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Control by social influence: durables vs. non-durables

Bary S. R. Pradelski*

Abstract

Individual behavior such as the adoption of new
products is influenced by taking account of others’ ac-
tions. We study social influence in a heterogeneous
population and analyze the behavior of the dynamic
processes. We distinguish between two information
regimes: (i) agents are influenced by the adoption ra-
tio, (ii) agents are influenced by the usage history. We
identify the stable equilibria and long-run frequencies
of the dynamics. We then show that the two processes
generate qualitatively different dynamics, leaving char-
acteristic ‘footprints’. In particular, (ii) favors more
extreme outcomes than (i). This has direct implications
for the control of policy interventions.

1. Introduction

A fundamental question about aggregate behavior
of groups is how shifts between seemingly stable states
occur almost instantaneously after long lags of low fluc-
tuation. Social influence has been found to play an im-
portant role in such transitions. Social influence de-
scribes the process in which individuals are influenced
by the behaviors of others in a group.

This paper studies two general families of dynamic
processes of social influence dependent on the nature
of information available. Agents update their actions at
random points in time. Their decisions are influenced
by the others’ previous actions previously. In some en-
vironments an agent chooses a durable action and adop-
tion statistics are observable or public information. In
such cases an agent essentially considers the adoption
ratio. We denote this scenario by Adoption Ratio. In
other environments, each agent chooses a non-durable
action and the act of choosing is the critical informa-
tion. Hence an agent considers the usage history. We
shall thus denote this scenario Usage History.!

*Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG 38000,
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!Note that this differentiation has not gone unnoticed in marketing
departments. Hardware providers such as Apple focus their reporting

Some environments are better described by one
model and others by the other. Consider the use of bicy-
cles for the daily commute to work. People have differ-
ent personal reasons to use a bicycle or another means
of transport, e.g., distance to work, personal fitness, or
income. In addition, people are influenced by the be-
haviors of others and have a propensity to conform. Our
study explores this latter influence in a heterogeneous
population. On the one hand, the number of bicycle
owners may be an important factor for an agent’s de-
cision (Adoption Ratio). On the other hand, the time
series of choices, i.e., how often bicycles are seen to be
used to commute to work may well be an equally impor-
tant factor (Usage History). Knowing which process of
social influence, Adoption Ratio or Usage History, is at
work is relevant to control the behavior and design inter-
ventions. If the observed process follows Adoption Ra-
tio an incentive to purchase a bicycle would be the right
intervention. Such an intervention was used in London,
UK, where the Cyclescheme allows employees to pur-
chase bicycles tax-free. If the observed process follows
Usage History an incentive should aim at increasing the
frequency of choices. Again, such an intervention was
used in London, UK, where Boris Bikes allows people
to use bicycles for free for the first 30 minutes.

The contribution of this paper is twofold. First, we
identify the equilibria of the Adoption Ratio and Usage
History process and study their stability in a stochas-
tic environment. Second, we find that the long-run be-
havior of these seemingly similar processes differs and
elaborate on the qualitative differences. We show that
each process leaves a characteristic footprint — Usage
History favors extremer outcomes than Adoption Ratio
— and provide an empirical test.

2. Related literature

The discussion of social influence has a long his-
tory in the social sciences (see, e.g., [Ham71, Shi00]).2

and marketing effort on the number of products sold (Adoption Ratio).

Software providers, such as WhatsApp, focus their analysis and mes-

saging on the frequency of usage of their products (Usage History).
2For further studies see [You09, CMP18].



Numerous applications have motivated the study of
social influence, e.g., political and social movements
[Sch78, Cabl12], control of diffusion processes such
as innovation adoption [Rog62, Bas69, MI06, NS15],
and financial herding [Ban92, Boul3]. Consequently,
there is broad experimental evidence for social influ-
ence. [Asc55] conducted a series of enlightening exper-
iments showing that a considerable proportion of sub-
jects trust the majority over their own senses. More re-
cently [SDWO06] show the effects of social influence in
a study on music taste. Other applications studies in-
clude human fertility [BW96], diffusion of information
technologies [TGGO02], mobile phones [dSRZ11], and
bicycle usage for the work commute [GR11].

Our model follows [Sch78] and [Gra78]. They de-
scribe the class of critical mass models of social interac-
tion. [Sch78] notes that “though perhaps not in physical
and chemical reactions, in social reactions it is typically
the case that the ‘critical number’ for one person dif-
fers from another’s.” Thus the tipping value determines,
for each player, the critical mass of the aggregate infor-
mation about the population’s actions at which a player
will ‘tip over’ from playing one action to another. We
study a threshold model where heterogeneous players
repeatedly revise their binary action. Our model is in
discrete time with asynchronous updating.

The processes we consider are Markovian. On the
one hand, we use the concept of stochastic stability
[FY90, KMR93, You93].> The idea is to study a per-
turbed version of the original process, such that the re-
sulting Markov process is irreducible and ergodic and
therefore the process has a unique stationary distribu-
tion. By letting the level of noise approach zero one can
identify those states that will be observed in the long-
run with a frequency bounded away from zero. On the
other hand, we also make use of recent work on rein-
forced random walks [Pin13]. Pinsky analyzes a ran-
dom walk on Z whose probability of moving left or
right depends on the recent history. By an appropriate
translation we find the unique limit proportion of play
even though all states are stochastically stable and thus
stochastic stability does not allow any selection result.

3. The model

We shall first introduce the general framework for
analyzing social influence. Let P = {1,...,p}, p € Nbe
the set of players. Let A = {0, 1} be the actions avail-
able to each player i € P.* Let u;: [0,1] x A — R be
the utility of agent i € P when observing the aggregate

3[Pes10] extend the model of [KMR93] to general networks. Our
work provides an extension to heterogeneous players as in [EK10].

4To avoid unnecessary notation we name actions such that their
sum indicates the average action taken.

statistic about the society s € [0, 1] and playing action
a € A. We shall define two specific functional forms for
s later but for now it suffices to think of some aggre-
gate statistic about the players’ actions. Suppose that
the utility of an action is separable into a component
arising from a player’s inherent preference for an ac-
tion and a component specifying the utility he derives
from social conformity. After normalizing, let 1; € R
be player i’s direct utility difference when playing ac-
tion 1 over action 0. Further let p; € R be a player’s
index of social conformity. Finally, suppose that the im-
pact of social influence is linear. A player’s utility from
playing action a is then given by

T + pis ifa=1,
(s.a) = 1
ui(s,a) {p,-(l—s) fao. M

This is a coordination game when s is increasing in
the number of players playing 1. A player is indifferent
between the actions when u;(s, 1) = u;(s,0). That is,
agent i is indifferent iff

s= Pzz;ﬂ'; =:u(i) 2)
We shall call (i) player i’s tipping value. If s > (i)
player i wants to play 1 and if s < p(i) he wants to play
0. A player with u(i) € (—o0,0) always prefers to play
action 1 and a player with u(i) € (1,e0) always prefers
action 0. We shall make the simplifying assumption that
for all players i, (i) is not a multiple of 1/p which will
ensure that a player always has a unique best response
(BR). Given the list of different tipping values Ly, ..., 1,
(players may have the same tipping values, hence n < p)
let g; be the fraction of players with tipping value u;,

P

ie.q;= % (for j=1,....n).

Let f; : R — [0,1] be the response function for
player i, specifying the probability to play action 1
given his utilities u;(s,1) € R and u;(s,0) € R. Note
that 1 — fi(-,-) is the probability that i plays action O.
We shall initially consider a best-response model:

1 ifs>u(),
fi={05 ifs=pu), 3)

0 else.

We study a process where in each period t =0,1,2,...
a unique player gets activated. In a given period ¢ the
activated player ; will be called active. Define

1 =

i

1 iisactiveint,
{ C))

0 else.
We write act(t) € P for the player who is active in pe-
riod 7. Let s(¢) € [0,1] be the aggregate statistic about

society at the beginning of period 7. For each player i,
let a} be the action he plays at time 7. Then for all i € P

;= 1B i (s(0), D, (5(0),0))) + (1) (5)

for all # > 1, where (B'),cn is a family of independent
Bernoulli RVs taking values in A. Leta =Y ,d}/p €



[0, %, ..., 1] be the population’s average action in period
t. We consider two processes of social influence, arising
from responding to different observations about society:

Adoption Ratio. The state at the beginning of pe-
riod £ is given by the action profile a’~! = (¢! !);cp. An
active player responds to the Adoption Ratio:

SR =a ! (6)

Usage History. The state at the beginning
of period r is given by the last k actions, i.e.,

(a ;tk( k) o, ;l( t—l))' An active player responds to the

Usage History in the past k (constant) periods:>°

Zi/;}fk aéct(v)
= — 7
X (N

When unambiguous we shall sometimes omit the spec-
ification of the time period. To illustrate, suppose there
are four players. Player 1 initially plays 1 and all other
players play 0. Suppose we are in time step ¢t = 7 and
play unfolded as shown in table 1. For Adoption Ra-

SUH(I)

Table 1. Actionsuptor=6

time, ¢ 0 1 2 3 4 5 6

active player - 2 4 1 2 2

1
soer 1 [
player 2 0 1

player 3 @

player 4 0

Relevant actions for sAR(7) circled, relevant actions for
sUH(7) boxed (k = 5).

tio the observation in period t = 7 of prior adopters of
action 1 is s*%(7) = 50% (the relevant actions are cir-
cled in Table 1). For Usage History (with k = 5) the
observation in period t = 7 of the frequency of choices
of action 1 is sV (7) = 80% (the relevant actions are
boxed in Table 1). Note that in our example player 3’s
previous actions have no influence on the observed time

series while player 1 and 2’s are counted twice.

We analyze the two processes for several regimes
of sampling and errors. Initially, we study the unper-
turbed best-response dynamic. We then consider a uni-
form action tremble. That is, with small probability
€ > 0 an activated player picks an action uniformly at
random. The response function for player i then is

1—£ ifs>p(i),
fi={05 ifs=p(), @®)
£ else.

2

SFor Usage History, we need to define s(z) differently for ¢ < k.
‘We can simply assume the average of the past ¢ actions.

Note that s(r) includes the active player’s action. This is reason-
able when players are presented with the aggregate statistic, but the
analysis also carries through if one excludes the active player’s action
from s(z).

4. Analysis

We shall first state a definition and a simple lemma.
All the proofs can be found in the full paper on the au-
thor’s webpage (www.barypradelski.com).

Definition 1. Given the population’s average action a,
let Agg give the share of players for whom 1 is a best-
response when observing a € [0,1]:

E-,WJ} C)]
p

P
Y u<a (10)

Lemma 2. Agg has at least one fixed point. If x* is
a fixed point of Agg all players of the same type have
the same BR in the associated state and hence play the
same action. Formally, let ;. := le‘:l qj. Then

X €{qr: W < G < Uiy for somek € {1,....n}}.7
(11)

We denote by aj, € {a},...,a/} the action profiles
where all players play a BR and a(a};) = x}, and x}, €
{x},...,x] } is a fixed point of Agg (in increasing order).

4.1. Adoption Ratio

In this section we consider the social influence pro-
cess Adoption Ratio. An active player bases his decision
on the number of current adopters (see Eq. (6)).

t—1
MRy =a! = Licr i
p

Theorem 3. The unperturbed Adoption Ratio dynamic
has at least one absorbing state. The absorbing states
of the dynamic process coincide with the fixed points
of Agg and each absorbing state is associated with ex-
actly one fixed point of Agg and vice versa. The set of
absorbing states which can be reached is dependent on
the initial state (when multiple absorbing states exist).

4.1.1. Perturbed dynamics. We now consider the per-
turbed process with uniform error (see Eq. 8).

Theorem 4. Suppose players have uniform action
trembles in the Adoption Ratio dynamic. The stochasti-
cally stable states are those states in ay, € {aj,...,a;}
which are associated with x € {x,...,x;'} of Agg that
minimize

ag: Ya, =ﬁg}iy1_1‘)l}’a; (12)

7Set W, 41 = 1 for completeness.



where Yux is the stochastic potential:

o—1

1
Yay = Y Fea F Y, Twe o with (13)
“ B=1 BB+t B=a+1 Brp-t
Tpag., = max {x—Agg(x)} p+1 (14)
XE[X'B‘X'BH
Tag o = max {Agg(x) —x}-p+1 (15)
xe Xﬁ'xﬁﬂ

For generic games there exists a unique stable state.

The former two equations describe the maximal
number of trembles (i.e., non-BRs) needed to exit the
basin of attraction of a given fixpoint x}; and to enter
the basin of attraction of the neighboring fixpoint xz e

4.2. Usage History

In this section we shall consider the social influ-
ence process Usage History. An active player bases his
decision on the time series of choices (see Eq. (7)):

-1
_ Zi:t—k azvzct(v)
k

Theorem 5. The unperturbed Usage History dynamic
has absorbing states iff 0 and/or 1 are fixed points of
Agg or the BR of all players is independent of social
influence (i.e., for all players i € P the tipping value
u(i) ¢ [0,1]). In the former case all —0 and/or all — 1
are the unique absorbing states. In the latter case the
unique absorbing state is the unique fixed point of Agg.

SUH(Z)

4.2.1. Perturbed dynamics. We now consider the per-
turbed process with a uniform error (see Eq. 8). Recall
that g; is the fraction of players with tipping value ;.

Theorem 6. Suppose players have uniform action
trembles in the Usage History dynamic.
If the unperturbed dynamic has an absorbing state
0 (1) is stochastically stable if ro1 > r1,0 (r1,0 = ¥o,1)-
Else, let g = Z’;ZI q;. For an action profile aj, €
{aj,...,a;} associated with fixed point xg, € {x7,...,x }
(in increasing order), let

1
arg max B T
. X TPy
JE{Lonbiltj <G <pjr ‘Ijj(I*‘Ij) K

J = Mg —Hye—1
H( il ) = {j1seria)} (16)

k=2 1 — Gk—1

Then the limit proportion of play of action 1 is given by

A 1
Y 0@ o=l Tg, s
lim lim lim actv) _ s 17
k—ool—00£—( t ZA 1 an
6=1 1-gj,

For generic games there exists a unique maximizer of
Eq. (16), say j.. The latter formula then reduces to:
L0y
Jim lim lim —— )
k—yoot—+e0 g0 t

=4, (18)

5. Adoption Ratio vs. Usage History: Ex-
ample

We shall now formalize the example from the intro-
duction. Consider bicycle usage and suppose that some
commuters use the bicycle irrespective of its popularity,
say innovators. Further, there is an early and late ma-
jority who may use the bicycle if enough others use it.
Finally, there are some non-adopters who will never use
a bicycle for their daily commute. In particular assume
the following population shares and thresholds:

5% innovators, always us the bicycle for their commute
to work (action 1), i.e., they play the innovation independent
of social influence and hence their tipping value is ‘negative’
(.uinnovators <0),

45% early majority, who use the bicycle if at least ‘few’
use it (e.g., Mearly majority = 25%),

40% late majority, who use the bicycle if at least ‘many’
use it (e.g., Uiate majority = 75%),

10% non-adopters, who never play the innovation
(Nnon—adopters >1).

Figure 1 shows the function Agg and the fixed
points x],x5,x5. We invite the reader to verify that the
fixed points of Agg are x] = 5%, x; = 50%, x5 = 90%.

Figure 1. x-axis shows (i), y-axis shows Agg

09

05 T —

0.05—

We compute the long-run stable state under Adop-
tion Ratio according to Theorem 4. One finds the fol-
lowing resistances® Ity = 0.2, e = 0.25, e =
0.25, I = 0.15 and the stochastic potentials Yoy =
0.4, Yoy = 0.35, Yoy = 0.45. Thus the (unique) stochas-
tically stable state is x5 since it uniquely minimizes
stochastic potential. Next, we compute the long-run
stable state under Usage History according to Theorem
6. The rounded results of Eq. (16) are: xj : 1.05, x3 :
0.96, x5 : 0.92. The long-run frequency of action 1 is
given by xj. This shows, by example, that the two dif-
ferent processes Adoption Ratio and Usage History may

8Note that to be precise we need to define the population size and
add resistance one to each of the formulas below. But this does not
change the result.



yield significantly different outcomes. Note that the ex-
ample is generic in the following sense: We can de-
fine “close-by” distributions with the same outcome. To
build intuition consider fixed point x] = 5%. To reach
the basin of attraction of x3 the time series of choices
(over the last k periods) needs to be at least 25%. That
is, in the last k periods, players for whom 1 is currently
the BR (5% of the population) need to be activated at
least 25% - k of the time. On average such a player needs
to be activated at least 5 times as often as players whose
BR is currently 0. On the other hand, suppose we are
currently in x5 = 50%. To reach the basin of attraction
of x] the time series of choices (over the last k periods)
needs to be at most 25%. That is, in the last k periods,
players for whom 0 is currently the BR (50% of the pop-
ulation) need to be activated at least (100% — 25%) - k
times. That is, on average such a player needs to be ac-
tivated at least 1.5 times as often as players whose BR is
currently 1.° Since 1.5 is less than 5 it follows that the
latter transition is more likely than the former.

6. Empirically discriminating between
Adoption Ratio and Usage History

We here show characteristic footprints in the distri-
bution of s*% and sU# for the perturbed dynamics that
can be used to empirically discriminate which process
is at work (as long as x* = 0.5 is currently not the ob-
served fixed point and sY/ has no absorbing states in
the unperturbed process). It turns out that s*X is not
binomially distributed but sV is. In addition, the vari-
ance of the two processes are, in general, different. This
enables us to empirically discriminate which process is
at work and thus to inform policy interventions or mar-
keting campaigns. We analyze the behavior of sA¥ and
sUH around an interior fixed point x* of the dynamic.
We shall study the distribution of s4% and sV# condi-
tional on remaining in the basin of attraction of x*.

Distribution of s*. Suppose that &€ > 0 is fixed.
Note that within a basin of attraction a player’s BR re-
mains constant. Then a player’s action, when activated
to revise, is picked independently of the other players’
actions. Given his response function f;, he plays his BR
with probability 1 — £ and the other action with prob-
ability § (Bernoulli trial). That is, p-x* players play
d with probability f; = 1 — €/2 and m otherwise, and
p- (1 —x*) players play d with probability f; = €/2 and
m otherwise. We thus have for sA%:

s~ % (Tierfim1-e2 B(1,1 = §) + Licp e 2 B(1,5))  (19)
~ L(B(p-x',1=§)+B(p-(1-x"),%)) 20)

where Eq. (20) holds since the sum of iid binomials

9This follows from the simple calculation (100% — 25%)/50% =
1.5.

is again binomial with the same parameter. By [BS93]
there is no closed form for the distribution of a sum of
binomials with different parameters, but they derive a
recursive formula. For the reduced form in Eq. (19) of

two binomials one easily finds for the mean of s4%:

E(s*F) = x*-(17§)+(17x*)-§ @
- x*+(1—2x*).§ 22)
and for the variance of sA%:
Ry _ _E& E . 8. ¢
Var(s*®) = (1 )2+(1 x) 5 (Q 2) (23)

) 24

Distribution of sU”. As before, within a basin of
attraction a player’s BR remains constant. Since we
consider the case where the unperturbed process has
no absorbing states we can assume that € = 0. Then
the next action (by the player activated in the next pe-
riod) is given by a binomial distribution with parame-
ter x* (since players best respond with probability 1).
The intuition, that sY# follows the sum of k binomial
distributions with parameter x* is wrong, since the or-
der of occurrence matters and thus sV (¢) is correlated
with sVH (¢ +i) for all i = 1,...,k— 1. By consider-
ing non-overlapping windows of length k we can re-
cover independence and thus have that for j =1,2,3,...
sUH (k- j) are independent Bernoulli trials with param-
eter x*. Thus sV (k-1) is binomial distributed with pa-
rameter x* and one finds for the mean of sV#:

E[sYH (k-1)] = x* (25)
and for the variance of sVH:
Var(s"H (k-1)) = x* - (1 —x*) (26)

To summarize s*¥ is not binomially distributed (for
x* #0.5) and sV¥ is binomially distributed. Further the
variances of the two processes are, in general, different.
Thus we can employ standard statistical tests to iden-
tify which process, Adoption Ratio or Usage History, is
underlying a given sample of the aggregate observation
data. Note that it is not necessary to have any additional
information, in particular it is not necessary to know the
players’ thresholds or order of activation. The first test
we can use is whether the observed data is binomially
distributed. If this yields a statistically significant result
we are done. But if € is very small it may be that the
result of this test is not statistically significant. Then a
second test can be used. The variance of Usage History
depends on the fixed point (i.e., the mean) and we can
use this fact to discriminate between the two processes.
In particular, if the fixed point is not too close to all —m
or all —d we can use this test. Finally, if data of the



behavior around two fixed points is available a third test
can be performed. For Adoption Ratio the variance is
the same around all fixed points whereas the variance
for Usage History differs around each fixed point.

7. Conclusion

In this paper we have studied the dynamics of so-
cial influence. We considered two different processes
of social influence. On the one hand, social influence
arises from the Adoption Ratio of the agents’ actions.
On the other hand, social influence arises from the Us-
age History of choices. We first identified the equilib-
ria of the two processes and studied their stability in
stochastic environments. We then showed that the out-
comes may be very different. Thus one needs to care-
fully examine the specific process of social influence at
hand in order to be able to control outcomes and de-
sign interventions. Returning to our example on bicy-
cle usage discussed in the introduction the knowledge
of which process is at hand may inform whether an in-
tervention to promote the purchase of a bicycle (e.g.,
Cyclescheme) or an intervention to promote the usage
of bicycles (e.g., Boris Bikes) is more apt.
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