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Abstract

We address the link between the controllability or observability of a stochastic complex system and concepts of infor-
mation theory. We show that the most influential degrees of freedom can be detected without acting on the system, by
measuring the time-delayed multi-information. Numerical and analytical results support this claim, which is developed
in the case of a simple stochastic model on a graph, the so-called voter model. The importance of the noise when
controlling the system is demonstrated, leading to the concept of control length. The link with classical control theory
is given, as well as the interpretation of controllability in terms of the capacity of a communication canal.
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1. Introduction

Causality is an important concept in many areas of
science [20]. It helps to better understand the behavior
of complex dynamical systems. In particular, it reveals
how the different degrees of freedom of a system influence
each other. In this paper we investigate how causality
(considered in

a pragmatic and intuitive way) can be used to discover
efficient control strategies in a complex system.

The key ingredient of our approach is the concept of
the most influential components in a complex system. This
notion is defined here as the impact of controlling a given
variable on the behaviour of the other variables. For in-
stance, one can measure the change in the joint probability
distribution (Kulback-Leibler divergence) when the value
of a selected variable is imposed. Alternatively, we can
measure the variation of an average quantity when a per-
turbation is applied. The variable for which this change is
the most important is labelled as the most influential. Fol-
lowing this procedure we can rank the degrees of freedom
of a system from the most to the less influential. Arguably
the notion of influence depends on the quantity used to
measure the effect of forcing the variable. Then, to con-
trol this quantity in the system, it will be more effective
to act on the corresponding most influential nodes.

The aforementioned procedure is intrusive in the sense
that it requires to act on the system to be able to deter-
mine the effects of a perturbation. Here we would like to
consider a non-intrusive approach, essentially based on the
observation of the system. The non-intrusive approach we
proposed is based on a time delayed multi-information on
the free system, measure that Schreiber [23] has named

transfer information. This procedure can be performed by
simple sampling on the system variables, even if the under-
lying dynamics is unknown, like for instance in financial
systems.

In order to show that the metrics of information the-
ory are good tools to find the influencers of a dynamic
system, we have chosen here as a dynamic system a voting
model where the vote of an agent depends on the vote of
its neighbours. Voting models have been studied in many
articles. For example Castellano and all [7] have defined a
q-voter model in which an agent votes like its neighbours
if the opinion is unanimous; otherwise the vote is random.
This model has been used by Nycska [18]. Our model is
closer to those used by Mobilia [15] or Masuda [13]. In our
case, we want to detect the influencers of the system. Mo-
rone [16] has proposed a numerical method to find them
by using the adjacency matrix of the graph. Here we want
to study the system without necessarily knowing its topol-
ogy, using information theory. To verify that the theory
of information is a good way to evaluate the influence of
an agent, we first make the agent play the role of zealots
(an agent that does not change its vote, as defined by Mo-
bilia [14], or inflexible as defined by Galam [10]). In the
literature, there are many articles that deal with the ef-
fects of zealots on the voter model dynamic: for instance,
in [15], Mobilia studied the role of zealots on the result of
a vote and Masuda [13] showed the link between the role
of zealots and their degree.

The most influential nodes can be determined by con-
trolling successively each variables and measuring the im-
pact on the average opinion of the entire group. We will
show that the same ranking of influence can also be ob-
tained by monitoring the time-delayed multi-infomation.
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The determination of the most influential variables has
a clear connection with the well developed theory of con-
trol, in which observability and controllability of a system
are defined and explored. In section 4.7 we make the link
between the standard concepts of control theory and our
present approach. A important element of our discussion
is related to the effect of noise on the possibility to con-
trol a system. The voter model shows that in presence
of noise the influential nodes cannot force the opinion of
the far enough agents, despite the existence of a connect-
ing path. This result shows the limit of some previous
approaches about the controllability of systems on a com-
plex network [11].

The paper is organized as follows: section 2 introduces
our voter model, then section 3 demonstrates the link be-
tween influence and time-delayed multi-information. Sec-
tion 4 solves the 1D voter model analytically, in the mean-
field regime and gives a formal link between influence and
delayed multi-information. The link between the control
length and the capacity of a communication channel is also
given. Section 4.7 proposes a formulation of the 1D voter
model in the usual framework of control theory. Loss of
controllability is related to the noise intensity and the cost
of controllability is expressed with a Gramian.

2. Voter Model

Simple models that abstracts the process of opinion
formation have been proposed by many researchers [6, 9].
The version we consider here is an agent-based model de-
fined on a graph of arbitrary topology, whether directed
or not.

A binary agent occupies each node of the network. The
dynamics is specified by assuming that each agent i looks
at every other agent in its neighborhood, and counts the
percentage ρi of those which are in the state +1 (in case
an agent is linked to itself, it obviously belongs to its own
neighborhood). A function f is specified such that 0 ≤
f(ρi) ≤ 1 gives the probability for agent i to be in state
+1 at the next iteration. For instance, if f would be chosen
as f(ρ) = ρ, an agent for which all neighbors are in state
+1 will turn into state +1 with certainty. The update is
performed synchronously over all n agents.

Formally, the dynamics of the voter model can be ex-
press as

si(t+ 1) =

{
1 with probability f(ρi(t))
0 with probability 1− f(ρi(t))

(2.1)

where si(t) ∈ {0, 1} is the state of agent i at iteration t,
and

ρi(t) =
1

|Ni|
∑
j∈Ni

sj(t). (2.2)

The set Ni is the set of agents j that are neighbors of agent
i, as specified by the network topology.

The global density of all n agents with opinion 1 is
obviously obtained as

ρ(t) =
1

n

n∑
i=1

si(t) (2.3)

According to the law of total probability, the probability
pi that agent i votes +1 is

pi(t+ 1) = (1− ε)pVi
(t)) + ε(1− pVi

(t))

= (1− 2ε)pVi
(t) + ε

where ε is the probability to take a decision different from
that of the neighborhood and pVi

(t) is the probability that
the majority of neighbours of agent i vote 1 at time t.
In what follows, we will use a particular function f , (see
Fig. 1)

f(ρ) = (1− ε)ρ+ ε(1− ρ) = (1− 2ε)ρ+ ε (2.4)

From now on, the quantity ε is called the noise. We limit
the noise in the range 0 ≤ ε ≤ 1/2. The upper value
ε = 1/2 corresponds to a blind vote, with probability 1/2
for each outcome.

ε=0.1
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Figure 1: The probablility f(ρ) used in this study. The noise ε is
visible as the values f(0) and 1− f(1).

To illustrate the behavior of this model, we consider
a random scale-free [2] graph G, as simple instance of a
social network, as proposed by Newman in the paper Ran-
dom graph models of social networks [17]. In a scale-free
network, a small number of nodes have many connections.
These nodes are the leaders of the social network. And
most nodes have very few connections. The majority of
voters are represented by these nodes. The scale free graph
structure is based on communities built around a leader
(see the paper by Andrew Wu [26]). We use the algorithm
of B̈ı¿œla Bollob̈ı¿œs [3] to generate a random graph scale
free.

Figure 2 shows the corresponding density of agents
with opinion 1, as a function of time. We can see that
there is a lot of fluctuations due to the fact that states “all
0’s” or “all 1’s” are no longer absorbing states when ε 6= 0.
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Figure 2: Graph of the time evolution of the density of opinion 1 with
noise ε = 0.001 and n = 200 agents connected through a scale-free
network.

3. Characterisation of the influence of an agent

In this study we would like to characterize how the
opinion of one agent influences that of its neighbors and
that of the entire system. We will first propose an ap-
proach based on information theory, and then measure the
influence directly by forcing (or controlling) the opinion of
one agent. We will show that both characterizations are
strongly correlated. The information theoretic quantities
that will be considered are the time-delayed mutual infor-
mation and the time-delayed multi-information. The pur-
pose of considering a time delay is to capture the causal
effect of one element on another.

3.1. Delayed mutual- and multi-information

Let us consider a set of random variables Xi(t) associ-
ated with each agent i, taking their values in a set A. For
instance, Xi(t) = si(t) would be the opinion of agent i at
iteration t.

To measure the influence between agents i and j, we
define the τ -delayed mutual information wi,j as

wi,j(t, τ) = I(Xi(t), Xj(t+ τ)) (3.1)

=
∑

(x,y)∈A2

pxy log
( pxy
pxpy

)
(3.2)

with
pxy = P(Xi(t) = x,Xj(t+ τ) = y)

px = P(Xi(t) = x) and py = P(Xj(t+ τ) = y)

We also define the τ -delayed multi-information wi to
measure the influence of one agent i on all the others

wi(t, τ) = I(Xi(t), Yi(t+ τ)) (3.3)

Figure 3: τ -delayed multi-information wi(τ) (τ = 3) as a function of
i, for graph G with n = 50 agents and noise level ε = 0.001.

Yi(t+ τ) =
∑
k 6=i

Xk(t+ τ) (3.4)

These information metrics can be computed by the
method of sampling. We consider N = 105 instances of
the system in order to perform an ensemble average. Ac-
cording to the central limit theorem, we know that, with
this number of instances, we obtain a precision of 3×10−2

with a risk of 5% for the approximate values of the prob-
abilities that we compute (see Appendix B for details).

3.2. Non-intrusive characterisation of the nodes influences:
delayed multi-information

The τ -delayed multi-information can be used as a mea-
sure of the influence of opinion of each node i on the vote
of the other agents. For instance, Fig. 3 shows wi(τ = 2)
in a steady state, where the origin of time is arbitrary.
We observe that some agents i exhibit a more pronounced
peak of multi-information towards the rest of the system,
suggesting that the opinion of these agents may affect the
global opinion of all agents. Note that this results is ob-
tained only by probing the systems, without modifying any
of its components. For this reason, we describe this ap-
proach as “non-intrusive”. The algorithms used through-
out this paper to numerically evaluate the delayed mutual-
and multi-informations in the voter model example are de-
scribed in Appendix C.

As we can see in Fig. 4, the influence of each agent
decreases strongly with noise. We deduce that with a high
noise it will be difficult to control the system. Brede [5]
obtained similar results about the effect of the noise on
the control.

3.3. Intrusive characterization: forcing

In this section, we consider another way to measure the
influence of an agent on the system. We call this approach

3



Figure 4: τ -delayed multi-information wi(τ) (τ = 3) as a function
of i, for graph G with n = 50 agents and with different noise level
ε = 0.0001 (black curve) , ε = 0.001 (blue curve), ε = 0.01 (green
curve) and ε = 0.05 (red curve).

“intrusive” as it implies a perturbation, and no longer just
an observation.

To measure the influence of agent i, its opinion is forced
to a chosen value, for instance the value 1. As a result the
density (2.3) of opinions 1 in the system

ρ(t) =
1

n

n∑
j=1

sj(t) (3.5)

can be averaged over a large number N of independent
realizations, to give a quantity 〈ρ(t)〉i, where the subscript
i indicate which agent has been forced to 1. If t is large
enough, 〈ρ〉i no longer depends on t.

The influence can be measured in a steady state, or
from the initial state where all agents are initialized uni-
formly to 0 or 1 with probability 1/2, respectively.

The color representations of the graphs (Figures 5 and
6) show that the multi-information give some information
about the controllability and the observability of the sys-
tem. In the case the multi-information is calculated from
the initial state, these figures emphasize the link between
the multi-information and the influence of an agent. We
can then identify the agents that allow the best control of
the system when their vote is forced.

With the multi-information, we get the same results
as Masuda [13]. Choosing hubs as zealots is a good strat-
egy to control the system and the effect of the control is
strongly correlated with the hub’s degree.

The measurement obtained in the steady state for the
delayed multi-information is different from that observed
in the transient regime. Low-impact agents can get a high
multi-information by being a proxi of an influential neigh-
bor. In this case, the multi-information rather evaluates
the observability than the controlability.

4. The 1D Voter model

The previous section gave an illustration of the link be-
tween influence defined by intrusive forcing and the influ-
ence measured by observing the time-delayed multi-information.
In this section, we propose an analytical meanfield solu-
tion of the voter model, in a one-dimensional topology.
This solution will formally specify the proposed links. In
particular we will introduce a characteristic control length.

4.1. Presentation

We consider the case of n voters organized along a line
so that voter i looks at voter i − 1 and itself to take its
decision.

Chain network have been already studied. Brede [4]
has demontred that the influence of indirect control on
an agent decreases with the distance from the controlled
agent when there is noise.

Agent i = 0 has no left neighbor and will have a con-
trolled dynamics. For instance its opinion will be always
1. The other agents are initialized randomly in {0, 1}.

Since agent 1 is looking at agent 0, its next state will
likely to be 1. And so on for agent 2, 3, . . . , n. Intuitively,
we could expect that the entire system will become 1, due
to the control imposed by agent 1. But noise is changing
this conclusion.

If pi(t) is the probability that agent i is 1 at time t, we
can write the equation

pi(t+ 1) = pi(t)W1→1(t) + (1− pi(t))W0→1(t) (4.1)

where Wa→b is the probability that the state evolves from
a to b. In a meanfield approximation, we can write,

W0→1 = pi−1(t)f(1/2) + (1− pi−1(t))f(0)

W1→1 = pi−1(t)f(1) + (1− pi−1(t))f(1/2)

(4.2)

Before attempting to solve the above system analytically,
we can observe its behavior numerically. We can see in
Fig. 7 that if the noise is absent (ε = 0), the entire system
is indeed controlled by the left-most agent whose state is
always 1. But, as sson as the noise is increased (ε = 0.01)
the control is not effective anymore. There is a critical
noise ε = εc(n) below which a system of size n can be
controlled by the first node, and above which the influence
of the driving node is diluted by the noise. Figure 8 shows
the density of agents with opinion 1, as a function of time,
for different intensities of noise, ε. We observe in this figure
the effect of the system size. For smaller systems, the effect
of controlling agent i = 1 is more effective than for larger
n.

4.2. Probability distribution of opinions

We can determine the probability distribution in the
case of the linear voter model. We have

pi(t+ 1) = pi(t)W1→1(t) + (1− pi(t))W0→1(t)

= pi(t)(W1→1(t)−W0→1(t)) +W0→1(t)
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Figure 5: Scale free graph colored as a function of the values of the influence (left) and the τ -delay multi-information (right), for τ = 4. In
this case, the multi-information is computed from the initial state.

With

W1→1(t) = pi−1(t)f(1) + (1− pi−1(t))f(1/2)

= pi−1(t)(1− ε) + (1− pi−1(t))
1

2

and

W0→1(t) = pi−1(t)f(1/2) + (1− pi−1(t))f(0)

= pi−1(t)
1

2
+ (1− pi−1(t))ε

we obtain

pi(t+ 1) =

(
1

2
− ε
)
pi(t) +

(
1

2
− ε
)
pi−1(t) + ε (4.3)

As p0(t) = 1, we obtain

p1(t+ 1) =

(
1

2
− ε
)
p1(t) +

1

2
(4.4)

Let P (t) be the vector of probability defined by

P (t) =


p1(t)
p2(t)

...
pn(t)


With this notation, the system can be expressed in a ma-
trix form

P (t+ 1) = AP (t) +B (4.5)

with

A = (
1

2
− ε)



1 0 . . . . . . 0

1 1 0
. . .

...

0 1 1
. . . 0

...
. . .

. . . 0
0 . . . 0 1 1


and

B =


1/2
ε
...
ε


This equation can be solved recursively and gives

P (t) = AtP (0) +
( t−1∑
j=0

Aj
)
B (4.6)

The explicit forms for power matrices Aj are given in Ap-
pendix A.

4.3. Stationnary system

Let us write

Π =


π1
π2
...
πn


the stationary distribution. From relation (4.5), it obeys

AΠ+B = Π⇔


(
1

2
+ ε)π1 =

1

2

∀i ∈ J2;nK, πi =
1− 2ε

1 + 2ε
πi−1 +

2ε

1 + 2ε
(4.7)
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Figure 6: Scale free graph colored as a function of the values of the influence (left) and the τ -delay multi-information (right), for τ = 4. In
this case, the multi-information is computed when the system is in a steady state regime.

Figure 7: Space-time diagram of the evolution of the states of a
n = 500 agents of a voter model organized in a line. Line t of the
figure depicts the configuration of the n voter at iteration t. We can
see the first 500 iterations. Left: ε = 0. Right: ε = 0.01 .

It is an arithmetico-geometric sequence which can be solved
for all agents i as

π1 =
1

1 + 2ε

πi =
1

2
+
(1− 2ε

1 + 2ε

)i−1
(π1 −

1

2
)

(4.8)

with

π1 −
1

2
=

1

2

(
1− 2ε

1 + 2ε

)
Further, we can write eq.( 4.8) as

πi =
1

2

[
1 +

(
1− 2ε

1 + 2ε

)i]

=
1

2
+

1

2
exp

[
−i ln

(
1 + 2ε

1− 2ε

)]
=

1

2
+

1

2
exp

[
− i

`c

]
(4.9)

where `c is defined as

`c =
1

ln
(

1+2ε
1−2ε

) (4.10)

and referred to as the control length as it gives a value for
i above which the exponential falls quickly to zero. It is a
characteristic distance from the controlled agent where its
inluence starts to fade.

We see that, when ε approaches 1/2, the length of con-
trol `c converges to 0, which corresponds to a total loss of
the controlability of the system. Figure 9 shows that `c
decreases very quickly to 0 when ε increases to 1/2.

4.4. Average vote of the system

In the case of a stationnary system, we can calculate
the average density of agents with vote 1.

S =
1

n

n∑
i=1

πi

with n is the number of free agents.
According to (4.9), we have

S =
1

n

[
n

2
+

1

2

n∑
i=1

(
1− 2ε

1 + 2ε

)i]
(4.11)

When ε 6= 0, we have

n∑
i=1

(
1− 2ε

1 + 2ε

)i
=

(
1− 2ε

1 + 2ε

) n−1∑
i=0

(
1− 2ε

1 + 2ε

)i
(4.12)

=

(
1− 2ε

1 + 2ε

) 1−
(

1−2ε
1+2ε

)n
1−

(
1−2ε
1+2ε

)
(4.13)
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Figure 8: Density of agents with value 1 as a function of time, for different noise levels, and two different system sizes, n = 500 and n = 50.
The dashed lines are the predictions of the meanfield analytical approach, see eq. (4.14).

Figure 9: Control length `c as a function of the noise ε, according to
eq. (4.10).

and we obtain

S =
1

2
+

1

2n

(1− 2ε

1 + 2ε

) 1−
(

1−2ε
1+2ε

)n
1−

(
1−2ε
1+2ε

)


=
1

2
+

1

2n

(
1− 2ε

4ε

)[
1−

(
1− 2ε

1 + 2ε

)n]
(4.14)

In Figure 8, we see that the simulations are in agreement
with this theoretical result. Indeed, the density of agents
who votes 1 oscillates around the mean value S represented
by the dashed lines in the figure.

4.5. Delayed mutual information

In this section we will compute the influence of an
agent based on the τ -delayed mutual information, wi,j(τ),
between agents i and j, as defined in eq. (3.2). These
values are obtained by a sampling of the simulation of
the 1D voter model, with n = 50 agents. Measurements

are performed when the system has reached a stationnary
state, that is after t iterations such that all the probabil-
ities AtP (0) are smaller than a certain threshold. In our
case, we take the threshold at 10−4.

In Fig. 10, we notice that the mutual information wi,j(τ)
is zero if j < i, has a plateau for j < i + τ , shows a peak
for j = i+ τ , and decreases for j > i+ τ . This observation
reflects the fact that agent i can only influence agents on
its right as the voting decision of an agent is based on the
state of its left neighbor. The plateau shows the influence
of the past j − i iterations. The influence of i over j is
maximum for j = i+ τ as it takes τ iterations for the vote
of i to travel from i to j. For j > i+ τ the influence is due
to the steady state regime.

The results that we have are consistent with those that
Brede [4] obtained recently when he studied the depen-
dence between the vote of the first agent and that of the
others. He computed analytically the dependance of the
average stationary vote of a node on a distance i to the
node controlled, and he obtained that this dependence de-
creases exponentially with i, as obtained from the mutual
information.

In Fig. 11 we consider the behavior of wi,j(j − i). It
suggests the following relationship

∀j > i, wi,j(j − i) = αi exp [−λi(j − i)] (4.15)

where αi and λi depend on the noise level, ε.
The coefficients of correlation between ln(wi,j(j − i))

and j, for different values of the noise are found to be be-
tween−1 and−0.99, thus confirming the relation proposed
in eq. (4.15). The value of αi and λi can be determined
with a least squares method.

Consequently, the value of the delayed mutual infor-
mation wi,j(j − i) decreases quickly as j departs from i.
This reflects the difficulty to control agent j from agent i.

This interpretation is confirmed by Fig. 12 which shows
the relation between the values of λ ≡ λ1 and the control

7



Figure 10: Delayed mutual information, wi,j(τ), as a function of agent j, for different values of i. The different curves correspond to
i = 1, 2, 5, 10, 20 et 40, from left to right, respectively. The vote of agent i = 0 is forced to 1 and the noise is ε = 0.01. The delay is τ = 1
(left panel), τ = 3 (middle panel) and τ = 5 (right panel).

Figure 11: Delayed mutual information wi,j(j − i) as a function of j, for agents i = 1, 2 5, 10, 20 and 30 (curves from left to right,
respectively). The vote of agent i = 0 is forced to 1 and the noise is ε = 0.001 (left panel), ε = 0.01 (middle panel) and ε = 0.05 (right panel).

Figure 12: λ as a function of 1/ `c

length `c defined in eq. (4.10). Each point in this figure
corresponds to a different value of the noise. The relation
can be fitted by

λ(ε) = a
1

`c(ε)
+ b (4.16)

with a = 0.973 and b = −0.003, independent of the value
of ε. The coefficient of correlation is 0.997, in agreement
with the proposed linear link between λ and 1/`c.

4.6. Control of the density of vote 1

The previous section suggests that the influence of an
agent decreases exponentially with the distance to others,
with a characteristic length which decreases as the noise
increases. This result follows both from studying an in-
trusive action on the system, or by simply observing it.
In this section we exploit this result to find a strategy to
control the full system by acting on more than one agent.
In practice we consider the situation where agents i = kd
are forced to vote 1, where k ∈ {0, 1, 2, . . .} and d is given
by the control length b`cc or b 1

λ1
c.

Fig. 13 shows the simulation results for d chosen as
b 1
λ1
c. The density of agents voting 1 increases significantly.

The quantity nλ1 is the number of controlled agents and is
a good indicator to evaluate the cost to control the system.

4.7. Noise and information capacity

In the previous section, by evaluating the mutual infor-
mation, we found that the cost of control increased greatly
when the noise increases. This result can be related to the
notion of capacity, as defined in the standard theory of in-
formation. In the linear voter model, agent i + 1 can be
considered as a channel of communication where the in-
put message is the vote of agent i at time t and the output
message is the vote of agent i+ 2 at time t+ 2.

The information channel capacity C2 is defined as (see

8



Figure 13: Evolution of the density of vote 1 during the time when only the vote of the agent 1 is forced to 1 (blues curves) and when every

vote of the agents j ∝ b
1

λ
c is forced to 1 (greens curves). left ε = 0.001. middle :ε = 0.01, right: ε = 0.05.

[8])

C2 = sup
PXi

I(Xi(t), Xi+2(t+2)) = sup
β∈[0;1]

I(Xi(t), Xi+2(t+2))

(4.17)

With

(
P(Xi(t) = 1)
P(Xi(t) = 0)

)
=

(
β

1− β

)
, we obtain

{
P(Xi+1(t+ 1) = 1) = (1− ε)P(Xi(t) = 1) + εP(Xi(t) = 0)

P(Xi+1(t+ 1) = 0) = εP(Xi(t) = 1) + (1− ε)P(Xi(t) = 0)

which we write as(
P(Xi+1(t+ 1) = 1)
P(Xi+1(t+ 1) = 0)

)
= A

(
β

1− β

)
öı¿œ A =

(
1− ε ε
ε 1− ε

)
Therefore,(

P(Xi+2(t+ 1) = 1)
P(Xi+2(t+ 1) = 0)

)
= A2

(
β

1− β

)
where

A2 =

(
(1− ε)2 + ε2 2ε(1− ε)

2ε(1− ε) (1− ε)2 + ε2

)
(4.18)

=

(
1− 2ε(1− ε) 2ε(1− ε)

2ε(1− ε) 1− 2ε(1− ε)

)
(4.19)

(4.20)

This corresponds to a binary symmetric channel, with a
probability of error

pe = 2ε(1− ε)

. We know that the capacity of a binary symmetric channel
with a probabiliy of error pe is

C = 1−H2(pe) (4.21)

with H2(pe) = −pe log2(pe)− (1− pe) log2(1− pe)
Therefore

C2 = 1−H2(2ε(1− ε)) (4.22)

Now, we consider all agents from i + 1 to i + m − 1
as a channel of communication between agents i et i+m.

We denote Cm the capacity of this channel (it depends
only on m, the length of the channel). Following the same
derivation as before, we obtain(

P(Xi+m(t+m) = 1)
P(Xi+m(t+m) = 0)

)
= Am

(
β

1− β

)
Since A is a symmetric matrix it can be cast in a diagonal
form with an orthonormal basis. The eigenvalues are λ1 =
1 and λ2 = 1− 2ε. Thus, Am can be expressed as

Am = PT
(

1 0
0 (1− 2ε)m

)
P

with P =
1√
2

(
1 1
1 −1

)
Thus

Am =
1

2

(
1 + (1− 2ε)m 1− (1− 2ε)m

1− (1− 2ε)m 1 + (1− 2ε)m

)
and we obtain a symmetric binary channel of length m
with a probabily of error

εm =
1

2
(1− (1− 2ε)m)

Therefore, the capacity of this channel is

Cm = 1 + εm log2(εm) + (1− εm) log2(1− εm)

We know that the capacity is an upper bound of the
mutual information for each value of ε. In Fig. 14, the
capacity Cm is shown as a function of its length m, for
different values of the noise. The fact that the capacity
Cm decreases with m and with the noise, gives another
confirmation of the increasing difficulty to control agent
i+m by forcing the vote of agent i.

5. Observability analysis in the case of a voter model
with linear topology

The linear voter model analysis given above may be
interpreted in terms of reachability or observability using
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Figure 14: Capacity Cm of the channel between agent i and i + m,
as a function of m, for different noise levels ε.

classical tools from system (control) theory (see [1], chap-
ter 4 for an introduction to the control notions used here-
after). Roughly speaking, reachability denotes the posssi-
bility to drive the dynamics of the whole network to a de-
sired value for the state of all nodes by choosing the values
of some of them (the inputs) at every time instant. Observ-
ability is the dual problem (see e.g. [1]) and denotes the
ability to recover the initial state value of all agents from
the observation of some of nodes (the outputs). Many re-
sults exist related to the reachability analysis of dynamical
network systems. Structural analysis aims at analysing the
reachability based on the local or global interaction topol-
ogy within the network [21, 11, 12]. The drawbacks of
such analyses is that they do not provide any quantitative
information about the amount of energy which may be ob-
served in the ouputs or which is required from the inputs.
Such a quantitative information is requested when trying
to understand the effects of the distance or noise on the
reachability and observability of network systems. There-
fore, numerous metrics have been defined related to these
energies [19], including the reachability and observability
Gramians which are precisely measures for the control or

observation energies and wich are analyzed hereafter in
this paper. The computation of the reachability Grami-
ans in the case of target control problems - where inputs
are designed to manipulate a group of target nodes rather
than the whole network - is the subject of many recent pa-
pers [25, 24]. Qualitative properties and bounds for their
eigenvalues have been established [22]. These results apply
for general interconnexion topologies and many network
dynamical processes with a diffusive structure, hence also
for most voter models. However, in the case of very sim-
ple topologies and dynamics - such as in the case of the
linear voter model investigated in this section - it is pos-
sible to compute analytically the observability matrix and
Gramian and deduce anlytical results on the decay of the
output signal energy with the control length and with the
noise. It is proved hereafter that one recovers then exactly
the behaviour exhibited by the delayed mutual informa-
tion.

Let us consider as previously a linear topology with
n + 1 voting agents. In section 4, we mostly considered
the case where agent was forced to vote 1. Here we con-
sider a more general case. For l,m ∈ {0, . . . , n}, forcing
the vote of agent l may be considered as a control action,
while observing the vote of agent m may be considered as
an output measurement. Since we are interested in the
deviation from 1/2 of the probability to vote 1 (thus mea-
suring the influence of a forcing action, for instance), we
define these deviations as state space variables

p̃i(t) := pi(t)−
1

2
∈
[
−1

2
;

1

2

]
(5.1)

for all t ≥ 0 and i ∈ {0, . . . , n}. We will consider in the
sequel, with no loss of generality, a forcing of agent 0 vote
and an observation of agent n vote, since the influence
in the considered linear voter is unidirectional (from left
to right). Therefore, the input variable, ũ, and output
variable, ỹ, will be defined as

ũ(t) := p0(t)− 1

2
; ỹ(t) := pn(t)− 1

2
(5.2)

Using these state space, input and output variables, the
dynamical voter model (4.5) transforms into the state space
system

p̃(t+ 1) = Ap̃(t) + bũ(t) (5.3)

ỹ(t) = cT p̃(t)

with the state vector p̃(t) := [p̃1(t), . . . , p̃n(t)]
T ∈ Rn and

the internal dynamics matrix (generator) A defined as

A :=

(
1

2
− ε
)


1 0 . . . . . . 0
1 1 0 . . . 0

0 1 1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 1

 (5.4)
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The control column matrix b and observation row matrix
cT are defined respectively as

b :=

(
1

2
− ε
)

1
0
...
0

 and cT :=
(
0 . . . 0 1

)
(5.5)

For any time t ≥ 0, any initial probability distribution
p̃(0) := p̃0 ∈

[
− 1

2 ; 1
2

]n
and any control (forcing) signal

values ũ(t) ∈
[
− 1

2 ; 1
2

]
, the solution φ (ũ; p̃0; t) of the state

space equations (5.3) may be written

φ (ũ; p̃0; t) = Atp̃0 +

t−1∑
j=0

A(t−1)−jbũ(j) (5.6)

Note that the matrix A has a unique eigenvalue λ(A) =
( 1
2−ε), with multiplicity n and such that |λ(A)| < 1 (since

the noise ε satisfies 0 ≤ ε < 1
2 ). Therefore the trajectory

(5.6) is bounded when t → ∞ and the dynamical system
(5.3) is said stable.

A state p̃ ∈
[
− 1

2 ; 1
2

]n
is said unobservable if the corre-

sponding output can not be distinguished from the output
associated with the zero state, that is if

y(t) = cTφ (0; p̃; t) = 0 (5.7)

for all t ≥ 0 (in the observability analysis, only the free
response dynamics is analyzed and ũ is set to zero). The
whole state space system (5.3) is said observable if the set
of unobservable states reduces to {0}. With the solution
(5.6) and Cayley theorem, it is easy to prove that this is
the case if and only if the observability matrix

On =
[
c ; AT c ; . . . ; (An−1)T c

]T
(5.8)

is full rank or when the infinite observability Gramian

W o := lim
n→∞

OTnOn =

∞∑
k=0

(Ak)T ccTAk (5.9)

is strictly positive definite.
The infinite observability Gramian gives additionnal

quantitative information about how much the system or a
particular state is observable. Indeed, the largest obser-
vation energy (i.e. the maximum energy for the output
signal) is reached when t→∞ and equals

‖ỹ‖22 := lim
t→∞

t∑
k=0

|ỹ(k)|2 = p̃TW op̃ (5.10)

for any given state space trajectory φ (0; p̃; t). Therefore,
with the appropriate change of state space coordinates, the
components of the initial condition (or subspaces) may be
re-ordered, from the less to the most observable ones. If
some of the infinite horizon observability Gramian eigen-
value are zero, then the corresponding vector spaces are

unobservable. If some of these eigenvalues are small, then
initial conditions variations in the corresponding subspaces
will cause low energy variations in the output signal.

In the linear voter model example, rather than mea-
suring the influence of forcing permanently the agent 0 to
vote 1 (with a constant input signal ũ(t) = 1

2 , ∀t ≥ 0) on
the vote of agent n, we could instead analyze to effect of
considering the initial probability distribution

p̃ := [1, 0, . . . , 0]
T ∈ Rn+1 (5.11)

on agent n+1, by measuring the corresponding observation
energy. We will consider a long range time horizon k > n
for which the influence of the initial state of agent 1 has
reached agent n+ 1 in the line. The last row of matrix Ak

may be written (see Appendix A):

Ak(n+1,·) :=


( 1
2 − ε)

k
[(
k
n

) (
k

n−1
)
. . .

(
k
2

)
k 1
]

when k ≥ n

( 1
2 − ε)

k
[
0 . . . 0

(
k
k

)
. . .

(
k
2

)
k 1
]

when k < n

(5.12)
According to definition (5.9), since we are measuring the
vote of agent n+1, we get for the components of the infinite
observability Gramian

W o
i,j :=

∞∑
k=0

Ak(n+1,i)A
k
(n+1,j) (5.13)

for all i, j ∈ {1, . . . , n}. Measuring the influence of the
initial vote of agent 1, we start with the initial probabil-
ity distribution (5.11) and get, for the agent n + 1, the
observation energy

‖ỹ‖22 :=

∞∑
k=0

(
Ak(n+1,1)

)2
=

∞∑
k=0

(
1

2
− ε)2k

(
Ak(n+1,1)

)2
(5.14)

With equation (5.12), one gets

‖ỹ‖22 =

∞∑
k=n

(
1

2
− ε)2k

(
k

n

)2

(5.15)

=
1

(n!)2
(
1

2
− ε)2n

∞∑
p=0

(
1

2
− ε)2p

(
(p+ n)!

p!

)2

Using the lower bound

(p+ 1)n <
(p+ n)!

p!
(5.16)

one gets

1

((n− 1)!)2
(
1

2
− ε)2n 4(3− 2ε)

(1 + 2ε)3
< ‖ỹ‖22 (5.17)
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On the other hand, since

∞∑
p=0

(
1

2
− ε)2p

(
(p+ n)!

p!

)2

≤

( ∞∑
p=0

(
1

2
− ε)p (p+ n)!

p!

)2

=

∑
k≥n

(
1

2
− ε)k−nk(k − 1) . . . (k − (n− 1))

2

=

(
n!2n+1

(1 + 2ε)n+1

)2

(5.18)

we get the following upper bound for the observation en-
ergy

‖ỹ‖22 <
4(1− 2ε)2n

(1 + 2ε)2n+2
(5.19)

It is worthwile to notice how this upper bound behaves
with the number of agents along the line and with the noise
ε. For instance, the upper bound (5.19) decreases with
the number of agents and the corresponding observation
energy is divided by two when k supplementary agents are
added in the line, with

k ≥ 1

2

1

log2

(
1+2ε
1−2ε

) =
`c
2

(5.20)

When the noise increases, the observation energy upper
bound decreases

‖ỹ‖22 = O
(
(1− 2ε)2n

)
→ 0 as ε→

(
1

2

)−
(5.21)

The lower bound (5.17) decreases similarly, with the same
order, when the noise decreases. However it decreases
much faster with the number of agents in the voter line
since this lower bound for the observation energy is di-

vided by
(
1−2ε
2n

)2
when only one agent is added to the n

previous ones.
Note that we performed the observability analysis on

the linear voter model. We could as well develop the dual
reachability analysis for the same example. In this anal-
ysis, the initial condition is assumed to be zero and one
analyzes the forced solution of the state space model (5.3).
More specifically, one could be interested in its reachabil-
ity property. A state p̃ is said reachable when there is a
an input signal ũ(t) such that

lim
t→∞

φ (ũ,0, t) = p̃

It may be proved (see, e.g. [1]) that, among those input
signals which can reach the state p̃ from a zero intial con-
dition, the one with minimum energy may be written as

‖ũ∗‖22 = p̃T (W c)−1p̃

where the infinite reachability Gramian W c is defined as

W c :=

∞∑
k=0

AkbbT (AT )k (5.22)

Therefore, a reachability Gramian analysis may be used
to compute the forcing of agent 1 with minimal energy
requested to reach a state p̃ where all agents in the line
vote 1, that is such that p̃i = 1, for all i ∈ 1, . . . , n+ 1.
However, in this case, it would be necessary to compute
the sum of all the elements in (W c)−1, which is a much
more involved computation than the one performed for
the observability analysis. Besides, the duality between
reachability and observability for linear systems [1] and
the particular topology of the linear voter model lead us
to the conjecture that the reachability analysis would not
bring any new result fundamentally different from the ones
obtained through the observability analysis.
6. Conclusions

In this paper we show that time delayed mutual- and
multi-informations are promising tools to better grasp the
behavior of a dynamical system on complex networks. In
particular it can be used to determine the most influential
degrees of freedom and the most observable variables. This
knowledge can be obtained without perturbing the system,
by just probing its behavior.

We claim that influential nodes are those that are the
most interesting to control or monitor to (i) force a system
to reach a given target, or (ii) to have a proxy giving an
information on the state of the entire system.

We illustrated our approach in a simple stochastic dy-
namical model on a graph, a so-called voter model, where
agents iteratively adapt their opinion to that of the ma-
jority of their neighbors, with however a given noise level.
We first discussed the case of a general scale-free topology,
where only numerical results can be obtained. Then we
consider a 1D topology for which analytical results can be
obtained. There, we rigorously showed that the influence
of an agent on the entire system can be equivalently mea-
sured by actually forcing its behavior, or, in a non-intrusive
way, by measuring the time delayed multi-information of
this agent with respect to the rest of the system. In par-
ticular, we proposed the concept of a control length, which
indicates a characteristic distance above which the influ-
ence of a controlled agent fades exponentially.

The link with classical control theory has been pro-
posed and the control length has been related to the reach-
ability Gramian, thus indicating that the cost of control
becomes intractable at large distance. The importance of
the noise is clearly shown as being a central element in the
possibility of observing or controlling a system, as opposed
to previous literature that claimed that a causality path
was sufficient to achieve control [11].

As an additional link of our approach to existing con-
cepts, we showed that controllability can also be consid-
ered in the framework of the capacity of communication
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channel, as defined in information theory by Shannon. We
showed that this capacity drops as agent are separated by
a distance above the control length.

In a forthcoming paper we will apply our approach to
other complex systems, in particular those for which the
underlying dynamics and topology of interaction are not
known. We already obtained (not shown here) that the
time delayed multi-information can be used to infer the
topology of the graph of Fig. 5. Further, we want to use the
concept of observability as a way to detect early warning
signal of possible tipping points in a complex dynamical
system. In simple words, we want to analyze the idea that
the most influential degree of freedom is the best variable
to observe to know in advance if a given system is likely to
move to another regime. These nodes being the most influ-
ential ones, we can argue that their evolution will dictate
the evolution of the other variables.
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[3] Béla Bollobás and Oliver M Riordan. Mathematical results on
scale-free random graphs. Handbook of graphs and networks:
from the genome to the internet, pages 1–34, 2003.

[4] Markus Brede, Valerio Restocchi, and Sebastian Stein. Resist-
ing influence: how the strength of predispositions to resist con-
trol can change strategies for optimal opinion control in the
voter model. Frontiers in Robotics and AI, 5:34, 2018.

[5] Markus Brede, Valerio Restocchi, and Sebastian Stein. Trans-
mission errors and influence maximization in the voter model.
Journal of Statistical Mechanics: Theory and Experiment,
2019(3):033401, 2019.

[6] Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Sta-
tistical physics of social dynamics. Rev. Mod. Phys., 81:591–646,
May 2009.

[7] Claudio Castellano, Miguel A Muñoz, and Romualdo Pastor-
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Appendix A. Explicit evaluation of Ap

In 4.6, we need to calculate Ap with

A = (
1

2
− ε)



1 0 . . . . . . 0

1 1 0
. . .

...

0 1 1
. . . 0

...
. . .

. . . 0
0 . . . 0 1 1


We have A = In + C with

C =



0 0 . . . . . . 0

1 0 0
. . .

...

0 1 0
. . . 0

...
. . .

. . . 0
0 . . . 0 1 0


C is a nilpotent matrix and ∀k ∈ N, Ak =

∑k
p=0

(
k
p

)
Cp. Therefore, for p > n− 1:

Ap = (
1

2
− ε)p



1 0 . . . . . . 0(
p
1

) . . .
. . .

...(
p
2

) . . .
. . .

. . .
...

...
. . .

. . .
. . . 0(

p
n−1
)

. . .
(
p
2

) (
p
1

)
1


and for p < n− 1:

Ap = (
1

2
− ε)p



1 0 . . . . . . . . . . . . . . . 0(
p
1

)
1

. . .
...(

p
2

) (
p
1

) . . .
. . .

...
...

(
p
2

) . . .
. . .

. . .
...(

p
p

) . . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0
(
p
p

)
. . .

(
p
2

) (
p
1

)
1


Appendix B. Accuracy and confidence for the numerical evaluation of probability distributions

Let us consider an attribute of the members of a population which appears with probability p. For a sample of size n
drawn in this population, let Fn be the random variable equal to the proportion of those elements having this attribute.
According to the Moivre-Laplace theorem, the quantity Fn−p√

p(1−p)/n
converges in distribution to a Gaussian distribution

P(| Fn − p |6 ε) = 1− α⇔ P
( | Fn − p |√

p(1−p)
n

6
ε√

p(1−p)
n

)
= 1− α

⇔ ε
√
n√

p(1− p)
= t1−α/2

⇔ ε = t1−α/2

√
p(1− p)

n
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where t1−α/2 is the real number defined by P(X 6 t1−α/2) = α with X ∼ N (0, 1). As p ∈ [0, 1] and p(1 − p) 6 0.25,

therefore ε 6 t1−α/2
1

2
√
n

. For N = 105 and α = 0, 05, we have t1−α/2 = 1.96, we obtain an approximation value of p

with a precision of 0.03, with a risk of 5%.

Appendix C. Algorithms for the computations of mutual and multi-information

Appendix C.1. Mutual information

We consider a scale free graph G, with n agents. To compute the τ -delayed mutual information between 2 agents i
and j, we generate N runs. For every run, we have a matrix S defined by: for i ∈ J1, nK, and for j ∈ J1, t+ τK, such that
S[i][j] is the state of the agent i at the moment j.

We use 4 n × n matrix (N00, N01, N10 and N11), initialized to zeros. For every run, we compare the vote of the
agent i at the time t and the vote of the agent j at the time t+ τ

for i from 1 to n
for j from 1 to n
if S[i][t] = 0 and S[j][t+ τ ] = 0 then N00[i][j] + + endif
if S[i][t] = 0 and S[j][t+ τ ] = 1 then N01[i][j] + + endif
if S[i][t] = 1 and S[j][t+ τ ] = 0 then N10[i][j] + + endif
if S[i][t] = 1 and S[j][t+ τ ] = 1 then N00[i][j] + + endif
end for
end for

We then compute wi,j(t, τ), the τ -delayed mutual information at time t between agents i and j, according to defini-
tion (3.2). We obtain

∀(i, j), wi,j(t, τ) =
N00[i][j]

N
log2

( N00[i][j]×N
(N00[i][j] +N10[i][j])× (N00[i][j] +N10[i][j])

)
+
N01[i][j]

N
log2

( N01[i][j]×N
(N00[i][j] +N01[i][j])× (N01[i][j] +N11[i][j])

)
+
N00[i][j]

N
log2

( N10[i][j]×N
(N10[i][j] +N [i][j])× (N00[i][j] +N10[i][j])

)
+
N11[i][j]

N
log2

( N11[i][j]×N
(N10[i][j] +N11[i][j])× (N01[i][j] +N11[i][j])

)
(C.1)

Appendix C.2. Multi-information

To compute the delayed multi-information, as for the delayed mutual information, we execute N runs, and for every
run, we compute the state matrix S.
We use two n× n matrix, N0 and N1 (n is the number of agents) defined by : ∀(i, j), N0[i][j] is equal to the number
of runs where the vote of the agent i is 0 and the number of agents who voted 1 is j − 1 at time t+ τ .
∀(i, j), N1[i][j] is equal to the number of runs where the vote of the agent i is 1 and the number of agents (without the
agent i) who voted 1 is j − 1.
These matrices give us the probability distribution of the couple of random variable (Xi(t), Yi(t + τ)) that we have in
the definition of the delayed multi-information, eq. (3.3).
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