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Stability guarantees for translational thrust-propelled
vehicles dynamics through NMPC designs

Ngoc Thinh Nguyen, Ionela Prodan and Laurent Lefèvre

Abstract—We propose two different NMPC (Nonlinear Model
Predictive Control) schemes (with and without terminal cost and
constraints) for stabilizing the translational dynamics of thrust-
propelled vehicles. Both approaches make use of an elaborated
nonlinear feedback linearization controller and its associated
ellipsoidal invariant set under restrictive input constraints, hence,
guaranteeing the closed-loop asymptotic stability. The terminal
constraint set of the corresponding NMPC design is easy to tune
due to its clear formulation expressed directly in terms of the
tuning variables while for the NMPC scheme without terminal
constraint, the design allows to stabilize the system with a sig-
nificantly shorter prediction horizon in comparison with existing
method in the literature. Simulation and experimental tests over
a nano-drone platform validate the proposed approaches.

Index Terms—NMPC, terminal constraint, unconstrained
NMPC, feedback linearization, ellipsoidal invariant set, asymp-
totic stability, VTOL (Vertical Take-Off and Landing) vehicles.

I. INTRODUCTION

NOWADAYS, there is a tremendous interest in the re-
search community on UAVs (Unmanned Aerial Vehicles)

and thrust-propelled vehicles (like quadcopters, hexacopters),
in particular [1], [2]. Usually, the drone platforms already have
their built-in controllers which control the rotors to track the
four inputs which in turn govern the thrust level and the three
Euler angles [2]–[4]. Therefore, more recently, controlling the
thrust propelled vehicles requires only the maneuvering of
their translation dynamics [4]. This is already a challenging
task as the dynamics are not only strongly nonlinear but also
subject to many operating constraints [1]–[3].
Designing a controller respecting the system dynamics and
constraints can be fulfilled by considering an Model Predictive
Control (MPC) [5] approach. This control strategy provides
the input obtained by solving a finite horizon optimal control
problem where the dynamics and constraints are explicitly
taken into account. It is well known that the computational
burden of the MPC-based optimization problem may pose
serious issues in many time-critical applications. However,
with recent technological advances, it becomes possible to
employ MPC for many applications requiring fast response
[6] as is the case in the control and coordination of aerial
vehicles [1], [7]. E.g., [1] approximates the NMPC (Nonliner
MPC) of stabilizing a human-sized quadcopter vehicle with a
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quadratic problem and succeeds in solving it by using a Cortex
A9 800-MHz microcontroller. [7] employs an MPC scheme to
generate quadcopter trajectories in real time by formulating the
problem using the system’s jerks. Also, it has been proved that
a linear MPC-based optimization can be even executed over a
8-bit microcontroller by using a convex lifting approach [8].
Another important issue of MPC is that it does not provide
an explicit controller equation [5], thus, causing difficulty in
analyzing the stability and the feasibility of the closed-loop
scheme (except explicit MPC whose numerical limitations
make it difficult for many real-time implementations [9],
[10]). The use of MPC laws without stability guarantees
may prove shortsighted in certain applications. In particular,
the authority loss for attitude and position control in UAVs
will not only risk the mission objectives but lead to critical
behavior. In the literature, the stability of an MPC controller
can be achieved either by adding a terminal constraint [10]–
[12] or by enlarging the prediction horizon [13]. In this paper,
we employ both approaches to design two different NMPC
schemes for stabilizing the translation dynamics of thrust-
propelled vehicles. These designs make use of an elaborated
feedback linearization controller which was introduced in the
previous work of the authors [2] and was successfully applied
to a nano-drone. In here, we employ this controller as the local
controller (i.e., locally constraint admissible) to design the two
NMPC schemes with guaranteed stability. Note that the role
of a local controller is to ensure that once inside the terminal
region, the system’s trajectories remain inside. Thus, the local
controller only acts as a guarantee of feasibility and asymptotic
stability and is not actually used throughout the simulation.
Next we enumerate this paper’s contributions which, to the
best of our knowledge, are new to the state of the art. We:

i) propose an NMPC design with terminal ellipsoidal region
which is invariant and constraint admissible under a
nonlinear feedback linearization controller.

ii) propose an NMPC design without terminal constraint
and the corresponding tuning procedure for choosing the
optimal prediction horizon which guarantees the stability.

iii) validate the NMPC controllers through simulation and ex-
perimental testing over the Crazyflie 2.0 nano-quadcopter
platform [3].

The paper structure is as follows. Section II presents first the
translational thrust-propelled systems, then, the principles of
the two NMPC design schemes, i.e., NMPC with and without
terminal constraint. Section III details several properties of
the elaborated feedback linearization controller which are
employed in Section IV to ensure the stability of the two
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NMPC designs. Section VI presents the simulation results and
Section VII shows the corresponding experimental validation.
Section VIII presents the conclusions and the future work.

Notations: Denote by In the identity matrix of size n
and by 0m×n the zero matrix of size m × n. 0 represents
a zero matrix of appropriate dimension inferred from the
context. Let λmin(A) and λmax(A) denote the minimum and
maximum eigenvalues of the square matrix A having only
real eigenvalues. For a vector x ∈ Rn and a positive semi-
definite matrix P ∈ Rn×n, ‖x‖2P denotes the weighted norm
x>Px while ‖x‖ represents the Euclidean norm of the vector
x. Furthermore, denote by x(i|k) and u(i|k) the values of the
state x and the input u at time instant i predicted upon the
information available at time k ∈ N.

II. MODEL DYNAMICS AND NMPC SETUPS

A. System modeling
This section recapitulates the discrete translation dynamics

of a standard thrust-propelled aircraft system. The dynam-
ics are obtained by applying the Runge–Kutta fourth-order
discretization method [14] to the continuous thrust-propelled
system found in [2] and are expressed in their state-space
representation as follows:

xk+1 = f(xk,uk) = Axk + hψ(uk), (1)

where the state xk ∈ R6 gathers the position and the velocity
at the time step k, xk , [xk yk zk vxk

vyk vzk ]>, the input
uk ∈ R3, uk , [Tk φk θk]> consists of the normalized thrust
T (the normal thrust divided by the system’s mass), the roll, φ,
and pitch, θ, angles. The yaw angle ψ ∈ [−π, π] is an assumed
known constant influencing the system (usually considered to
be zero as in [15] but here we aim to exploit a general fix value
of ψ). Explicitly, the matrix A and the input terms hψ(uk) are
given by:

A =

[
I3 ∆tI3

03×3 I3

]
, (2)

hψ(uk) =

∆2
t

2
I3

∆tI3

Tk(cφk s θk cψ + sφk sψ)
Tk(cφk s θk sψ − sφk cψ)

− g + Tk cφk c θk

 , (3)

where ∆t is the discretization time step and g stands for the
gravitational acceleration1. Note that, the discrete system (1)
is linear in the state since the original continuous system taken
from [2] already possesses this property. The vehicle has to
respect thrust limits, with Tlimit > g, and roll and pitch
constraints as follows:

u(k) ∈ U = {0 ≤ Tk ≤ Tlimit, |φk| ≤ εc, |θk| ≤ εc}, (4)

with εc ∈ (0, π/2), the desired maximum value of the angles.
Then, without loss of generality, we aim to stabilize the system
(1) around the equilibrium point:

xe = 0, ue = [g 0 0]>. (5)

Note that, the thrust-propelled system (1) can be stabilized at
any position x′e ∈ R3 with zero velocity by simply choosing
the origin of the coordinate system at x′e.

1We have used in (3) “c” and “s” to denote the cos(·) and sin(·) functions,
respectively.

B. NMPC with and without terminal constraint

Model Predictive Control (MPC) is a control strategy in
which at each time step, an open-loop optimal control problem
of prediction horizon N , subject to the system dynamics (1)
and constraints on states (including the current state as the
initial condition) and inputs (4), is solved to obtain an optimal
control sequence. From the sequence, only the first element is
applied to the system. At the next sampling instant, the state
is measured again and introduced to the optimization problem.
The process is iteratively executed to establish the closed-loop
controlled system [5]. Hereinafter, we introduce two different
NMPC setups, i.e., with and without terminal constraint for
the considered dynamics (1) which are adopted from their
general designs given in [11], [13]. We also recapitulate the
corresponding design principles for guaranteeing the stability
of the two NMPC schemes [5], [13].

1) NMPC with terminal constraint (NMPC-t): The NMPC
design detailed hereby employs both the terminal cost and the
terminal constraint2. For more details, the open-loop optimiza-
tion problem VT,NT

(xk) at time step k with the measured state
xk is solved over the prediction horizon NT :

VT,NT
(xk) := min

u(·|k)
JT,NT

(xk,u(·|k)), (6)

subject to

x(i+ 1|k) = f(x(i|k),u(i|k)), (7a)
u(i|k) ∈ U , i ∈ {0, . . . , NT − 1}, (7b)
x(0|k) = xk, x(NT |k) ∈ Xf , (7c)

with the cost function JT,NT
(xk,u(·|k)) defined as:

JT,NT
(xk,u(·|k)) =

NT−1∑
i=0

`(x(i|k),u(i|k)) + F (x(NT |k)).

The predicted state and input sequences employed for the
optimization problem at time step k are denoted by x(·|k) ,
[x(0|k) . . . x(NT |k)] and u(·|k) , [u(0|k) . . . u(NT −
1|k)], respectively. The terminal region Xf ⊂ R6×6 is de-
signed according to the stability conditions introduced here-
inafter. Furthermore, the stage cost, `(x,u), and terminal cost,
F (x), are defined as:

`(x,u) = ‖x− xe‖2Q + ‖u− ue‖2R, (8)

F (x) = ‖x− xe‖2P , (9)

in which, the symmetric matrices Q ∈ R6×6 (positive definite)
and R ∈ R3×3 (positive semi-definite) are defined by the users,
while the positive definite matrix P ∈ R6×6 is a solution of
the Lyapunov equation introduced later (see (32)). Note that,
the formulation of `(·) in (8) allows R = 0 as similar to
[16], [17]. Assuming that the optimization problem (6)-(7) is
successfully solved, it provides the optimal state and input
trajectories (x∗(·|k),u∗(·|k)). Then, the MPC control action
applied to the system (1) at time step k is defined as:

µT (xk) = u∗T (0|k). (10)

2Usually referred as quasi-infinite horizon NMPC [11].
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Finally, the nominal closed-loop system is given by:

xk+1 = f(xk, µT (xk)). (11)

Hereinafter, we summarize the NMPC principles given in [11],
[18] to establish the sufficient conditions for the stability of
the nominal closed-loop system (11).

Assumption 1: Consider the closed terminal set Xf asso-
ciated to (6) and the terminal cost F from (9). We assume
that for each xk ∈ Xf at any time step k, there exists an
admissible control value3 uloc(xk) ∈ U such that the two
following conditions hold:

xk+1 = f(xk,uloc(xk)) ∈ Xf , (12)
F (xk+1) + `(xk,uloc(xk)) ≤ F (xk). (13)

Theorem 1: Let Assumption 1 hold. Then, the nominal
closed-loop system (11) under the feedback law µT (10) from
the NMPC-t scheme (6)-(7) achieves recursive feasibility4 and
asymptotic stability. �

Proof: See Chapter 5 in [18] and Theorem 1 in [11].
2) NMPC without terminal constraint (u-NMPC): The

NMPC scheme without terminal cost and terminal stabilizing
constraint is also referred as unconstrained NMPC as in [18],
[19], hence, being denoted by u-NMPC within the paper. The
following optimization control problem VU,NU

(xk) at time k
is solved over the prediction horizon NU :

VU,NU
(xk) := min

u(·|k)
JU,NU

(xk,u(·|k)), (14)

subject to

x(i+ 1|k) = f(x(i|k),u(i|k)), (15a)
u(i|k) ∈ U , i ∈ {0, . . . , NU − 1}, (15b)
x(0|k) = xk, (15c)

with the cost function JU,NU
(xk,u(·|k)) defined in terms of

the stage cost ` from (8) as:

JU,NU
(xk,u(·|k)) =

NU−1∑
i=0

`(x(i|k),u(i|k). (16)

Then, the u-NMPC control action and the nominal closed-loop
system at time k are given by:

µU (xk) = u∗U (0|k), (17)
xk+1 = f(xk, µU (xk)), (18)

with x∗U (·|k) the optimal input trajectories. The stability of
system (11) is well studied and presented in [16], [18] and
summarized hereinafter.

Assumption 2: There exist constants γ, c ∈ R>0 such that
for any NU ≥ 2 and for all the initial state x0 satisfying
‖x0 − xe‖2Q ≤ c, we have:

VU,NU
(xk) ≤ γ‖x0 − xe‖2Q. (19)

Theorem 2: Let Assumption 2 hold. Then, there exists an
N0 ∈ N, such that for the prediction horizon length NU ≥

3The notation uloc stands for local controller, i.e., being locally admissible.
4The initial iteration successfully executed implies the feasibility of all the

further steps.

N0, the equilibrium point xe is uniformly exponentially stable
under the nominal closed-loop dynamics (11) for any initial
state x0 satisfying VU,NU

(x0) ≤ cγ. �
Proof: See Theorem 1 in [16] and Theorem 3.6 in [13].

At first, in [16], the authors show that VN,U (xk) ≤ cγ implies
that VU,NU

(xk) ≤ γ‖xk−xe‖2Q with a case dictinction based
on whether ‖xk − xe‖2Q ≤ c or not [16].
Secondly, whenever VU,NU

(xk) ≤ γ‖xk−xe‖2Q holds, in [13],
the authors show that VU,NU

(xk) decreases for all NU ≥ N0

with N0 given by (see Variant 3 in [13] for more details):

N0 = 2 +
ln(γ − 1)

ln γ − ln(γ − 1)
. (20)

Lastly, the recursive feasibility and exponential stability are
obtained with the initial condition VU,NU

(x0) ≤ cγ.
Remark 1: One can impose state constraints into the two

NMPC controllers by adding the following state condition into
(7b) and (15b):

x(i|k) ∈ X , (21)

with X ⊆ R6, the non-empty state constraint set required
to be convex and to contain the equilibrium point xe. Then,
Theorems 1 and 2 accordingly require Xf ⊆ X and xk ∈
X ,∀‖xk − xe‖2Q ≤ c. Within this paper, we do not consider
state constraints for the thrust-propelled dynamics (1) even
though the proposed approaches provide the means to scale the
terminal region Xf (by tuning its radius as will be discussed in
Section III) and the set of ‖x0−xe‖2Q ≤ c (by increasing the
value of Q). This is due to the fact that we want to analyze
the maximum performance (convergence speed - shown by
the velocity) of the NMPC controllers. Furthermore, the initial
condition has to be chosen close to the equilibrium point for
guaranteeing the stability (c.f. Theorem 2) due to hardware
limitations (with largest possible prediction horizon of only
10 steps), hence, realistic constraints on position are never
activated under our experimental tests. �

C. Motivation

Assumptions 1 and 2, which are required to design the two
NMPC constructions provided in Sections IV-A and IV-B are
hard to validate for a generic nonlinear system given as in (7a)
and (15a). In the literature, the standard approach is to linearize
the dynamics around the equilibrium point, from which it
follows the construction of a linear controller and its associated
invariant set (of ellipsoidal form as in [11], [16] or polyhedral
form as in [12]). However, employing a linear controller for
a general nonlinear system (7a),(15a) obviously restricts the
corresponding invariant set (also serving as the terminal region
Xf in (7)), hence, arguably reducing the efficiency of the
NMPC-t controller (6)-(10) and leading to an impractically
large prediction horizon for the u-NMPC controller (14)-(17).
Thus, it is worthwhile to ask whether, for particular dynamics
(as those shown in (1)), we may dispense with the linearized
dynamics/linear controller construction and, instead, check
Assumptions 1 and 2 by applying a feedback linearization
controller.
In our opinion this helps not only to account for the nonlinear-
ities of the system (1) but also to apply various tools available
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for linear dynamics when considering the resulting closed-loop
linear system (i.e., invariant set construction becomes much
easier, as the difficulties are “pushed” in the nonlinear input).
As is to be expected, the simplified closed-loop dynamics
come at the price of a complex input formulation which,
in turn, makes the input constraint and stage cost `(x,u)
in (4),(8) formulations difficult to handle. These difficulties
will be tackled by employing previously obtained results of
the authors [2], [20] and which will be recapitulated in the
forthcoming sections.

III. FEEDBACK LINEARIZATION LAW AND INPUT
CONSTRAINT SATISFACTION

This section recapitulates the results of a feedback lin-
earization controller for quadcopter trajectory tracking [2],
[4] which will be employed as the local controller for guar-
anteeing the stability of the two NMPC controllers detailed
in Section II-B. In general, feedback linearization control
approach reduces the controlled system to an equivalent lin-
ear system (assuming no mismatches on state feedback and
system dynamics, as similar to nominal NMPC applications
in (10) and (17)). Thus, the method does not require any
approximation and does not restrict the system to operate only
in the neighborhood of the linearization point [21]. Let us
start by introducing the standard feedback linearization law
uloc(xk) ,

[
Tloc(xk) φloc(xk) θloc(xk)

]>
defined as follows

(more details can be found in [2], [4]):

Tloc(xk) =
√
u2
x(xk) + u2

y(xk) + (uz(xk) + g)2, (22a)

φloc(xk) = arcsin

(
ux(xk) sψ − uy(xk) cψ

Tloc(xk)

)
, (22b)

θloc(xk) = arctan

(
ux(xk) cψ + uy(xk) sψ

uz(xk) + g

)
, (22c)

where the virtual control inputs uq(xk) with q ∈ {x, y, z}
are calculated in terms of the positions and velocities (i.e.,
xk , [xk yk zk vxk

vyk vzk ]> from (1)):

uq(xk) = K1q
qk +K2q

vqk , (23)

with K1q
,K2q

∈ R the control gains. If the feedback lin-
earization control action uloc(xk) as in (22) is not affected
by the saturation limit, i.e., uloc(xk) ∈ U with U in (4), then
uloc(xk) transforms the dynamics (1) into the following linear
system:

xk+1 = Aclxk, (24)

with the matrix Acl ∈ R6×6 given by:

Acl =

[
I3 +

∆2
t

2 K1 ∆tI3 +
∆2

t

2 K2

∆tK1 I3 + ∆tK2

]
, (25)

and with K1 = diag(K1x ,K1y ,K1z ) and K2 =
diag(K2x

,K2y
,K2z

). Furthermore, the control gains
K1q

,K2q
are required to satisfy the following conditions:

− 2

∆t
< K2q <

∆t

2
K1q < 0, (26)

which serve to establish the asymptotic stability of the resulted
linear system (24) according to the Routh-Hurwitz criterion.

Then, Acl is a Schur matrix having all its eigenvalues strictly
inside the unit circle.
However, the control action uloc(xk) has to respect the input
constraints (i.e., uloc(xk) ∈ U (4)) for the linearization to be
valid. Thus, hereinafter, we will introduce some conditions on
the virtual control inputs ux(xk), uy(xk) and uz(xk) in (23)
to ensure the input constraint satisfaction.

Proposition 1: By choosing the values of the three positive
saturation limits Ux, Uy and Uz such that:

Uz < g, (27)

U2
x + U2

y ≤ (−Uz + g)2 tan2 εc, (28)√
U2
x + U2

y + (Uz + g)2 ≤ Tlimit, (29)

we have that, if the virtual inputs (23) satisfy |ux(xk)| ≤ Ux,
|uy(xk)| ≤ Uy and |uz(xk)| ≤ Uz , then, the followings hold:
(i) the feedback linearization control action uloc(xk) ∈ U
(22), for all value of ψ ∈ [−π, π];
(ii) the values of ‖uloc(xk)− ue‖2 are bounded by:

‖uloc(xk)− ue‖2 ≤ x>k (K>K + 2Γ)xk, (30)

where K = [K1 K2] (24) and Γ ∈ R6×6 is given by:

Γ =
1

(−Uz + g)2
K>xyKxy, (31)

with Kxy =
[
diag(K1x

,K1y
, 0) diag(K2x

,K2y
, 0)
]
. �

Proof: The proof of point (i) is presented in previous
works of the authors [2], [20] and the proof of point (ii)
is given in Appendix A. The goal of the condition (27) is
to constrain the thrust-propelled dynamics (1) not to free
fall. Also, (28) and (29) are to guarantee the constraints on
the angle (|φloc|, |θloc| ≤ εc) and the thrust (Tloc ≤ Tlimit),
respectively, with εc, Tlimit from (4). Further discussions on
the origin and the advantages/ disadvantages of (27)-(29) are
given in [2].
By Proposition 1, we guarantee the input constraint satisfaction
for the feedback linearization controller uloc(xk) (22) for
the whole region of |uq(xk)| ≤ Uq,∀q ∈ {x, y, z} (23).
Hereinafter, we will construct an ellipsoidal invariant set
within this region, thus, being able to employ a simple analysis
resulted from the linear system (24).
Let us consider a symmetric positive definite matrix M ∈
R6×6. We obtain the matrix P ∈ R6×6, also being symmetric
positive definite, as the unique solution of the following
Lyapunov equation:

A>clPAcl = P −M. (32)

with the Schur matrix Acl from (24).
Proposition 2: Let us consider the set Xf defined as follows:

Xf = {x ∈ R6| ‖x‖2P ≤ δ}, (33)

with δ given by:

δ = λmin(P )r2, with r2 = min
q∈{x,y,z}

{
U2
q

K2
1q

+K2
2q

}
, (34)

and Uq from (27)-(29). Then, for all xk ∈ Xf , we have that:
(i) the feedback linearization controller uloc(xk) ∈ U (22),
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for all ψ ∈ [−π, π];
(ii) Xf is forward invariant5 under uloc(xk). Furthermore,
xk+1 satisfies:

‖xk+1‖2P ≤ ρ‖xk‖2P , s.t. xk+1 = f(xk,uloc(xk)), (35)

with ρ ∈ (0, 1) given by:

ρ = 1− λmin(M)/λmax(P ). (36)

�
Proof: First, since the matrix P obtained from (32) is

symmetric positive definite, for all xk such that ‖xk‖2P ≤ δ
with δ as in (34), we have that:

λmin(P )‖xk‖2 ≤ ‖xk‖2P ≤ δ, (37)

thus, ‖xk‖2 ≤ r2, which implies that q2
k + v2

qk
≤ r2 for all

q ∈ {x, y, z} with r as in (34). Hence, by using Cauchy-
Schwarz inequality, the virtual inputs uq(xk) (23) satisfy:

|uq(xk)| ≤
√
r2(K2

1q
+K2

2q
) ≤ Uq. (38)

Then, Proposition 1 provides that uloc(xk) ∈ U and the system
xk+1 = f(xk,uloc(xk)) is linearized into the linear system
xk+1 = Aclxk (24). Hence, we arrive to:

‖xk+1‖2P = x>k A
>
clPAclxk = ‖xk‖2P − ‖xk‖2M (39)

≤ ‖xk‖2P − λmin(M)/λmax(P )‖xk‖2P︸ ︷︷ ︸
ρ‖xk‖2P

< δ.

Thus, Xf is forward invariant and (35) is validated.

IV. STABILITY OF DIFFERENT NMPC SCHEMES

In the following, we gather all the results obtained from
the feedback linearization controller uloc(xk) (22) to design
two NMPC schemes with and without terminal constraint.
We check that Assumptions 1 and 2 given in Section II-A
hold, hence, guaranteeing the asymptotic stability property for
stabilizing the thrust-propelled system (1).

A. NMPC with terminal constraint (NMPC-t)

Proposition 3: Consider the setup of the NMPC-t scheme
(8)-(10) using the terminal region Xf in (33) with the matrix
P from the Lyapunov equation (32). If the symmetric matrix
M in (32) is chosen such that M � Q∗ with the matrix Q∗

verifying:

Q∗ = Q+ λmax(R)(K>K + 2Γ), (40)

with Q and R from (8), K and Γ from (31), then, Assump-
tion 1 is satisfied with the feedback linearization controller
uloc(xk) from (22). Thus, the NMPC-t scheme (8)-(10) guar-
antees the recursive feasibility and the (nominal) asymptotic
stability for the closed-loop dynamics (11). �

Proof: At first, since M � Q∗ with Q∗ as in (40), the ma-
trices M and P obtained from (32) are both symmetric positive
definite. Then, Proposition 2 holds and hence, Xf is forward
invariant under uloc(xk) (35). Furthermore, since the virtual
inputs uq(xk) ≤ Uq, ∀q ∈ {x, y, z} (38) for all xk ∈ Xf ,

5A sub-level set of a Lyapunov function is a forward invariant set.

Proposition 1 provides ‖uloc(xk)−ue‖2 ≤ (K>K+2Γ) with
K and Γ from (30)-(31). Thus, the stage cost `(xk,uloc(xk))
is bounded by:

`(xk,uloc(xk)) ≤ x>k Q
∗xk (41)

with Q∗ from (40). Then, by employing the terminal cost
F (xk) = ‖xk − xe‖2P in (9), the condition (13) is verified
as follows:

F (f(xk,uloc(xk)))− F (xk) + `(xk,uloc(xk)) (42)

≤ x>k (A>clPAcl − P )xk + x>k Q
∗xk

= x>k (−M +Q∗)xk ≤ 0,

in which P satisfies (32) and M � Q∗ from (40). Hence,
completing the proof.
Hereinafter, let us summarize the design procedure of the
NMPC scheme with terminal constraint given in (8)–(10) for
stabilizing the dynamics (1).

Procedure 1: NMPC-t design
1) Choose the positive definite symmetric matrices Q ∈

R6×6 and R ∈ R3×3 to formulate the stage cost in (8).
2) Choose the saturation limits Ux, Uy and Uz satisfying

(27)–(29).
3) Choose the control gains K1q ,K2q with q ∈ {x, y, z}

satisfying (26).
4) Find the matrix Q∗ in (40), then, define the symmetric

matrix M � Q∗ and solve the Lyapunov equation (32)
for P .

5) Find δ in (34) to obtain the terminal region Xf in (33).
6) Define the prediction horizon NT such that the first

NMPC iteration w.r.t. the initial state x0 is feasible. �
Remark 2: For a predefined initial state x0, Step 6 in

Procedure 1 requires the users to run the NMPC-t algorithm
once, while progressively increasing prediction horizon until
the optimization problem becomes feasible. However, note
that, the computation time is greatly affected by any increase
of the prediction length. Thus, in order to continue increasing
the region of attraction when the prediction horizon NT
is already large, one can increase the size of the terminal
constraint set Xf given in (33) instead. The parameters which
affect most the size of the terminal region Xf (33) are the
control gains K1q

,K2q
with q ∈ {x, y, z} in (26). In general,

decreasing the magnitudes of the control gains increase the
size of the set Xf and vice versa. Therefore, when state
constraints are considered as mentioned in Remark 1, the
control gains K1q

,K2q
with q ∈ {x, y, z} are required to

be appropriately chosen such that Xf ⊆ X with the state
constraint set X from (21). �

B. NMPC without terminal constraint (u-NMPC)

Proposition 4: Consider the translational thrust-propelled
dynamics (1) and the corresponding u-NMPC setup (14)-
(18). By choosing the matrix M ∈ R6×6 used in (32)
being symmetric positive definite and setting the constants
c, γ ∈ R>0 from (19) as:

c = δ
λmin(Q)

λmax(P )
, γ =

λmax(Q∗)λmax(P )

λmin(Q)λmin(P )(1− ρ)
, (43)
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with δ in (34), Q in (8), Q∗ in (40), ρ in (36) and P
satisfying (32), then, Assumption 2 is satisfied. Furthermore,
the equilibrium point xe in (5) is uniformly exponentially
stable under the nominal closed-loop dynamics (18) for all
the initial states x0 satisfying VU,NU

(x0) ≤ cγ. �
Proof: Since the matrices Q as in (8) and P from (32) are

symmetric and positive definite, we have the following chain
of inequalities:

‖xk‖2P ≤ λmax(P )‖xk‖2 ≤
λmax(P )

λmin(Q)
‖xk‖2Q, (44)

hence, ‖xk‖2Q ≤ c implies that ‖xk‖2P ≤ δ.
Thus, for all initial states xk such that ‖xk‖2Q ≤ c, Proposition
2 provides a feasible candidate consisting of the state and input
trajectories (xloc(·|k),uloc(·|k)), of the prediction horizon
length NU , given by:

xloc(i+ 1|k) = f(xloc(i|k),uloc(xloc(i|k))), (45)

with i ∈ {0, . . . , NU−1}, the feedback linearization controller
uloc from (22) and the initial condition xloc(0|k) = xk. Since
VU,NU

as in (14) is the optimal value function, it satisfies:

VU,NU
(xk) ≤ JU,NU

(xk,uloc(·|k)). (46)

Furthermore, similar to (41), the stage cost (8) of
JU,NU

(xk,uloc(·|k)) as in (16) is bounded as follows:

`(xloc(i|k),uloc(i|k)) ≤ ‖xloc(i|k)‖2Q∗ , (47)

with Q∗ in (40). Then, since ‖xk‖2P ≤ δ, ‖xloc(i|k)‖2P
exponentially converges as in (35). Thus, introducing (35) to
(47) leads to:

`(xloc(i|k),uloc(i|k)) ≤ λmax(Q∗)

λmin(P )
ρi‖xk‖2P

≤ λmax(Q∗)λmax(P )

λmin(Q)λmin(P )
ρi‖xk‖2Q. (48)

Lastly, combining (46) and (48) implies that:

VU,NU
(xk) ≤

NU−1∑
i=0

`(xloc(i|k),uloc(i|k)) (49)

≤
NU−1∑
i=0

ρi
λmax(Q∗)λmax(P )

λmin(Q)λmin(P )
‖xk‖2Q

≤
∞∑
i=0

ρi
λmax(Q∗)λmax(P )

λmin(Q)λmin(P )
‖xk‖2Q = γ‖xk‖2Q,

with γ from (43). Thus, Assumption 2 is validated and
the stability of the corresponding u-NMPC design follows
Theorem 2. Hence, completing the proof.
In the following, the design procedure of the u-NMPC con-
troller in (14)–(17) is summarized.

Procedure 2: u-NMPC design
1) 2) 3) Similar to the first three steps of Procedure 1.
4) Choose the symmetric positive definite matrix M in (32)

by following the analysis detailed in Section V and solve
the Lyapunov equation (32) for P .

5) Find δ as in (34), ρ as in (35), c and γ as in (43) in
order to find N0 given in (20).

6) Define the prediction horizon NU ≥ N0 as in (20). �
Remark 3: The region of attraction of the u-NMPC design

(14)-(17) which consists of all the initial states x0 satisfying
VU,NU

(x0) ≤ cγ is difficult to estimate since it does not show
an explicit requirement on the initial state x0 but requires
solving the first u-NMPC iteration. Thus, the usual approach in
the literature [13], [16] is to employ the condition ‖x0‖2Q ≤ c
instead since VU,NU

(x0) ≤ γ‖x0‖2Q holds as given in (49).
However, it is worth noting that the region of ‖x0‖2Q ≤ c
is very conservative w.r.t. the original region of attraction
satisfying VU,NU

(x0) ≤ cγ. �

V. TUNING THE U-NMPC CONTROLLER

It is well-known in the literature that the u-NMPC scheme
requires a sophisticated tuning procedure in order to obtain
the reasonable values of the required minimum prediction
horizon N0 and also the region of attraction which guarantee
the stability [13], [16]. However, to the best of our knowledge,
the tuning problems of the NMPC without terminal stabilizing
constraints have been underestimated in various relating works
[13], [16], [17], [19]. That is to say, people concentrate mostly
on the stability proofs of their NMPC designs (e.g. as our
contribution in Proposition 4), then, provide one illustrative ex-
ample with specific parameters [16]. Theses examples actually
aim to show how the results are obtained (e.g. in order for the
readers to validate again the calculation process by themselves)
but do not give the insight into the actual tuning process. For
our particular u-NMPC design (14)-(17), the most influential
parameters are the control gains K1q

,K2q
with q ∈ {x, y, z}

satisfying (26), the matrix M from (32) and the weighting
matrices Q,R from (8) which are not easy to tune due to a
large amount of decision variables. In Table I, we show that
an arbitrary choice of these parameters can easily lead to an
impractically large prediction horizon length while appropriate
changes in the tuning parameters allow to reduce the required
prediction horizon N0 and to increase the domain of attraction
(represented by ‖p‖2Q ≤ c as in (19)).
In order to analyze how to tune the prediction horizon N0

given in (20), we will mostly consider the parameter γ as in
(43). By introducing ρ from (36) to (43), we can express γ as
the multiplication of γ1 and γ2 as follows:

γ =
λmax(Q∗)

λmin(Q)︸ ︷︷ ︸
γ1

λ2
max(P )

λmin(P )λmin(M)︸ ︷︷ ︸
γ2

, (50)

with P obtained from solving (32) with a symmetric positive
definite matrix M ∈ R6×6, Q in (8) and Q∗ in (40). At
first, from the formulation of N0 given in (20), decreasing
the value of γ as in (50) also reduces the prediction horizon
N0. Therefore, it is in our interest to minimize the values of
γ1 and γ2 defined in (50). In order to reduce the decision
variables, we follow some reasonable assumptions:
• We give equal importance to the motions along the three

axes, i.e.:

Q = diag{q1, q1, q1, q2, q2, q2}, (51)
K1x

= K1y
= K1z

= k1, (52)
K2x

= K2y
= K2z

= k2. (53)
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Description Q R K1 K2 M N0 c

First choice
[

I3 03×3

03×3 0.1I3

]
0.1I3 −I3 −I3 I6 3121 0.024

Tuning R
[

I3 03×3

03×3 0.1I3

]
0.01I3 −I3 −I3 I6 2786 0.024

Tuning Q I6 0.01I3 −I3 −I3 I6 176.1 0.2397

Tuning K1, K2 I6 0.01I3 −1.2I3 −0.9I3 I6 154.1 0.2438

Tuning M I6 0.01I3 −1.2I3 −0.9I3

[
I3 0.1I3

0.1I3 1.3I3

]
153.1 0.2708

TABLE I: Prediction horizon length w.r.t different tuning parameters.

with q1, q2 > 0 and k1, k2 < 0 satisfying (26). Conse-
quently, the matrix Acl in (24) becomes:

Acl =

[(
1 +

∆2
t

2 k1

)
I3 ∆t

(
1 + ∆t

2 k2

)
I3

∆tk1I3 (1 + ∆tk2)I3

]
. (54)

• The matrix M ∈ R6×6 in (32) is parametrized as follows:

M =

[
m1I3 m3I3

m3I3 m2I3

]
, (55)

with m1 = 1 and m2,m3,m4 ∈ R satisfying the
following conditions:

m1m2 > m2
3, (56)

in which (56) is to guarantee the positive definiteness of
M . With m1 = 1, (56) is simplified to m2 > m2

3.

Remark 4: The reason for fixing m1 = 1 in (55) is that any
scaling on M results on the same scaling on P due to the
Lyapunov equation (32). Then, all the eigenvalues of M and
P are scaled similarly, hence, γ1 in (50) does not change and
therefore, fixing m1 = 1 does not cause any loss of generality
within the analysis (but reduces the numerical issues). �
Next, the Lyapunov equation (32) is linear in P which provides
a full-rank system of linear equations with Acl and M from
(54)-(55). Thus, by solving this, the matrix P is explicitly
given as follows:

P =

[
p1I3 p3I3

p3I3 p2I3

]
, (57)

with p1, p2, p3 calculated as:p1

p2

p3

 =

1− a2
1 −2a1a3 −a2

3

−a2
2 −2a2a4 1− a2

4

−a1a2 1− a1a4 − a2a3 −a3a4

−1 m1

m2

m3

 ,
(58)

in which, a1, . . . , a4 are taken from Acl ,

[
a1I3 a2I3

a3I3 a4I3

]
with Acl in (54). The eigenvalues of P from (57) are given
by:

λmax
min

(P ) =
1

2

(
p1 + p2 ±

√
(p1 − p2)2 + 4p2

3

)
. (59)

A. Tuning γ1

By introducing the matrix Q from (51) and the control gains
k1, k2 as in (52)–(53) to the formulation of the matrix Q∗(40),
we obtain the maximum eigenvalue of Q∗ as follows:

λmax(Q∗) =
1

2

(
q1 + q2 + r(k2

1 + k2
2) (60)

+

√
(q1 − q2 + r(k2

1 − k2
2))

2
+ 4r2k2

1k
2
2︸ ︷︷ ︸

≤
√

2(q1−q2)2+2r2(k41+k42)

)
,

where r is directly proportional with the maximum eigenvalue
of R:

r = λmax(R)

(
1 +

2

(−Uz + g)2

)
, (61)

with g the gravitational acceleration and Uz ∈ R+, Uz < g
from Proposition 1. Then, γ1 is obtained by introducing (51)-
(60) into (50) and is bounded by:

q1 + q2 + r(k1 + k2)2

2 min(q1, q2)
≤ γ1 ≤ (62)

q1 + q2 + r(k2
1 + k2

2) +
√

2(q1 − q2)2 + 2r2(k4
1 + k4

2)

2 min(q1, q2)
,

in which, the first inequality is by introducing(
q1 − q2 + r(k2

1 − k2
2)
)2 ≥ 0 to (60) and the latter one

is by using the inequality given below (60). From (62), it can
be observed that reducing the values of |q1 − q2|, λmax(R),
k2

1 and k2
2 probably provide a smaller value of γ1 (we

use “probably” since the reductions of the aforementioned
parameters actually make both the upper and lower bounds as
in (62) smaller). Especially, in case of employing q1 = q2 = q
with q ∈ R+, γ1 from (50) is simplified to γ∗1 as follows:

γ∗1 = 1 +
r(k2

1 + k2
2)

q
, (63)

which actually allows us to obtain a specific value of γ1 (i.e.,
≥ 1) by tuning only two weighting matrices Q and R from (8)
regardless the predefined values of (k1, k2) as in (52)–(53).
Therefore, for tuning γ1 as in (50), we propose several general
directions:
• decrease the ratio λmax(Q)/λmin(Q) as much as possible.
• decrease the value of λmax(R) based on the employed

values of (k1, k2) but bear in mind that a small value of
R causes large input consumption.
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• decrease the values of k2
1 and k2

2 . However, this is not
encouraged since it can cause an unexpected increase in
the value of γ2 defined as in (50) and probably result in
a larger prediction horizon N0.

Remark 5: Formulation (63) explains the effects of the first
two tuning steps given in Table I: i) reducing λmax(R) and ii)
eliminating the term |q1−q2|. However, it does not explain for
the rest of Table I which requires us to analyze the parameter
γ2 as detailed in the following. �

B. Tuning γ2

Our approach is to construct an explicit formulation of γ2

from (50) by using the parametrizations of M as in (55) and
P as in (59). The function is expressed in terms of the tuning
parameters, i.e., the control gains k1, k2 from (52)–(53) and
the scalars m2,m3 from (55) as follows:

γ2 , γ2(k1, k2,m2,m3). (64)

It will be in our interest to analyze and to find the (local)

−0.4−0.2
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0.5
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3

·104
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γ
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γ2(−0.1,−0.1,m2,m3)

(a) (k1, k2) = (−0.1,−0.1)

−1 −0.5
0 0.5

1

0
1

2
3

4
5
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100
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m2
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2

γ2(−1,−1,m2,m3)

(b) (k1, k2) = (−1,−1)

Fig. 1: Illustration of γ2(k1, k2,m2,m3) as in (64) with
different values of (k1, k2).

minimums of the function γ2(·) from (64). Since the function
is strongly nonlinear, non-convex and contains up to four
variables, we have to divide the task into two steps:

1. Find the optimal values of (m2,m3) which provide the
local minimum value of γ2 corresponding to a specific
values of (k1, k2):

γ∗2 (k1, k2) = min
m2,m3

γ2(k1, k2,m2,m3). (65)

subject to m2 > m2
3 as required in (56),

(m2,m3) ∈ [m2min ,m2max ]× [−m3max ,m3max ],

with (m2min ,m2max ,m3max) positive scalars specifying the
ranges of m2 and m3 as in (55) which are defined
accordingly to the condition m2 > m2

3 as required in
(56) and are chosen by user. The results of this step are
illustrated in Figure 1 for (k1, k2) = (−0.1,−0.1) and
(−1,−1).

2. Apply Step 1 for different choices of (k1, k2), then,
compare the obtained minimum values γ∗2 as in (65) in
order to provide the complete analysis as illustrated in
Figure 2.

Remark 6: The solution of the optimization problem in (65)
is obtained by checking a mesh grid of the variables (m2,m3)
within the specific range [m2min ,m2max ] × [−m3max ,m3max ],

hence, the solution’s accuracy depends on the resolution of
the mesh grid. However, the accuracy problem is not critical
due to the fact that we always have to choose the prediction
horizon NU ≥ N0 (c.f. Theorem 2) and NU ∈ N (e.g., it does
not matter if we obtain N0 = 152.4 instead of the precise value
assumed to be 152.36 since the minimum prediction horizon
needs to be an integer, which leads in both case to NU = 153).
Furthermore, using the mesh grid method provides very fast
computing times. E.g., it takes only 0.08 seconds to construct
the whole data points for Figure 2 which contains 51 × 41
points of (m2,m3) and 16× 16 points of (k1, k2). �
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(a) Illustration of the optimal function
γ∗2 (k1, k2) defined in (65)
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(b) N0 obtained at the optimal choices
of (m2,m3), Q = I6, R = 0.01I3

Fig. 2: Illustration of the analysis on N0 from (20).

k1 (52) k2 (53) m3 (55) m2 (55) N0 (20) c (43)
−1.3 −1.1 0.2 1.6 153.8 0.206
−1.3 −1 0.1 1.3 153.5 0.215
−1.2 −0.9 0.1 1.3 153 0.272
−1.2 −0.8 0 1 152.2 0.287

−0.1 −0.1 Method in [16], 106 10−4

−1 −1 using linear controller 5124 10−7

−2 −2 and the linearized dynamics 1112 10−7

TABLE II: Optimal values of (k1, k2,m2,m3) which provide
the smallest N0 in comparison with the method in [16] (using
Q = I6 and R = 0.01I3 as in (16)).

We enumerate in Table II all the scenarios in which, we
obtain the smallest value of the required prediction horizon
N0 by using the weighting matrices Q = I6 and R = 0.01I3.
Table II also shows the corresponding values of c from (43)
which helps identifying all the feasible initial states p0, i.e.,
VU,NU

(x0) ≤ cγ as stated in Theorem 2. All the choices of
(k1, k2,m2,m3) gathered in Table II require the minimum
prediction horizon around 153 ∼ 154 but they provide a large
range of c from 0.205 to 0.287. Furthermore, using the control
gains (k1, k2) = (−1.2,−0.8) and M = I6 provides the
shortest prediction horizon N0 = 153 and the largest value
of c = 0.287, hence, being the best choice in our analysis.
For comparison, we use the method proposed in [16] which
employs a linear controller as well as the linearized model of
the dynamics (1). The results are given in the last three lines
in which both the value of c and the prediction horizon N0

are much more conservative than the results of our proposed
method. This is due to the restriction of using the linear
controller for the nonlinear system (1). This strongly confirms
the effectiveness of our NMPC design approach using the local
FL controller uloc(xk) as defined in (22).



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 9

We also notice that even the shortest prediction horizon in
our analysis N0 = 153 steps is still extremely large for a
real implementation. However, bear in mind that the obtained
results (c.f. Table II) are still more promising than employing
the linear controller as considered in [16]. This also indicates
a big gap which still exists between the theory on NMPC
design and their practical formulations since through various
simulations and experimental tests, the u-NMPC controller
(16)–(17) requires a prediction horizon of only 10 steps to
stabilize the system (1). This is due to the fact that the u-
NMPC controller can fully exploit the inputs of the system
while a standard controller (e.g. FL controller uloc(xk) as in
(22) or the linear controller as employed in [16]) enforces
the inputs to follow their explicit formulations, hence, the
convergence speed of the standard controller (e.g. ρ as in (35))
can not be fast enough to obtain this short prediction horizon
of 10 steps. Also note that, better solutions can be found with
more thorough parametrizations of the control gains (52)–
(53) and of the matrix M (55). However, the trade-off is
between increasing the computation time and the complexity
of the optimization problem (65) (which may even cause
infeasibility).

VI. SIMULATION RESULTS

To validate the presented results, we consider the simulation
model (1) of a Crazyflie 2.0 nano-quadcopter platform [3].
It is assumed that the rotation dynamics are stabilized by
a fast torque control mechanism [2]. As specified in (4),
the vehicle has to respect thrust limits, with Tlimit = 2g,
and roll and pitch constraints, i.e., εc = 10◦ in (4)) which
lead to the choice of Ux = Uy = Uz = 1.0875 which
satisfy the conditions (27)-(28) as given in Tables III and
IV. We fix the direction angle ψ = 0 and the initial state
at x0 =

[
0 0.15 −0.1 0 0 0

]>
.

Hereinafter, we introduce first the numerical values of the
designs of the two NMPC schemes, i.e., with the terminal
constraint (denoted by NMPC-t) and without the terminal
constraint (u-NMPC) detailed in Sections IV-A and IV-B,
respectively. Their performances are analyzed and compared
through simulation and experimental results. The NMPC opti-
mization problems are implemented by using Pyomo [22] and
solver IPOPT [23] in Python 3.0. The sampling time is fixed at
∆t = 0.1 seconds with ∆t as in (2)-(3) which means that the
NMPC computing time should be less than ∆t = 0.1 seconds
for making possible the application to real experiments.

A. NMPC setup

1) NMPC-t: The chosen parameters of the NMPC-t control
scheme (8)–(10) are gathered into Table III (c.f. Procedure 1).
We choose the control gains K1q

= −5, K2q
= −5 for all

q ∈ {x, y, z} (26) so that the corresponding region Xf is large
enough for employing the prediction horizon NT = 5 and the
controlled system also has a good convergence speed.

2) u-NMPC: Table IV presents the parameters of the u-
NMPC control scheme (14)–(17). The values given in Table
IV are the best choices according to Section V.

TABLE III: Parameters of the NMPC-t controller.

Values
Q, R in (8) I6, 0.1I3

Ux, Uy , Uz in (27)–(29) 1.0875, 1.0875, 1.0875

K1q ,K2q , q ∈ {x, y, z} in (26) −5,−5
M in (32) (M � Q∗ (40)) 20I6

P in (32)
[
22.02I3 10.92I3

10.92I3 12.68I3

]
δ in (34) 0.1285

NT in (6) 5

TABLE IV: Parameters of the u-NMPC controller.

Values
Q, R in (8) I6, 0.01I3

Ux, Uy , Uz in (27)–(29) 1.0875, 1.0875, 1.0875

k1, k2, in (52)–(53) −1.2,−0.8
M in (32) I6

P in (32)
[
18.22I3 4.02I3

4.02I3 12.22I3

]
δ in (34), ρ in (36) 5.78, 0.95

c, γ in (43) 0.29, 40.96
N0 in (20), NU in (14) N0 = 152.22, NU = 153

B. Simulation results

We provide the simulation results for four scenarios:
Scenario 1: Stabilize the dynamics (1) with ψ = 0 using the
NMPC-t controller detailed in (8)–(10) with the parameters
gathered in Table III.
Using the u-NMPC controller given in (14)–(17) with the
parameters in Table IV.
Scenario 3: Using the u-NMPC controller given in (14)–(17)
with the prediction horizon of 10 steps (enough for stabilizing
the system through simulations).
Scenario 4: Using the local feedback linearization controller
uloc given in (22) with the control gains as in Table IV.

The results are given in Figures 3–6 where they are plotted
in red, green, blue and black corresponding to the four
aforementioned scenarios, respectively. Figure 3 presents the
convergence of the state trajectories under simulation. Note
that, only the results of the y and z axes are plotted since
the system does not move along the x axis. The terminal
region Xf ⊂ R6 given in (33) of the NMPC-t scheme
is illustrated by the yellow ellipsoid (which is obtained by
slicing Xf along three 2D spaces of the position and the
corresponding velocity, then, making a convex union of the
three obtained 2D sets). All the closed-loop state trajectories
under four scenarios converge to the origin but with different
convergence speeds as being illustrated with more details in
Figure 4 and also given in Table V. Also, the input results are
shown in Figure 5 where all the proposed NMPC controllers
respect the input constraints (4). We only provide the input
results during the first one second for better clarity since they
are all monotonously converging to the equilibrium ue (5).
Furthermore, Figure 6 and also Table V present the computing
time per step of the three NMPC controllers employed under
the first three scenarios.
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Controller’s Convergence Computing time [ms]
information time (95%) [s] Mean Min Max
Scenario 1 1.8 48.5 31.2 84.6
Scenario 2 3.1 243.7 209.3 298.4
Scenario 3 4.4 47.9 31.3 84.6
Scenario 4 2.1 Not applicable

TABLE V: Comparison between different controllers.

−0.4 −0.3 −0.2 −0.1 0 0.1

−0.1

−0.05

0

0.05

0.1

0.15
(vy0

, y0)

(vz0, z0)

Velocity [m/s]

P
o
si
ti
o
n
[m

]

Xf

(vy, y)1 (vz, z)1
(vy, y)2 (vz, z)2
(vy, y)3 (vz, z)3
(vy, y)4 (vz, z)4

Fig. 3: Terminal region Xf (approximated illustration) and the
trajectories (y, vy), (z, vz) under different scenarios.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.1

−0.05

0

0.05

0.1

0.15

Time [sec]

P
o
si
ti
o
n

[m
] y1 z1 (Scenario 1)

y2 z2 (Scenario 2)
y3 z3 (Scenario 3)

Fig. 4: Convergences of x, y, z under different scenarios.

0 0.25 0.5 0.75 1

9.8

10.5

11

T
h
ru

st
[m
/
s
2
]

Scenario 1: T1
Scenario 2: T2
Scenario 3: T3

0 0.25 0.5 0.75 1
−10

−5

0

5

10

Time [sec]

A
n
g
le

[◦
]

Scenario 1: φ1 Scenario 1: θ1
Scenario 2: φ2 Scenario 2: θ2
Scenario 3: φ3 Scenario 3: θ3

Fig. 5: Input values under different scenarios.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

100

200

300

Steps

C
o
m
p
u
ti
n
g
ti
m
e
[m

s]

Scenario 1: NMPC-t
Scenario 2: u-NMPC with NU = 153 steps
Scenario 3: u-NMPC with NU = 10 steps

Fig. 6: Computation time under simulations.

From the presented simulation results, the NMPC-t con-
troller employed under Scenario 1 obtains the shortest transient
state (1.8 seconds as given in Table V) due to its appropriate
terminal constraint set Xf (yellow ellipsoid in Figure 3). This
is also better than using the feedback linearization controller
uloc defined in (22) which provides the second shortest conver-
gence time of 2.1 seconds. Next, when not using the terminal

constraints, we can see that the u-NMPC controller under
Scenario 2 (using the 153-step prediction horizon) obtains the
transition time of 3.1 seconds while employing the u-NMPC
controller with the prediction horizon of only 10 steps under
Scenario 3 makes the states converging in longer time, i.e.,
4.4 seconds. It is also trivial that the computation burden
when using the 153-step prediction horizon under Scenario
2 is much heavier than those under other scenarios as can
be seen from Figure 6. The average computing time of the
NMPC controller with the 153-step prediction horizon is 243.7
milliseconds while it is only 47.9 second for the u-NMPC
controller with the 10-step prediction horizon, being the best
value in our analysis.
We also notice that the u-NMPC controller using the 153-
step prediction horizon (which is found by our analysis given
in Section V) is not ready for real implementation since its
minimum computing time is already 209.3 milliseconds while
the sampling time is fixed at 100 milliseconds. However,
the proposed calculation process based on the feedback lin-
earization controller uloc (22) already reduces significantly the
required prediction horizon (153 steps) in comparison with the
method using the standard linear controller introduced in [16]
which requires thousands of steps to stabilize the system as
mentioned in Table II.
In the next section, we show that both the NMPC-t and u-
NMPC controllers considered in Scenarios 1 and 3 (using the
10-step prediction horizon) are successfully validated through
experiments over a real quadcopter platform.

VII. EXPERIMENTAL RESULTS

This section introduces the experimental validation of the
two NMPC controllers, NMPC with and without terminal
constraint given in Sections IV-A and IV-B over the laboratory
Crazyflie 2.0 (CF) nano-quadcopter. The CF has its inner
controller running at 500 Hz to track the set-point of the thrust
and the three angles sent from the station computer [2]. In
the station computer, we implement the NMPC optimization
problems (6) and (14) with the chosen sampling time ∆t = 0.1
seconds (fast enough to stabilize the system) by using Pyomo
[22] and the IPOPT solver [23] in Python 3.0. In the following,
we describe the limits of the platform and the mismatches
between the theoretically nominal NMPC application and real
implementation, then, illustrates the obtained results of the two
proposed NMPC controllers.

A. Experimental validation limits and how to overcome them
Firstly, as introduced in Section II-A, the yaw angle ψ

is assumed to be a known constant. However, maintaining
a constant direction angle for an aerial vehicle is obviously
impossible for long running times. Therefore, we try to sta-
bilize the yaw angle of the CF around zero and update the
actual yaw value to the NMPC optimization problem at each
sampling time. This alternative approach still guarantees the
nominal stability of the closed-loop scheme with a less strict
assumption, i.e., requiring the yaw angle value to be constant
only during the prediction horizon 6.

6The stability is still guaranteed since all the required ingredients detailed
in Section III hold with a general constant yaw angle ψ ∈ [−π, π].
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Secondly, the execution time is always significant when
considering an NMPC controller, especially for controlling the
Crazyflie 2.0 quadcopter system with the required sampling
time of 0.1 seconds (as illustrated in Figure 6 for simulation
results). Thus, even with a perfect state feedback at time step
k, we cannot obtain the MPC control action immediately at
the same time step k as assumed in (10) and (17). Hence,
we have to relax this assumption by introducing the obtained
MPC input of time step k to the CF system at time step k+1.

Remark 7: If the reader is interested in using embedded
NMPC with low-power hardware, a discussion on how to
re-formulate the NMPC problems (6) and (14) into their
approximated quadratic formulations, and thereafter, solve
them by using a modified interior-point solver is detailed in
[1]. Another discussion on solving a linear MPC problem with
a 8-bit microcontroller by using a convex lifting method is
presented in [8]. �

B. Experimental results
For experiments, we consider the two Scenarios 1 and 3

as given in Section VI with the parameters of the controllers
detailed in Tables III and IV (the u-NMPC controller has its
prediction horizon of 10 steps). Figure 7 presents the results
of x (green lines), y (blue lines) and z (red lines) under two
scenarios which shows that both the NMPC-t and u-NMPC
controller succeed in stabilizing the CF quadcopter. It can be
seen again that the NMPC-t provides faster convergence speed
than the u-NMPC controller due to its terminal constraint
(1.5 seconds vs. 3 seconds, from blue lines in Figure 7). The
terminal constraint also results in more input consumption as
clearly observed from Figure 8. The maximum values of the
thrust and the roll angle of the NMPC-t (dashed lines) are
significantly higher than the ones from the u-NMPC controller
(solid lines). All the inputs respect their constraints as given
in (4). The computing times under experiment of both NMPC
controllers are given in Figure 9 which shows that the NMPC-t
controller (with NT = 5 steps and the terminal constraint set
Xf as in (33)) requires more computation effort than the u-
NMPC controller (with NU = 10 steps) but both succeeds in
running within the sampling time ∆t = 0.1 seconds.

VIII. CONCLUSION

This paper presented the application of a nonlinear feedback
linearization controller for designing two different NMPC
schemes, i.e., NMPC with and without terminal constraint, to
stabilize the thrust-propelled vehicles dynamics with asymp-
totic stability guarantee. By using several standard mathemat-
ical inequalities, an ellipsoidal invariant set was constructed
under the feedback linerization controller ensuring input con-
straint satisfaction. Within this invariant set, the feedback law
was also bounded by the weighted norm of the corresponding
state. These ingredients were gathered to ensure the satisfac-
tion of the stability conditions of the two NMPC designs. The
proposed control methods were validated through extensive
simulations and experiments over a real quadcopter platform.
Future works will analyze the mismatches on angle tracking
and the delays on sending NMPC input to the controlled
system as employed in the experiments.
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APPENDIX A
PROOF OF PROPOSITION 1

By applying our previous results presented in [2], [4] to the
nonlinear feedback laws (22b)-(22c), we have the following
relations:

|φloc(xk)|, |θloc(xk)| ≤ ε, ∀ψ ∈ [−π, π], (66)

where ε is defined as:

ε = arctan

√u2
x(xk) + u2

y(xk)

(uz(xk) + g)2

 . (67)

Next, as detailed in Appendix B, we have that:

(Tloc(xk)− g)2 ≤
∑

q∈{x,y,z}

(
K1q

qk +K2q
vq,k

)2
, (68)

= x>kK
>Kxk.

Furthermore, by applying arctan(p) ≤ p, ∀p ≥ 0 to (67) and
then, combining this result with (66), we arrive to:

φ2
loc(xk) ≤

∑
q∈{x,y}

(
K1q

qk +K2q
vq,k

)2
(−Uz + g)2

= ‖xk‖2Γ, (69)

in which the denominator is due to |uz(xk)| ≤ Uz < g. A
similar result is obtained for θ2

loc(xk). Finally, from (68)-(69),
we have that:

‖uloc(xk)− ue‖2 = (Tloc(xk)− g)2 + φ2
loc(xk) + θ2

loc(xk)

≤ x>k (K>K + 2Γ)xk. (70)

APPENDIX B
PROOF OF (TLOC − g)2 ≤ u2

x + u2
y + u2

z

By considering Tloc in (22a), we have that:

(Tloc − g)2 =u2
x + u2

y + u2
z (71)

+ 2g
(
uz + g −

√
u2
x + u2

y + (uz + g)2
)
.

Next, if uz + g > 0, we have that:√
u2
x + u2

y + (uz + g)2 ≥ |uz + g| = uz + g, (72)

otherwise, if uz + g ≤ 0, it is straightforward to obtain:

uz + g −
√
u2
x + u2

y + (uz + g)2 ≤ 0. (73)

Thus, introducing (72) and (73) to (71) leads to:

(Tloc − g)2 ≤ u2
x + u2

y + u2
z. (74)

This result holds regardless the sign of uz + g.
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