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ARTICLE
Cellular and Molecular Biology

HOX genes promote cell proliferation and are potential
therapeutic targets in adrenocortical tumours
Jeffrey C. Francis 1, Jennifer R. Gardiner1, Yoan Renaud2, Ritika Chauhan3, Yacob Weinstein4, Celso Gomez-Sanchez5,
Anne-Marie Lefrançois-Martinez2, Jérôme Bertherat6, Pierre Val2 and Amanda Swain 1

BACKGROUND: Understanding the pathways that drive adrenocortical carcinoma (ACC) is essential to the development of more
effective therapies. This study investigates the role of the transcription factor HOXB9 and other HOX factors in ACC and its
treatment.
METHODS: We used transgenic mouse models to determine the role of Hoxb9 in adrenal tumour development. Patient
transcriptomic data was analysed for the expression of HOX genes and their association with disease. Drug response studies on
various adrenocortical models were done to establish novel therapeutic options.
RESULTS: Our human ACC dataset analyses showed high expression of HOXB9, and other HOX factors, are associated with poorer
prognosis. Transgenic overexpression of Hoxb9 in the adrenal cortex of mice with activated Ctnnb1 led to larger adrenal tumours.
This phenotype was preferentially observed in male mice and was characterised by more proliferating cells and an increase in the
expression of cell cycle genes, including Ccne1. Adrenal tumour cells were found to be dependent on HOX function for survival and
were sensitive to a specific peptide inhibitor.
CONCLUSIONS: These studies show Hoxb9 can promote adrenal tumour progression in a sex-dependent manner and have
identified HOX factors as potential drug targets, leading to novel therapeutic approaches in ACC.

British Journal of Cancer https://doi.org/10.1038/s41416-020-01166-z

BACKGROUND
Tumours of the adrenal cortex are relatively common with a
prevalence of 1–10%. Most of these are benign adenomas,
however, in rare cases (up to 2 per million per year) adrenocortical
carcinoma (ACC) can develop, which is an aggressive disease with
a low 5-year survival (up to 35% of diagnosed patients and less
than 15% in patients with metastatic disease) (reviewed in refs. 1,2).
Current treatments include surgery for non-metastatic disease and
mitotane therapy, which has shown limited efficacy in advanced
patients. Understanding the pathways that drive ACC progression
is essential to the development of more effective treatments and
for the prediction of individual outcomes.
Relatively little is known about the molecular pathways

that drive ACC growth and progression. Recent next-generation
sequencing studies have revealed recurrent alterations present
in patients with ACC.3–5 These studies have identified mutations
in the WNT signalling pathway to be one of the most
frequent alterations, with CTNNB1-activating mutations present
in up to 16% and inactivating changes in ZNRF3, a pathway
repressor, in up to 21%.3 Other pathways that are altered in ACC
patients include epigenetic regulation and p53/RB1 and PKA
signalling.5

Studies in mice have shown that targeting an activating
mutation in Ctnnb1 to the adrenal cortex leads to tumour
formation, highlighting the relevance of this model to study this
disease.6 WNT signalling has been implicated in adrenal develop-
ment and homoeostasis. Genetic studies in mice have shown that
a decrease in WNT signalling, either through deletion of Ctnnb1 or
pathway inhibition, in adrenal cortical cells led to adrenal aplasia,
degeneration and zonation defects, depending on the deletion
stage and cell type.7–9 These studies also indicate the role of WNT
signalling in subcapsular stem/progenitor cell proliferation and
maintenance.10

Factors involved in organ development have been implicated in
neoplasia in many tissues. HOX genes are a family of homeobox
transcription factors that are major regulators of embryogenesis
and have been implicated in oncogenesis.11 In mammals there are
four clusters of HOX genes (HOXA, HOXB, HOXC and HOXD) with 39
members identified in humans. Gene expression studies have
shown that several HOX genes are expressed in the developing
and adult adrenal glands, while the HOX cofactor PBX1 is required
for adrenal formation.12–15 Emerging evidence has revealed that
aberrant HOX gene expression in adult tissues can lead to
malignancy, including in lung, ovarian, cervical, prostate and
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breast carcinoma,16–21 and can interact with other signalling
pathways, such as WNT/β-catenin, to promote tumour progres-
sion.22–26

Here, we show that high expression of HOXB9, which is
expressed in adrenal cortical cells during development, is
associated with patient survival in ACC. A genetic mouse model
of overexpression of Hoxb9 in adrenal cortical cells shows a bigger
X zone. Male mice with an activating Ctnnb1 mutation and Hoxb9
overexpression develop tumours with increased proliferation. Our
study implicates HOX genes in ACC formation and identifies them
as possible drug targets in this disease.

METHODS
Mouse strains
The mutant Ctnnb1 mice were generated by breeding two
previously described strains, Cyp11a1:Cre and the stabilised
Ctnnb1 conditional allele.27,28 The Sf-1:Hoxb9 transgenic mice
were generated by injecting a BAC construct into one-cell mouse
embryos, as described previously.27 The BAC construct was
generated by inserting, through homologous recombination, the
mouse Hoxb9 cDNA plus the bovine growth hormone polyade-
nylation signal sequences into the SacII site in the 5′ untranslated
region of the mouse Sf-1 locus contained in a BAC plasmid, as
described previously.27

All animals were bred on a mixed genetic background. All
mouse work was carried out in accordance with the Institute of
Cancer Research guidelines and with the UK Animals (Scientific
Procedures) Act 1986. Animals were housed in a specific
pathogen-free environment using an Optimouse system (air
speed 4.3 m/s average, a 12/12 light cycle (7:30–19:30), tempera-
ture 21+ /− 1 °C, room humidity 55% +/− 10%), and fed lab diet
5002 (International Product Supplies), with corn-cob bedding 1014
(International Product Supplies), and with card tunnel and
woodblock enrichment. Animals were euthanised by exposure
to carbon dioxide or isoflurane followed by cervical dislocation. At
least four animals of each sex were analysed for each genotype,
using animals from the same litters as controls.

Immunohistochemistry (IHC)
Antibody staining was performed as previously described (details
in the Supplementary Methods section). For adrenal sections,
staining was done on samples from at least three mice of the
same genotype.

Western blot
Cells were lysed in RIPA buffer (Sigma, Welwyn Garden Cit, UK)
with protease and phosphatase inhibitors (Cell Signaling Technol-
ogy, Leiden, The Netherlands). Samples were run on 4–12% Bis-
Tris protein gels with MOPS buffer and transferred to nitrocellu-
lose membranes. The membrane was blocked in 5% milk/TBST
(TBS, 0.1% Tween-20) for 1 h, and primary antibodies incubated in
2.5% milk/TBST overnight at 4 °C. Membranes were washed with
TBST, incubated with HRP-conjugated secondary antibodies for
1 h at room temperature, washed again and chemiluminescence
detected (GE Healthcare, Chalfont St Giles, UK). Primary antibodies
used were; HOXB9 (Santa Cruz sc-398500), Sf-1 (Abcam ab65815)
and Vinculin (Sigma V4505).

Quantification of cell proliferation and cell death
The number of proliferating cells was calculated by counting the
number of nuclear Ki67-stained cells and shown as a percentage
of the total number of cells stained with nuclear haematoxylin.
Apoptotic cell death of mouse tissue was quantified by IHC stains
of sections with an antibody against active Caspase 3. Cells were
counted from at least four high-power randomly selected fields
per animal. Three animals of each genotype were analysed. An
ANOVA or t test was used to test if there was a significant

difference in the number of proliferating or apoptotic cells
between each group.

In vitro culture of adrenal cells
H295R cells, a kind gift from Peter King (Queen Mary, University of
London), were STR profiled to confirm their identity and were
maintained in DMEM/F12 supplemented with 2.5% Nu-Serum I,
ITS+ 1 and GlutaMAX. ATC1 and ATC7 cells were established from
adrenal tumours from transgenic mice with Large T antigen of
SV40 controlled by the cortical adrenal-specific Akr1b7 promoter,
and were a kind gift from Antoine Martinez.29 ATC1 and ATC7 cells
were maintained in DMEM/F12 supplemented with 2.5% FBS, 2.5%
horse serum and ITS. PC3 cells were maintained in RPMI1640 with
10% FBS. All cell lines were used at low passage number (<20).
ABC cells were derived from a mouse Ctnnb1 mutant adrenal
gland tumour and grown in Y-media (DMEM/F12, 10% FBS,
penicillin/streptomycin, L-Glutamine, 5 μg/ml Insulin, 0.4 μg/ml
hydrocortisone, 10 ng/ml EGF, 10 μg/ml Gentamicin, 250 ng/ml
amphotericin, 4.81 ng/ml Cholera toxin, 5 μM Y27632). Briefly,
adrenal glands were dissected, minced and incubated in
dissociation media (DMEM/F12, ITS, 10 μg/ml EGF, 10mg/ml
hydrocortisone, 0.5 mg/ml collagenase, 0.1 mg/ml hyaluronidase,
100 units/ml DNase I, 10 μM Y27632) for 2 h. The cells were
washed, incubated in 0.05% Trypsin/EDTA with 10 μM Y27632 for
8 min at 37 °C and dissociated by vigorous pipetting and trypsin
inactivated with Y-media. Cells were incubated in 1 mg/ml DNase
for 5 min at 37 °C, washed with PBS and filtered through 70-μm
filter.

siRNA knockdown in H295R cells
To perform gene knockdown, 6 × 105 H295R cells were seeded in
six-well plates and the next day siRNA reagents non-targeting ON-
TARGETplus SMARTpool (D-001810-10-05, Horizon Discovery,
Cambridge, UK), PBX1 ON-TARGETplus SMARTpool (L-019680-00-
0005), HOXA10 ON-TARGETplus SMARTpool (L-006336-00-0005),
HOXA11 ON-TARGETplus SMARTpool (L-012108-00-0005), or
HOXA13 ON-TARGETplus SMARTpool (L-011052-00-0005) were
transfected with RNAiMAX (Thermo Fisher Scientific, Hemel
Hempstead, UK) following the manufacturer’s protocol. Cells were
incubated for a further 24 h and re-plated for the cell growth assay
or 48 h for RNA extraction. For the growth assay, 2000 cells were
plated per well of a 96-well plate and CellTitre-Glo luminescence
(Promega, Southampton, UK) measurements were taken at the
indicated days.

Lentiviral overexpression of HOXB9
H295R cells overexpressing HOXB9 were made by transduction
with lentiviral particles generated from pLenti-GIII-CMV-HOXB9-
GFP-2APuro (LV183492, Applied Biological Materials, Richmond,
Canada) and control cells with pLenti-CMV-GFP-2A-Puro (LV590,
Applied Biological Materials). Lentivirus was produced by trans-
fecting 7 × 106 293T cells in 10-cm plates with the packaging
plasmids psPAX2 and pMD2.G using Lipofectamine 3000 (Thermo
Fisher Scientific). Viral supernatants were collected 24- and 48-h
post-transfection, centrifuged at 2000 rpm, and filtered through a
45-μm filter.

Generation of a HOX-targeting peptide
Genscript Biotech (Leiden, The Netherlands) synthesised a peptide
targeting the HOX–PBX protein interaction and a control peptide,
using sequences based on previous publications.30 The targeting
HTL001 peptide sequence WYKWMKKAARRRRRRRRR and the CXR9
control peptide WYPAMKKHHRRRRRRRRR, both with D-isomer
modification of C- and N-terminals were dissolved in DMSO.

Cell viability assay
Peptide drug survival assays were performed in 96-well plates. PC3
cells were plated at 500 cells per well; H295R, ATC1, ATC7 and ABC
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cells were plated at 2000 cells per well. Drug was added 24 h after
seeding, and cells were continuously exposed to the drug for
5 days, after which cell viability was estimated using CellTitre-Glo
luminescence (Promega).

Apoptosis assay
H295R cells were plated in a 96-well plate at 10,000 cells per well.
The next day the IC50 concentration of 5 μM HTL001, 5 μM CXR9 or
DMSO was added, incubated for 24 h and apoptosis estimated
using the Caspase 3/7 Glo assay (Promega) following the
manufacturer’s protocol.

RNA isolation and quantitative RT-PCR
RNA was isolated using the RNeasy kit (Qiagen, Manchester, UK)
and cDNA was made using 500 ng RNA with SuperScript IV reverse
transcriptase (Thermo Fisher Scientific), following the manufac-
turer’s instructions. Quantitative RT-PCR was carried out using
Taqman gene expression assays (probe sequence in the Supple-
mentary Methods section). Experiments on animal tissue were
done from at least 3 mice of the same genotype.

Transcriptomic analysis
For RNA-seq analysis of adrenal tumours, mRNA libraries for were
prepared using 500 ng of total RNA of each sample with NEBNext
Ultra II Directional RNA Library Prep kit (E7760, NEB, Hitchin, UK)
and NEBNext Poly(A) mRNA magnetic beads (E7490, NEB)
following the manufacturer’s protocol. RNA samples were run on
two lanes of a HiSeq2500 using RAPID onboard clustering and
single read 50 cycles. All samples were run at 16.6% per lane to
achieve 25 million clusters. TopHat RNA-seq alignment software
(v2.1.0) was used to align reads to the reference mouse genome
(GRCm38). Once the reads were aligned, HTSeq-count (HTSeq
v0.6.1) was used to count the number of reads mapping
unambiguously to genomic features in each sample. The raw
count data were normalised to correct for library size and RNA
composition bias. Differential gene expression analysis of the
count data was performed in R using the Bioconductor package
DESeq2 (v1.18.1). Gene set enrichment analysis (GSEA) was carried
out with male Ctnnb1 mutant and double-mutant RNA-seq data
using the Broad Institute Java plug-in with the Hallmarks gene
set.31 STRING protein network analysis was carried out using the
differentially expressed genes between male Ctnnb1 mutants and
double mutants (genes with adjusted P < 0.1 and P < 0.05).

Patients cohort datasets
The clinical datasets used in this paper are derived from two
cohorts of patients. Cochin’s cohort (49 ACC, 101 ACA and 4 NAd,
GSE49280) was analysed by Affymetrix microarray (HG-U133 Plus
2.0).3 Our collaborators provided data analysed after RMA
normalisation and inter-array normalisation. The other transcrip-
tome (79 patients) is from the TCGA database (The Cancer
Genome Atlas) and it relies on Illumina HiSeq 2000 RNA
Sequencing Version 2.5 Expression data were standardised by
the Relative Standard Error of the Mean (RSEM) algorithm and
transformed into Log2 in order to refocus and symmetrise values’
distribution. For each cohort, patients’ survival data were available
and distribution in the good (C1B) and poor prognosis (C1A)
groups, which was defined by our collaborators on the basis of
unsupervised clustering. Gene proliferation signature was
extracted from Wassef et al.32 (Supplementary Table S1) and
was defined as the mean expression of the 61 genes that compose
it. Statistical analyses were performed in R using the lmerTest_3.1-
0 and lsmeans_2.30-0 libraries. Paired comparisons (C1A vs C1B)
were analysed by a Wilcoxon test. Multiple comparisons (NAd,
ACA and ACC) were analysed by ANOVA followed by Tukey’s test.
Overall and disease-free survival analyses were conducted with R
package « survival_2.44-1.1 » and displayed as Kaplan–Meier
Curves. Pearson correlations were computed using R package ≪

Hmisc_4.2-0 ≫. Graphs were generated using R library ≪
ggplot2_3.1.1 ≫.

RESULTS
Hoxb9 overexpression in adrenal cortical cells
HOX genes have been implicated in the initiation and progression
of many cancers.11 Our and other studies have shown that Hoxb9
is expressed at the early stages of adrenal cortical
development.14,33 To investigate if HOXB9 expression is associated
with ACC, we analysed patient gene expression data from the
Cochin cohort that contains normal adrenal (NAd), adrenocortical
adenoma (ACA) and ACC samples.3 In this dataset, HOXB9
expression was higher in ACC samples with the difference with
ACA being significant, but not with NAd (Fig. 1a). Consensus
clustering of mRNA expression has been used to subgroup ACC
patients into those that have aggressive disease, C1A, and those
with the indolent disease, C1B. In both the Cochin dataset and in
ACC samples from The Cancer Gene Atlas (TCGA), HOXB9
expression was significantly higher in C1A compared to C1B
(Fig. 1b). Consistent with HOXB9 expression being associated with
aggressive disease, analyses of TCGA and Cochin patients into
high and low HOXB9 expression showed that ACC patients with
high HOXB9 expression had a poorer survival prognosis (Fig. 1c).
Together these data suggest that elevated HOXB9 expression in
ACC may play a role in tumour progression to aggressive disease.
To investigate the effect of high levels of HOXB9 in adrenal

cortical cells, we generated transgenic mice carrying a BAC
construct that contained the Hoxb9 cDNA inserted into the Sf-1
locus (Sf-1:Hoxb9 mice, referred to as Hoxb9 t/g, Fig. 1d).
Quantitative RT-PCR (qRT-PCR) expression analysis showed an
increase of Hoxb9 levels in the adult adrenals of transgenic mice
(Fig. 1e). This was confirmed in antibody staining studies, which
showed an expanded domain of HOXB9 expression, reflecting the
pattern of the Sf-1 promoter sequence driving Hoxb9 (Fig. 1f and
Supplementary Fig. S1A). In the normal adrenal HOXB9 was
primarily expressed in zona fasciculata (ZF), while in transgenic
animals expression was also found in the outer cortical zona
glomerulosa (ZG) cells. HOXB9-expressing cells were also found in
the medulla of transgenic glands from 3-month-old female mice
that were not present in control animals (Supplementary Fig. S1B).
Phenotypic analysis of the adrenals of transgenic mice at 3 and
18 months of age showed no obvious changes in size or structure
compared to wild-type adrenal glands (Fig. 1g, h, Supplementary
Fig. S1C, D). Ki67 staining revealed no difference in the number of
proliferating cells between transgenic and wild-type animals
(Fig. 1i, j and Supplementary Fig. S1E). We next analysed the
expression of a known embryonic HOX target gene, Sf-1, markers
of adrenal gland stem/progenitor cell function, and a WNT
signalling target. In both female and male adrenal glands from
transgenic mice, Sf-1 expression was increased threefold, while
there was no change in the expression of Shh, Patched (Ptch) or
Axin2 (Fig. 1k and Supplementary Fig. S1F). This suggests that
elevated Hoxb9 is not able to induce neoplastic development but
can promote Sf-1 expression in the adult gland. To determine if
adrenal gland zonation was disrupted by elevated Hoxb9
expression, we performed immunohistochemical (IHC) staining
and qRT-PCR analyses with cell-type markers for ZG (Dab2 and
Cyp11b2), ZF (Cyp11b1), adrenal medulla (TH) and X zone (20α-
HSD, gene name Akr1c18, and Pik3c2g) on male and female
adrenals (Fig. 2). These data showed that transgenic animals had
no change in adrenal cortical ZG or ZF markers (Fig. 2a, b). Instead,
glands from 3-month-old female transgenic mice had a bigger
foetal derived X zone with Sf-1-positive cells infiltrating the
medulla (Fig. 2c, d and S2A). The larger X zone in transgenic
animals behaved as in the wild-type in that it was only found in
prepubertal males (Supplementary Fig. S2B) and it regressed in
older females (Fig. 2c).
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Elevated Hoxb9 cooperates with mutant Ctnnb1 during tumour
formation
To investigate if HOXB9 can promote tumour formation we bred
Sf-1:Hoxb9 mice with mice containing the activating conditional

Ctnnb1 deletion allele and a construct with Cre recombinase
driven by Cyp11a1-regulatory sequences (Ctnnb1 mutant mice,
referred to as ABC). As expected, adrenals from Ctnnb1 mutant
mice showed tumour formation characterised by increased organ
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size, which was larger in the female (Figs. 1g and 3b). These
tumours had a lack of zonal structure, loss of medullar cells and
high expression of the ZG marker Dab2 throughout the tumour
(Supplementary Fig. S3A, B). Six-month-old Ctnnb1 mutant mice
that also carried the Sf-1:Hoxb9 transgene (double-mutant mice,
referred to as ABC; Hoxb9 t/g) showed an increase in adrenal size,
which was restricted to male mice (Fig. 3a, b). Haematoxylin and
eosin staining showed no obvious morphological difference
between Ctnnb1 and double mutants (Fig. 3c). As expected,
antibody staining for β-catenin and the WNT signalling down-
stream marker Lef1 in Ctnnb1 mutants showed high expression in
the majority of cells (Fig. 3c). This staining pattern was unchanged
in double-mutant tumours showing that elevated Hoxb9 had no
major effect on this pathway (Fig. 3c). Proliferation, as measured
by Ki67 staining, was higher in 6-month-old double-mutant male
mice, with no changes in apoptosis, as measured by Caspase
3 staining (Fig. 3d–g). No signs of invasive disease were observed
in double-mutant animals (Fig. 3c, arrows). Adrenal tumours from
double-mutant mice expressed higher levels of Hoxb9 mRNA and
protein than single Ctnnb1 mutants, confirming expression of the
transgene (Fig. 3h, i). As Sf-1:Hoxb9 adrenals showed an increase
in Sf-1 expression, we investigated the levels of this gene in the
tumours. qRT-PCR analysis showed that Sf-1 transcript was higher
in both female and male double-mutant adrenal tumours relative
to Ctnnb1 mutants, but there was no difference in the levels of SF-
1 protein expression between the genotypes (Supplementary Fig.
S3C, D).
To investigate the pathways activated in the double mutants we

performed RNA-seq on RNA derived from adrenal tumours from 3-
month-old Ctnnb1 and double-mutant female and male mutant
mice. Comparative analysis identified differentially expressed
genes in the tumours of double-mutant mice compared to Ctnnb1
mutants, with a higher number in males (533 genes altered,
Benjamini–Hochberg adjusted P < 0.1) than in the same compar-
ison in females (66 genes altered, Benjamini–Hochberg adjusted
P < 0.1) (Fig. 4a and Supplementary Tables S2–S5). For both sexes,
genes were differentially up- and downregulated (males 232
genes up, 322 genes down; females 47 up, 19 genes down),
consistent with evidence suggesting that HOX proteins can act as
transcriptional activators and repressors.
Comparative analysis of the differentially expressed genes

between double mutants and Ctnnb1 mutant female and male
tumours showed very few common genes altered in both sexes
(three genes upregulated, and six genes downregulated in both
females and males) (Fig. 4b). Validating our qRT-PCR result, Sf-1
was increased in double mutants of both sexes. Interestingly,
many genes that were differential between male double
mutants and Ctnnb1 mutants were shared with those that were
different between male and female Ctnnb1 mutant animals (52
upregulated genes and 30 downregulated genes) (Fig. 4c). These
data suggest that Hoxb9 acts to promote tumorigenic pathways
that are repressed in the male adrenal.

Pathway analysis of the differentially expressed genes using the
STRING protein–protein interaction database identified angioten-
sin signalling enriched in double-mutant male tumours compared
to Ctnnb1 mutant tumours, including Agtr1b, Egr1, Nr4a1 and
members of the Fos/Jun family Fos, Fosb and Junb (Fig. 4d and
Supplementary Table S4).34 Interestingly, Cyp11b2 expression, a
target of this pathway, was not changed in these tumours. qRT-
PCR was used to validate these results for the Fos/Jun family, and
antibody staining showed widespread expression of Fosb in
double-mutant tumours (Fig. 4e, f). Gene set enrichment analysis
of the RNA-seq data from male Ctnnb1 and double-mutant
tumours revealed enrichment in cell cycle genes in tumours with
elevated Hoxb9, consistent with the increase in proliferation in
double mutants (Fig. 4g and Supplementary Table S6). These data
were validated using qRT-PCR for Cdk1, Ccnb1, Ccnb2, Ccne1 and
Knstrn, which showed an increase in these genes in male double
mutants but not in females (Fig. 4h). We next checked if the
pathways we identified were also altered in female Ctnnb1 mutant
tumours, compared to males of the same genotype, as these
tumours shared a large number of altered genes with male double
mutants (Fig. 4c). We found 15 cell cycle regulatory genes (E2F
targets or G2M checkpoint Hallmark genes) upregulated in female
Ctnnb1 tumours compared to Ctnnb1 male tumours, including
Ccne1 and Cdk1 (Fig. 4i). These data suggest a core set of cell cycle
genes that are elevated in tumours with high Hoxb9 are also
expressed at high levels in female Ctnnb1 tumours, compared
to males.

HOX factors as potential drug targets in ACC
Our transgenic mouse data indicates that high Hoxb9 expression
can promote cell proliferation within a tumour context. We next
wanted to determine if HOXB9 can promote proliferation in
human ACC cells. Consistent with our mouse studies, over-
expression of HOXB9 in the human adrenal cortical tumour cell
line H295R led to a small but significant increase in cell number
(Supplementary Fig. S4A, B, C). To determine if HOXB9 expression
correlates with proliferation in human samples we analysed its
expression in two ACC datasets, TCGA and Cochin, with the
proliferation markers MKI67, CCNE1 and an established prolifera-
tion gene signature (Wassef et al.32) (Fig. 5a). We found a
significant correlation of HOXB9 with MKI67 and the proliferation
signature in the Cochin ACC dataset but not TCGA. To investigate
if other HOX genes are implicated in proliferation in human ACC
we performed these correlations with all members of the HOX
gene family. Several HOX genes showed a significant correlation
with all proliferation markers in both datasets, including HOXC9,
HOXC10, HOXC11, HOXC13 and HOXD13 (MKI67 P < 0.002, prolif-
eration gene signature P < 0.001, CCND1 P < 0.05) (Fig. 5b,
Supplementary Fig. S5, Supplementary Tables S7 and S8). An
analysis of the correlation of HOX gene expression with the
expression of all other HOX members in the TCGA ACC dataset
showed HOXB9 expression significantly correlated with the

Fig. 1 HOXB9 is associated with aggressive ACC and the generation of a transgenic mouse overexpressing Hoxb9 in adrenal cells. a
HOXB9 gene expression in normal human adrenals (NAd), adrenocortical adenoma (ACA) samples, and adrenocortical carcinoma (ACC)
samples from the Cochin cohort. Statistical analysis is one-way ANOVA Turkey’s pairwise test, ***P= 0.0004. b HOXB9 expression in ACC
samples from patients with aggressive C1A or indolent C1B-type disease from TCGA and Cochin cohorts. Statistical analysis is a Wilcoxon test,
***P= 0.00053, *P= 0.04. c Kaplan–Meier survival curves for ACC patients from the TCGA and Cochin cohorts that had either high or low
HOXB9 expression. d Schematic of the Sf-1:Hoxb9 transgenic construct used to increase Hoxb9 expression in adrenal glands. bGH pA is a
bovine growth hormone polyA sequence. e qRT-PCR of Hoxb9 on wild-type and Hoxb9 t/g adrenal glands. The data represent mean ± SD from
three biological repeats. f HOXB9 immunohistochemistry on sections of female wild-type and Hoxb9 t/g adrenal glands. ZG is zona
glomerulosa. g Wet weights of male and female adrenal glands from wild-type and Hoxb9 t/g animals. The data represent mean ± SD from
four samples. h Haematoxylin and eosin (H&E) stain on sections from wild-type and Hoxb9 t/g adrenal glands. c is the cortex, m is the medulla.
i Ki67 immunohistochemistry on sections of wild-type and Hoxb9 t/g female adrenal glands. j Bar chart of the percentage of Ki67-positive cells
in wild-type and Hoxb9 t/g male and female adrenal glands. The data represent the mean ± SD from three biological repeats. k qRT-PCR of Sf-1
on wild-type and Hoxb9 t/g adrenal glands. The data represent the mean ± SD from three biological repeats. Student’s t test, **P < 0.01, *P <
0.05. Hoxb9 t/g indicates Sf-1:Hoxb9 transgenic.
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expression of these HOX genes (HOXC9 r= 0.377; P= 0.000604,
HOXC10 r= 0.474; P= 9.81−06, HOXC11 r= 0.427; P= 8.60−05,
HOXC13 r= 0.455; P= 1.16−06 and HOXD13 r= 0.453; P= 2.69−05)
(Supplementary Tables S7, S8 and Supplementary Fig. S6).
To establish if these genes were implicated in disease

progression, we performed correlations between HOX gene
expression and ACC C1A versus C1B status (Fig. 5c and
Supplementary Fig. S7), and ACC versus ACA and NAd (Fig. 5d),
and found that higher levels of HOX genes correlate with ACC and
aggressive disease. Analysis of overall and disease-free survival
between ACC patients with high and low HOX gene expression
showed a correlation between high HOX levels and poor
prognosis (Fig. 5e, Supplementary Figs. S8 and S9). These data
argue that HOX genes can be drivers of aggressive ACC disease.
To investigate if adrenal tumour growth is dependent on HOX

genes, we performed siRNA knockdown studies of HOX genes
expressed in H295R cells.13 Knockdown of HOXA11, but not
HOXA10 or HOXA13, led to reduced growth of H295R cells,
supporting a role of HOX genes in promoting adrenal tumour cell
proliferation (Fig. 6a, b). Analysis of HOXA11 paralogues after
HOXA11 knockdown showed a modest reduction in HOXC11
expression, while HOXD11 expression was not detected in H295R
cells in control or siRNA-treated samples (Fig. S4D). Our HOX gene
expression correlation analysis showed a strong correlation of

HOX genes within clusters, including HOXA10 with HOXA11 and
HOXA13, and weaker associations with their paralogues (Supple-
mentary Tables S7, S8 and Supplementary Fig. S6). Analysis of
HOXA11 expression in the TCGA ACC dataset showed that it
significantly correlated with Ki67 expression (P= 0.0023, r= 0.337)
the proliferation gene signature (P= 0.00053, r= 0.381) and
CCNE1 (P= 0.0010, r= 0.363) expression in these tumours.
As we have shown that several HOX genes correlate with

proliferation markers and aggressive disease in ACC we chose to
target PBX1, a transcription factor that cooperates with HOX
proteins to regulate target gene expression and has been
implicated in adrenal development and function.15 siRNA knock-
down of PBX1 in H295R cells led to reduced levels of expression
and to a marked reduction in cell proliferation (Fig. 6c, d). H295R
cells harbour a CTNNB1-activating mutation, and our qRT-PCR
studies showed that PBX1 knockdown had no effect on WNT
signalling, as measured by the expression levels of downstream
targets AXIN2 and LEF1 (Supplementary Fig. S4E). In order to
further investigate if HOX factors can act as drug targets in ACC,
we used a developed antagonist peptide, which interferes with
the interaction between HOX and PBX proteins (HTL00130). Our
drug response studies showed that H295R cell growth was highly
inhibited by HTL001 but not by a control peptide (CXR9) (Fig. 6e).
The IC50 of HTL001 in H295R cells was lower than that of another
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responsive cell line, the prostate cancer line PC3 (5.54 μM versus
30.11 μM). To investigate if mouse adrenal tumours were also
sensitive, we analysed three models: two cell lines derived from
adrenal tumours driven by SV40 T antigen, ATC1 (containing an
activating Ctnnb1 mutation35) and ATC7; and primary cells derived
from adrenal tissue from the Ctnnb1 mutant mice described
above. These cells were treated with the antagonist HOX–PBX
peptide and found to be responsive, with ATC7 cells being the
most sensitive (IC50 23.11 μM) (Fig. 6e). Cell death assays on
H295R cells confirmed an increase in apoptosis in cells treated
with the antagonist (Fig. 6f).

DISCUSSION
This study investigates the roles of HOX genes in ACC and their
potential as drug targets in this disease. HOX genes have been
implicated in cancer, most notably in haematological malignan-
cies.36 In many cases, elevated expression correlates with poor
prognosis, which is what we observe for HOXB9 and other HOX
genes in ACC. Our data show that overexpression of Hoxb9 in the
adrenal leads to an increase in foetal derived X-zone cells, but
does not promote hyperplasia or neoplasia. However, in
combination with an activated Ctnnb1 mutation, high levels of
Hoxb9 lead to an increase in proliferation. This data suggests that
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HOX genes do not initiate neoplasia but can promote aggressive
disease with an increase in cell cycle-dependent genes, such as
Cyclin E1. Our studies also show that adrenal tumour cells are
dependent on the HOX–PBX interaction for growth and that
therefore these factors have the potential to be drug targets
in ACC.
ACC has a sex bias, with females being more at risk than

males.37 Consistent with this, mice with Ctnnb1-activating muta-
tions in the adrenal show a more aggressive and earlier
phenotype in females, which we also observe in our Ctnnb1
mutant mice. Recent data have shown a sex-specific difference in

cell proliferation and renewal in the adrenal cortex, with females
showing higher turnover and using an additional stem/progenitor
compartment found in the capsule.38 This difference was driven
by testicular androgens that repressed these processes in the
male. Our data is consistent with Hoxb9 promoting the
proliferative pathways that are repressed in the male. Our RNA-
seq analysis did not show changes in classic androgen receptor
targets, such as Srd5a2, however, we did observe an increase in
Frzb expression in double-mutant adrenals, which has been shown
to be higher in female adrenals and upregulated in adrenals of
castrated mice.39
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from the TCGA and Cochin cohorts that had either high or low HOXC10 or HOXD13 expression.
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Overexpression of Hoxb9 led to an increase in Sf-1 levels both in
a normal and neoplastic context. HOX genes have been implicated
in the regulation of Sf-1 transcription in the developing adrenal.14

Transgenic mice with increased foetal Sf-1 expression showed
extra-adrenal formation and mice with a Sf-1 sumoylation
mutation have a persistent X zone, suggesting that the bigger
foetal derived X zone seen in the adrenal of the transgenic Sf-1:

Hoxb9 mice could be due to the higher Sf-1 levels.40,41 Whether
this pathway is active in adrenal tumours is unclear as we did not
observe an increase in Sf-1 protein in the adrenals of double-
mutant mice.
Our data show an increase in cell cycle markers in double-

mutant male tumours including Ccne1, a gene commonly
amplified in ACC and thought to be a disease driver. Both HOX
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Fig. 6 ACC cells are sensitive to inhibition of HOX–PBX function. a qRT-PCR of HOXA10, HOXA11 or HOXA13 in H295R cells treated with a
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genes and SF-1 have been implicated in the regulation of CCNE1
expression.42,43 A surprising result was the observation of an
increase in the expression of the FOS/JUN/EGR1 pathway without
an increase in Cyp11b2 expression.34 Analysis of Fosb staining in
normal adrenals did show its association with the ZG, the site of
angiotensin signalling, but was also found in a few capsule cells
(Supplementary Fig. S10). This suggests that the FOS/JUN family
can be activated in non-steroidogenic cells of the adrenal.
Whether its function in these cells is associated with cell
proliferation is not known.
WNT signalling has been implicated in adrenal development

and differentiation, as well as homoeostasis and neoplasia in the
adult. The double-mutant animals in our study do not show major
changes in differentiation, such as Cyp11b1 or Cyp11b2, or stem
cell markers, such as Shh and Gli1, when compared to the Ctnnb1
mutants. The major difference we observe is an increase in
proliferation in double-mutant male adrenals. Mice with Znrf3
mutations show an increase in proliferation of the ZF, which is
thought to be due to moderate rather than high WNT signalling
activation.44 We do not observe any major changes in WNT target
genes in the neoplastic tissues, suggesting that HOX genes do not
act to modulate this pathway in adrenal disease.
Our analysis of HOX gene expression revealed various members

of the family had increased levels in human ACC, some of which
correlated with increased proliferation markers. Our experiments
in H295R cells identified a need for HOXA11, but not for other HOX
expressed genes, HOXA10 and HOXA13, for survival. This variety
prompted us to propose a more general HOX-based therapy for
patient treatment as different tumours may have specific HOX
gene combinations driving disease progression. Studies have
shown that functional redundancy in organ formation can be
observed in paralogous members of the HOX gene family.45 Our
expression studies in ACC samples comparing members within the
HOX family showed that correlations were higher in genes of the
same cluster rather than their related paralogues. Consistent with
this, analysis of the HOXA11 paralogues in H295R cells with
HOXA11 knockdown only showed a mild reduction in HOXC11
expression. HOX transcript antisense intergenic RNA (HOTAIR) has
been implicated in ACC with high expression correlating with
worse disease outcome.46 HOTAIR has been proposed to regulate
the expression of many genes through its interaction with
polycomb repressive complex 2. How this LncRNA interacts with
HOX genes in ACC is not known.
Our studies show that adrenal tumour cells are dependent on

HOX genes for their growth, although we were not able to predict
which member of the family is the most relevant to patients. As a
way to overcome this issue, we determined a dependency of
adrenal tumour cells on the interaction between HOX and PBX
factors for growth. This makes inhibiting this interaction a
promising therapy option for ACC. Peptide-based therapeutics
are being used in cancer treatment and a variant of HTL001 is
being developed for clinical trials currently, as in vivo studies in
mice showed growth inhibition in a range of tumour types, and
the drug was well-tolerated.47 We treated various adrenal tumour
models with the HOX peptide inhibitor and saw an effect on cell
survival. This suggests that this therapy would be effective in ACC
with different genetic backgrounds.
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