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Abstract: 

The use of renewable energies has become very attractive, because it protects the environment and 

boosts regional development. In this paper, a sustainable two-phase sequential approach is proposed 

for the design of bioenergy SCs under uncertainties. The first phase, integrating geographical 

information, social aspects, and multi-criteria decision-making techniques, helps find appropriate 

locations for the bio-refineries. High rates of unemployment, and high vulnerability to the variation in 

the markets in an economic crisis are considered as social concerns. Integrating these factors filters 

the areas for the second phase. The first phase reduces complexity in the computation of the problem, 

and helps set up sustainable development in the supply chain. In the second phase, to cope with the 

uncertainties in the bioenergy supply network, a robust model is introduced. It reduces the sensitivity 

to inaccurate input data, and the obtained solutions stay optimal when the parameters change 

slightly. In order to validate this two-phase sequential approach, a case study is investigated. The 

results of tests show that integrating the concepts of uncertainties and sustainability with 

geographical information of the area in a two-phase sequential approach outperforms the traditional 

models, and leads to the creation of 262 jobs. The jobs have a high impact on the surrounding area.  

Keywords: Sustainable development; Bioenergy supply chains; Biomass; Uncertainty; Geographical 

information; Social sustainability.  

1. Introduction 
The increase in greenhouse gas (GHG) emissions has led to an abnormal increase of the earth’s 

temperature, to climate changes, and, subsequently, to an increase in natural disasters. The 

photographs sent by emission measurement satellites have shown increasing greenhouse gas 

emissions and have provoked considerable concern. It caused the representatives of more than 100 

countries participating in the 2015 United Nations Climate Change Conference in Paris to sign the Paris 

Agreement with the aim of reducing these emissions. The concerns were related to energy demand, 

and the environmental, economic, and social problems generated by using fossil fuels. These issues 

have led researchers to develop sources of renewable energy, which can augment regional 

development and protect the environment while still meeting the energy demand. Sources of 

renewable energy, bioenergy (heat and electricity) and biofuel (bioethanol, bio-oil, biodiesel, pellets) 

can be obtained from biomass in various ways. These renewable sources of energy can be used as 

substitutes for fossil fuels. Bioenergy and biofuel can decrease greenhouse gas (GHG) emissions [1] 

and create new jobs and more vitality in the areas concerned [2, 3]. One source of biomass is the 

feedstocks made from agricultural and forest residues. Forest residues contain: a) sawmill wastes: 

shavings, sawdust, hog fuel, chips; b)  branches, leaves, tree tops, non-merchantable stems emanating 

from forest operations [4]. The agricultural residues contain wheat straw, sugarcane bagasse, corn 

stover, etc., which are not used as food, and originate from the wastes made from agriculture [5, 6]. 

Bioenergy, biofuel, and other bio-based products (chemicals, plastics, etc.) are the direct result of 

converting these residues through biochemical, chemical, and thermochemical basic processes [7-9]. 

The methods used to convert the forest/agricultural biomass into bioenergy/biofuel are 

thermochemical (combustion, pyrolysis, and gasification) and biochemical (producing ethanol through 

hydrolysis and fermentation) [8, 10]. 

In recent years, the importance of the design, implementation, and management of bioenergy SC has 

increased.  One of the significant obstacles to development of a bioenergy supply chain is the cost of 
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the bioenergy supply network. For instance, high costs could be incurred by supplying biomass to the 

biorefinery due to the economic and environmental implications of gathering and transporting 

biomass feedstock from the biomass supply site. The location of the biorefinery is fundamental in 

terms of reducing costs and GHG emissions (e.g. due to transportation). The location of the biorefinery 

is also important, because it can generate new jobs and sustainable development in the surrounding 

area [11]. 

When a wide geographic area is considered for planning, identifying the candidate locations of bio-

refineries is a complex process requiring accurate assessments on the ground, so geographic 

information of the area is important. These locations should suit the possible environmental, 

economic and social interactions of the area. They should also have access to the biomass, resources 

and power required for the conversion technologies throughout the year [14, 15]. There is also a need 

to consider the uncertainties related to biomass availability, demand, transportation, operation, and 

costs in the design of the bioenergy SC. Uncertainties could make the design of the SC unfeasible, or 

render its performance suboptimal [12, 13]. Accordingly, it is important to integrate the concepts of 

sustainability and uncertainties as well as geographical information about the area into the planning 

and design of the bioenergy SC. Thus, the specific questions this study is seeking to answer are as 

follows: 

 Which location strategy could be applied in order to design a bioenergy supply chain network 

in a large geographic area? 

 What procedure could be adopted in order to achieve sustainable development in the supply 

network? 

 Which approach could be followed in order to improve the stability of the bioenergy supply 

network under uncertain conditions? 

In this paper, a sustainable two-phase sequential approach is proposed in order to design bioenergy 

SCs under uncertainties. The first phase tries to find the appropriate locations for the bio-refineries by 

integrating the geographic information system, the social aspects, and the multi-criteria decision-

making techniques. In this phase, high rates of unemployment, and the high vulnerability of the areas 

to variations in the markets in an economic crisis, are considered as social concerns. Integrating these 

factors (the geographic information system, and the social sustainability) by using the multi-criteria 

decision-making techniques filters the areas to obtain appropriate locations as input for the second 

phase. The first phase augments the practicality of the supply network design, reduces complexity in 

the computation of the problem, and helps set up sustainable development. In the second phase, in 

order to cope with the uncertainties in the bioenergy supply network, a robust model is introduced to 

reduce the sensitivity to inaccurate input data. It means that the obtained optimal solutions are still 

optimal when the parameters change slightly.  

In the remainder of this paper, a review of bioenergy supply chain network design is given in Section 

2. The integrated two-phase approach is explained in Section 3. Section 4 formulates the deterministic 

and robust models of this approach. A case study is described in Section 5. Evaluation of the 

performance of the proposed method is presented in Section 6. Section 7 concludes and makes 

suggestions for future research.  
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2. Literature review 
Modeling and optimization of bioenergy supply chains (SCs) have been attracting a great deal of 

attention from researchers recently. In bioenergy SC literature, from one point of view, many models 

only considered the economic aspect of the SC when designing the network. For instance, in the 

studies based on a bioenergy SC with agricultural and forest (AF) biomass, some researchers focused 

on geographical dispersion to find the sources and supply capacities [16-18]. Others worked on 

decisions related to the locations of bio-refinery and production capacity [19], and another group 

concentrated on the design of the supply chain (network) that generates biofuel from various types 

of AF biomass [4, 20, 21].  

Bairamzadeh et al. [22] investigated the strategic and tactical decision levels of the biofuel supply 

chain based on AF biomass. The authors considered agricultural residues such as corn stover, wheat 

straw, barley straw and rice straw as feedstock biomass and proposed an MILP model to minimize the 

total cost of the SC by selecting the capacity, location, and technology of the biorefineries, as well as 

the amounts of production, inventory, allocation, and transportation. A hybrid robust optimization 

approach was suggested to cope with the uncertainties. Santibañez-Aguilar et al. [23] proposed an 

approach for optimal planning of the biomass residues obtained from crops such as sugar cane, corn, 

agave, palay rice in a processing system. The authors suggested a mathematical programming model 

involving mass balances to achieve the interconnections among different nodes of the supply chain. 

They considered constraints for the technologies in terms of capital investment and cost of 

production. The objective was to maximize the annual profit obtained from the revenue of selling 

products, minus the transportation cost, manufacturing cost, and raw material cost. They did not 

consider the related uncertainties in the model that may lead to a design for the SC network which is 

not feasible. Mohseni et al. [24] developed a mixed-integer linear programming model (MILP) model 

to minimize the total cost of the biodiesel supply chain. The study focused on third-generation biofuel, 

so the proposed mathematical model and approach are specific to a microalgae biomass supply chain. 

These studies only considered economic aspects of the supply chain, and social concerns or the 

concepts of sustainability related to the microalgae-based biodiesel SC were not investigated.   

In terms of sustainable development, in [25] the authors proposed an MILP model to design a 

sustainable bioenergy supply chain network for switchgrass-based biomass. The model included 

economic, environmental and social objectives and aimed to find the maximum capacity in the 

biomass centers, the location and capacity of the power plants, and the amount of the collected and 

stored switchgrass. The authors used a hybrid method involving augmented ε-constraint and TOPSIS 

approach to consider preferences of decision-makers. The study did not consider any uncertainty.  

According to [26], designing a new biofuel supply chain can create jobs for local people in the area and 

protect the environment [2]. However, in the bioenergy supply chain literature, most of the studies 

just considered economic aspects of the supply chain, and less attention was given to the sustainability 

of the bioenergy SC, especially social aspects. Nevertheless, it is crucial to consider sustainability when 

designing bioenergy supply chains. Thus, there is a gap in the literature and a need to take into 

account, at the design stage, sustainability aspects, alongside economic effects [27]. Considering social 

criteria, in the article [26], the authors designed a bioethanol supply chain network using corn stover 

and wheat straw (lignocellusic biomass). They considered job opportunities as a social objective in a 

multi-objective MILP model to determine the location and capacity level of the facilities used in the 

biorefineries, inventory levels, and material flows. There are other studies in the literature which 
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considered social aspects [28, 29]. Bijarchiyan and Sahebi [29] used the Guidelines for the Social Life 

Cycle Assessment of a Product (GSLCAP) method to find the social impact of a bioenergy supply chain 

network, and Carter and Rogers [28] introduced job creation as a social objective.  

In terms of uncertainty, stochastic programming (two-stage) has been used in a large number of 

models. For example, a stochastic MILP model to design a biofuel SC under uncertainties of product 

price and cost of the feedstocks was proposed in [30]. The authors considered the net present value 

and the conditional value at risk as two objective functions in their model. A stochastic programming 

model under price and demand uncertainties which were solved by simulation and a Benders 

decomposition algorithm was proposed in [12] for the planning of a biofuel SC. A bioethanol SC 

considering demand as uncertainty was modeled by a stochastic MILP and solved with two-stage 

method in [31]. The sample average approximation method was used in that study in order to provide 

a set of configurations for facing uncertainty. Chen and Fan [32] presented a stochastic programming 

(two stage) model for resource allocation and strategic planning of a biofuel SC under uncertainty 

related to demand and supply. The authors solved it by using a decomposition algorithm based on 

Lagrange relaxation. In order to maximize the profit and decrease the carbon emissions with price, 

demand and supply uncertainties in a bioethanol supply chain, a two-stage stochastic MILP was 

proposed in [33].  

When a large geographic area is considered for a bioenergy SC network, identifying the locations 

where the bio-refineries may be installed is very important, because the network structure, costs, 

social performance, and environment are affected by these decisions. The methods used in the 

existing publications are not always clearly out. For instance, some researchers considered sets of 

locations which were as large as possible, covering most of the desired territory, to obtain more 

opportunities. Some others considered a continuous territory in their facility location models by 

assuming that the facilities could be placed anywhere [17]. These methods present some problems 

such as: 1) they cannot guarantee that optimal places are chosen in the whole of the desired territory, 

2) those that considered continuous territory in their facility location models [17] usually restricted 

their models to a limited number of levels and parts, 3) also when the planning space increases, not 

only the computational complexity is significantly increased, but functionality is also severely limited 

[34]. What is why, the conventional agricultural and forest (AF) biomass SC models [19, 35, 36] usually 

focused on limited and predetermined candidate locations. In this case, simultaneously considering 

geographical information and social sustainability of the wide geographical territory is very important 

to select such candidate locations. Nevertheless, the existing models usually did not take them into 

account. By embracing the Geographic Information System (GIS) and the sustainability, and by using 

the multi-criteria decision-making techniques it is possible to consider more map layers in order to 

determine more appropriate places for bio-refineries. Moreover, if the bioenergy SC decisions do not 

take uncertainties sufficiently into account, the design model will not be trustworthy nor feasible. 

These are the factors which motivate this paper versus the state of the art.  

Table 1 shows the outcomes of the literature review concerning the bioenergy SC problem. It shows 

that there is an essential research gap to optimize bioenergy supply chains by considering a two-phase 

sequential approach containing the geographical information, sustainability, multi-criteria decision-

making techniques and uncertainty conditions. This study makes an effort to fill this gap.  
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Consequently, this paper includes the following contributions: 1) it develops a model for designing 

and planning the agricultural/forest residues-to-bioenergy supply chains; 2) it proposes a two-phase 

approach to solve the introduced SC model; 3) it integrates geographical information, social 

sustainability, and the multi-criteria decision-making techniques to find appropriate locations for bio-

refineries; 4) it uses robust optimization to hedge against uncertainty; and 5) it validates the 

developed two-phase approach by applying it to a case study. 

3. Problem definition 
The bioenergy SC of AF residues is a complex multi-phase supply network that starts with the supply 

of raw materials (biomass) for bio-refineries and finishes with the market end-products. In such a 

network, the bio raw materials contain non-merchantable AF residues usually collected from piles left 

at the roadsides of the harvesting blocks and from plants that produce AF products. Next, these raw 

materials are sent to bio-refineries installed as independent units or set up near plants that produce 

AF products. Proximity reduces biomass transport/management costs [14]. In this paper, it is 

considered that bio-refineries can also act as suppliers of renewable energy for AF plants. Different 

biochemical, chemical, and thermochemical processes can change the biomass into biofuel, pellets, 

heat, electricity, etc. The biomass type and the features of the desired products determine type of 

technology [8]. The bioenergy produced (electricity/heat) is either used in the bio-refinery or sold to 

local heat grids/system. The biofuel products are sent to various markets. 

Figure 1 shows the studied structure of the SC that obtains bioenergy from agricultural and forest 

residues. In this figure, S is the biomass supply site, R represents the various types of AF biomass, and 

B are the candidate locations for bio-refineries. Conversion technology A can be used at any candidate 

location and these technologies produce the following products: 1) bioenergy E for local use such as 

supplying power for the biofuel conversion technologies, forest product plants, electricity grids, etc.; 

and 2) different product types of biofuel F which are traded in market C. If it is economical, the heat 

and electricity needed for conversion technologies can be obtained from the currently used energy. 
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Table 1:  This study vs. the bio-energy supply chain literature 
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(Dal-Mas et al., 
2011) 

 X  X 3,4 X X X  X X X      X  Scenario-based stochastic 
programming 

   X 

(Gonela et al., 2015)  X   2 X X X  X X X X X  X X X   Scenario-based stochastic 
programming 

   X 

(Kostin et al., 2012) X    3,4  X X X X X X X    X   Two-stage stochastic 
programming 

   X 

(Saghaei et al., 
2020) 

  X  1 X X X  X   X   X X   Two-stage stochastic 
programming 

X    

(Balaman and Selim, 
2015) 

X    2-7  X X  X X X X   X   X Fuzzy multi-objective 
modeling approach 

X    

(Awudu and Zhang, 
2013) 

 X   2     X X X X    X X  Stochastic programming     X 

(Santibañez-Aguilar 
et al., 2019) 

  X X 2 X X X X X X X X  X     - X  X X 

(Mohseni et al., 
2016) 

 X  X 1 X X X  X X X X  X X X  X Robust convex Programming 
(Bertsimas & sim’s approach) 

   X 

(Chen and Fan, 
2012) 

 X  X 1  X X  X X X    X X   Two-stage stochastic 
programming 

   X 

(Marvin et al., 2012)  X  X 3 X X X  X X X      X  Sensitivity analysis    X 
(Razm et al., 2019b)  X   3 X X X X X X X     X   Two-stage stochastic 

programming 
X X X X 

(Osmani and Zhang, 
2013) 

 X   2 X X X  X X X    X X X  Two-stage stochastic 
programming 

   X 

(Khishtandar, 2019)   X  1  X   X      X    Fuzzy chance-constrained 
programming 

X    

Proposed model  X  X 1 X X X X X X X X X X X X  X Robust convex Programming 
(Bertsimas & sim’s approach) 

X X X X 
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Figure 1: Configuration of the bioenergy supply chain network. 

 

3.1. The proposed two-phase approach 
The design process for the SC network that converts AF biomass to bioenergy involves two phases. In 

the first phase, as shown in Figure 2, the appropriate locations that could be candidates for bio-

refineries are selected based on geographical information and social concerns by using multi-criteria 

decision-making techniques. These locations are then used as inputs in the model for the second 

phase to yield the final locations of the bio-refineries and the entire supply network minimizing costs. 

3.1.1. The first phase of the proposed two-phase approach 

Identifying the candidate locations to set up bio-refineries is a complex process requiring accurate 

assessments over a wide geographic area. These locations should conform to the regions' possible 

environmental, economic and social interactions, and should have access to biomass/resources, and 

the power required for conversion technologies all through the year [14, 15]. Accordingly, a set of 

criteria grouped into those related to resources, environment, society, and economy is determined to 

find the location of bio-refineries according to the information existing in literature [42-45] and also 

quantitative/ qualitative information which can be obtained from consulting the experts of the 

national mapping agency of each country. 

In the first phase, with experts of the national mapping agency of each country as decision-makers, 

the AHP method as a well-known Multi-Criteria Decision Making (MCDM) technique [46] can be used 

to weight every map layer and the specific criteria to select candidate locations. The layers are then 

overlaid on the base map using GIS overlay analysis. Each layer's allocated importance weight is 

multiplied by the value of each digital cell considered on the base map. Then, all of them come 

together using a summation in order to generate the digital cells’ total suitability scores on the base 

map [47]. Next, a suitability index is calculated that divides the area studied into a range between high 

suitability and low suitability. Finally, the first phase achieves its goal by proposing high-suitability, 

favorable locations in the considered geographical area. 
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Figure 2: Different aspects of geographical information in the bioenergy supply chain. 

 

3.1.1.1   The social dimension of the bioenergy supply network (BE-SN) 

For example, given the research done by Isfahan University of Technology’s college of agricultural 

engineering, Iran's Ministry of Economic Affairs and Finance prepared a vulnerability index 𝛯 for 

agriculture and forest, that withstands the variations in the markets of AF products. The economic 

variety in the territory is introduced by the 𝑣𝑎𝑟𝑖𝑒𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 𝛱, which varies between 0 and 100. Value 

0 means the territory relies totally on one section, whereas 100 means the territory relies identically 

on each section. A portion of the recruitment income that is earned from forest and agricultural 

sections in the territory is shown by the 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑖𝑛𝑑𝑒𝑥 𝛥 which is in between 0 and 1. Thus, the 

index 𝛯 is introduced as the 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑛𝑑 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 of the different 

territories (e.g. different states of a country), scoring from 0 until 100 after normalizing:  

 𝛯 = 𝛥 × (100 − 𝛱). 

The value 100 means the territory is the most vulnerable. For instance, the values of 𝛯 for some 

regions are shown in Table 3 (www.amar.org.ir), they can be obtained from each country’s statistics 

office.  

 

 

file:///C:/Users/r19sobha.EMN.FR/Desktop/CACE/www.amar.org.ir
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                     Table 3: 

 
 

Concentrating on the territories with high level of unemployment and with high vulnerability can lead 

to social advantages. In other words, if jobs with higher levels of employment are offered in the 

territories with high level of vulnerability, more social advantages can be obtained [48]. 

Depending on the job losses in the other production facilities for residents of territories due to the 

economic crisis, various job categories are proposed in the SC of bio-refineries that are relevant to the 

skills of the individuals in these territories. 

For instance, the farmers lost jobs can be replaced by work in the combustion stations, and the 

pyrolysis technology stations can provide jobs for individuals previously working in the corporations 

relating to oil. For example, according to the Iranian statistics office ( www.amar.org.ir), a large 

number of farming jobs were destroyed in the last economic crisis, so their unemployment rate is high 

(equal to 11.23%). These farmers could be used in the combustion centers. If the social impact of the 

jobs created for local people is developed in this way, there will be social advantages.  

After consulting the Renewable Energy and Energy Efficiency Organization (www.satba.gov.ir), the 

jobs created for local people by installing the bio-refinery are classed into three main categories 

depending on the average unemployment rate (𝛬𝑤).  There are jobs related to combustion, pelletizing, 

and the pyrolysis section (w), (see Table 4). 

It should be mentioned that these unemployment rates can be obtained from the statistics office of 

each country, so Table 4 can be adapted to other case studies or countries. 

Given the vulnerability and unemployment rate in the bio-refineries’ territory, the social impact of the 

jobs created in the category w in the territory b could be obtained as follows:  

𝛹𝑤,𝑏 = 𝛬𝑤 × 𝛯𝑏 (S1) 
 

Therefore, in order to maximize the social impact in the territories where bio-refineries will be 

established, the areas with high vulnerability indexes are considered using the statistics office of each 

country. These areas are used as input (digital map) for GIS. Then, by using the ring buffers as defined 

in the ArcGIS Software at different distances (e.g., 1.5, 4, 5, 17, 70, and 100 km from the central 

locations), the areas being analyzed are limited and those outside the ring buffers (spaces) are 

omitted. This method is also used for the areas with high rates of unemployment in order to obtain 

the second digital map layer of society criteria. 

 

 

http://www.satba.gov.ir/
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    Table 4 
The job class and its average unemployment. 

Average 
unemployment 

rate (𝛬𝑤) 

Description Class (w) 

11.23% This class of jobs has a revenue between $50,000 and $55,000 
per year. The revenue is able to change in the specific range 
considering the technologies’ capacities and the requested 
variable and fixed work hours. For example, jobs related to 
burning of agriculture and forest biomass to generate heat and 
electricity, or periodic maintenance of combustion technology 
like the biomass boiler and steam turbine. 
 

1. Combustion 

6.55% This class of jobs has a revenue between $55,000 and $60,000 
per year. The revenue is able to change in the specific range 
considering the technologies’ capacities and the requested 
variable and fixed work hours. For example, working with 
technologies which are specific to generate pellets, or 
preprocesses which are requested in each period before 
performing the main process of generating pellets. 
 

2.Pelletizing 

12.35% This class of jobs has a revenue more than $60,000 per year. The 
revenue is able to change in the specific range considering the 
technologies’ capacities and the requested variable and fixed 
work hours. For example, the hourly jobs for the generating 
process with pyrolysis technologies or the jobs with fixed hours 
for constant presence of the experts beside the facilities in each 
period. 

3.Pyrolysis 

 

 

3.1.1.2. The resources of the bioenergy supply network (BE-SN) 

The resources required include forest residues and agricultural remains. The former involves 

harvesting residues such as non-merchantable, small diameter, low quality logs, tree tops, and 

branches (not suitable for either pulp production or lumber) and sawmill waste. The latter includes 

agricultural waste and non-food crops like corn stover and wheat straw. 

These raw materials (biomass) could usually be gathered from many aggregated cutting blocks and 

agricultural lands. One of the signs of biomass availability is the presence of procurement centers/ 

forest product mills. Obviously, the farther the location of a bio-refinery is from the procurement 

centers/forest product mills, the higher the biomass accessibility cost will be. Accordingly, the 

proposed method can use the ring buffers at different distances (e.g., of 3, 12, 25, 75, and 100 km) 

around the existing procurement centers/forest product mills to make the biomass accessibility less 

expensive. It is worth mentioning that these residues ordinarily have no use in any other industry, and 

are usually disposed by burning or in landfill [49, 50].   

Supplying energy from resources is another issue for biomass conversion technologies in the bio-

refineries. The required energy can be supplied either by the bioenergy generated in the bio-refineries 

or from the electricity of the power plants that are the current energy sources. 

Transferring electricity and energy from remote areas is costly. If energy sources are far from bio-

refineries, they will induce heavy energy costs for the SC [50]. Hence, using the ring buffers (spaces) 

at different distances (e.g. 1.5, 4, 5, 17, 70, and 100 km) from the energy sources limits the areas being 

analyzed, and those outside the ring buffers (spaces) are omitted. 
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3.1.1.3. The economic criteria in the locations of bio-refineries 

The total transportation cost in the bioenergy/biofuel SC is quite high. Connecting bio-refineries to 

the country roadways/railways networks is a significant problem that imposes a high cost on the SC 

which can make it economically unprofitable. To solve this problem, different spaces are used around 

the country's main roadways and railways to exclude areas outside these spaces [51].   

3.1.1.4. The environmental criteria of BE-SN 

 Land use: Considering environmental issues and other features of bio-refineries, lands that have 

less usage problems should be selected [15, 42]. For example, agriculture is an important element 

in the economy of many countries. Conversion of agricultural lands can be not allowed according 

to the laws of the country. Therefore, bio-refineries cannot be built on these lands. Hence, other 

remaining regions (barren lands, woodlands, pastures, shrubs, herbaceous) will have priority. 

Note that these laws may differ from country to country, so by considering new conditions the 

remaining regions and their weights on the map layers may be changed.  

 Land slope: Sloping surfaces are not suitable for building bio-refineries because they increase 

construction problems due to the costs of such activities as cutting, filling, earthwork and erosion 

prevention [52]. To reduce these costs, the study of suitable locations could be limited to land 

with less slopes (e.g. less than 5 degrees), the digital elevation model and the ''surface'' command 

in the ArcGIS Software can be used in this part. 

 

3.1.2. The second phase of the proposed two-phase approach 

The second phase is aimed at designing an optimal SC network (SCN) that produces bioenergy from 

biomass to ensure that all the SC decisions, from supplying biomass to the end products (biofuel and 

bioenergy) received by customers, are made and integrated optimally. The decisions made at this 

phase are:  

 Determining the raw material flow between the suppliers and bio-refineries and that of the 

bioenergy and biofuels between bio-refineries and customers. 

 Selecting biomass suppliers. 

 Determining the optimal locations of bio-refineries from the appropriate locations identified in 

the first phase. 

 Determining the type/capacity of the biomass conversion technologies used in each bio-refinery. 

 Proposing the biofuel production rate and inventory planning for production during the year. 

 

These decisions are affected by uncertainties such as variable access to biomass due to seasonal 

variations, and uncertain cost factors due to large-scale bioenergy/biofuel production [30, 31].  

Stochastic programming or robust optimization (RO) can be used in order to cope with these kinds of 

uncertainties in the optimization problems [53]. Although stochastic programming (SP) is a powerful 

tool for dealing with uncertainties, it suffers from some obvious flaws such as: 1) it needs the 

probability distribution information for values of the parameters under uncertainty, but in real life, it 

is not usually possible to determine this distribution accurately because of the shortage of historical 

data; 2) it generally leads to complexity in the computations for models in real world problems 

because it needs many scenarios to model uncertainties [54]. Conversely, RO, which is capable of 

preserving the primary model's computational tractability [55], is a free distribution method aimed at 
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finding the solution (worst case) according to a predetermined set of uncertainties. It could be used 

to prevent input data uncertainty in the problem, and stays robust against any perturbations. 

Furthermore, besides the lack of information to find the probability distributions for uncertain 

parameters considered in this study, there also are different fluctuating factors that can affect these 

uncertain parameters such as seasonality of biomass or different cost factors due to the large scale of 

the network. The nature of uncertainty for these parameters is characterized by deep uncertainty. 

This means for each uncertain parameter, a known interval is expressed. The interval is expressed 

without assuming a specific distribution of probabilities [22]. 

The interval uncertainty in robust optimization was first presented in [56]. The author considered all 

the uncertain parameter values in the worst case to provide maximum protection against 

uncertainties. Nevertheless, this is not realistic, because at the same time the whole set of uncertain 

parameters may result in the worst value, so the idea was excessively over-conservative. This theory 

was then developed in [57, 58] and, under an ellipsoid uncertainty set, a robust counterpart 

formulation to control the solution’s conservatism level was presented. The authors developed a 

robust optimization methodology in which the linear program (LP) is changed to a convex nonlinear 

program (NLP), which is more complicated as regards the computations. Next, in [59] an approach 

was developed that can control the conservatism level and preserve the linearity of the model as well. 

It will be used in this study, i.e. for the design of the bio-energy SC, the two-phase approach proposed 

in this paper is based on a robust model  adopting the Bertsimas-Sim ideas [59]. 

  

3.2. Analytical Hierarchy Process (AHP) 
The Analytical Hierarchy Process is a decision-making technique for extracting the weights of criteria 

in the problems involving competitive and multiple objectives (a complex decision-making problem). 

It generally involves three phases [60]: 1) the problem is broken down into a descending hierarchical 

structure where the objective stands at the upper level, the criteria lie below it, and then sub-criteria 

are categorized; 2) the paired comparison matrix is computed for this hierarchy at each level, in such 

a way that, based on the 9-point scale, each element lies in a 1 to 9 interval (from the importance of 

the row criterion in relation to its column criterion), 1 means equal preference and 9 means strongly 

preferred; and, finally, 3) the principal eigenvalue and also the corresponding normalized eigenvector 

of the matrix are calculated to derive the relative importance weights of the criteria being compared 

[68].  

It is necessary to justify the consistency of the judgments in order to ensure the results of the 

weighting process. For a paired comparison matrix, the consistency index is obtained using the 

following equation: 

 𝐶𝐼 =
(𝜆𝑚𝑎𝑥 − 𝑛)

(𝑛 − 1)⁄  

𝐶𝑅 = 𝐶𝐼
𝑅𝐼⁄  

where CI is the consistency index, 𝜆𝑚𝑎𝑥 is the largest matrix eigenvalue, and n is the matrix order.  

CR (the acronym of consistency rate) compares CI with RI (the acronym of  random index). CR is used 

for a better understanding of the CI value. CR < 0.1 means consistency of the formed matrix and 
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reliability of the calculated weights. Otherwise, reformation, from the beginning, of the pair-wise 

comparison matrix would be necessary. 

 

3.3. Robust optimization approach 
To briefly describe the Bertsimas-Sim's approach [59], let us examine the following LP: 

𝑀𝑖𝑛 𝑐𝑥   

𝑠𝑡: ∑ �̃�𝑖𝑗𝑥𝑗  ≥ 𝑏𝑖

𝑗

 ∀ 𝑖 (R1) 

𝑥 ∈ 𝑋    

 

where �̃�𝑖𝑗  can be uncertain and 𝐽𝑖 is the set of uncertain parameters of row i.  The  �̃�𝑖𝑗  is a random 

variable on a support [𝑎𝑖𝑗 − 𝑎𝑖�̂� , 𝑎𝑖𝑗 + 𝑎𝑖�̂� ] where 𝑎𝑖𝑗  is the nominal value and 𝑎𝑖�̂� is the perturbation 

amplitude. The parameter 𝛤𝑖  (uncertainty budget), that may not be integer, can be used in each 

constraint i in order to make a trade-off for the solution’s conservatism level and the model’s 

robustness. It takes values between [0, |𝐽𝑖|] where|𝐽𝑖| shows the cardinality of set 𝐽𝑖, and aims at 

forcing ⌊𝛤𝑖⌋ parameters to acquire their values at worst case, then goes for next one (�̃�𝑖𝑡) and moves 

the next one to its worst value from its nominal value by (𝛤𝑖 − ⌊𝛤𝑖⌋)𝑎𝑖�̂�. Hence, the following form, 

which is nonlinear, can be considered as the model’s robust counterpart mentioned in (R1): 

𝑀𝑖𝑛 𝑐𝑥   

𝑠𝑡: ∑ 𝑎𝑖𝑗𝑥𝑗 −  𝑚𝑎𝑥
{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌊𝛤𝑖⌋, 𝑡𝑖∈𝐽𝑖\𝑆𝑖}

{∑ �̂�𝑖𝑗

𝑗∈𝑆𝑖

𝑥𝑗 + (𝛤𝑖 − ⌊𝛤𝑖⌋)𝑎𝑖𝑡�̂�
 𝑥𝑗} ≥ 𝑏𝑖

𝑗

 ∀ 𝑖 
 

(R2) 

𝑋 ≥ 0   

 

where 𝑆𝑖 shows coefficients which take the worst value and 𝑡𝑖 demonstrates the one that varies if 𝛤𝑖  

is not an integer. 

The constraint i’s protection function, (𝑚𝑎𝑥{𝑆𝑖∪{𝑡𝑖}|𝑆𝑖⊆𝐽𝑖,|𝑆𝑖|=⌊𝛤𝑖⌋,𝑡𝑖∈𝐽𝑖\𝑆𝑖}{∑ �̂�𝑖𝑗𝑗∈𝑆𝑖
|𝑥𝑗

∗| + (𝛤𝑖 −

⌊𝛤𝑖⌋)𝑎𝑖𝑡�̂�
 |𝑥𝑗

∗|}), considering 𝑥𝑗
∗ as optimal solution could be rewritten in the linear form as follows: 

𝑀𝑎𝑥  ∑ 𝑎𝑖�̂�|𝑥𝑗
∗|𝜐𝑖𝑗

𝑗∈𝐽𝑖

 
  

𝑠𝑡: ∑ 𝜐𝑖𝑗 ≤ Γ𝑖

𝑗∈𝐽𝑖

 
∀ 𝑖 (R3) 

0 ≤ 𝜐𝑖𝑗 ≤ 1 ∀ 𝑖, 𝑗 ∈ 𝐽𝑖  
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Due to the feasibility of the problem (R3), and also because it is bounded for all 𝛤𝑖, its dual pair is also 

bounded and feasible with the identical objective value according to the strong duality property. If 𝜚𝑖  

and 𝛶𝑖𝑗  (dual variables) are defined, the dual problem for (R3) can be shown as follows:  

𝑀𝑖𝑛  𝛤𝑖𝜚𝑖
+ ∑ 𝛶𝑖𝑗

𝑗∈𝐽𝑖

 
  

𝑠𝑡:  𝜚
𝑖

+ 𝛶𝑖𝑗 ≥  �̂�𝑖𝑗|𝑥𝑗
∗| ∀ 𝑖, 𝑗 ∈ 𝐽𝑖 (R4) 

𝛶𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝐽𝑖  

𝜚
𝑖

≥ 0 ∀ 𝑖  

 

Substituting (R4) in (R2), the linear robust counterpart will be as follows: 

𝑀𝑖𝑛  𝑐𝑥   

𝑠𝑡: ∑ 𝑎𝑖𝑗

𝑗

 𝑥𝑗  −𝛤𝑖𝜚𝑖
− ∑ 𝛶𝑖𝑗

𝑗∈𝐽𝑖

≥  𝑏𝑖 
∀ 𝑖 (R5) 

𝛶𝑖𝑗 , 𝜚
𝑖
, 𝑥𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝐽𝑖  

 

To apply the robust equation to constraints where uncertainties only affect the right-hand side (RHS), 

consider that of (R1). Here, also, there is the interval [𝑏𝑖 − 𝑏�̂� , 𝑏𝑖 + 𝑏�̂� ] meaning that the distribution 

of each uncertain parameter is symmetric and bounded, but 𝛤𝑖
′ (uncertainty budget) takes values 

between 0 and 1. Considering these definitions, problem (R1)'s robust counterpart can be written as 

follows: 

𝑀𝑖𝑛  𝑐𝑥   

𝑠𝑡: ∑ �̃�𝑖𝑗

𝑗

 𝑥𝑗  ≥  𝑏𝑖 + 𝑚𝑎𝑥 𝑏�̂�𝜐𝑖 
∀ 𝑖 (R6) 

0 ≤ 𝜐𝑖 ≤ 𝛤𝑖
′ ∀ 𝑖  

𝑥 ≥ 0   

 

The equivalent of equation (R6) is the following linear optimization problem: 

𝑀𝑖𝑛  𝑐𝑥   

𝑠𝑡: ∑ �̃�𝑖𝑗𝑥𝑗  ≥ 𝑏𝑖

𝑗

+ 𝛤𝑖
′𝑏�̂� ∀ 𝑖 

(R7) 

𝑥 ≥ 0   
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It is worth noting that when 𝛤𝑖
′  = 0, there is no protection against uncertainty, and when 𝛤𝑖

′  = 1, there 

is full protection against uncertainty. When 𝛤𝑖
′ varies between 0 and 1, it can control the solution’s 

conservatism level.  Bertsimas and Sim [59] suggest that if decision makers change the value of 𝛤𝑖  by 

considering an upper bound for the constraint violation’s probability [𝑒𝑥𝑝(−𝛤𝑖
2 2|𝐽𝑖|⁄ )], they can 

adjust constraint i's conservatism/reliability level. 

 

4. Model formulation 
This section has two objectives. Firstly, it shows the development of a deterministic mixed integer 

linear programming model (MILP) to optimize the strategic design of the bioenergy SC. Secondly, it 

presents the MILP robust model considering uncertain parameters. Before formulating the problem, 

a verbal description is presented to understand the model better. 

 
 

4.1. Deterministic Bioenergy Supply Network (DBE-SN) model 
Using Table 2, the following DBE-SN model is formulated. 

4.1.1. Objective function 

The objective function (1) minimizes the total costs of the SC throughout the planning horizon, 

including costs of supplying biomass (purchasing/collecting), transportation of biomass to bio-

refineries, transportation of biofuel from bio-refineries to markets, fixed costs (annual investments), 

variable production costs, and energy costs for launching technologies, i.e. that part of the energy 

required by the bio-refinery supplied by the available energy sources. Also, the inventory holding costs 

of different biofuel types are also considered in the objective function. It is worth noting that the 

biomass is not stocked in this case to prevent its deterioration and dehydration from one year to 

another. Bioenergy storage is also dismissed because it is either impossible or not economical. 

𝑀𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =   ∑ ∑ ∑ ∑ 𝜍𝑟,𝑠,𝑡
�̃�

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

 .  𝑈𝑟,𝑠,𝑏,𝑡     

+ ∑ ∑ ∑ ∑ 𝜍𝑟,𝑠,𝑏,𝑡
𝐵,�̃�

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

  .  𝑈𝑟,𝑠,𝑏,𝑡   

+ ∑ ∑ ∑ ∑ 𝜍𝑓,𝑏,𝑐,𝑡
𝐵,�̃�

𝑡∈𝑇𝑐∈𝐶𝑏∈𝐵𝑓∈𝐹

  .  𝑃𝑓,𝑏,𝑐,𝑡
𝑀    

+ ∑ ∑ ∑ 𝜍𝑎,𝑏,𝑡
�̃�  

𝑡∈𝑇𝑏∈𝐵𝑎∈𝐴

 .  𝑌𝑏,𝑎,𝑡   
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+ ∑ ∑ ∑ ∑ 𝜍𝑏,𝑎,𝑡
�̃�

𝑡∈𝑇𝑎∈𝐴𝑏∈𝐵𝑟∈𝑅

  .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈    

+ ∑ ∑ ∑ 𝜍𝑒,𝑏,𝑡
�̃�  

𝑡∈𝑇𝑏∈𝐵𝑒∈𝐸

  .   𝐽𝑒,𝑏,𝑡
𝐶    

+ ∑ ∑ ∑ 𝜍𝑓,𝑏
�̃�  

𝑡∈𝑇𝑏∈𝐵𝑓∈𝐹

  .  𝐼𝑓,𝑏,𝑡
𝐵   (1) 

 

4.1.2. Constraints 

Constraints (2) ensure that amount of the biomass r coming from supplier s could not be more than 

the available biomass. 

∑ 𝑈𝑟,𝑠,𝑏,𝑡 ≤ 𝛽𝑟,𝑠,�̃�

𝑏∈𝐵

 ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (2) 

 

Constraints (3) ensure that the total biomass shipped from various resources is equal to that used by 

all conversion technologies at any location and in any period. 

∑ 𝑈𝑟,𝑠,𝑏,𝑡 = ∑ 𝑈𝑟,𝑏,𝑎,𝑡
𝑈

𝑎∈𝐴𝑠∈𝑆

 ∀𝑟 ∈ 𝑅, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (3) 

 

Constraints (4) ensure the type of biomass required for each technology. 

𝑈𝑟,𝑏,𝑎,𝑡
𝑈   ≤  𝜑   .  𝜓𝑟,𝑎 ∀𝑟 ∈ 𝑅, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (4) 

 

Constraints (5) and (6) guarantee that the total bioenergy and biofuel produced by each technology is 

equal to its conversion efficiency. Types of technologies and biomass are considered in this conversion 

efficiency because, depending on the quality and amount of energy involved, various biomass types 

have different efficiencies and can be converted through different conversion methods.  

𝑃𝑓,𝑏,𝑎,𝑡 =  ∑ 𝛾𝑓,𝑟,𝑎  

𝑟∈𝑅

 .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈  ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (5) 

𝐺𝑒,𝑏,𝑎,𝑡 =  ∑ 𝛾𝑒,𝑟,𝑎  

𝑟∈𝑅

 .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈  ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (6) 

 

Constraints (7) and (8) ensure the maximum throughout for final products producing by different 

technologies in each period, and show that production will continue in bio-refinery b if technology a 

is installed and works there (𝑌𝑏,𝑎,𝑡 = 1). 
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𝑃𝑓,𝑏,𝑎,𝑡 ≤   𝜉𝑎,𝑓
𝑀  .  𝑌𝑏,𝑎,𝑡 ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (7) 

𝐺𝑒,𝑏,𝑎,𝑡 ≤   𝜉𝑎,𝑒
𝑀    .  𝑌𝑏,𝑎,𝑡 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (8) 

 

Constraints (9) and (10) permit that, in each period, biofuel and bioenergy should exceed a minimum 

utilization capacity and prevent the installation of idle technologies. 

𝑃𝑓,𝑏,𝑎,𝑡 ≥   𝜉𝑎,𝑓
𝑀     .  𝑌𝑏,𝑎,𝑡  .   𝜇𝑓

�̃�  ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(9) 

𝐺𝑒,𝑏,𝑎,𝑡 ≥   𝜉𝑎,𝑒
𝑀    .  𝑌𝑏,𝑎,𝑡   .  𝜇𝑒

�̃� ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(10) 

Constraints (11) make sure that the biofuel’s amount for the markets should be equal to the amount 

produced at location b in any period. 

∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀 = ∑ 𝑃𝑓,𝑏,𝑎,𝑡

𝑎∈𝐴𝑐∈𝐶

 ∀𝑏 ∈ 𝐵, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (11) 

 

Constraints (12) ensure that the bioenergy used by the technology installed in each bio-refinery, plus 

the amount sold to customers (outside of the bio-refinery), should equal the total amount produced 

in the bio-refinery in each period.  

𝐺𝑒,𝑏,𝑡
𝑆 + 𝐺𝑒,𝑏,𝑡

𝑈 =  ∑ 𝐺𝑒,𝑏,𝑎,𝑡

𝑎∈𝐴

 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (12) 

 

Constraints (13) and (14) show the demand limitations for bioenergy and biofuel products. 

𝛿𝑓,𝑐,𝑡
�̃�   .  𝑀 𝑓,𝑐 ≤ ∑ 𝑃𝑓,𝑏,𝑐,𝑡

𝑀

𝑏∈𝐵

≤ 𝛿𝑓,𝑐,𝑡
�̃�  .  𝑀 𝑓,𝑐   ∀𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (13) 

𝛿𝑒,𝑏,𝑡
𝐸,�̃� ≤ 𝐺𝑒,𝑏,𝑡

𝑆 ≤ 𝛿𝑒,𝑏,𝑡
𝐸,�̃�   ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (14) 

 

Constraints (15) guarantee that the energy required for conversion technologies in each bio-refinery 

is equal to the energy that can be met by the bioenergy produced in the bio-refinery plus that supplied 

from other currently used sources of energy at that location.  

∑ ∑ 𝜗𝑒,𝑟,𝑎
𝐼,𝐶   

𝑎∈𝐴𝑟∈𝑅

.  𝑈𝑟,𝑏,𝑎,𝑡
𝑈 =  𝐺𝑒,𝑏,𝑡

𝑈 +  𝐽𝑒,𝑏,𝑡
𝐶   ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (15) 
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Constraints (16) ensure that all the biofuel distributed to the markets throughout each period (i.e. 

∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀

𝑐∈𝐶 ) , plus the biofuel inventory at the end of period t (i.e. 𝐼𝑓,𝑏,𝑡
𝐵 )  should not exceed the biofuel 

produced by technology a in period t (i.e. ∑ 𝑃𝑓,𝑏,𝑎,𝑡𝑎∈𝐴 ) plus the inventory at the end of period t-1 (i.e. 

𝐼𝑓,𝑏,(𝑡−1)
𝐵 ).  

∑ 𝑃𝑓,𝑏,𝑎,𝑡

𝑎∈𝐴

+  𝐼𝑓,𝑏,(𝑡−1)
𝐵  ≥  ∑ 𝑃𝑓,𝑏,𝑐,𝑡

𝑀

𝑐∈𝐶

+ 𝐼𝑓,𝑏,𝑡
𝐵   ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (16) 

 

Constraints (17) indicate that the total biofuel produced in all bio-refineries in each period should be 

at least equal to the total targeted demand in each period (throughout the considered country or 

geographical area). 

∑ ∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀

𝑐∈𝐶𝑏∈𝐵

 ≥  𝜛𝑓,𝑡
�̃�  ∀𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (17) 

 

Constraints (18) ensure persistence in the conversion processes after the bio-refineries are installed. 

𝑌𝑏,𝑎,𝑡  ≥  𝑌𝑏,𝑎,(𝑡−1) ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (18) 

 

Constraints (19) and (20) are to prevent the model from selecting more than one technology for 

generating any kind of biofuel and bioenergy. Index 𝑎𝑒 presents a subset of the technologies which 

can produce the bioenergy of type e, index 𝑎𝑓 presents one that can produce type f bioenergy. It is 

worth noting that, when the installed technologies’ numbers are limited to the available biomass or 

to the demand for products, constraints (19) and (20) could be eliminated. Therefore, when the 

objective function does not consider such limiting factors as high costs, the total number of 

technologies installed in each bio-refinery may not be limited for samples with large available biomass 

and high product demand. 

∑ 𝑌𝑏,𝑎,𝑡  ≤ 1

𝑎𝑒∈𝐴

 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (19) 

∑ 𝑌𝑏,𝑎,𝑡  ≤ 1

𝑎𝑓∈𝐴

 ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (20) 

 

Finally (21) and (22) are binary and non-negativity constraints of the model.  

𝑈𝑟,𝑠,𝑏,𝑡,  𝑈𝑟,𝑏,𝑎,𝑡
𝑈 ,  𝐽𝑒,𝑏,𝑡

𝐶 , 𝑃𝑓,𝑏,𝑎,𝑡, 𝐼𝑓,𝑏,𝑡
𝐵 , 𝑃𝑓,𝑏,𝑐,𝑡

𝑀 ,  𝐺𝑒,𝑏,𝑎,𝑡 ,  

𝐺𝑒,𝑏,𝑡
𝑆  , 𝐺𝑒,𝑏,𝑡

𝑈 ≥ 0 

∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑓

∈ 𝐹, 𝑐 ∈ 𝐶, 𝑡

∈ 𝑇 

(21) 

𝑌𝑏,𝑎,𝑡 , 𝑀 𝑓,𝑐 ∈  {0,1}  (22) 
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4.2. Robust Bioenergy Supply Network (RBE-SN) model 
Costs, amount of resources, production, and the demand for bioenergy/biofuel products are 

considered as uncertain parameters. Then, by developing the DBE-SN model into its robust 

counterpart, these parameters are considered as random variables that acquire value from a 

symmetric distribution according to a nominal value. For instance, 𝛽𝑟,𝑠,�̃�  belongs to the interval  

[𝛽𝑟,𝑠,𝑡 − 𝛽𝑟,𝑠,�̂�  , 𝛽𝑟,𝑠,𝑡 + 𝛽𝑟,𝑠,�̂�] , where 𝛽𝑟,𝑠,𝑡 is its nominal value and  𝛽𝑟,𝑠,�̂�   is the variation amplitude. 

Accordingly, the following robust method is proposed.  

4.2.1. Objective function 

The objective function presented in (1) is converted to (23) and (24). Since the model looks for the 

worst case, the whole expression (1) is considered equal to the maximum possible value (i.e. value of 

Z). Then, (1) is converted to the robust counterpart model presented in (23) to (31) by defining dual 

vectors 𝛲𝑍, 𝑎𝑟𝑠𝑏𝑡
1 , 𝑏𝑟𝑠𝑏𝑡

1 , 𝑐𝑓𝑏𝑐𝑡
1 , 𝑑𝑎𝑏𝑡

1  , 𝑒𝑟𝑏𝑎𝑡
1 , 𝑔𝑒𝑏𝑡

1 , 𝑙𝑓𝑏𝑡
1  and a budget parameter𝛤𝑍. It is worth mentioning 

here that 𝛤𝑍 acquires values in the range 0 to the sum of the number of uncertain parameters in (24).  

𝑀𝑖𝑛 𝑍  
(23) 

St:    

∑ ∑ ∑ ∑ 𝜍𝑟,𝑠,𝑡
𝐵

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

  .  𝑈𝑟,𝑠,𝑏,𝑡 
  

+ ∑ ∑ ∑ ∑ 𝜍𝑟,𝑠,𝑏,𝑡
𝐵,𝑇

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

  .  𝑈𝑟,𝑠,𝑏,𝑡 
  

+ ∑ ∑ ∑ ∑ 𝜍𝑓,𝑏,𝑐,𝑡
𝐵,𝑇

𝑡∈𝑇𝑐∈𝐶𝑏∈𝐵𝑓∈𝐹

 .  𝑃𝑓,𝑏,𝑐,𝑡
𝑀  

  

+ ∑ ∑ ∑ 𝜍𝑎,𝑏,𝑡
𝐹  

𝑡∈𝑇𝑏∈𝐵𝑎∈𝐴

   .  𝑌𝑏,𝑎,𝑡 
  

+ ∑ ∑ ∑ ∑ 𝜍𝑏,𝑎,𝑡
𝑉

𝑡∈𝑇𝑎∈𝐴𝑏∈𝐵𝑟∈𝑅

  .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈    

+ ∑ ∑ ∑ 𝜍𝑒,𝑏,𝑡
𝐸  

𝑡∈𝑇𝑏∈𝐵𝑒∈𝐸

   .   𝐽𝑒,𝑏,𝑡
𝐶    

+ ∑ ∑ ∑ 𝜍𝑓,𝑏
𝐻  

𝑡∈𝑇𝑏∈𝐵𝑓∈𝐹

  .  𝐼𝑓,𝑏,𝑡
𝐵       

+ ∑ ∑ ∑ ∑ 𝑎𝑟,𝑠,𝑏,𝑡
1

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

 + ∑ ∑ ∑ ∑ 𝑏𝑟,𝑠,𝑏,𝑡
1 

𝑡∈𝑇𝑏∈𝐵𝑠∈𝑆𝑟∈𝑅

+ ∑ ∑ ∑ ∑ 𝑐𝑓,𝑏,𝑐,𝑡
1

𝑡∈𝑇𝑐∈𝐶𝑏∈𝐵𝑓∈𝐹
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+ ∑ ∑ ∑ 𝑑𝑎,𝑏,𝑡
1  

𝑡∈𝑇𝑏∈𝐵𝑎∈𝐴

+ ∑ ∑ ∑ ∑ 𝑒𝑟,𝑏,𝑎,𝑡
1

𝑡∈𝑇𝑎∈𝐴𝑏∈𝐵𝑟∈𝑅

  + ∑ ∑ ∑ 𝑔𝑒,𝑏,𝑡
1  

𝑡∈𝑇𝑏∈𝐵𝑒∈𝐸

     

+ ∑ ∑ ∑ 𝑙𝑓,𝑏,𝑡
1  

𝑡∈𝑇𝑏∈𝐵𝑓∈𝐹

+  𝛤𝑍 .  𝛲𝑍  ≤ 𝑍     (24) 

𝛲𝑍 + 𝑎𝑟,𝑠,𝑏,𝑡
1 ≥  𝜍𝑟,𝑠,𝑡

�̂�   .  𝑈𝑟,𝑠,𝑏,𝑡 ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑡

∈ 𝑇 

(25) 

𝛲𝑍 + 𝑏𝑟,𝑠,𝑏,𝑡
1 ≥ 𝜍𝑟,𝑠,𝑏,𝑡

𝐵,�̂�   .  𝑈𝑟,𝑠,𝑏,𝑡 ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑡

∈ 𝑇 

(26) 

𝛲𝑍 + 𝑐𝑓,𝑏,𝑐,𝑡
1 ≥ 𝜍𝑓,𝑏,𝑐,𝑡

𝐵,�̂�   .  𝑃𝑓,𝑏,𝑐,𝑡
𝑀  ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶, 𝑡

∈ 𝑇 

(27) 

𝛲𝑍 + 𝑑𝑎,𝑏,𝑡
1 ≥ 𝜍𝑎,𝑏,𝑡

�̂�    .  𝑌𝑏,𝑎,𝑡  ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (28) 

𝛲𝑍 + 𝑒𝑟,𝑏,𝑎,𝑡
1 ≥ 𝜍𝑏,𝑎,𝑡

�̂�   .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈  ∀𝑟 ∈ 𝑅, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(29) 

𝛲𝑍 + 𝑔𝑒,𝑏,𝑡
1 ≥ 𝜍𝑒,𝑏,𝑡

�̂�    .  𝐽𝑒,𝑏,𝑡
𝐶  ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (30) 

𝛲𝑍 + 𝑙𝑓,𝑏,𝑡
1 ≥ 𝜍𝑓,𝑏

�̂�    .  𝐼𝑓,𝑏,𝑡
𝐵     ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (31) 

 

4.2.2. Constraints: 

According to Section 3.2 (Robust optimization approach) into each of the constraints (2), (9), (10), (13) 

–(14), and (17), the budget parameters are introduced, and these constraints are changed to 

constraints (32), (39), (40), (43)–(46), and (49), respectively. It can be observed that when 

perturbations are larger, these constraints become tighter. 

 

∑ 𝑈𝑟,𝑠,𝑏,𝑡 ≤ 𝛽𝑟,𝑠,𝑡 − 𝛤𝑟,𝑠,𝑡  .  𝛽𝑟,𝑠,�̂�  

𝑏∈𝐵

 ∀𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (32) 

∑ 𝑈𝑟,𝑠,𝑏,𝑡 = ∑ 𝑈𝑟,𝑏,𝑎,𝑡
𝑈

𝑎∈𝐴𝑠∈𝑆

 ∀𝑟 ∈ 𝑅, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (33) 

𝑈𝑟,𝑏,𝑎,𝑡
𝑈   ≤  𝜑   .  𝜓𝑟,𝑎 ∀𝑟 ∈ 𝑅, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (34) 

𝑃𝑓,𝑏,𝑎,𝑡 =  ∑ 𝛾𝑓,𝑟,𝑎  

𝑟∈𝑅

.  𝑈𝑟,𝑏,𝑎,𝑡
𝑈  ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(35) 

𝐺𝑒,𝑏,𝑎,𝑡 =  ∑ 𝛾𝑒,𝑟,𝑎  

𝑟∈𝑅

 .  𝑈𝑟,𝑏,𝑎,𝑡
𝑈  ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(36) 
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𝑃𝑓,𝑏,𝑎,𝑡 ≤   𝜉𝑎,𝑓
𝑀  .  𝑌𝑏,𝑎,𝑡 ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(37) 

𝐺𝑒,𝑏,𝑎,𝑡 ≤   𝜉𝑎,𝑒
𝑀    .  𝑌𝑏,𝑎,𝑡 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 (38) 

𝑃𝑓,𝑏,𝑎,𝑡 ≥   𝜉𝑎,𝑓
𝑀    .  𝑌𝑏,𝑎,𝑡    .  𝜇𝑓

𝑚 + 𝛤𝑓,𝑏,𝑎,𝑡  .  𝜉𝑎,𝑓
𝑀     .  𝑌𝑏,𝑎,𝑡    .    𝜇𝑓

�̂� ∀𝑓 ∈ 𝐹, 𝑏

∈ 𝐵, 𝑎

∈ 𝐴, 𝑡 ∈ 𝑇 

(39) 

𝐺𝑒,𝑏,𝑎,𝑡 ≥   𝜉𝑎,𝑒
𝑀    .  𝑌𝑏,𝑎,𝑡  .   𝜇𝑒

𝑚 +  𝛤𝑒,𝑏,𝑎,𝑡   .   𝜉𝑎,𝑒
𝑀    .  𝑌𝑏,𝑎,𝑡    .   𝜇𝑒

�̂� ∀𝑒 ∈ 𝐸, 𝑏

∈ 𝐵, 𝑎 ∈ 𝐴, 𝑡

∈ 𝑇 

(40) 

∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀 = ∑ 𝑃𝑓,𝑏,𝑎,𝑡

𝑎∈𝐴𝑐∈𝐶

 ∀𝑏 ∈ 𝐵, 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (40) 

𝐺𝑒,𝑏,𝑡
𝑆 + 𝐺𝑒,𝑏,𝑡

𝑈 =  ∑ 𝐺𝑒,𝑏,𝑎,𝑡

𝑎∈𝐴

 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (42) 

𝛿𝑓,𝑐,𝑡
𝑚   .  𝑀 𝑓,𝑐 + 𝛤𝑓,𝑐,𝑡

1   .  𝛿𝑓,𝑐,𝑡
�̂�  .  𝑀 𝑓,𝑐 ≤  ∑ 𝑃𝑓,𝑏,𝑐,𝑡

𝑀

𝑏∈𝐵

 ∀𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (43) 

∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀

𝑏∈𝐵

≤ 𝛿𝑓,𝑐,𝑡
𝑀   .  𝑀 𝑓,𝑐 −  𝛤𝑓,𝑐,𝑡

2   .  𝛿𝑓,𝑐,𝑡
�̂�   .  𝑀 𝑓,𝑐 ∀𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (44) 

𝛿𝑒,𝑏,𝑡
𝐸,𝑚 + 𝛤𝑒,𝑏,𝑡

1   .  𝛿𝑒,𝑏,𝑡
𝐸,�̂�  ≤ 𝐺𝑒,𝑏,𝑡

𝑆  ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (45) 

𝐺𝑒,𝑏,𝑡
𝑆 ≤ 𝛿𝑒,𝑏,𝑡

𝐸,𝑀 −  𝛤𝑒,𝑏,𝑡
2   .  𝛿𝑒,𝑏,𝑡

𝐸,�̂�  ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (46) 

∑ ∑ 𝜗𝑒,𝑟,𝑎
𝐼,𝐶   

𝑎∈𝐴𝑟∈𝑅

.  𝑈𝑟,𝑏,𝑎,𝑡
𝑈 =  𝐺𝑒,𝑏,𝑡

𝑈 +  𝐽𝑒,𝑏,𝑡
𝐶   ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (47) 

∑ 𝑃𝑓,𝑏,𝑎,𝑡

𝑎∈𝐴

+  𝐼𝑓,𝑏,(𝑡−1)
𝐵  ≥  ∑ 𝑃𝑓,𝑏,𝑐,𝑡

𝑀

𝑐∈𝐶

+ 𝐼𝑓,𝑏,𝑡
𝐵   ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (48) 

∑ ∑ 𝑃𝑓,𝑏,𝑐,𝑡
𝑀

𝑐∈𝐶𝑏∈𝐵

 ≥  𝜛𝑓,𝑡
𝑇 + 𝛤𝑓,𝑡   .  𝜛𝑓,𝑡

�̂�  ∀𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (49) 

𝑌𝑏,𝑎,𝑡  ≥  𝑌𝑏,𝑎,(𝑡−1) ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (50) 

∑ 𝑌𝑏,𝑎,𝑡  ≤ 1

𝑎𝑒∈𝐴

 ∀𝑒 ∈ 𝐸, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (51) 

∑ 𝑌𝑏,𝑎,𝑡  ≤ 1

𝑎𝑓∈𝐴

 ∀𝑓 ∈ 𝐹, 𝑏 ∈ 𝐵, 𝑡 ∈ 𝑇 (52) 

𝑈𝑟,𝑠,𝑏,𝑡,  𝑈𝑟,𝑏,𝑎,𝑡
𝑈 ,  𝐽𝑒,𝑏,𝑡

𝐶 , 𝑃𝑓,𝑏,𝑎,𝑡, 𝐼𝑓,𝑏,𝑡
𝐵 , 𝑃𝑓,𝑏,𝑐,𝑡

𝑀 ,  𝐺𝑒,𝑏,𝑎,𝑡 ,  

 

∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 

𝑓 ∈ 𝐹, c ∈  𝐶, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 

 

(53) 
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𝐺𝑒,𝑏,𝑡
𝑆 , 𝐺𝑒,𝑏,𝑡

𝑈 ≥ 0   

𝑌𝑏,𝑎,𝑡 , 𝑀 𝑓,𝑐 ∈  {0,1}  (54) 

𝛲𝑍, 𝑎𝑟𝑠𝑏𝑡
1 , 𝑏𝑟𝑠𝑏𝑡

1 , 𝑐𝑓𝑏𝑐𝑡
1 , 𝑑𝑎𝑏𝑡

1  , 𝑒𝑟𝑏𝑎𝑡
1 , 𝑔𝑒𝑏𝑡

1 , 𝑙𝑓𝑏𝑡
1 ∈ 𝑅+ ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝑏 ∈ 𝐵, 𝑎 ∈ 𝐴, 

𝑓 ∈ 𝐹, 𝑐 ∈ 𝐶, 𝑒 ∈ 𝐸, 𝑡 ∈ 𝑇 

(55) 

 

5. Case study 
To illustrate how this approach can be used in practice, a case study from Iran is considered. Due to 

high climate diversity across the Iranian territory, there are many AF areas where the residues are left 

idle and sometimes incur costs and create environmental pollution for the inhabitants because the 

normal methods of disposal are burning or transportation to remote landfill sites.  

Two main kinds of raw material (biomass) are considered for changing: 1) forest residues from 

operation processes in the forests and sawmill wastes such as chips, branches, shavings, leaves, 

sawdust, tree tops, hog fuel; 2) agricultural residues coming from grain harvesting of plants such as 

corn and wheat.  

These residues can be changed to bioenergy like electricity and heat, be used to produce biofuel like 

ethanol, biodiesel, or converted to other products with a bio-base, e.g. plastics, and chemicals [7]. The 

basic processes for converting the biomass are thermochemical, biochemical, and chemical. The 

biochemical and thermochemical are appropriate methods for treating AF biomass, the former 

involves fermentation and hydrolysis and the latter involves pyrolysis, combustion, and gasification 

[10].   

In this case study, the following four categories of the technologies for the biorefineries are 

considered: 1) gasification for producing heat and electricity; 2) combustion for producing heat and 

electricity; 3) generation of bio-oil through fast pyrolysis; and 4) pelletization, i.e. the production of 

pellets.  Table 5 shows the different kinds of biomass needed for each technology [9, 61, 62]. Note 

that the processes of fast pyrolysis and combustion are able to convert all kinds of the biomass, in 

contrast, the processes of pelletization and gasification need biomass which is clean with low ash in 

content. Therefore, two kinds of the biomass can be used for the technologies of pelletization and 

gasification. These are the stem chips coming from harvesting residues of damaged mountain pines, 

and wood chips from sawmill waste [61, 63]. Four capacities (0.5, 2, 3, and 5 MW) are considered for 

the combustion technologies. Table 6 reports the efficiency of these technologies for the biorefineries 

[8, 64, 65]. Consulting the Renewable Energy and Energy Efficiency Organization (www.satba.gov.ir), 

for different capacities of burning technologies, there are a variety of electrical and thermal 

efficiencies.  For pyrolysis technology at three capacities (200, 400, 600 ton/day), the efficiency 

depends on the type of biomass, see Table 5. For technology of pellet at three capacities (15000, 

30000, 45000 ton/year), the efficiency is assumed to be 92%. [10, 65].   

 

http://www.satba.gov.ir/
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Table 5: 

 
 

    Table 6 

 
 

Four products, namely electricity, heat, bio-oil, and pellet are considered in this study: the electricity 

is either sold to the local electrical grid in the bio-refinery area or used inside the bio-refinery; heat is 

used both inside the bio-refinery and sold to the nearby factories/industries or houses around the bio-

refinery area; bio-oil and pellets are stored to meet the local demand of the region as well as that from 

other regions or provinces.  

Iran has a cross-country railroad network throughout most of the country and many highways and 

local roads. Since long-distance transportation is usually less expensive by train, most of the long-haul 

freight is transported to the railway station by trucks, from where it is transported by train to distant 

areas. Trucks usually travel at 70-80 km/hour while the train speed is about 60 km/hour. This case 

study used the expertise and GIS data from National Cartographic Center of Iran (www.ncc.ir), the 

national mapping agency, and also considered four 5-year periods. 

6. Results and discussion 

6.1. Results of the first phase of the proposed two-phase approach 
The GIS data and the criteria/sub-criteria maps obtained from the national mapping agency were used 
as inputs for GIS software. Then, after digitalizing the maps, they were changed to the raster form (e.g. 
95 m resolution). When this was achieved, a group of experts from the national mapping agency 
specializing in this field was asked to use the AHP method as a Multi-Criteria Decision Making (MCDM) 
technique to weight each map from an economic-engineering perspective. 
 

http://www.ncc.ir)/
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According to [47], the map overlaying in a GIS is usually done either by the Boolean overlay method, 
which is applied to non-compensatory cumulative operators such as "union" (OR logic) with only one 
criterion and "intersection" (AND logic) with every criterion [66], or the weighted overlay method in 
which a relative importance weight is allocated to each evaluation criterion (or map layer) based on 
compensatory combinatorial rules. Hence, the weighted overlay method is more flexible than the 
Boolean method in selecting the appropriate locations of bio-refineries.  
 
Table 7 shows the main types, the categories and the subcategories of different criteria and sub-
criteria used in the decision-making problem considered in this study. They are considered as a 
descending hierarchical structure. Four main category types (societal, resource, economic, and 
environmental) are considered at the upper level, subdivided into eight categories, and then the sub-
categories are considered for the next level of the descending hierarchical structure. For each level of 
this hierarchy, the paired comparison matrix is computed by the experts (e.g. from National 
Cartographic Center of Iran; www.ncc.ir). For example, in the third row of Table 7, the economic 
criteria are divided into distance to the road and distance to the rail. In the experts’ opinion, these 
two criteria can be divided into five sub-criteria (i.e. 0-3, 3-6, 6-20, 20-50, 50-100 km for distance to 
the road, and 0-5, 5-10, 10-25, 25-45, 45-100 km for distance to the rail). Using AHP, their weights can 
be obtained. Table 7 shows that all consistency ratios (CR) obtained from the weights are less than 
0.1, this indicates the consistency of the formed matrix and the reliability of the calculated weights. 
 
 

 

Figure 3: Final map of suitable locations for the selection of bio-refinery sites  

 

  

http://www.ncc.ir/
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     Table 7: 

 
 

All the digital map layers are weighted by using the weights computed in Table 7 and are combined 

with the GIS analyzer. The final map for the proposed locations is calculated using the suitability index. 

The map is presented in Figure 3. Finally, 23 candidate locations with a high-suitability level are 

selected by using the equal-distance classification method. These suitable locations are considered as 

inputs for the second phase. 
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6.2. Results of the second phase 
For this part of case study, both the proposed MILP models were coded in GAMS 24, and solved by 

using the CPLEX solver. All empirical experiments were implemented with an Intel Core i3, 2.13 GHz 

processor with 4GB of RAM. The robust model's efficiency and performance were examined and 

compared with the deterministic model. 

6.2.1. Effects of uncertainty on total costs of the bioenergy SC 

The uncertainty’s effect on the total SC costs is examined by changing the robust model's conservatism 

level and the perturbation amplitude of uncertain parameters. Levels considered for the perturbation 

amplitude (𝑎𝑖�̂�) are 5, 10, 20 and 30% and those for the reliability and conservatism levels, controlled 

by the budget parameter 𝛤, are 68, 83, and 99%. Table 8 presents the different results obtained by 

adjusting each perturbation amplitude/reliability level of the model. It can be seen that the robust 

model costs are higher than the deterministic one at all uncertainty levels, due to the increase in the 

costs of improving the bioenergy SC stability. This increase becomes more significant as the 

conservatism/perturbation level increases. For instance, at high conservatism and risk aversion levels 

of the model (99% reliability and 30% amplitude), the total SC cost increases by 49.3% compared to 

the deterministic case. At lower uncertainty levels, it is possible, of course, to pay more reasonable 

costs, by creating a trade-off between robustness and the corresponding cost.  

           Table 8: 

 
 

Examining and comparing the problem solution times is another outcome of solving the robust model 

with different conservatism/risk levels. As shown in Table 9, although the new constraints and 

variables are defined in the model (robust), it is still tractable from computational point of view, and 

the techniques used prevents elongation of the solution time compared with the deterministic model. 

         Table 9: 

 
 

To study the differences in the costs of the deterministic and robust models, we first study each set of 

uncertain parameters at different perturbation and conservatism levels, and then check the effects 

on the increase in the total cost of the bioenergy SC by examining the normalized deviation, i.e., 

 (𝑍 − 𝑀𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) 𝑀𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡⁄  
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where Z and 𝑀𝑖𝑛 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 are the optimum values of the robust and deterministic models, 

respectively.  

Figures 4 to 8 show the values of the responses to various perturbations and uncertainties. At 30% 

perturbation, changes in the data of the biomass accessibility and transportation costs of the SC lead 

to increases of about 3.75% and 2.35%, respectively, in the total SC cost, while changes in the demand 

data, bio-refinery investment costs, and operation costs of conversion technologies would each 

increase the total SC cost by 5.1%, 9.3%, and 11%, respectively. These results suggest that efforts 

should be made to estimate the bio-refinery investment costs and the operation costs of conversion 

technologies more accurately. 

Another point worth mentioning here is that, as shown in the demand graph (Figure 4), if the reliability 

is enhanced, the change in the total cost reaches its worst value more rapidly, while in Figures 5 to 8, 

the worsening rates enhance more slowly (gradually). This means that the change in the total cost 

shows a strong reaction to changes in the demand data, even at a low conservatism level. Hence, it is 

necessary that the demand data uncertainty be examined precisely, even regarding a risk-taking 

decision-maker who usually accepts a relatively high level for violation of the constraints. 

 

 

 
Figure 4: Bioenergy SC cost response to demand 

data variations 
 Figure 5: Bioenergy SC cost response to bio-refinery 

investment cost data variations 

   

 

 

 
Figure 6: Bioenergy SC cost response to biomass 

accessibility data variations 
 Figure 7: Bioenergy SC cost response to conversion 

technologies' operating cost data variations 
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Figure 8: Bioenergy SC cost response to transportation cost data variations. 

 

6.2.2. Effects of uncertainty on the bioenergy SC structure   

Figures 9-13 and Table 10 report the optimal designs obtained by the two models (Robust and 

Deterministic) for 4 data perturbation levels. Figures 9-13 show that both models suggest almost 

identical locations for bio-refineries meaning that the strategic location decisions are reasonably 

robust and do not become invalid due to small data noise. In contrast, they perform differently in 

determining the type of conversion technologies and their capacities inside bio-refineries. In general, 

the robust approach creates a greater number of facilities (a spread form) or a lower number of higher-

capacity facilities (centralized configuration) comparing the deterministic approach, so that the 

system can satisfy all (most) of the constraints in the worst scenarios [54]. For the specific SC in this 

study, the robust approach suggests fewer, but higher capacity facilities. This is shown in Figures 12 

and 13 where bio-refineries b15 and b16 are eliminated.    

Table 10 shows that in the biorefinery areas b2, b8-b10, b12-b14, b19 and b21 at least one technology 

is installed under both the deterministic and robust models. Only location b15 is not selected for any 

technology under the robust model with 20% perturbation, and locations b15 and b16 are not selected 

for any technology under the robust model with 30% perturbation; other locations are identical (in 

the deterministic and robust models). This means that if there is small data noise, the strategic 

decisions related to the biorefineries locations where the technologies are installed will not be 

invalidated, and they are reasonably robust against the uncertainty. On the other hand, Table 10 

shows that, under uncertainty, different technologies as well as various capacities are selected. For 

example, in location b2 the robust model under 20% perturbation suggests installing the technology 

to produce pellets with a capacity of 30,000 t/year while the deterministic model suggests the same 

technology but different capacity (15,000 t/year). 

Similarly, the deterministic model suggests installing the biomass boiler and steam turbine with 3MW 

capacity in location b10, but the robust model, under 20% perturbation, suggests a different 

technology (pellet 45,000 t/y). In Table 10, the robust model suggests equal to or higher than the 

capacity of each technology proposed with the deterministic model (e.g. under perturbation 30%, the 

robust model suggests a pellet plant at 30,000 instead of 15,000 t/year suggested by the deterministic 

model in b2). However, the total number of technologies is reduced when the robust model is used 

(e.g. the robust model under 30% perturbation suggests 14 technologies, instead of 20 technologies 

suggested by the deterministic model). Compared with the deterministic model, the robust model in 

this study tends to a centralized configuration (a lower number of higher-capacity facilities), so the 

system can satisfy all (most) of the constraints in the worst scenarios [54]. The reason can be 
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understood better by looking at Figures 5 and 7. These figures show that the changes in data of the 

bio-refinery’s investment cost and the operation cost of the conversion technology significantly affect 

the objective function of the model. Therefore, the robust model tries to weaken this undesirable 

impact by offering fewer bio-refineries with higher technological capacities (due to their more 

affordable economic scale). It is worth mentioning that when the technological capacity increases, the 

variable production cost decreases relative to the total production.  

In addition, Figures 9-13 demonstrate that the bio-oil and pellet demands are satisfied with, 

respectively, three yellow and green colors (pale to dark). The point is that the provinces selected as 

pilot markets are not equal, whether for products in the deterministic and robust models or for their 

demands. However, 5 provinces (C1 to C5 in Figure 9) appear as optimal markets in all cases, and since 

they stay optimal even with data perturbation, they can be considered as reliable options in the early 

steps of the development process in the biofuel market. 

 

Figure 9: Deterministic model 

 

 

 
Figure 10: Robust model (with 99% reliability and 

5% perturbation) 
 Figure 11: Robust model (with 99% reliability and 

10% perturbation) 
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Figure 12: Robust model (with 99% reliability and 
20% perturbation) 

 Figure 13: Robust model (with 99% reliability and 
30% perturbation) 

 

 

6.2.3. Sensitivity analysis 

Here the effects of the following critical parameters on the total cost are evaluated by sensitivity 

analysis: (a) biomass cost; (b) biomass availability; (c) bio-oil demand; (d) capital costs; (e) technology 

conversion yield; (f) production costs; (g) heat demand, and (h) transportation cost of biofuel. 

The sensitivity is performed using the following conditions: reliability and perturbation level are set to 

99% and 30% respectively (base case model), and then nominal values of the 8 parameters are 

changed over reasonable ranges ( 20%−
+ ). Figure 14 reports the sensitivity analysis results. It shows 

that the total cost is very sensitive to the costs of investment and production. If the capital costs and 

production costs are increased by +20%, for each of the costs, the total cost increases by more than 

44% and 42% respectively. 

As shown in Figure 14, the conversion technology’s transformation yields have a greater effect on the 

total cost in negative changes than positive ones. The biomass mix in the base case model is often 

made of forest and sawmill residues. If the transformation yield of the conversion technology is 

enhanced to 20%, the use of forest residues is reduced, which means the cost of biomass will have a 

proportional reduction. Nevertheless, if the transformation yield decreases by 20%, more wheat straw 

and corn stover (residues of agriculture) have to be supplied, and these cost more than forest residues. 

Consequently, the total cost increases by more than 32%.  

In addition, when there are variations in demand for bio-oil, the change of total cost can vary 

approximately in a range from -14% to +13%. The investigation indicates that when demand of bio-oil 

rises to 20%, this leads to a centralized configuration in which one larger pyrolysis plant (600 ton/day) 

is installed in location b9 instead of the two smaller pyrolysis plants (one 200 ton/day in location b10, 

and one 200 ton/day in location b9) in the base case model, see Figure 13 and the last column of Table 

10. This reduces the total cost. 

 

Moreover, the total cost changes of the bioenergy SC are proportional to the changes in the biomass 

cost, and the total cost of the supply chain is relatively insensitive to variations in other parameters 

like the availability of biomass, heat demand and the cost of transportation.  
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  Table 10: 
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Figure 14: Sensitivity analysis under robust model (with respect to the base case model: perturbation= 30%, 

reliability =99%). 

 

6.2.4. The social effects of the bioenergy SC on the territories 

In this section, the effect of the bioenergy supply chain on the society in the territories where bio-

refineries are established, is investigated. To do so, we define the social profit of creating job w (the 

work hours) in territory b as follows: 

𝑺𝒐𝒄𝒊𝒂𝒍 𝒑𝒓𝒐𝒇𝒊𝒕𝒘,𝒃 = 𝜳𝒘,𝒃  × 𝑻𝒉𝒆 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 𝒉𝒐𝒖𝒓𝒔𝒘,𝒃 (𝑯𝒐𝒖𝒓𝒍𝒚 𝒘𝒂𝒈𝒆 𝒘𝒐𝒓𝒌 + 𝑺𝒂𝒍𝒂𝒓𝒊𝒆𝒅 𝒘𝒐𝒓𝒌) (S2) 
 

Where hourly wage work refers to the work involved in transforming the biomass to bioenergy and 

biofuel, and salaried work refers to the work of keeping the bio-refinery open (jobs with a fixed salary). 

The work hours needed to convert the biomass using the different technologies can vary depending 

on the capacities. Table 11 shows the assumptions related to the work (hours of work) for the different 

technologies of combustion, pellet and pyrolysis. The total requested jobs (in terms of whole hours 

needed for work) for the different types of technologies with the different capacities come from the 

reports presented in [65, 67], and from consultation with the Renewable Energy and Energy Efficiency 

Organization (www.satba.gov.ir). In addition, the work (the work hours) requested for technologies 

related to pyrolysis and pellet with different capacities, hourly-wage work, and salaried work hours 

also come from different previous studies [9, 61, 68].  
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 Table 11: 

 
  

The social profits obtained from the optimal design of the bioenergy supply chain (by using the 

deterministic and robust models with 99% reliability level) are calculated and presented in Table 12 

(using Table 10, Table 11 and equation (S2)). In order to obtain the number of jobs, value 1 is 

substituted instead of the social impact (𝛹𝑤,𝑏) in (S2). Table 12 shows the social profit generated by 

the optimal design (considering Table 10) obtained with the deterministic model and robust model 

with 99% reliability and 5%, 10%, 20%, 30% perturbation. Considering the last row of Table 12, the 

maximum social profit and created jobs belong to the deterministic model (48.84 M points and 263 

jobs respectively), and the minimum belongs to the robust model under 30% perturbation. As 

mentioned in Section 6.2.2, in this case, comparing the deterministic model, the robust model tends 

to give a centralized configuration (a lower number of higher-capacity facilities). Therefore, fewer 

work hours are created in the robust design under 30% perturbation compared with the deterministic 

model. The robust model under 99% reliability and 30% perturbation designs a supply chain giving 

social benefit (up to 31.79 M points) and 171 jobs. Table 12 shows that at lower perturbation levels, 

it is of course possible, to have more social profit and jobs. If the robust model with 10% perturbation 

and 99% reliability is considered, it leads to the creation of social benefit (up to 45.89 M points) and 

262 jobs under uncertain conditions. These jobs are created in the areas with high rates of 

unemployment and high vulnerability to the variation in the markets in an economic crisis, so the jobs 

have a very significant impact on the local society. 
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6.3. The performance analysis  
In order to show the advantage of the suggested approach and model compared with conventional 

ones some tests are implemented here. 

In type 1 tests, instead of using the locations introduced by the first phase, some arbitrarily chosen 

locations are used (three diverse sets). A basic case mode, reliability 99% and perturbation 30%, is 

considered for the robust model, which is then run. The total cost of the bioenergy supply chain and 

time of the computations are considered to evaluate the performance, see Figure 15.   

 

Figure 15 shows if the robust model is employed, the cost is smaller (as well as the computational 

time) for the case of high-suitability candidate locations, than for arbitrarily chosen candidate 

locations used. If 23 arbitrary chosen candidate locations are selected, this increases the total 

bioenergy SC cost to 1361M$ (42% more than the optimal cost). Figure 15 also shows that when 33 or 

43 arbitrary chosen candidate locations are considered, although the total bioenergy SC cost is 

reduced compared with 23 arbitrary chosen candidate locations, the computation time increases 

significantly. Furthermore, when more candidate locations are used, it does not necessarily mean that 

it is possible to build a bio-refinery in a feasible region while meeting all the environmental, economic, 

social, and technological constraints. Thus, the first phase of the proposed approach which selects the 

candidate locations to build bio-refineries with high suitability ranking, increases both the 

performance as well as the tractability of the bioenergy supply chain design model.  

 

 

Figure 15: Effects of using the locations introduced by the first phase vs. ignoring the first phase 

  

In type 2 tests, in order to investigate the desirability and robustness of both models, 55 random 

realizations are generated, for each perturbation level, by using a uniform distribution inside of the 

perturbation intervals (the extreme points) of uncertain parameters, then substituted in (1) to (22). 

The compact form of the realization-based model is as follows: 

 

  𝑀𝑖𝑛 𝑜𝑏𝑗 = 𝐹𝑟𝑒𝑎𝑙𝑥∗ + 𝐶𝑟𝑒𝑎𝑙𝑦∗ + ∑ 𝜉𝑅𝑖

𝑖
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  𝐴𝑟𝑒𝑎𝑙,𝑖𝑥∗ + 𝐵𝑟𝑒𝑎𝑙,𝑖𝑦∗ + 𝑅𝑖 ≥ 𝐷𝑟𝑒𝑎𝑙,𝑖 

 

In this model, capital letters represent the realized values, 𝑥∗ and 𝑦∗ are respectively the values of the 

integer and continuous variables generated optimally by the two models. The decision variable 𝑅𝑖 

measures the violation of constraints caused by the infeasible solution (𝑥∗, 𝑦∗) and 𝜉 is its penalty. 

Then the mean values and standard deviations obtained from the objective function of the model (56) 

are calculated and presented in Figures 16 to 18. 

The mean value indicates the model (robust) performs better than the deterministic one, for every 

case of different perturbation and reliability levels, and this superiority is more important when the 

perturbation level is increased meaning that when the supply chain suffers from insufficient historical 

data, the model (robust) is coordinated more effective with it, especially in greater levels of 

perturbation.  

Results also show that when the conservatism level increases, the distance between the performances 

of the two approaches increases as well. In fact, one advantage of the robust solution is that at 

different possible values for uncertain parameters, it stays feasible with a cost increase. Consequently, 

here in this particular case, the preferred option is the biggest values for reliability and perturbation 

levels, which offers greater safety and immunity. Nevertheless, 30% perturbation and 99% reliability 

may not be the best option, the final decision depends on the level of acceptability of the risk by the 

decision-maker. As shown in Figures 16 to 18, the deterministic model's standard deviations are much 

larger than the model (robust). It means when the parameters are affected by small perturbation, the 

solution coming from the deterministic model has deviated considerably but the solutions of the 

model (robust) stay close to the optimal solution.  

  
Figure 16: The two models’ performance (68% reliability) 
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Figure 17: The two models’ performance (83% reliability) 
  

   
Figure 18: The two models’ performance (99% reliability) 

7. Conclusions 
In this paper, a two-phase approach was proposed in order to design bioenergy SCs. The first phase, 

by integrating geographical information, social aspects, and by using multi-criteria decision-making 

techniques, aimed to find the appropriate locations for the bio-refineries in a geographical area. High 

rates of unemployment and high vulnerability of the territtories to variations in the markets during an 

economic crisis are considered as social concerns. The first phase enhances the practicality of the 

supply chain design, reduces its computational complexity, and help set up a sustainable 

development. The selected locations serve as input for the second phase. In the second phase, in order 

to cope with the uncertainties, a robust model is used to reduce the sensitivity to inaccurate input 

data. The use of the robust model leads to solutions which stay optimal, even when the parameters 

change slightly. In order to validate the two-phase sequential approach, a case study was carried out 

which showed that the proposed approach outperformed the traditional models, and for the case 
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considered, led to creating 262 jobs. The jobs will be created in the areas with high rates of 

unemployment, and high vulnerability, so the jobs have a significant impact on the local society. 

This work can be expanded in various ways. In future research, firstly, additional decisions could be 

integrated into the SC design: for instance, the new model could include some supplementary costs 

in order to provide insurance for the bio-refinery workers. Secondly, initial capacities or high 

technologies could be considered to improve the conversion productivity. Thirdly, product recycling 

after use by the customer can be considered. Fourth, decisions related to carbon trading and carbon 

pricing policies can be used. Finally, a column-wise version of the robust optimization can be used in 

order to tackle uncertainty better [69].   
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