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Abstract

Orthology assignment is a key step of comparative genomic studies, for which many bioinformatic tools have been
developed. However, all gene clustering pipelines are based on the analysis of protein distances, which are subject to
many artifacts. In this article, we introduce Broccoli, a user-friendly pipeline designed to infer, with high precision,
orthologous groups, and pairs of proteins using a phylogeny-based approach. Briefly, Broccoli performs ultrafast phy-
logenetic analyses on most proteins and builds a network of orthologous relationships. Orthologous groups are then
identified from the network using a parameter-free machine learning algorithm. Broccoli is also able to detect chimeric
proteins resulting from gene-fusion events and to assign these proteins to the corresponding orthologous groups. Tested
on two benchmark data sets, Broccoli outperforms current orthology pipelines. In addition, Broccoli is scalable, with
runtimes similar to those of recent distance-based pipelines. Given its high level of performance and efficiency, this new
pipeline represents a suitable choice for comparative genomic studies. Broccoli is freely available at https://github.com/
rderelle/Broccoli.
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Introduction
Orthologous genes are genes originating from a speciation
event, as opposed to paralogous genes originating from a
gene duplication event (Koonin 2005). The identification of
either orthologous pairs or orthologous groups of genes (i.e.,
independent sets of orthologs found at a given taxonomic
level) is the primary step of most comparative genomic stud-
ies, since it provides genetic equivalences between species. For
instance, the extrapolation of functional genetic discoveries
made from experimental model species to distantly related
species, including to humans in medicine and in environmen-
tal toxicology, requires a precise mapping of orthologs across
species.

Assigning gene orthology across distantly related species
typically consists of identifying ancient speciation and gene
duplication events from the comparisons of present gene or
protein sequences. This task is highly challenging for many
reasons. The combination of successive speciation and gene
duplication events, with the latter often being associated with
gene losses and gene conversions (Kondrashov 2012; Pich and
Kondrashov 2014; Harpak et al. 2017), tends to blur the dis-
tinction between orthologs and paralogs. In addition, incom-
plete lineage sorting (Maddison 1997), and the transfers of
genetic material between species (i.e., lateral gene transfers)
(Soucy et al. 2015) and between genes (i.e., gene fusions)

(Zmasek and Godzik 2012), all create complex reticulate
gene histories. Finally, the heterogenous evolutionary rate of
proteins, with known variations across species and over time
(Dorus et al. 2004; Kawahara and Imanishi 2007), and gene
prediction errors (e.g., missing, truncated, or fused genes) are
also important sources of background noise in orthology
inferences.

Current de novo clustering algorithms are all based on the
analysis of pairwise protein distances. Two main approaches
have been proposed: distances can be analyzed 1) using the
best bidirectional hits (BBH) approach or one of its derivative
to infer orthologous pairs as implemented in Hieranoid or
OMA (Huynen and Bork 1998; Roth et al. 2008; Schreiber and
Sonnhammer 2013; Sonnhammer and Ostlund 2015;
Cosentino and Iwasaki 2019), or 2) using the Markov
Cluster algorithm (MCL) to infer orthologous groups from
the network of similarities (Dongen 2000; Li et al. 2003; Emms
and Kelly 2015), orthologous groups that can further be an-
alyzed using phylogenetic analyses and a species tree recon-
ciliation approach to infer orthologous pairs (Emms and Kelly
2019). The BBH approach is highly precise but is inclined to
miss orthologous pairs due to its highly constrained nature
(Dalquen and Dessimoz 2013). By contrast, the MCL ap-
proach is generally inclusive but unavoidably merges orthol-
ogous groups with high sequence similarity, thus lacks
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precision. Finally, it is important to note that similarity dis-
tances are always an underestimate of the true evolutionary
distances due to the saturation of sequences, making it diffi-
cult for these distance-based approaches to resolve ancient
gene histories.

As an alternative, the use of phylogenetic analyses as a first
step has been proposed (Gabaldon 2008). The basic principle
of this approach is to build a phylogenetic tree for each pro-
tein and its similarity hits, and to infer orthologous relation-
ships based on the taxonomic distribution of hits in the trees.
The delineation between orthologs and paralogs is made here
from the analysis of phylogenetic relationships rather than
protein distances (Huerta-Cepas et al. 2007, 2014; Vilella et al.
2008). The promise of this “phylogeny-based” approach at
improving orthology inferences has three important caveats:
1) the many hundreds of thousands of phylogenetic analyses
required by this approach must be computationally efficient,
2) new methods for the delineation of orthologous groups
must be proposed, and 3) a phylogeny-based pipeline must
be made freely available to the research community.

Here, we introduce Broccoli, an open-source pipeline for
de novo orthology assignment using a phylogeny-based ap-
proach. Briefly, Broccoli performs ultrafast phylogenetic anal-
yses and extracts successively two sets of orthologous
relationships from the trees. The first set is used to build an
orthology network (as opposed to networks of similarity dis-
tances), from which orthologous groups are identified using a
label propagation algorithm (LPA). Then a more precise sec-
ond set is defined to identify pairs of orthologous genes
within each orthologous group.

The performance of Broccoli was assessed by using a cus-
tom benchmark data set for orthologous groups, and the
Quest of Orthologs 2018 benchmark data set for orthologous
pairs (Altenhoff et al. 2016; Glover et al. 2019). In these tests,
we compared Broccoli with recent distance-based pipelines
combined with fast similarity search algorithms (e.g.,
DIAMOND, MMseq2; Buchfink et al. 2015; Steinegger and
Soding 2017) since BlastP, which is two orders of magnitude
slower, would not be usable for large data sets.

Materials and Methods
Broccoli is a pipeline written in Python 3 that requires the
ete3 library (Huerta-Cepas et al. 2010). It is composed of four
steps as summarized in figure 1A and described below. The
rationale of Broccoli is that, since single gene trees are
expected to be too inaccurate to directly infer orthology
relationships, as many trees as the number of sequences
will be inferred (Steps 1 and 2) and orthology will be inferred
from the consensus of information extracted from these mul-
tiple trees using a network analysis (Step 3).

Step 1: kmer Preclustering
The objective is to simplify proteomes without loss of infor-
mation and therefore to decrease the computational time of
Steps 2 and 3. Broccoli first converts the protein names into
unique identifiers. The proteome of each species is then in-
dependently clustered using kmers of amino acids. For each
cluster of sequences, the longest one is retained for further

analysis, whereas others are set-aside and will be reinjected
into the orthologous groups and orthologous pairs at the
corresponding steps. This step aims at reducing the number
of proteins to be analyzed by removing allelic variants and
“recent” duplicates. By default, the kmer size is set to 100
amino acids. This high value prevents the grouping of paral-
ogs between closely related species. But the kmer size can be
reduced when distantly related species are analyzed (e.g., spe-
cies belonging to different eukaryotic supergroups).

Step 2: Similarity Searches and Phylogenetic Analyses
Broccoli then builds a phylome (i.e., the set of gene trees;
Huerta-Cepas et al. 2007) for each species by comparing its
proteins against other proteomes and performing phyloge-
netic analyses in possible cases of gene duplications (i.e., cases
of multiple hits for at least one species). For each simplified
proteome, similarity searches against all proteomes are indi-
vidually performed using DIAMOND under the “most-
sensitive” option and the N best hits per species are reported
(N is set to 6 by default). Then, for each query protein, all its
hits are considered orthologs to each other if no species have
multiple hits (referred thereafter as “set-aside orthologous
pairs”). Otherwise, the DIAMOND pairwise alignments be-
tween the query and each of its target sequences are com-
bined together to build a trimmed alignment by allowing a
fraction g of missing data per position (g is set to 0.7 by
default). The trimmed alignment is then analyzed using
FastTree2 (Price et al. 2010) to produce a BioNJ tree that is
rooted using the midpoint method.

To our knowledge, it is the first time DIAMOND (or BlastP)
alignments are used to perform phylogenetic analyses instead
of classical multiple sequence alignments (MSA). The main
advantage of this approach is a considerable decrease of the
computational time since alignments are already computed
during the similarity searches. But the use of these pairwise
alignments also have two additional advantages: 1) only se-
quence fragments matching the query sequence are used for
phylogenetic analyses, whereas MSA, which operate on full-
length sequences, usually include unaligned blocks that create
phylogenetic noise, and 2) short sequences are often mis-
aligned in MSA but not in pairwise alignments.

Step 3: Identification of Orthologous Groups
In this third step, Broccoli builds an orthology network from
which orthologous groups are isolated using a machine learn-
ing algorithm. Broccoli first delineates orthologous groups in
each rooted tree using a relaxed “species overlap” approach as
defined in Huerta-Cepas et al. (2007). Briefly, the trees are
traversed from the query protein to the root and, at each
node, the taxonomic composition of the two sets of leaves
emerging from that node is compared (an example is pro-
vided in fig. 1B). The two sets of leaves are considered part of
the same orthologous group if 1) there is no common species
between the two sets (i.e., no “overlap” species) or 2) there is
only one common species and at least two unique species in
both sets (i.e., species not present in the other set). Broccoli
identifies the deepest node of the tree fulfilling this “species
overlap” criteria, and builds orthologous pairs between all
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leaves belonging to that node and also paralogous pairs be-
tween these leaves and all remaining leaves of the tree.

The orthologous and paralogous pairs extracted from all
trees are then combined with the “set-aside orthologous
pairs” from Step 2, to build an undirected network of orthol-
ogous relationships. An edge between two proteins A and B is
formed if they have been identified 1) orthologs at least twice
(since at the very least A has been compared with B and B
compared with A) and 2) more often as orthologs than as
paralogs. The edge weight w(AB) from A to B is defined as:

wðABÞ ¼ orthoðABÞ
max orthoðBÞ ;

where “ortho(AB)” corresponds to the number of times A
and B have been identified as orthologs, and “max_ortho(B)”
corresponds to the maximum number of times B has been
found to be an ortholog with any other protein. Therefore,
the weight w(AB), ranging from infinitesimal to 1, represents
the relevance of the orthologous relationships between A and
B with respect to the reference node B. The weights are asym-
metric since w(AB) might be different from w(BA).

Given the fast phylogenetic analyses, tree rooting and
orthologous group delineations performed by Broccoli, the
orthology network is expected to be noisy. But one can ex-
pect that truly orthologous proteins will be much more often
connected and with higher weights among themselves than

with paralogous proteins. A LPA (Raghavan et al. 2007) is
applied to the orthology network to identify node commu-
nities (i.e., orthologous groups). The LPA used here, described
in supplementary material 1, Supplementary Material online,
is asynchronous and weighted (using the asymmetric edge
weights described above), resulting in a highly precise com-
munity delineation. An example is given in figure 1C, in which
the “green” node is assigned by Broccoli to the “red” com-
munity due to the high relevance of its orthologous relation-
ships with this community (an unweighted LPA would assign
this node to the “purple” community with which it has more
connexions). This algorithm is also fast, with convergence of
the labels being reached after only a few generations (supple-
mentary material 1, Supplementary Material online) and, in
the absence of any random choice, fully deterministic.

Finally, two types of error corrections are applied to the
detected communities (i.e., orthologous groups). First,
Broccoli attempts to remove spurious hits, which are defined
as proteins having less than n proteins of the orthologous
group in their own similarity hits (n is set to 2 by default;
connected components of three or less proteins are not sub-
ject to LPA and corrections). Proteins considered as spurious
hits are then removed from their orthologous group, and
therefore from the classification. Second, since proteins are
initially assigned to a unique orthologous group, Broccoli aims
at detecting gene fusions and corrects the classification

FIG. 1. Key aspects of Broccoli. (A) Overview of the pipeline. Data, external programs, and processes are colored in blue, orange, and green,
respectively. (B) Example of the species overlap approach on a gene tree obtained from three species A, B, and C. The nodes fulfilling the species
overlap criteria are indicated by orange dots, and the resulting orthologous group is delineated by the orange rectangle. (C) Example of the label
propagation, with labels represented by colors (green, purple, and red). The node with the green label is about to exchange its label with one of its
neighbors. The fractions present on each edge represent the weights AB, where A is the green node and B its neighbor. The green node takes the red
label since the sum of the “red weights” is higher than the sum of the “purple weights.”
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accordingly. Proteins resulting from gene-fusion events are
detected among nodes connected to several communities
using the method described in supplementary material 1,
Supplementary Material online. Proteins that are identified
as chimeric proteins are then added to all orthologous groups
involved in their corresponding fusion event.

Step 4: Identification of Orthologous Pairs
Although orthologous relationships were extracted at Step 3
to delineate orthologous groups, Broccoli builds a new set of
orthologous relationships that considers gene duplication
events within each orthologous group. The method here is
the same as described in Step 3 but with two differences: 1)
proteins not belonging to the orthologous group are first
removed from the “set-aside orthologous pairs” and from
the rooted trees, and 2) orthologous and paralogous pairs
are built at each tested node from the rooted trees—not
only at the deepest node fulfilling the species overlap criteria.
Finally, for each pair of proteins A and B belonging to this
orthologous group, a ratio R(AB) is calculated as:

R ABð Þ ¼ orthoðABÞ
orthoðABÞ þ paraðABÞ ;

where “ortho(AB)” and “para(AB)” represents the number of
times A and B have been found as orthologs and as paralogs,
respectively. The two proteins will thus be reported as ortho-
logs if their ratio R is superior to a threshold r (r is set to 0.5 by
default).

Performance Tests
The paraBench data set was built from an in-house collection
of phylogenetic markers. The data set and the performance
metrics are fully described in supplementary material 2,
Supplementary Material online. As opposed to the bench-
mark of orthologous pairs, the performance metrics were
calculated considering all possible pairs within each ortholo-
gous group. The data set, reference clustering, python script
to compute the performance metrics and the results
obtained in this study are all available at https://github.
com/rderelle/paraBench.

In addition, the Quest for Orthologs (QfO) benchmark
2018 data set was downloaded from the EBI ftp server,
then analyzed by Broccoli using the “not_same_sp” option
and by varying the r threshold value using the “-ratio_ortho”
option. The resulting sets of orthologous pairs were submit-
ted to the OpenEBench website to run the QfO benchmark.
Benchmarks of Broccoli under default parameters are avail-
able online at https://orthology.benchmarkservice.org, and
other benchmark outputs are available to download in the
Zenodo research data archive https://zenodo.org/record/
3710751.

The versions of the pipelines and programs, and command
lines, used in this study are indicated in supplementary ma-
terial 3, Supplementary Material online. All benchmark out-
puts and QfO raw results are available to download in the
Zenodo research data archive at https://zenodo.org/record/
3710751.

Running Time Analyses
The running time analyses based on fungal data sets were
performed using 4 CPUs of an Intel Xeon Gold 6248 processor
and 40 GB of RAM memory. The fungal data sets correspond
to those used in Emms and Kelly (2019), with one modifica-
tion performed on the 64 species data set (see readme file in
the Zenodo archive). All data sets are available to download
in the Zenodo research data archive at https://zenodo.org/
record/3710751.

The QfO 2018 runtimes were measured using 8 CPUs of
the same processor and 60 GB of RAM memory.

Results

Benchmark of Orthologous Groups
The quality assessment of orthologous group predictions was
performed using a custom-built benchmark data set (named
“paraBench”) comprising 17 eukaryotic species and 52 orthol-
ogous groups (see supplementary material 2, Supplementary
Material online). In this benchmark, we compared Broccoli
with two recent distance-based pipelines: OrthoFinder2
(Emms and Kelly 2019), which uses the MCL algorithm after
distance corrections to mitigate the impact of evolutionary
rate differences between species, and Sonicparanoid
(Cosentino and Iwasaki 2019), which employs a BBH ap-
proach. Broccoli produced the highest recall score value,
closely followed by OrthoFinder2, thanks to its distance cor-
rections (fig. 2 and supplementary material 3, Supplementary
Material online). Finally, Sonicparanoid, which oversplit
orthologous groups due to the stringency of the BBH ap-
proach, scored the lowest. On the precision side, Broccoli
also performed better than the two other pipelines with a
score of 0.973. OrthoFinder2 scored the lowest precision value
indicating a tendency to overmerge closely related ortholo-
gous groups. Running Sonicparanoid using the “most-
sensitive” option as recommended for distantly related spe-
cies yielded a slightly different protein clustering, yet achieving
the same performance metrics. Overall, Broccoli scored the
highest on this performance benchmark (F1 score in fig. 2).

Benchmark of Orthologous Pairs
We tested the orthologous pairs predicted by Broccoli, with
its r threshold (Step 4) ranging from 0.3 to 0.7 in 0.1 increment
(including the default value of 0.5), by using the large-scale
Quest for Orthologs 2018 benchmark data set (referred there-
after as QfO 2018 data set) (Altenhoff et al. 2016; Forslund
et al. 2018). This benchmark includes three groups of tests: 1)
pairs of orthologs are compared with manually curated sets of
gene phylogenies (using the TreeFam-A and SwissTree data-
bases), 2) the function of orthologs are compared with each
other using the Gene ontology and Enzyme classification,
assuming that orthologous genes should have the same func-
tion in different species, and 3) the phylogenetic relationships
of orthologous proteins are compared with reference species
trees (the species Tree Discordance Benchmark, STDB, and its
generalized version GSTDB), assuming that the gene trees
should mirror the species trees. All benchmark values and
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scatter plots are available in supplementary materials 3 and 4,
Supplementary Material online, respectively.

Orthologous pairs produced by Broccoli showed a strong
agreement with the reference gene-phylogenies databases.
When compared with the TreeFam-A database, only results
produced by Broccoli were located on the Pareto frontier
(fig. 3A), which is defines by the set of methods that are
not outperformed by any other method in both recall (X
axis) and precision (Y axis) (Altenhoff et al. 2016). As
expected, results corresponding to r¼ 0.7 (i.e., stringent
threshold) scored the highest precision of all methods and
results corresponding to r¼ 0.3 (i.e., relaxed threshold) were
the most sensitive of all methods. In the case of the SwissTree
database, a small reference data set compared with the
TreeFam-A database, all results were located on or closed

to the Pareto frontier (supplementary material 4,
Supplementary Material online).

In the two functional conservation tests, Broccoli results
were similar to those of other methods (excluding two outlier
methods, Ensembl Compara and OMA GEtHoG), with one
(Gene ontology; fig. 3B) or two (Enzyme classification; sup-
plementary material 4, Supplementary Material online)
Broccoli results on the Pareto frontier. As observed in the
TreeFam-A benchmark, results corresponding to low r
thresholds achieved higher precision (measured as the aver-
age Schlicker semantic similarity of functional annotations
associated with orthologs), whereas results corresponding
to high r thresholds showed higher sensitivity.

In contrast, the Broccoli performance in the species-trees
discordance benchmarks are slightly worse than the ones of

FIG. 2. Benchmark of orthologous groups (paraBench data set). Pipelines were ranked by their performance metric from left (highest value) to right
(lowest value).

FIG. 3. Benchmark of orthologous pairs (Quest for Orthologs 2018 data set). The Pareto frontiers are represented by dotted lines and arrows
indicate the direction toward better performances. In each of these three scatter plots, the X axis and Y axis correspond to a measure of recall and
precision, respectively. (A) TreeFam-A benchmark (X axis: true positive rate; Y axis: positive predictive value). (B) Gene-ontology benchmark (X
axis: number of orthologs; Y axis: average Schlicker similarity). (C) STD Fungi benchmark (X axis: number of completed tree samplings; Y axis:
average Robinson–Foulds distance).
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other methods: in most of these benchmarks, Broccoli results
were distant from the Pareto frontier, with high sensitivity but
high Robinson–Foulds distances (i.e., low precision) com-
pared with other methods (e.g., STD Fungi in fig. 3C). The
only exceptions were the STD Bacteria benchmark in which
all Broccoli results were found on the Pareto frontier, and the
GSTD Eukaryota benchmark in which two Broccoli results
were found on the Pareto frontier (supplementary material
4, Supplementary Material online).

Chimeric Proteins
In the absence of a specific gene-fusion benchmark, it is dif-
ficult to assess the quality of the predictions made by Broccoli.
Nevertheless, a total of 1,675 proteins were predicted to be
the result of gene-fusion events from the QfO 2018 data set
(representing �0.2% of all proteins; list available in supple-
mentary material 3, Supplementary Material online and in the
Zenodo research data archive). The number of chimeric pro-
teins per species was highly heterogeneous, ranging from 0
(Thermodesulfovibrio yellowstonii and Giardia intestinalis) to
223 (Zea mays; supplementary material 3, Supplementary
Material online). Four species of this data set showed partic-
ularly high numbers of chimeric proteins (namely Z. mays,
Phytophthora ramorum, Branchiostoma floridae, and
Monosiga brevicolis). We hypothesize that these high preva-
lences are the consequences of errors in the gene prediction
of these genomes. Broccoli was able to identify chimeric pro-
teins that resulted from the combination of up to six orthol-
ogous groups and genes-fusions events shared by up to 16
proteins. The latter case corresponds to the pentafunctional
arom proteins present in multiple eukaryotic lineages
(Richards et al. 2006). However, Broccoli failed to recover
some well-known gene fusion events such as the fusion of
the dihydrofolate reductase and thymidylate synthase pro-
teins present in “unikonts” and absent in most “bikonts”
(Cavalier-Smith 2003), and the fusion of two tRNA synthe-
tases shared by most metazoan species (Ray et al. 2011).

Finally, we carefully compared the Pfam domain contents
of the seven Caenorhabditis elegans chimeric proteins identi-
fied by Broccoli in the QfO 2018 data set to those of their
respective orthologous groups. These analyses showed that
six of these chimeric proteins exhibit unique Pfam domain
combinations, being the results of complete or partial fusions
of proteins (supplementary material 5, Supplementary
Material online).

Running Time Analyses
Considering the large number of phylogenetic analyses per-
formed by Broccoli (e.g., 658,421 phylogenies for the QfO
2018 data set), it is expected to be several orders of magnitude
slower than distance-based pipelines. We compared the run-
times of Broccoli to those of the two fastest distance-based
algorithms Sonicparanoid and OrthoFinder2 (Emms and
Kelly 2019) using data sets composed of 4 to 64 fungal pro-
teomes. In these tests, the runtimes of Broccoli were found
between those of Sonicparanoid and OrthoFinder2 (fig. 4).
Regarding the two extremes of the speed spectrum,
OrthoFinder2 with the MSA option was by far the slowest

pipeline, and Sonicparanoid, which only performs half of sim-
ilarity searches (Cosentino and Iwasaki 2019), was found to be
the fastest for every data set. The same speed rank was ob-
served when analyzing the QfO 2018 data set, which contains
78 species, using 8 CPUs: Sonicparanoid (522 min), Broccoli
(634 min), and OrthoFinder2 (850 min; we did not test the
MSA option using this data set).

Discussion
In this study, we introduced and tested a new phylogeny-
based pipeline for orthology assignment. Since high-
throughput phylogenetic analyses are challenging and time-
consuming, the main idea behind Broccoli’s design is to per-
form ultrafast phylogenetic analyses (i.e., pairwise alignments,
simple trimming, NJ trees, midpoint rooting), and to rely on a
performant community detection algorithm for the identifi-
cation of relevant orthologous relationships. Broccoli has
achieved this objective as it was found highly precise and
sensitive on all tested benchmarks, with the noticeable ex-
ception of most QfO species tree benchmarks. Although
these specific benchmarks could possibly point to some lim-
itations of the inferences made by Broccoli, it should be no-
ticed that disagreements between gene trees and species
trees are extremely common (Marcet-Houben and
Gabaldon 2009), with many well-known sources of these dis-
crepancies (e.g., incomplete lineage sorting, lateral gene trans-
fers, gene prediction errors; see Introduction). Indeed, the
high frequency of these discrepancies is the main reason as
to why Broccoli employs a species overlap and not a species
tree reconciliation approach for orthology delineation.
Therefore, we believe that the use of distances between
gene and species trees as a surrogate of precision measure-
ment is questionable.

Finally, Broccoli showed high efficiency, with runtimes sim-
ilar to those of the fastest distance-based pipelines, thanks to
the parallelization of most tasks, an initial kmer clustering to
simply proteomes, ultrafast phylogenetic analyses, and an ef-
ficient network analysis.

FIG. 4. Efficiency tests. Runtimes, rounded to the nearest minute, were
obtained using four CPUs and a data set composed of 4–64 fungal
species. Pipelines were run using default parameters unless specified
otherwise.
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With a small subset of proteins being assigned to several
orthologous groups, the clustering generated by Broccoli lies
between classical gene classifications and protein domain
subdivisions (e.g., Pfam database; El-Gebali et al. 2019). This
fast and precise identification of chimeric proteins alongside
their corresponding orthologous groups represents a prom-
ising avenue that should facilitate evolutionary studies of
gene-fusion events (see also Pathmanathan et al. 2018).
However, future work is still required to widen the search
of chimeric protein in the orthology network as the set of
chimeric proteins currently identified by Broccoli appears to
be incomplete.

Given the large variety of analyses performed by this pipe-
line (kmer clustering, phylogenetic analyses, and network
analysis), there are combinations of parameters that have
not been tested, and parts that have not been fully optimized
(e.g., trimming of the alignments, species overlap criteria). We
are continuing to improve Broccoli by investigating parame-
ters that should provide greater performances. In addition, its
relatively high efficiency leaves much room for the implemen-
tation of more complex analyses. In its current form, Broccoli
categorizes proteins (i.e., ortholog, chimeric) but does not
infer evolutionary events (i.e., gene duplications, gene fusions),
which would require a reference species tree. We plan to
implement an automatic species tree reconstruction using
the supermatrix method (de Queiroz and Gatesy 2007),
that will enable Broccoli to predict these evolutionary events
as well.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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