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This paper deals with the structure-preserving discretization and control of a 2D vibro-acoustic tube us-
ing the port-Hamiltonian framework. A discretization scheme is proposed and a set of precise weighting
functions are given in order to obtain a structure preserving finite dimensional port- Hamiltonian approx-
imation of the 2D vibro-acoustic system. Using the closed-loop structural invariants of the approximated
system an energy-Casmir controller is derived. The performance of the proposed discretizetion scheme
and the controller is shown by means of numerical simulations.
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1. Introduction

Based on the energy and a structured representation of the power flows and dissipation in the system, the
port-Hamiltonian framework is particularly suited to describe the complex behavior of multi-physical
systems [Duindam et al., 2009]. The port-Hamiltonian approach has been generalized to infinite-
dimensional systems described by partial differential equations (PDEs) in [van der Schaft and Maschke,
2002, Le Gorrec et al., 2005]. From an application point of view, reduction of vibrations has drawn at-
tention in both academic and industrial areas. Modeling and control of the vibro-acoustic systems have
been investigated for different applications [Gardonio, 2002, Durand et al., 2008] in the last few years.
The key point in these systems is the wave propagation process which can be modeled in a straight-
forward manner with the port-Hamiltonian framework. In [Trenchant et al., 2015], a port-Hamiltonian
formulation of the 2D wave propagation has been proposed for a vibro-acoustic system on a rectangular
spatial domain.

With the aim of simulating the system in a physically consist way and furthermore the control de-
sign and implementation purpose, the numerical discretization scheme should preserve the Hamiltonian
structure and the passivity of the original infinite dimensional system on the derived finite dimensional
approximation. Research on structure preserving discretization of port-Hamiltonian systems has drawn
the attention of researchers in the last years and several methods, such as the ones based on mixed finite
elements [Golo et al., 2004, Baaiu et al., 2009], pseudo-spectral [Moulla et al., 2011, Vu et al., 2017],
and finite volume have been proposed in [Kotyczka, 2016]. Recently an approach based on discrete
exterior geometry has been proposed in [Seslija et al., 2012]. The general idea of these methods is to
discretize the energy and co-energy variables using distinct low-order basis functions such that the equa-
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tions was exactly satisfied in these finite dimensional spaces. The mixed Galerkin approach has been
proposed to discretize the weak formulation of the Stokes-Dirac Structure in [Kotyczka et al., 2018].

In the 2D case, the authors in [Trenchant et al., 2017a, Trenchant et al., 2018a,b] have proposed
to adopt the finite difference method to discretize the 2D port-Hamiltonian system on staggered grids.
The finite volume method is employed to discretize 2D linear and non linear port-Hamiltonian systems
in [Serhani et al., 2018]. The generalization of the discrete exterior geometry approach to the 2D case
has been done in [Kotyczka and Maschke, 2017] on n-complexes. The mixed Galerkin discretization
applied on the weak formulation of 2D port-Hamiltonian system has been proposed in[Kotyczka et al.,
2018]. The partitioned finite element method has been introduced in [Cardoso-Ribeiro et al., 2018] and
also applied on the 2D plate models in [Brugnoli et al., 2019a,b].

A preliminary study of the structure preserving discretization of a 2D vibro-acoustic system using a
mixed finite element method has been proposed in [Wu et al., 2015]. In the present paper, we propose
an exact discretized finite dimensional model with a precise choice of basis functions that satisfy the
compatibility conditions associated with the discretization. Furthermore, an explicit finite dimensional
input-output system is derived when considering the physical input and boundary conditions of 2D
actuated vibro-acoustic system. In order to reduce/attenuate the wave propagation, an energy based
control method based on closed-loop structural invariants similar to the on proposed in [Trenchant et al.,
2017b] is investigated. By using this method, we can shape the energy function in the closed loop
system to the desired one with a specific conservative boundary interconnection.

This paper is structured as follows. The infinite dimensional port-Hamiltonian system is recalled
in Section 2 and then applied on the 2-D vibro-acoustic system which is obtained from the 3-D model
with a geometry reduction [Vu et al., 2019]. Section 3 presents the passivity and structure preserving
discretization of the 2-D vibro-acoustic system with a specific choice of the weighting functions and
furthermore, the control oriented explicit finite dimensional port-Hamiltonian system is derived. In
Section 4, an energy based control is designed using the discretized model using the energy-Casimir
method. The numerical simulation results are shown in Section5 to illustrate the effectiveness of the
proposed discretization scheme and passive controller. At last, we conclude this paper by Section 6 and
then give some interest perspectives.

2. Port-Hamiltonian formulation of a 2-D vibro-acoustic tube

2.1 Infinite dimensional port-Hamiltonian system

The PDE representation of a port-Hamiltonian system, written in terms of exterior differential calcu-
lus on a n-dimensional spatial domain Z can be decomposed in structure, dynamics and constitutive
equation [van der Schaft and Maschke, 2002].

[
f p

f q

]
=

[
0 (−1)r d
d 0

][
ep

eq

]
Structure (1)[

f p

f q

]
=

[
− ∂α p

∂ t
− ∂αq

∂ t

]
Dynamics (2)[

ep

eq

]
=

[
δα pH
δαqH

]
Constitutive Equations. (3)

Denote Z the n-dimensional spatial domain. The state space X is defined as X := Ω np (Z )×Ω nq (Z )
with np + nq = n+ 1, r = npnq + 1 and Ω np is the space of np forms. An element of the space X is
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denoted by x =
[
α p αq]T with state variables α p ∈ Ω np (Z ) and αq ∈ Ω nq (Z ). The flow variables

f p =−∂tα
p ∈Ω np (Z )1 and f q =−∂tα

q ∈Ω nq (Z ) define the vector of flows f =
[

f p f q]T ∈F :=
Ω np (Z )×Ω np (Z ). The effort variable ep = δα pH ∈Ω n−np (Z ) and eq = δαqH ∈Ω n−nq (Z ) define
the vector of efforts e =

[
ep eq]T ∈ E := Ω n−np (Z )×Ω n−nq (Z ). Flows and efforts represent dual,

power-conjugated port variables. The exterior derivative d : Ω n−1 (Z ) 7→ Ω n (Z ) can be seen as an
unifying differential operator in exterior calculus in order to present the spatial derivative in the domain.
δα pH and δαqH are the variational derivatives of the energy or Hamiltonian functional H =

∫
Z H with

the Hamiltonian density H : Ω np (Z )×Ω nq (Z )×Z 7→ Ω n (Z ). The boundary variables of the PH
formulation (1) are defined by[

f B

eB

]
=

[
1 0
0 −(−1)n−nq

][
ep |∂Z

eq |∂Z

]
Boundary Variable (4)

with ∂Z the n− 1 dimensional boundary of the spatial domain Z . The space of all admissible flows
and efforts satisfying (1), (4) represents a Stokes-Dirac structure [van der Schaft and Maschke, 2002],
with respect to the scalar pairing∫

Z
eq∧ f q +

∫
Z

ep∧ f p +
∫

∂Z
eB∧ f B. (5)

2.2 The 2D vibro-acoustic tube

We consider a cylindrical tube system presented in [David et al., 2010], in which an acoustic wave
evolves without energy loss. The source of the acoustic wave is produced by a loudspeaker on one
side of tube, and an anechoic chamber avoids reflections of the wave at the other side of the tube. We
consider an axial symmetry for this system as in Figure 1. This allows to reduce the system from 3D
coordinates (x,y,φ) to 2D coordinates (x,r) where x ∈ [0,L], r ∈ [0,R], L, R are the length and radius of
the tube respectively, in a power preserving way by a simple change of variables (explicited later).

x

y

R

3D coordinates

2D coordinates

Axis symmetry

fΦ

fθ
x

FIG. 1. Reduction from 3D to 2D model by axisymmetry

The 2D infinite dimensional vibro-acoustic system is written as port Hamiltonian system: Z is a
2-dimensional smooth mainfold with 1-dimensional smooth boundary ∂Z , i.e. n = 2. The state space

1Denote the operator ∂

∂ t by ∂t and ∂

∂x by ∂x for the sake of simplification.
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X is defined as X := Ω 2(Z )×Ω 1(Z ) with np = 2 and nq = 1. The element of the space X is denoted
by x = [θ ,Γ ]T with θ the kinetic momentum (2-form) , and Γ the volumetric expansion (one-form).
The spaces F , E are defined as F := Ω 2(Z )×Ω 1(Z ), and E := Ω 0(Z )×Ω 1(Z ). The elements
f x ∈F , ex ∈ E are given as f x =−[θ̇ ,Γ̇ ]T and ex = [v,P]T where v is the velocity (0-form) and P is the
pressure (one-form). The flow variable f θ (2-form) of the 2D model is obtained by flow f Φ (3-form) of
the 3D model with f θ = 2πr f Φ as in Figure 1.

The total energy is given by:

H =
1
2

∫
Z

θ ∧ ∗θ
ρ0

+Γ ∧ ∗Γ
χs

(6)

with ∗ the Hodge star operator which converts any k-form w on a n-dimensional spatial domain Z to an
(n− k)-form ∗w. Here ρ0 is the air mass density, χs is the adiabatic compressibility coefficient.

The port Hamiltonian representation of the vibro-acoustic system defined on a 2D spatial domain
Z = (x,y)⊂ R2 is:[

f θ

f Γ

]
=

[
0 −d
d 0

][
ev

ep

]
Structure (7)[

f θ

f Γ

]
=

[
−θ̇

−Γ̇

]
Dynamics (8)[

ev

ep

]
=

[
δθ H
δΓ H

]
Constitutive Equations, H being defined by (6) (9)[

f B

eB

]
=

[
1 0
0 1

][
ev |∂Z

ep |∂Z

]
Boundary Variables (10)

3. Discretization of the 2D vibro-acoustic system

In this section, we propose a structure preserving mixed finite elements discretization method, to derive
a finite dimensional approximation of (7) and (10).

3.1 Approximation of the Dirac structure

Taking the spatial domain geometry of the system into account, we propose to use infinitesimal square
grid elements instead of triangular one found in the literature [Golo et al., 2004]. The square grid element
Zabcd is defined by four vertices a, b, c, d. The edges of the square are defined by ab, bc, cd, da and
the facet by abcd.

We approximate the flow and effort variables on the infinitesimal square grids by using the space
dependent weighting forms. The objective is to separate flow and effort variables f (t,z) and e(t,z)
to the only time dependent flow and effort approximations in the infinitesimal grid fZabcd (t), eZabcd (t)
and the space weighting function wZabcd (z). For the sake of simplification, we omit (t) and (z) for the
infinitesimal flows (efforts) variables and weighting functions respectively.

The flow variables are approximated as:

f θ (t,z) = f θ
abcdwθ

abcd (11)

f Γ (t,z) = f Γ
abwΓ

ab + f Γ
bcwΓ

bc + f Γ
cdwΓ

cd + f Γ
dawΓ

da (12)
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where the one-forms wΓ
l , l ∈ {ab,bc,cd,da}, and the two-form wθ

abcd satisfy the following conditions:

∫
l′

wΓ
l =

{
0 i f l

′ 6= l,
1 i f l

′
= l,

∫
Zabcd

wθ
abcd = 1 (13)

The effort variables, the velocity (zero-form) ev and the pressure (one form) ep, are approximated as:

ev(t,z) = ev
awv

a + ev
bwv

b + ev
cwv

c + ev
dwv

d (14)

ep(t,z) = ep
abwp

ab + ep
bcwp

bc + ep
cdwp

cd + ep
dawp

da (15)

where the one-forms wp
l , l ∈ {ab,bc,cd,da}, and the zero-form wv

m, m ∈ {a,b,c,d}, satisfy the follow-
ing conditions: ∫

l′
wp

l =

{
0 i f l

′ 6= l,
1 i f l

′
= l,

wv
m′ (m) =

{
0 m

′ 6= m
1 m

′
= m

(16)

In order to write the dynamic equations of the 2-D vibro-acoustic system with the above finite
dimensional Dirac structure, we have to define the weighting functions wabcd , wl with l ∈{ab,bc,cd,da}
and wm with m ∈ {a,b,c,d} such that the parameters α , β and γ of the Dirac structure are explicit. In
order to get explicit system, in[Wu et al., 2015], we uses some simplified parameters α , β and γ which
do not satisfy the weighting function conditions (13), (16) and the compatibility conditions (68). In this
paper, we will take all these conditions into account to achieve the explicit system.

Consider the infinitesimal square shown in Fig. 2. The position of every vertices is defined as
a : (x1,y1), b : (x2,y1), c : (x2,y2) and d : (x1,y2). In this paper we consider as two forms weight

FIG. 2. An infinitesimal square grid

function:
wabcd =

1
(x2− x1)(y2− y1)

dx∧dy (17)

which satisfies the equation (13). The one-form weighting functions wl with l ∈ {ab,bc,cd,da} and the
zero-form weighting functions wm with m ∈ {a,b,c,d} are defined as

wab =
(y2−y)

(x2−x1)(y2−y1)
dx; wbc =

(x−x1)
(x2−x1)(y2−y1)

dy;

wcd = (y1−y)
(x2−x1)(y2−y1)

dx wda =
(x−x2)

(x2−x1)(y2−y1)
dy.

(18)

wa =
(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

; wb =
(x−x1)
(x2−x1)

(y2−y)
(y2−y1)

;

wc =
(x−x1)
(x2−x1)

(y−y1)
(y2−y1)

; wd = (x2−x)
(x2−x1)

(y−y1)
(y2−y1)

,
(19)

and satisfy the equations (16). After some computation, one can check the compatibility conditions (68)
are satisfied by using the above choice of weighting functions.
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With the above weighting functions, one can write the finite dimensional Dirac structure of an in-
finitesimal square grid (see computation details in the Appendix 1) as follow:

1
4 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0
0 − 1

4 − 1
4 − 1

2 1 0 0 0
0 − 1

4
1
4 0 0 1 0 0

0 1
4

1
4

1
2 0 0 1 0

0 1
4 − 1

4 0 0 0 0 1





f θ
abcd
f Γ
ab

f Γ
cd

f Γ
da

f B
ab

f B
bc

f B
cd

f B
da


+



0 −1 0 1 1
2 0 0 1

2
0 1 0 0 1

2
1
2 0 0

0 0 −1 0 0 1
2

1
2 0

0 0 1 −1 0 0 1
2

1
2

−1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0





eθ
abcd
eΓ

ab
eΓ

cd
eΓ

da
eB

ab
−eB

bc
−eB

cd
eB

da


= 0.

(20)

3.2 Discretization of 2D vibro-acoustic system

In the previous subsection, we discussed the approximation of the Dirac structure over an the infinites-
imal square grid. In this section, we derive from this elementary model the explicit port-Hamiltonian
formulation of the 2-D vibro-acoustic tube. We also include the dynamics of the membrane used for
control and that is interconnected at boundary of the 2-D vibro-acoustic tube in the model. To this end,
we consider the interconnection of each infinitesimal square (shown in Fig. 2) in two steps as shown in
Fig. 3. First, the infinitesimal elements 0 to N−1 are vertically interconnected and then all the vertical
elements M are interconnected horizontally (like element j to j+1) as shown in Fig. 3. We present the
explicit input-output representation of each infinitesimal square and then the complete system with the
vertical and horizontal interconnections.

FIG. 3. Interconnection relation of vibro-acoustic tube

3.3 Explicit input-output representation by interconnection

The first step consists in interconnect the element 0 to N−1 vertically. However, we have to notice that
the boundary conditions of the bottom element 0 is different from the ones of elements 1 to N−1.



Structure-preserving discretization and control of a 2D vibro-acoustic tube 7 of 22

That is because the physical input of the vibro-acoustic tube is the pressure on the left side and
the control variables on the top boundary of the tube is the velocity due to the control membrane
interconnected to the tube. The output measurement of the tube is the pressure on the right side.
From the above input-output consideration, the inputs of each element are the pressure on the left
and bottom sides and the velocity on the right and top sides. However, from the axis symmetry
assumption, the boundary condition on the bottom of the tube is the velocity v = 0 which should
be considered as the input. This boundary condition and the input-output consideration present a
causality contradiction. In order to deal with this causality, a different input-output configuration
shall be considered on element 0.

With the above boundary conditions, we first consider the inputs and outputs of the explicit repre-
sentation for the infinitesimal square grid of elements 1 to N−1 as follows:

u1
u2
u3
u4

=


eB

ab
f B
bc

f B
cd

eB
da

=


pab
vbc
vcd
pda

 ,


y1
y2
y3
y4

=


f B
ab
−eB

bc
−eB

cd
f B
da

=


vab
pbc
pcd
vda

 . (21)

Taking into account the above input-output variables and the Dirac structure of the infinitesimal square
(20) with the following dynamics:

−ẋ1
−ẋ2
−ẋ3
−ẋ4

=


f1
f2
f3
f4

=


f θ
abcd
f Γ
ab

f Γ
cd

f Γ
da

 ,


e1
e2
e3
e4

=


eθ

abcd
eΓ

ab
eΓ

cd
eΓ

da

 , (22)

the explicit port-Hamiltonian representation for the elements 1 to N−1 can be written as:

ẋ1
ẋ2
ẋ4

 =

 0 −4 4
4 0 0
−4 0 0

e1
e2
e4

+
2 0 0 2

0 −4 0 0
0 2 2 0




u1
u2
u3
u4


y1
y2
y3
y4

 =


2 0 0
0 −4 2
0 0 2
2 0 0


e1

e2
e4

+


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




u1
u2
u3
u4


(23)

One can notice that the above system does not have dynamics in ẋ3. This is due to the explicit for-
mulation the Dirac structure (20). The constitutive relations (See the details of the computation in the
Appendix 2) are: e1

e2
e4

=

Sin
1

ρ0
0 0

0 1
3 S2in

1
χs

−S1in
1

6χs

0 −S1in
1

6χs
S1in

1
χs


︸ ︷︷ ︸

Q

x1
x2
x4

 (24)

The Hamiltonian function of each element is defined as H = 1
2 xT Qx. For the purpose of simplicity, we

take the notation
[
x1 x2 x3

]T and
[
e1 e2 e3

]T instead of
[
x1 x2 x4

]T and
[
e1 e2 e4

]T .
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Now we consider the explicit representation of the bottom system 0 from the kernel representation
of the Dirac structure (20) with the following choice of inputs and outputs:

u1
u2
u3
u4

=


f B
ab

f B
bc

f B
cd

eB
da

=


vab
vbc
vcd
pda

 ,


y1
y2
y3
y4

=


eB

ab
−eB

bc
−eB

cd
f B
da

=


pab
pbc
pcd
vda

 (25)

One can notice that the difference in inputs and outputs between the bottom element and the other
elements are u1 and y1. In the same manner, the explicit formulation for the element 0 is given by:

ẋ1
ẋ2
ẋ3

 =

 0 −4 4
4 0 0
−4 0 0

e1
e2
e3

+
0 0 0 2

0 −4 0 0
2 2 2 0




u1
u2
u3
u4


y1
y2
y3
y4

 =


1 0 0
0 −4 2
0 0 2
0 0 0


e1

e2
e3

+


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0




u1
u2
u3
u4


(26)

In order to get vertical interconnection of all elements, the following interconnection relation is
considered:

ui
3 = yi+1

1
ui+1

1 = −yi
3

with i = 0, . . . ,N−2. (27)

Thus the vertically interconnected explicit system:

 ẋ1
ẋ2
ẋ3

 =

 0 T 1
N T 2

N
−T 1T

N 0 0
−T 2T

N 0 0

 e1
e2
e3


+

 0 0 0 B2
N

0 T 1
N 0 0

B1
N B2

N B3
N 0




u1
u2
u3
u4


y1
y2
y3
y4

 =


0 0 B1T

N
0 T 1T

N B2T
N

0 0 B3T
N

B2T
N 0 0


 e1

e2
e3



+


0 0 D1 0
0 0 0 IN
−DT

1 0 0 0
0 −IN 0 0




u1
u2
u3
u4



(28)

where 0 represents zero matrices of appropriate dimension and the state variables are xi =
[
x1

i ,x
2
i , . . . ,x

N−1
i

]T
with i ∈ {1,2,3}. The matrices are defined as

T 1
N = diag [4,4, · · · ,4] ∈ RN×N , (29)
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T 2
N =



−4 0 0 · · · 0

4 −4 0
. . .

...

−4 4 −4
. . . 0

...
. . . . . . . . . 0

(−1)N 4 · · · −4 4 −4


∈ RN×N (30)

B1
N =


−2
2
...

(−1)N 2

 , B2
N = diag [−2,−2, · · · ,−2] ∈ RN×N , (31)

B3
N =


(−1)N−1 2

...
−2
2

 ,D1 =


−1
0
...
0

 ∈ RN . (32)

The inputs and outputs of each vertically interconnected explicit system are defined as follows: the
pressure inputs and velocity outputs at the left side and the top of the tube, the velocity inputs and the
pressure measurement at the right side and the bottom of the tube,

u1 = u0
1 = v0

ab; y1 = y0
1 = p0

ab; (33)

u2 =


v0

bc
v1

bc
...

vN−1
bc

 ; y2 =


p0

bc
p1

bc
...

pN−1
bc

 ; (34)

u3 = uN−1
3 = vN−1

cd ; y3 = yN−1
3 = pN−1

cd ; (35)

The left side of each vertically interconnected system has the pressure as input which corresponds to the
physical input and its power conjugate output is the corresponding velocity:

u4 =


p0

da
p1

da
...

pN−1
da

 ; y4 =


v0

da
v1

da
...

vN−1
da

 . (36)

Now we discuss the horizontal interconnection of each obtained vertical element (28). The input on
the left side of each vertical element is the pressure while it is the output on the right side. Thus, the
interconnection relation between each vertical element (28) is given as:

u j
2 = y j+1

4
u j+1

4 = −y j
2

with j = 0, . . . ,M−2. (37)
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With the above relations, we obtain the interconnected system:

 ˙̃x1
˙̃x2
˙̃x3

 = J

 ẽ1
ẽ2
ẽ3

+B


u1
u2
u3
u4


y1
y2
y3
y4

 = BT

 ẽ1
ẽ2
ẽ3

+D


u1
u2
u3
u4


(38)

where the state variable are x̃i =
[
x0

i ,x
1, . . . ,xM−1

i

]T
with i ∈ {1,2,3}. The constitutive relation of the

discretized system can be written as:

ẽ =

S1 0 0
0 S2 S4
0 ST

4 S3

x = Q̃x (39)

with S1 = diag
[
Sin

1
ρ0

]
, S2 = diag

[
1
3 S2in

1
χs

]
, S3 = diag

[
S1in

1
χs

]
, and S4 = diag

[
−S1in

1
6χs

]
.

The inputs are the velocity at the bottom {ab}, the right side {bc} and the top {cd} of the tube,
respectively, u1 =

[
v0

ab,v
1
ab, . . . ,v

M−1
ab

]T
, u2 =

[
v0

bc,v
1
bc, . . . ,v

N−1
bc

]T
, u3 =

[
v0

cd ,v
1
cd , . . . ,v

M−1
cd

]T
, and the

pressure on the right side {da} of the tube, u4 =
[
p0

da, p1
da, . . . , pN−1

da

]T
. The outputs are the power

conjugate variables of the inputs, i.e., the pressure on the top, the bottom and the right side, the velocity
on the left side of the vibro-acoustic tube. The interconnection matrix, input matrix and the feedforward
matrix are given by:

J =

 0 T̃1M T̃2M
−T̃ T

1M 0 0
−T̃ T

2M 0 0

 ; (40)

B =

 0 0 0 −B̄2
M

0 T 1B
M 0 0

B̃1
M B̃2

M B̃3
M 0

 ; (41)

D =


0 0 0 0
0 0 0 (−1)M−1 IN×N
0 0 0 0
0 (−1)M IN×N 0 0

 (42)

with 0 zero matrices of appropriate dimension and the sub-matrices are given by:

T̃1M =


T1N 0 · · · 0

−B2
NT T

1N T1N
. . .

...
...

. . . . . . 0
(−1)M−1 B2

NT T
1N · · · −B2

NT T
1N T1N

 ;
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T̃2M =


T2N 0 · · · 0

−B2
NB2T

N T2N
. . .

...
...

. . . . . . 0
(−1)M−1 B2

NB2T
N · · · −B2

NB2T
N T2N

 ;

T 1B
M =


(−1)M−1 T 1

N
...
−T 1

N
T 1

N

 ; B̄1
M = diag

[
B1

N
]

;

B̃2
M =


(−1)M−1 B2

N
...
−B2

N
B2

N

 ; B̃3
M = diag

[
B3

N
]
.

4. Control by interconnection

In this section, we will consider the control design for the discretised model (38) by using the energy
shaping based on Casimir invariants. we consider that the vibro-acoustic tube can be actuated allover its
length by a control surface, as shown in Fig. 4. From the axis-symmetry assumption, the control surface
actuates only on the top {bc} of the 2-D vibro-acoustic system.

Source

Control surface

0 1 2 M-2 M-1

FIG. 4. Control of vibro-acoustic tube via Interconnection

The control surface is composed by a set of micro microphone-loudspeakers which are used to
actively attenuate the wave pressure in the tube or to change the wave properties in a desired manner.
The control is effectuated by the flexible membrane of the micro-loudspeakers which are distributed
along the tube. We consider that the flexible membrane is a simple mass spring system interconnected
with the vibro-acoustic tube. The inputs of the membrane are the external control force and the acoustic
wave pressure. The system can be written in the following form:

[
ẋm
ṗm

]
=

[
0 I
−I 0

][ ∂Hm
∂xm
∂Hm
∂ pm

]
+

[
0 0
I I

][
F
Ps

]
[

yF
ys

]
=

[
0 I
0 I

][ ∂Hm
∂xm
∂Hm
∂ pm

] (43)
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with Hamiltonian functional Hm(xm, pm) =
1
2 kmx2

m + 1
2

1
m p2

m where km and m are the stiffness and mass
of the membrane respectively. We consider each vertical element of the system (38) interconnected with
a mass-spring-damper system. Thus, the state variables

[
xm pm

]T ∈ R2M . FRM are the control forces
and PsRM are the forces generated by the wave pressure on the micro-loudspeaker. The yF ∈ RM and
ys ∈RM are the power conjugate velocities. The interconnection relation of the 2-D vibro-acoustic wave
system (38) and the membrane model (43) is :

u3 = −ys
Ps = y3

(44)

The interconnected system can be written as:


˙̃x1
˙̃x2
˙̃x3
ẋm
ṗm


︸ ︷︷ ︸

ẋ

=


0 T̃1M T̃2M 0 0
−T̃ T

1M 0 0 0 0
−T̃ T

2M 0 0 0 −B̃3
M

0 0 0 0 I
0 0 B̃3T

M −I 0


︸ ︷︷ ︸

Jb


ẽ1
ẽ2
ẽ3

∂Hm
∂xm
∂Hm
∂ pm


︸ ︷︷ ︸

∂H
∂x

+


0 0 −B̄2

M 0
0 T 1B

M 0 0
B̃1

M B̃2
M 0 0

0 0 0 0
0 0 0 I


︸ ︷︷ ︸

Bb


u1
u2
u4
F




y1
y2
y3
ys

 =


0 0 B̄1T

M 0 0
0 T 1BT

M B̃2T
M 0 0

−B̃2T
M 0 0 0 0

0 0 0 0 I




ẽ1
ẽ2
ẽ3

∂Hm
∂xm
∂Hm
∂ pm


(45)

where the Hamiltonian of the system is defined as H(x̃,xm, pm) =
1
2 x̃T Q̃x̃+ 1

2 kmx2
m + 1

2
1
m p2

m = 1
2 xT Qx.

Now we want to derive a control law which attenuates the wave pressure controlling the membrane
of the micro-loudspeaker. To this end we shall employ the well known control by interconnection
approach, in which the existence of closed-loop invariants are used to synthesis a controller which
rendes the closed-loop Hamiltonian function into a desired form. A detailed survey on this approach
can be found in [van der Schaft, 2000]. Consider the following port Hamiltonian controller:{

ξ̇ = (Jc(ξ )−R(ξ )) ∂Hc
∂ξ

(ξ )+gc(ξ )uc

yc = gT
c (ξ )

∂Hc
∂ξ

(ξ )
(46)

with state variable ξ ∈ RM , Hamiltonian function Hc(ξ ) and the structure matrices Jc(ξ ) = −Jc(ξ )
T

and Rc(ξ ) = Rc(ξ )
T > 0. The controller and the system are interconnected at the top of the tube with

the membrane. Hence the power preserving interconnection of the controller and the system is:

F = −yc
uc = ys

(47)

Thus, the coupling system is still passive and can be written as:[
ẋ
ξ̇

]
=

([
Jb −gT

c (ξ )
gc(ξ ) Jc(ξ )

]
−
[

0 0
0 Rc(ζ )

])[ ∂Hd
∂x (x)

∂Hd
∂ξ

(ξ )

]



Structure-preserving discretization and control of a 2D vibro-acoustic tube 13 of 22

where Hd(x̃,ξ ) = H(x̃)+Hc(ξ ) is the energy of the closed-loop system.
In order to shape the closed-loop energy, we need to relate the state of the controller ξ to the state

of the system x. We define the Casimir functions as follows

C(x,ξ ) = F(x)−ξ . (48)

These Casimirs functions are invariant quantities along the closed-loop system trajectories independent
from the energy function Hd , i.e.,

Ċ(x,ξ ) =
[

∂ T F
∂x −I

][Jb gT
c

gc Jc−Rc

][ ∂Hd
∂x (x)

∂Hd
∂ξ

(ξ )

]
= 0 (49)

which implies the following matching equations:

∂ T F
∂x

(x)Jb
∂F
∂x

(x) = Jc(ξ ) (50)

Rc = 0 (51)
∂ T F
∂x

(x)Jb = gc (52)

Notice that the system (38) does not have dissipation, hence the dissipation obstacle [Ortega et al., 2001]
is avoided. Developing the matching equations (51) we obtain:

∂ T F
∂x1

T̃1M = 0 (53)

∂ T F
∂x1

T̃2M +
∂ T F
∂ pm

B̃3T
M = 0 (54)

−∂ T F
∂ pm

= 0 (55)

∂ T F
∂x2

T̃ T
1M +

∂ T F
∂x3

T̃ T
2M = 0 (56)

∂ T F
∂x3

B̃3
M +

∂ T F
∂xm

=−gc (57)

From the equations (53)-(55), we can tell that the function F(x) does not depend on the variables x1 and
pm. Taking gc = I and the matrices defined in (38), a possible solution of the matching condition is:

F(x) =−1
2

B̃3†
M T̃ T

2MT̃−T
1M x2 +

1
2

B̃3†
M x3 +

1
2

xm (58)

where B̃3†
M is the pseudo inverse of B̃3

M . A simple choice for the Casimir function is C(x,ξ ) = 0 which
implies the the following relation between system and controller states:

ξ = F(x) =−1
2

B̃3†
M T̃ T

2MT̃−T
1M x2 +

1
2

B̃3†
M x3 +

1
2

xm (59)

The state of the controller is related to x2 , x3 and xm, hence the energy can be shaped in these coordi-
nates. To this end define the Hamiltonian of the controller as

Hc(ξ ) = 2Kξ
2 (60)



14 of 22 Yongxin Wu, Yann Le Gorrec, Hector Ramirez and Laurent Lefèvre

This Hamiltonian allows to shape the energy Hd around the zero equilibrium position with K > 0 a
control design parameter. Following the matching equations (50) and (51), the matrices Jc = Rc = 0 and
gc = I. Then the controller is:

ξ̇ = uc

yc =
∂Hc
∂ξ

(61)

Considering (59), the Hamiltonian of the controller can be written as :

Hc(x2,x2,xm) = 1
2 xT

2 Sc2x2 +
1
2 xT

3 Sc3x3 +
1
2 xT

mkcxm
+xT

2 Sc4x3 +xT
3 Sc5x4 +xT

2 Sc6x4
(62)

where Sc2 = T̃−1
1M T̃2MB̃3†T

M KB̃3†
M T̃ T

2MT̃−T
1M , Sc3 = B̃3†T

M KB̃3†
M , kc =K, Sc4 = T̃−1

1M T̃2MB̃3†T
M KB̃3†

M , Sc5 = T̃−1
1M T̃2MB̃3†T

M K
and Sc6 = B̃3†T

M K.
From (61), (59) and (47), the control law can be written as:

u =−yc = 2KB̃3†
M T̃ T

2MT̃−T
1M x2−2KB̃3†

M x3−2Kxm (63)

with closed loop Hamiltonian

Hd = 1
2 xT

1 S1x1 +
1
2 xT

2 S̄2x2 +
1
2 xT

3 S̄3x3 +
1
2 xT

mk̄xm + 1
2 pT

m
1
m pm

+xT
2 Sc4x3 +xT

3 Sc5x4 +xT
2 Sc6x4

(64)

with S̄2 = S2 +Sc2, S̄3 = S3 +Sc3 and k̄ = K + k. Furthermore, by adding a negative output feedback to
the boundary feedback we introduce dissipation into the closed-loop system and guarantee the closed-
loop asymptotic stability [Macchelli et al., 2017]:

u∗ = u−αys (65)

with the dissipation feedback coefficient α > 0.

5. Numerical simulations

In order to illustrate the numerical effectiveness of the proposed discretization scheme and the simple
control strategy, we simulate the 2D wave propagation in the vibro-acoustic tube with the numerical
parameters given in Table 1 [David et al., 2010].

Table 1. The parameters of the experimental tube

L Length 1.84 m
R Radius 0.05 m
ρ Air density 0.8163 kg/m3

χs Compressibility coefficient 1.4161×105 Pa−1

For applying the previously proposed discretization scheme, we take 5 vertical elements i.e., N = 5
and 250 horizontal elements i.e., M = 250. Hence, the overall system has M×N = 1250 infinitesimal
elements and 3750 state variables x̃ ∈ R3750. In Fig. 5, we show the open loop response of the pressure
on the complete spatial domain at 5 second. The input is the wave pressure on the left side of the tube
generated by the loudspeaker in sinusoidal form u = sin(100∗ t).
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FIG. 5. Open loop pressure response over the 2D domain at 5 s

In Fig. 6, the closed-loop response with the passive controller proposed in the last section is shown.
To illustrate the effectiveness of the proposed control, we consider the the front of the tube (first 100th
elements) is not controlled and the controller is star from the the element 100 to the end. The pressure
over the spatial domain at 5 second is shown in Fig. 6. We observe that until the 100th element, the wave
is not reduced. However, starting from element 101 the pressure is attenuated significantly because of
the controller.

FIG. 6. Closed-loop pressure response over the 2D domain at 0.5 s

6. Conclusion

A geometric structure preserving discretization for a 2D vibro-acoustic system under the port Hamil-
tonian form is addressed in this paper. With a precise choice of a set of weighting functions, a finite-
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dimensional Dirac structure is derived using a mixed finite-elements method and an explicit input-output
system representation of the vibro-acoustic tube is achieved. The advantage is that, in the finite dimen-
sional approximation of the vibro-acoustic system, the passivity and the Hamiltonian structure is pre-
served which is useful for control design. Furthermore, a passive controller via interconnection energy
shaping and damping injection is implemented on the obtained finite dimensional approximation. The
numerical result shows the effectiveness of the proposed discretization scheme and the passive con-
troller. Ongoing work is on the implementation of the proposed simple controller on real experimental
set-up
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R. Moulla, L. Lefèvre, and B. Maschke. Pseudo-spectral methods for the spatial symplectic reduction
of open systems of conservation laws. Journal of computational Physics, 231:1272–1292, 2011.

R. Ortega, A.J. van der Schaft, I. Mareels, and B. Maschke. Putting energy back in control. IEEE
Control Systems Magazine, 21(2):18– 32, April 2001.

Anass Serhani, Denis Matignon, and Ghislain Haine. Structure-preserving finite volume method for 2d
linear and non-linear port-hamiltonian systems. IFAC-PapersOnLine, 51(3):131 – 136, 2018. ISSN
2405-8963. 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control
LHMNC 2018.

Marko Seslija, Arjan van der Schaft, and Jacquelien Scherpen. Discrete exterior geometry approach
to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of
Geometry and Physics, 62(6):1509–1531, 2012.

V. Trenchant, H. Ramirez, Y. Le Gorrec, and P. Kotyczka. Structure preserving spatial discretization of
2d hyperbolic systems using staggered grids finite difference. In 2017 American Control Conference
(ACC), pages 2491–2496, May 2017a.

V. Trenchant, T. Vu, H. Ramirez, L. Lefvre, and Y. Le Gorrec. On the use of structural invariants for
the distributed control of infinite dimensional port-hamitonian systems. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 47–52, Dec 2017b.

Vincent Trenchant, Yassine Fares, Hector Ramirez, and Yann Le Gorrec. A port-hamiltonian formu-
lation of a 2d boundary controlled acoustic system. IFAC-PapersOnLine, 48(13):235 – 240, 2015.
ISSN 2405-8963. 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Con-
trol LHMNC 2015.

Vincent Trenchant, Weiwei Hu, Hector Ramirez, and Yann Le Gorrec. Structure preserving finite differ-
ences in polar coordinates for heat and wave equations. IFAC-PapersOnLine, 51(2):571 – 576, 2018a.
ISSN 2405-8963. 9th Vienna International Conference on Mathematical Modelling.

Vincent Trenchant, Hector Ramirez, Yann Le Gorrec, and Paul Kotyczka. Finite differences on stag-
gered grids preserving the port-hamiltonian structure with application to an acoustic duct. Journal of
Computational Physics, 373:673 – 697, 2018b. ISSN 0021-9991.



18 of 22 REFERENCES

A.J. van der Schaft. L2-gain and Passivity Techniques in Nonlinear Control. Communications and
Control Engineering Series. Springer-Verlag, 2000. ISBN 9781852330736.

A.J. van der Schaft and B. Maschke. Hamiltonian Formulation of Distributed Parameter Systems with
Boundary Energy Flow. Journal of Geometry and Physics, 42:166–194, 2002.

Ngoc Minh Trang Vu, Laurent Lefevre, Rmy Nouailletas, and Sylvain Bremond. Symplectic spatial
integration schemes for systems of balance equations. Journal of Process Control, 51:1 – 17, 2017.
ISSN 0959-1524.

Ngoc Minh Trang Vu, Laurent Lefvre, and Bernhard Maschke. Geometric spatial reduction for port-
hamiltonian systems. Systems & Control Letters, 125:1 – 8, 2019. ISSN 0167-6911.

Yongxin Wu, Boussad Hamroun, Yann Le Gorrec, and Bernhard Maschke. Power preserving model
reduction of 2d vibro-acoustic system: A port hamiltonian approach. IFAC-PapersOnLine, 48(13):
206 – 211, 2015. ISSN 2405-8963. 5th IFAC Workshop on Lagrangian and Hamiltonian Methods
for Nonlinear Control LHMNC 2015.

Appendix 1: Finite dimensional Dirac structure approximation of an infinitesimal square grid

The structure of the vibro-acoustic system (7) can be approximated by substituting the flows approxi-
mations (11), (12) and the efforts approximations (14), (15) into (7):

f θ
abcdwθ

abcd = -d
(
ep

abwp
ab + ep

bcwp
bc + ep

cdwp
cd + ep

dawp
da

)
(66)

f Γ
abwΓ

ab + f Γ
bcwΓ

bc + f Γ
cdwΓ

cd + f Γ
dawΓ

da
= d(ev

awv
a + ev

bwv
b + ev

cwv
c + ev

dwv
d)

(67)

We deduce the following compatibility conditions between the two forms and one forms, one forms
and between the zero-forms:

dwp
i = wθ

abcd i ∈ {ab,bc,cd,da};
dwv

a = wΓ
da−wΓ

ab;
dwv

b = wΓ
ab−wΓ

bc;
dwv

c = wΓ
dc−wΓ

cd ;
dwv

d = wΓ
cd−wΓ

da.

(68)

Substituting the above compatibility conditions (68) into equations (66) and (67) and integrating over
Zabcd , the relations between the approximated flow and effort variables are given by:

f θ
abcd =−ep

ab− ep
bc− ep

cd− ep
da (69)

f Γ
ab = ev

b− ev
a, f Γ

bc = ev
c− ev

b,
f Γ
cd = ev

d− ev
c, f Γ

da = ev
a− ev

d .
(70)

The objective here is to get a finite dimensional system with port-Hamiltonian structure guarantees
the energy balance. To do so, we compute the net power over an infinitesimal square grid abcd Pnet

abcd =
Pθ

abcd +PΓ
abcd +PB

abcd composed of the kinetic power, the potential power and the power through the
boundary.
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The kinetic power over an infinitesimal square grid is computed by using the approximated variables
and compatibility conditions as:

Pθ
abcd =

∫
Zabcd

ev(t,z)∧ f θ (t,z) = f θ
abcdeθ

abcd (71)

where eθ
abcd = αaev

a +αbev
b +αcev

c +αdev
d and

αm :=
∫

Zabcd

wv
m∧wθ

abcd , m ∈ {a,b,c,d}. (72)

The potential power PΓ
abcd in the domain can be computed as

PΓ
abcd =

∫
Zabcd

ep(t,z)∧ f Γ (t,z) = f Γ
abeΓ

ab + f Γ
cdeΓ

cd + f Γ
daeΓ

da (73)

with the ports
(

f Γ
ab,e

Γ
ab

)
,
(

f Γ
cd ,e

Γ
cd

)
and

(
f Γ
da,e

Γ
da

)
identified by

eΓ
ab = (αb−βb,ab)e

p
ab +(αb−βb,bc)e

p
bc

+(αb−βb,cd)e
p
cd(t)+(αb−βb,da)e

p
da

eΓ
cd = (βc,ab−αc)e

p
ab +(βc,bc−αc)e

p
bc

+(βc,cd−αc)e
p
cd +(βc,da−αc)e

p
da

eΓ
da = (βc,ab +βd,ab−αc−αd)e

p
ab

+(βc,bc +βd,bc−αc−αd)e
p
bc

+(βc,cd +βd,cd−αc−αd)e
p
cd

+(βc,da +βd,da−αc−αd)e
p
da

with αm defined as (72) and

βm,l =
∫

∂Zabcd

wv
m∧wp

l ,
m ∈ {a,b,c,d}
l ∈ {ab,bc,cd,da} . (74)

The power corresponding to the boundary can be computed as follows

PB
abcd =

∫
∂Zabcd

eB(t,z)∧ f B(t,z)
= eB

ab f B
ab + eB

bc f B
bc + eB

cd f B
cd + eB

da f B
da

(75)

by identifying the ports on the boundary as
(

f B
ab,e

B
ab

)
,
(

f B
bc,e

B
bc

)
,
(

f B
cd ,e

B
cd

)
and

(
f B
da,e

B
da

)
, where

f B
ab = βa,abev

a +βb,abev
b +βc,abev

c +βd,abev
d

f B
bc = βa,bcev

a +βb,bcev
b +βc,bcev

c +βd,bcev
d

f B
cd = βa,cdev

a +βb,cdev
b +βc,cdev

c +βd,cdev
d

f B
da = βa,daev

a +βb,daev
b +βc,daev

c +βd,daev
d

with βm,l =
∫

∂Zabcd
wv

m∧wp
l , m ∈ {a,b,c,d} and l ∈ {ab,bc,cd,da}.

Using the net power relations (71), (73) and (75), we can write the finite dimensional Dirac structure
over each infinitesimal square grid with its image representation [Duindam et al., 2009] as follows

Dabcd =

{
( fabcd ,eabcd)

∣∣∣∣ fabcd = E∗abcdλabcd
eabcd = F∗abcdλabcd

,λabcd ∈ R8
}

(76)
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where

fabcd =
[

f θ
abcd , f Γ

ab, f Γ
cd , f Γ

da, f B
ab, f B

bc, f B
cd , f B

da

]T
∈ R8,

eabcd =
[
eθ

abcd ,e
Γ
ab,e

Γ
cd ,e

Γ
da,e

B
ab,−eB

bc,−eB
cd ,e

B
da

]T
∈ R8,

λabcd =
[
ev

a,e
v
b,e

v
c,e

v
d ,e

p
ab,e

p
bc,e

p
cd ,e

p
da

]T ∈ R8

and the matrices Eabcd and Fabcd are define by

E∗abcd =



0 0 0 0 −1 −1 −1 −1
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
1 0 0 −1 0 0 0 0

βa,ab βb,ab βc,ab βd,ab 0 0 0 0
βa,bc βb,bc βc,bc βd,bc 0 0 0 0
βa,cd βb,cd βc,cd βd,cd 0 0 0 0
βa,da βb,da βc,da βd,da 0 0 0 0


(77)

F∗abcd =



αa αb αc αd 0 0 0 0
0 0 0 0 γb,ab γb,bc γb,cd γb,da
0 0 0 0 −γc,ab −γc,bc −γc,cd −γc,da
0 0 0 0 γab γbc γcd γda
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(78)

with γm,l =αm−βm,l , γl = βl−αcd , αcd =αc+αd , βl = βc,l+βd,l , m∈{a,b,c,d}, and l ∈{ab,bc,cd,da}.
Using the weighting function (17)-(19), the parameters α and β can be computed as follows:

αa,abcd =
∫

zabcd
wa∧wabcd

=
∫ y2

y1

∫ x2
x1

(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

1
(x2−x1)(y2−y1)

dx∧dy
= 1

4 .

(79)

By doing the same computation, one can find αa,abcd = αb,abcd = αc,abcd = αd,abcd = 1
4 and

βa,ab =
∫

∂ zabcd
wa∧wab

=
∫ x2

x1

(x2−x)
(x2−x1)

(y2−y)
(y2−y1)

(y2−y)
(x2−x1)(y2−y1)

dx
∣∣∣
y=y1

= 1
2 .

(80)

In the same way:

βa,ab =
1
2 , βb,ab =

1
2 , βc,ab = 0, βd,ab = 0,

βa,bc = 0, βb,bc =
1
2 , βc,bc =

1
2 , βd,bc = 0,

βa,cd = 0, βb,cd = 0, βc,cd = 1
2 , βd,cd = 1

2 ,
βa,da =

1
2 , βb,da = 0, βc,da = 0, βd,da =

1
2 .

(81)
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Furthermore, the following parameters can be computed:

αcd = αc,abcd +αd,abcd = 1
2

βab = βc,ab +βd,ab = 0
βbc = βc,bc +βd,bc =

1
2

βcd = βc,cd +βd,cd = 1
βda = βc,da +βd,da =

1
2

(82)

Using the above coefficients, one can get the finite dimenaionla Dirac structure approximation of the
infinitesimal square grid (20).

Appendix 2: Constitutive equations approximation

To construct the explicit finite dimensional approximation of the port-Hamiltonian system on the in-
finitesimal square grid, we should also derive the approximation of the constitutive relations (9). Now
let consider the approximation of the energy variables as:

θ(t,z) = θ abcdwθ
abcd (83)

Γ (t,z) = ΓabwΓ
ab +ΓbcwΓ

bc +ΓcdwΓ
cd +ΓdawΓ

da (84)

In order to derive the constitutive equations of the finite dimensional approximation, we compute the
energy over an infinitesimal square grid with the approximated energy variables. First, we consider the
kinetic energy over the infinitesimal square Zabcd as

Hθ
abcd = 1

2
∫
Zabcd

θ(z, t)∧∗ θ(z,t)
ρ0

=
θ 2

abcd
2
∫
Zabcd

wθ
abcd∧∗w

θ
abcd

ρ0
=

θ 2
abcd
2M

(85)

with M−1 =
∫
Zabcd

wθ
abcd∧∗w

θ
abcd

ρ0
. Then using the weighting function (17), one can get:

M−1 =
∫
Zabcd

wθ
abcd∧∗w

θ
abcd

ρ0

= 1
ρ0

∫ y2
y1

∫ x2
x1

[
1

(x2−x1)(y2−y1)

]2
dx∧dy

= 1
ρ0

1
(x2−x1)(y2−y1)

= 1
ρ0

1
Rin f Lin f

(86)

where Lin = x2 − x1 and Rin = y2 − y1 are the length and the width of the infinitesimal square grid
respectively.

Before deriving the potential energy over the square Zabcd , we rewrite the volumetric expansion by
using the compatibility conditions (68) as:

Γ (t,z) = Γabdwv
b−Γcddwv

c−Γda(dwv
c +dwv

d). (87)

These finite dimensional energy variables has been chosen with respect to the effort variables over the
square from the net power balance (73). Using the energy variables defined above, the potential energy
is expressed as:

HΓ
abcd = 1

2
∫
Zabcd

Γ (z, t)∧∗Γ (z,t)
χs

= 1
2

[
Γ 2

ab
χs1

+
Γ 2

cd
χs2

+
Γ 2

da
χs3
− 2ΓabΓcd

χs4
− 2ΓabΓda

χs5
+ 2ΓcdΓda

χs6

]
(88)
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with χ
−1
s1 =

∫
Zabcd

dwv
b∧∗dwv

b
χs

, χ
−1
s2 =

∫
Zabcd

dwv
c∧∗dwv

c
χs

, χ
−1
s3 =

∫
Zabcd

(dwv
c+dwv

d)∧∗(dwv
c+dwv

d)

χs
, χ
−1
s4 =

∫
Zabcd

dwv
b∧∗dwv

c+dwv
c∧∗dwv

b
2χs

,

χ
−1
s5 =

∫
Zabcd

dwv
b∧∗(dwv

c+dwv
d)+(dwv

c+dwv
d)∧∗dwv

b
2χs

, χ
−1
s6 =

∫
Zabcd

dwv
c∧∗(dwv

c+dwv
d)+(dwv

c+dwv
d)∧∗dwv

c
2χs

. Using the
chosen weighting functions (19), we can compute the above parameters:

χ
−1
s1 =

1
3χs

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3χs

[
Rin

Lin
+

Lin

Rin

]
,

χ
−1
s2 =

1
3χs

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3χs

[
Rin

Lin
+

Lin

Rin

]
,

χ
−1
s3 =

1
χs

x2− x1

y2− y1
=

1
χs

Lin

Rin
,

χ
−1
s4 =

1
3χs

[
y2− y1

x2− x1
+

x2− x1

y2− y1

]
=

1
3χs

[
Rin

Lin
+

Lin

Rin

]
,

χ
−1
s5 =

1
6χs

x2− x1

y2− y1
=

1
6χs

Lin

Rin
,

χ
−1
s6 =

1
2χs

x2− x1

y2− y1
=

1
2χs

Lin

Rin
. (89)

The finite dimensional approximation of the constitutive relations can be written as
eθ

abcd
eΓ

ab
eΓ

cd
eΓ

da

= Qabcd


θabcd
Γab
Γcd
Γda

 (90)

with

Qabcd =


Sin

1
ρ0

0 0 0
0 1

3 S2in
1
χs

− 1
3 S2in

1
χs
−S1in

1
6χs

0 − 1
3 S2in

1
χs

1
3 S2in

1
χs

S1in
1

2χs

0 −S1in
1

6χs
S1in

1
2χs

S1in
1
χs

 . (91)

and Sin =
1

LinRin
, S1in =

Rin
Lin

and S2in =
Rin
Lin

+ Lin
Rin

.


