Cellulose aero-, cryo- and xerogels: Towards understanding of morphology
control. Cellulose 2016, 23, 2585–2595. [CrossRef]

141. Pircher, N.; Carbajal, L.; Schimper, C.; Bacher, M.; Rennhofer, H.; Nedelec, J.-M.; Lichtenegger, H.C.;
Rosenau, T.; Liebner, F. Impact of selected solvent systems on the pore and solid structure of cellulose
aerogels. Cellulose 2016, 23, 1949–1966. [CrossRef] [PubMed]

142. Sescousse, R.; Gavillon, R.; Budtova, T. Wet and dry highly porous cellulose beads from cellulose-
NaOH-water solutions: Influence of the preparation conditions on beads shape and encapsulation of
inorganic particles. J. Mater. Sci. 2011, 46, 759–765. [CrossRef]

143. Tkalec, G.; Knez, Ž.; Novak, Z. Fast production of high-methoxyl pectin aerogels for enhancing the
bioavailability of low-soluble drugs. J. Supercrit. Fluids 2015, 106, 16–22. [CrossRef]

http://dx.doi.org/10.1016/j.carbpol.2016.05.084
http://www.ncbi.nlm.nih.gov/pubmed/27474581
http://dx.doi.org/10.1111/j.1478-4408.2004.tb00233.x
http://dx.doi.org/10.1023/A:1015803321609
http://www.ncbi.nlm.nih.gov/pubmed/1614973
http://www.ncbi.nlm.nih.gov/pubmed/10575626
http://dx.doi.org/10.3109/02652040309178076
http://www.ncbi.nlm.nih.gov/pubmed/12881117
http://dx.doi.org/10.3109/02652049609026051
http://www.ncbi.nlm.nih.gov/pubmed/8933353
http://dx.doi.org/10.1080/00914037.2011.553849
http://dx.doi.org/10.1002/masy.200950305
http://dx.doi.org/10.1021/ma9921347
http://dx.doi.org/10.1016/j.micromeso.2010.10.006
http://dx.doi.org/10.1016/j.carbpol.2011.01.040
http://dx.doi.org/10.1039/b310109f
http://dx.doi.org/10.3109/03639049709149150
http://dx.doi.org/10.1016/0142-9612(93)90136-P
http://dx.doi.org/10.1023/A:1018995124527
http://www.ncbi.nlm.nih.gov/pubmed/10644070
http://dx.doi.org/10.1016/j.carbpol.2010.10.043
http://dx.doi.org/10.1007/s10570-016-0960-8
http://dx.doi.org/10.1007/s10570-016-0896-z
http://www.ncbi.nlm.nih.gov/pubmed/27340346
http://dx.doi.org/10.1007/s10853-010-4809-5
http://dx.doi.org/10.1016/j.supflu.2015.06.009


Materials 2018, 11, 2144 34 of 37

144. Kamal Mohamed, S.M.; Ganesan, K.; Milow, B.; Ratke, L. The effect of zinc oxide (ZnO) addition on the
physical and morphological properties of cellulose aerogel beads. RSC Adv. 2015, 5, 90193–90201. [CrossRef]

145. Trygg, J.; Yildir, E.; Kolakovic, R.; Sandler, N.; Fardim, P. Anionic cellulose beads for drug encapsulation and
release. Cellulose 2014, 21, 1945–1955. [CrossRef]

146. Trygg, J.; Fardim, P.; Gericke, M.; Mäkilä, E.; Salonen, J. Physicochemical design of the morphology and
ultrastructure of cellulose beads. Carbohydr. Polym. 2013, 93, 291–299. [CrossRef] [PubMed]

147. Wang, Q.; Fu, A.; Li, H.; Liu, J.; Guo, P.; Zhao, X.S.; Xia, L.H. Preparation of cellulose based microspheres by
combining spray coagulating with spray drying. Carbohydr. Polym. 2014, 111, 393–399. [CrossRef] [PubMed]

148. Lin, C.-X.; Zhan, H.-Y.; Liu, M.-H.; Fu, S.-Y.; Lucia, L.A. Novel Preparation and Characterization of Cellulose
Microparticles Functionalized in Ionic Liquids. Langmuir 2009, 25, 10116–10120. [CrossRef] [PubMed]

149. Braun, M.; Guentherberg, N.; Lutz, M.; Magin, A.; Siemer, M.; Swaminathan, V.N.; Linner, B.; Ruslim, F.;
Ramierz, G.A.F. Process for Producing Cellulose Beads from Solutions of Cellulose in Ionic Liquid.
US20100331222A1, 25 June 2010.

150. Luo, X.; Zhang, L. Creation of regenerated cellulose microspheres with diameter ranging from micron to
millimeter for chromatography applications. J. Chromatogr. 2010, 1217, 5922–5929. [CrossRef] [PubMed]

151. Gavillon, R. Preparation and Characterisation of Ultra-Porous Cellulose Materials; MINES ParisTech: Paris, France,
2007.

152. Blachechen, L.S.; Fardim, P.; Petri, D.F.S. Multifunctional Cellulose Beads and Their Interaction with Gram
Positive Bacteria. Biomacromolecules 2014, 15, 3440–3448. [CrossRef] [PubMed]

153. Silva, S.S.; Duarte, A.R.C.; Mano, J.F.; Reis, R.L. Design and functionalization of chitin-based microsphere
scaffolds. Green Chem. 2013, 15, 3252–3258. [CrossRef]

154. Oylum, H.; Yilmaz, E.; Yilmaz, O. Preparation of chtin-g-poly(4-vinylpyridine) beads. J. Macromol. Sci. A.
2013, 50, 221–229. [CrossRef]

155. Pinnow, M.; Fink, H.-P.; Fanter, C.; Kunze, J. Characterization of Highly Porous Materials from Cellulose
Carbamate. Macromol. Symp. 2008, 262, 129–139. [CrossRef]

156. Bai, Y.X.; Li, Y.F. Preparation and characterization of crosslinked porous cellulose beads. Carbohyd. Polym.
2006, 64, 402–407. [CrossRef]

157. Chen, L.F.; Tsao, G.T. Physical characteristics of porous cellulose beads as supporting material for
immobilized enzymes. Biotechnol. Bioeng. 1976, 18, 1507–1516. [CrossRef] [PubMed]

158. Quignard, F.; Renzo, F.D.; Guibal, E. From Natural Polysaccharides to Materials for Catalysis, Adsorption,
and Remediation. In Carbohydrates in Sustainable Development I. Topics in Current Chemistry; Rauter, A.P.,
Vogel, P., Queneau, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 294, p. 202.

159. Robitzer, M.; David, L.; Rochas, C.; Renzo, F.D.; Quignard, F. Nanostructure of Calcium Alginate Aerogels
Obtained from Multistep Solvent Exchange Route. Langmuir 2008, 24, 12547–12552. [CrossRef] [PubMed]

160. Valentin, R.; Horga, R.; Bonelli, B.; Garrone, E.; Renzo, F.D.; Quignard, F. Acidity of alginate aerogels studied
by FTIR spectroscopy of probe molecules. Macromol. Symp. 2005, 230, 71–77. [CrossRef]

161. Alnaief, M.; Alzaitoun, M.A.; García-González, C.A.; Smirnova, I. Preparation of biodegradable nanoporous
microspherical aerogel based on alginate. Carbohydr. Polym. 2011, 84, 1011–1018. [CrossRef]

162. Subrahmanyam, R.; Gurikov, P.; Dieringer, P.; Sun, M.; Smirnova, I. On the Road to Biopolymer
Aerogels-Dealing with the Solvent. Gels 2015, 1, 291–313. [CrossRef]

163. Ganesan, K.; Dennstedt, A.; Barowski, A.; Ratke, L. Design of aerogels, cryogels and xerogels of cellulose
with hierarchical porous structures. Mater. Des. 2016, 92, 345–355. [CrossRef]

164. Pour, G.; Beauger, C.; Rigacci, A.; Budtova, T. Xerocellulose: Lightweight, porous and hydrophobic cellulose
prepared via ambient drying. J. Mater. Sci. 2015, 50, 4526–4535. [CrossRef]

165. Stefanescu, D. Science and Engineering of Casting Solidification, 2nd ed.; Springer: New York, NY, USA, 2009.
166. Sanli, D.; Bozbag, S.; Erkey, C. Synthesis of nanostructured materials using supercritical CO2: Part I. Physical

transformations. J. Mater. Sci. 2012, 47, 2995–3025. [CrossRef]
167. Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Spray freeze-dried nanofibrillated cellulose aerogels

with thermal superinsulating properties. Carbohydr. Polym. 2017, 157, 105–113. [CrossRef] [PubMed]
168. Reichenauer, G.; Scherer, G.W. Effects upon Nitrogen Sorption Analysis in Aerogels. J. Colloid Interface Sci.

2001, 236, 385–386. [CrossRef] [PubMed]
169. Rudaz, C. Cellulose and Pectin Aerogels: Towards Their Nano-Structuration; MINES ParisTech: Paris, France, 2013.

http://dx.doi.org/10.1039/C5RA17366C
http://dx.doi.org/10.1007/s10570-014-0253-z
http://dx.doi.org/10.1016/j.carbpol.2012.03.085
http://www.ncbi.nlm.nih.gov/pubmed/23465933
http://dx.doi.org/10.1016/j.carbpol.2014.05.002
http://www.ncbi.nlm.nih.gov/pubmed/25037366
http://dx.doi.org/10.1021/la9008703
http://www.ncbi.nlm.nih.gov/pubmed/19456102
http://dx.doi.org/10.1016/j.chroma.2010.07.026
http://www.ncbi.nlm.nih.gov/pubmed/20723904
http://dx.doi.org/10.1021/bm5009876
http://www.ncbi.nlm.nih.gov/pubmed/25100636
http://dx.doi.org/10.1039/c3gc41060a
http://dx.doi.org/10.1080/10601325.2013.742815
http://dx.doi.org/10.1002/masy.200850213
http://dx.doi.org/10.1016/j.carbpol.2005.12.009
http://dx.doi.org/10.1002/bit.260181103
http://www.ncbi.nlm.nih.gov/pubmed/11007
http://dx.doi.org/10.1021/la802103t
http://www.ncbi.nlm.nih.gov/pubmed/18844384
http://dx.doi.org/10.1002/masy.200551144
http://dx.doi.org/10.1016/j.carbpol.2010.12.060
http://dx.doi.org/10.3390/gels1020291
http://dx.doi.org/10.1016/j.matdes.2015.12.041
http://dx.doi.org/10.1007/s10853-015-9002-4
http://dx.doi.org/10.1007/s10853-011-6054-y
http://dx.doi.org/10.1016/j.carbpol.2016.09.068
http://www.ncbi.nlm.nih.gov/pubmed/27987805
http://dx.doi.org/10.1006/jcis.2000.7419
http://www.ncbi.nlm.nih.gov/pubmed/11401389


Materials 2018, 11, 2144 35 of 37

170. Pircher, N.; Fischhuber, D.; Carbajal, L.; Strau, C.; Nedelec, J.-M.; Kasper, C.; Rosenau, T.; Liebner, F.
Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering.
Macromol. Mater. Eng. 2015, 300, 911–924. [CrossRef] [PubMed]

171. Shi, J.; Lu, L.; Guo, W.; Sun, Y.; Cao, Y. An environment-friendly thermal insulation material from cellulose
and plasma modification. J. Appl. Polym. Sci. 2013, 130, 3652–3658. [CrossRef]

172. Preibisch, I.; Niemeyer, P.; Yusufoglu, Y.; Gurikov, P.; Milow, B.; Smirnova, I. Polysaccharide-Based Aerogel
Bead Production via Jet Cutting Method. Materials 2018, 11, 1287. [CrossRef] [PubMed]

173. Voon, L.K.; Pang, S.C.; Chin, S.F. Porous Cellulose Beads Fabricated from Regenerated Cellulose as Potential
Drug Delivery Carriers. J. Chem. 2017, 2017, 1943432. [CrossRef]

174. Beaumont, M.; Rennhofer, H.; Opietnik, M.; Lichtenegger, H.C.; Potthast, A.; Rosenau, T. Nanostructured
Cellulose II Gel Consisting of Spherical Particles. ACS Sustain. Chem. Eng. 2016, 4, 4424–4432. [CrossRef]

175. Druel, L.; Niemeyer, P.; Milow, B.; Budtova, T. Rheology of cellulose-[DBNH][CO2Et] solutions and shaping
into aerogel beads. Green Chem. 2018, 20, 3993–4002. [CrossRef]

176. Molvinger, K.; Quignard, F.; Brunel, D.; Boissiere, M.; Devoisselle, J.-M. Porous Chitosan-Silica Hybrid
Microspheres as a Potential Catalyst. Chem. Mater. 2004, 16, 3367–3372. [CrossRef]

177. Frindy, S.; Primo, A.; Qaiss, A.E.K.; Bouhfid, R.; Lahcini, M.; Garcia, H.; Bousmina, M.; Kadib, A.E. Insightful
understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and
CO2-dried porous aerogel microspheres. Carbohydr. Polym. 2016, 146, 353–361. [CrossRef] [PubMed]

178. Renzo, F.D.; Valentin, R.; Boissiere, M.; Tourrette, A.; Sparapano, G.; Molvinger, K.; Devoisselle, J.-M.;
Gerardin, C.; Quignard, F. Hierarchical Macroporosity Induced by Constrained Syneresis in Core-Shell
Polysaccharide Composites. Chem. Mater. 2005, 17, 4693–4699. [CrossRef]

179. Braga, T.P.; Gomes, E.C.C.; Sousa, A.F.D.; Carreño, N.L.V.; Longhinotti, E.; Valentini, A. Synthesis of hybrid
mesoporous spheres using the chitosan as template. J. Non-Cryst. Solids 2009, 355, 860–866. [CrossRef]

180. Kadib, A.E.; Molvinger, K.; Cacciaguerra, T.; Bousmina, M.; Brunel, D. Chitosan templated synthesis of
porous metal oxide microspheres with filamentary nanostructures. Microporous Mesoporous Mater. 2011, 142,
301–307. [CrossRef]

181. Kadib, A.E.; Primo, A.; Molvinger, K.; Bousmina, M.; Brunel, D. Nanosized Vanadium, Tungsten and
Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for
Selective Alcohol Oxidation. Chem. Eur. J. 2011, 17, 7940–7946. [CrossRef] [PubMed]

182. Kadib, A.E.; Bousmina, M. Chitosan Bio-Based Organic–Inorganic Hybrid Aerogel Microspheres. Chem. Eur. J.
2012, 18, 8264–8277. [CrossRef] [PubMed]

183. Frindy, S.; Primo, A.; Ennajih, H.; Qaiss, A.E.K.; Bouhfid, R.; Lahcini, M.; Essassi, E.M.; Garcia, H.; Kadib, A.E.
Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and
stability. Carbohydr. Polym. 2017, 167, 297–305. [CrossRef] [PubMed]

184. Lin, L.; Li, Z.; Song, X.; Jiao, Y.; Zhou, C. Preparation of chitosan/lanthanum hydroxide composite aerogel
beads for higher phosphorus adsorption. Mater. Lett. 2018, 218, 201–204. [CrossRef]

185. León, F.J.C.; Lizardi-Mendoza, J.; Argüelles-Monal, W.; CarvajalMillan, E.; Franco, Y.L.L.; Goycoolea, F.M.
Supercritical CO2 dried chitosan nanoparticles: Production and characterization. RSC Adv. 2017, 7,
30879–90885. [CrossRef]

186. Boissière, M.; Tourrette, A.; Devoisselle, J.M.; Renzo, F.D.; Quignard, F. Pillaring effects in macroporous
carrageenan–silica composite microspheres. J. Colloid Interface Sci. 2006, 294, 109–116. [CrossRef] [PubMed]

187. Alnaief, M.; Obaidat, R.; Mashaqbeh, H. Effect of processing parameters on preparation of carrageenan
aerogel microparticles. Carbohyd. Polym. 2018, 180, 264–275. [CrossRef] [PubMed]

188. Veronovski, A.; Tkalec, G.; Knez, Z.; Novak, Z. Characterisation of biodegradable pectin aerogels and their
potential use as drug carriers. Carbohydr. Polym. 2014, 113, 272–278. [CrossRef] [PubMed]

189. García-González, C.A.; Carenza, E.; Zeng, M.; Smirnova, I.; Roig, A. Design of biocompatible magnetic pectin
aerogel monoliths and microspheres. RSC Adv. 2012, 2, 9816–9823. [CrossRef]

190. García-González, C.A.; Jin, M.; Gerth, J.; Alvarez-Lorenzo, C.; Smirnova, I. Polysaccharide-based aerogel
microspheres for oral drug delivery. Carbohydr. Polym. 2015, 117, 797–806. [CrossRef] [PubMed]

191. Kenar, J.A.; Eller, F.J.; Felker, F.C.; Jackson, M.A.; Fanta, G.F. Starch aerogel beads obtained from inclusion
complexes prepared from high amylose starch and sodium palmitate. Green Chem. 2014, 16, 1921–1930.
[CrossRef]

http://dx.doi.org/10.1002/mame.201500048
http://www.ncbi.nlm.nih.gov/pubmed/26941565
http://dx.doi.org/10.1002/app.39615
http://dx.doi.org/10.3390/ma11081287
http://www.ncbi.nlm.nih.gov/pubmed/30044454
http://dx.doi.org/10.1155/2017/1943432
http://dx.doi.org/10.1021/acssuschemeng.6b01036
http://dx.doi.org/10.1039/C8GC01189C
http://dx.doi.org/10.1021/cm0353299
http://dx.doi.org/10.1016/j.carbpol.2016.03.077
http://www.ncbi.nlm.nih.gov/pubmed/27112884
http://dx.doi.org/10.1021/cm0503477
http://dx.doi.org/10.1016/j.jnoncrysol.2009.04.005
http://dx.doi.org/10.1016/j.micromeso.2010.12.012
http://dx.doi.org/10.1002/chem.201003740
http://www.ncbi.nlm.nih.gov/pubmed/21598322
http://dx.doi.org/10.1002/chem.201104006
http://www.ncbi.nlm.nih.gov/pubmed/22689451
http://dx.doi.org/10.1016/j.carbpol.2017.03.034
http://www.ncbi.nlm.nih.gov/pubmed/28433166
http://dx.doi.org/10.1016/j.matlet.2018.02.014
http://dx.doi.org/10.1039/C7RA02555F
http://dx.doi.org/10.1016/j.jcis.2005.07.003
http://www.ncbi.nlm.nih.gov/pubmed/16083892
http://dx.doi.org/10.1016/j.carbpol.2017.10.038
http://www.ncbi.nlm.nih.gov/pubmed/29103505
http://dx.doi.org/10.1016/j.carbpol.2014.06.054
http://www.ncbi.nlm.nih.gov/pubmed/25256485
http://dx.doi.org/10.1039/c2ra21500d
http://dx.doi.org/10.1016/j.carbpol.2014.10.045
http://www.ncbi.nlm.nih.gov/pubmed/25498702
http://dx.doi.org/10.1039/C3GC41895B


Materials 2018, 11, 2144 36 of 37

192. Chan, L.W.; Lee, H.Y.; Heng, P.W.S. Mechanisms of external and internal gelation and their impact on the
functions of alginate as a coat and delivery system. Carbohydr. Polym. 2006, 63, 176–187. [CrossRef]

193. Silva, C.M.; Ribeiro, A.J.; Ferreira, D.; Veiga, F. Insulin encapsulation in reinforced alginate microspheres
prepared by internal gelation. Eur. J. Pharm. Sci. 2006, 29, 148–159. [CrossRef] [PubMed]

194. Draget, K.I. Alginates. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead
Publishing Limited: Cambridge, UK, 2009; pp. 807–828.

195. Mehling, T.; Smirnova, I.; Guenther, U.; Neubert, R.H.H. Polysaccharide-based aerogels as drug carriers.
J. Non-Cryst. Solids 2009, 355, 2472–2479. [CrossRef]

196. Reis, C.P.; Neufeld, R.J.; Vilela, S.; Ribeiro, A.J.; Veiga, F. Review and current status of emulsion/dispersion
technology using an internal gelation process for the design of alginate particles. J. Microencapsul. 2006, 23,
245–257. [CrossRef] [PubMed]

197. Heinze, T.; Koschella, A. Solvents applied in the field of cellulose chemistry: A mini review. Polímeros 2005,
15, 84–90. [CrossRef]

198. Zhang, J.; Wu, J.; Yu, J.; Zhang, X.; He, J.; Zhang, J. Application of ionic liquids for dissolving cellulose
and fabricating cellulose-based materials: State of the art and future trends. Mater. Chem. Front. 2017, 1,
1273–1290. [CrossRef]

199. Hermanutz, F.; Gähr, F.; Uerdingen, E.; Meister, F.; Kosan, B. New Developments in Dissolving and Processing
of Cellulose in Ionic Liquids. Macromol. Symp. 2008, 262, 23–27. [CrossRef]

200. Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellose with Ionic Liquids. J. Am.
Chem. Soc. 2002, 124, 4974–4975. [CrossRef] [PubMed]

201. Wang, H.; Gurau, G.; Rogers, R.D. Ionic liquid processing of cellulose. Chem. Soc. Rev. 2012, 41, 1519–1537.
[CrossRef] [PubMed]

202. Fischer, S.; Leipner, H.; Thümmler, K.; Brendler, E.; Peters, J. Inorganic Molten Salts as Solvents for Cellulose.
Cellulose 2003, 10, 227–236. [CrossRef]

203. Liebert, T. Cellulose Solvents—Remarkable History, Bright Future. In Cellulose Solvents: For Analysis, Shaping
and Chemical Modification; Liebert, T.F., Heinze, T.J., Edgar, K.J., Eds.; ACS Symposium Series; American
Chemiscal Society: Washington, DC, USA, 2010; Volume 1033, pp. 3–54.

204. Omura, T.; Imagawa, K.; Kono, K.; Suzuki, T.; Minami, H. Encapsulation of Either Hydrophilic or
Hydrophobic Substances in Spongy Cellulose Particles. ACS Appl. Mater. Interfaces 2017, 9, 944–949.
[CrossRef] [PubMed]

205. Ganesan, K.; Ratke, L. Facile preparation of monolithic k-carrageenan aerogels. Soft Matter 2014, 10,
3218–3224. [CrossRef] [PubMed]

206. Fox, G. F. Jams, Jellies and Marmalades. Available online: www.herbstreith-fox.de/fileadmin/tmpl/pdf/
broschueren/Konfituere_englisch.pdf (accessed on 30 October 2018).

207. Glenn, G.M.; Irving, D.W. Starch-Based Microcellular Foams. Cereal Chem. 1995, 72, 155–161.
208. Ubeyitogullari, A.; Ciftci, O.N. Formation of nanoporous aerogels from wheat starch. Carbohydr. Polym. 2016,

147, 125–132. [CrossRef] [PubMed]
209. García-González, C.A.; Smirnova, I. Use of supercritical fluid technology for the production of tailor-made

aerogel particles for delivery systems. J. Supercrit. Fluids 2013, 79, 152–158. [CrossRef]
210. Maleki, H.; Hüsing, N. Current status, opportunities and challenges in catalytic and photocatalytic

applications of aerogels: Environmental protection aspects. Appl. Catal. B Environ. 2018, 221, 530–555.
[CrossRef]

211. Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J.
2016, 300, 98–118. [CrossRef]

212. Smirnova, I.; Mamic, J.; Arlt, W. Adsorption of Drugs on Silica Aerogels. Langmuir 2003, 19, 8521–8525.
[CrossRef]

213. Smirnova, I.; Suttiruengwong, S.; Arlt, W. Feasibility study of hydrophilic and hydrophobic silica aerogels as
drug delivery systems. J. Non Cryst. Solids 2004, 350, 54–60. [CrossRef]

214. Gurikov, P.; Smirnova, I. Amorphization of drugs by adsorptive precipitation from supercritical solutions:
A review. J. Supercrit. Fluids 2018, 132, 105–125. [CrossRef]

215. Smirnova, I.; Suttiruengwong, S.; Seiler, M.; Arlt, W. Dissolution Rate Enhancement by Adsorption of Poorly
Soluble Drugs on Hydrophilic Silica Aerogels. Pharm. Dev. Technol. 2004, 9, 443–452. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.carbpol.2005.07.033
http://dx.doi.org/10.1016/j.ejps.2006.06.008
http://www.ncbi.nlm.nih.gov/pubmed/16952452
http://dx.doi.org/10.1016/j.jnoncrysol.2009.08.038
http://dx.doi.org/10.1080/02652040500286086
http://www.ncbi.nlm.nih.gov/pubmed/16801237
http://dx.doi.org/10.1590/S0104-14282005000200005
http://dx.doi.org/10.1039/C6QM00348F
http://dx.doi.org/10.1002/masy.200850203
http://dx.doi.org/10.1021/ja025790m
http://www.ncbi.nlm.nih.gov/pubmed/11982358
http://dx.doi.org/10.1039/c2cs15311d
http://www.ncbi.nlm.nih.gov/pubmed/22266483
http://dx.doi.org/10.1023/A:1025128028462
http://dx.doi.org/10.1021/acsami.6b13261
http://www.ncbi.nlm.nih.gov/pubmed/27935675
http://dx.doi.org/10.1039/c3sm52862f
http://www.ncbi.nlm.nih.gov/pubmed/24718695
www.herbstreith-fox.de/fileadmin/tmpl/pdf/broschueren/Konfituere_englisch.pdf
www.herbstreith-fox.de/fileadmin/tmpl/pdf/broschueren/Konfituere_englisch.pdf
http://dx.doi.org/10.1016/j.carbpol.2016.03.086
http://www.ncbi.nlm.nih.gov/pubmed/27178916
http://dx.doi.org/10.1016/j.supflu.2013.03.001
http://dx.doi.org/10.1016/j.apcatb.2017.08.012
http://dx.doi.org/10.1016/j.cej.2016.04.098
http://dx.doi.org/10.1021/la0345587
http://dx.doi.org/10.1016/j.jnoncrysol.2004.06.031
http://dx.doi.org/10.1016/j.supflu.2017.03.005
http://dx.doi.org/10.1081/PDT-200035804
http://www.ncbi.nlm.nih.gov/pubmed/15581080


Materials 2018, 11, 2144 37 of 37
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