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Abstract

Let (Mn)n be a discrete martingale in Lp for p in ]1, 2] or p = 3. In this note, we give upper bounds on the
superquantiles of Mn and the quantiles and superquantiles of M∗n = max(M0,M1, . . . ,Mn).

1. Introduction

Throughout this note, we consider a nondecreasing filtration (Fn)n∈N and a real-valued martingale (Mn)n∈N adapted
to this filtration. We use the notations Xn = Mn−Mn−1 and M∗n = max(M0,M1, . . . ,Mn) for any positive integer n.

The tail and tail-quantile functions of a real-valued random variable X are defined by

HX(x) = P(X > x) for x ∈ R, QX(u) = inf{x ∈ R : HX(x) ≤ u} for u ∈]0, 1]. (1.1)

Recall that HX is cadlag and nonincreasing and QX is the cadlag generalized inverse function of HX . From the
definition of QX , if U has the uniform law over [0, 1], then QX(U) has the same law as X. The tail-quantile function
QX is often called Value at Risk (VaR). The Conditional Value at Risk (CVaR) or superquantile Q̃X of X is defined
by

Q̃X(u) =

∫ 1

0

QX(us)ds, for any u ∈]0, 1]. (1.2)

Since QX is nonincreasing, Q̃X ≥ QX . From a result which goes back to Blackwell and Dubins (1963),

QM∗
n
(u) ≤ Q̃Mn

(u) for any u ∈]0, 1]. (1.3)

We also refer to Gilat and Meilijson (1988) for a proof of this result. Consequently any upper bound on the superquan-
tiles ofMn provides the same upper bound on the tail-quantiles ofM∗n. Furthermore (1.3) cannot be improved without
additional conditions, as proved by Dubins and Gilat (1978). These facts motivate this note, which is devoted to upper
bounds on the superquantiles of Mn and M∗n.

Our approach to bound up Q̃Mn
is based on the p-risks Qp(X, .) introduced in Pinelis (2014). Let z+ and z− denote

respectively the positive and the negative part of the real z. The p-risk Qp(X, .) of a real-valued random variable X
is defined by

Qp(X,u) = inf{−t+ u−1/p‖(X + t)+‖p : t ∈ R} for any u ∈]0, 1]. (1.4)
These p-risks are nondecreasing with respect to p. The main feature is that they are easier to bound up than the
quantiles or superquantiles. Furthermore, in the case p = 1,

Q1(X,u) = Q̃X(u) for any u ∈]0, 1]. (1.5)

Hence Q1(X, .) is exactly the superquantile of X. Therefrom

Q̃X(u) ≤ Qp(X,u) for any u ∈]0, 1] and any p ≥ 1. (1.6)

We refer to Pinelis (2014) for more about the properties of the p-risks.
In order to bound up Q̃M∗

n
, we will introduce supersuperquantiles. Let U be a random variable with uniform law

over [0, 1]. For a real-valued random variable X, the supersuperquantile Q1,1(X, .) of X is defined by

Q1,1(X,u) = Q̃Q̃X(U)(u) for any u ∈]0, 1]. (1.7)

Then, from (1.3),
Q̃M∗

n
(u) ≤ Q1,1(Mn, u) for any u ∈]0, 1], (1.8)

so that any upper bound on the supersuperquantile of Mn yields the same upper bound on Q̃M∗
n
. Therefore the upper

bounds on Q̃M∗
n
will be derived from the inequality below, proved in Section 2: for any p > 1 and any u in ]0, 1],

Q1,1(X,u) ≤ Qp(X, (Π(q))1−pu) where q = p/(p− 1), Π(q) =

∫ ∞
0

tqe−tdt. (1.9)
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According to the above inequalities, it is enough to bound up the p-risks of Mn. For martingales in Lp for some p
in ]1, 2], these upper bounds will be derived from one-sided von Bahr-Esseen type inequalities stated in Section 3. In
the case of martingales in L2 satisfying an additional condition of order 3, these upper bounds will be derived from
Inequality (1.11) below. For random variables Y and Z such that E(Y p

+) <∞ and E(Zp
+) <∞, let

D+
p (Y,Z) = sup

{
E
(
(Z + t)p+ − (Y + t)p+

)
: t ∈ R

}
. (1.10)

Then, from the definition (1.4) of the p-risks, it is immediate that

Qp(Z, u) ≤ inf{−t+ u−1/p
(
E(Y + t)p+ +D+

p (Y,Z)
)1/p

: t ∈ R} for any u ∈]0, 1]. (1.11)

This inequality will be used in Section 4 to provide upper bounds on the superquantiles of martingales under additional
assumptions on the conditional variances of the increments and the moments of order 3 of their positive parts.

2. Comparison inequalities for risks

In this section we prove the comparison inequality (1.9) and we give applications of this inequality to upper bounds
on the superquantiles of M∗n. We now state the main results of this section.

Proposition 2.1. Let p > 1 and X be an integrable real-valued random variable such that E(Xp
+) < ∞. Then

Q1,1(X,u) ≤ Qp(X, (Π(q))1−p u) for any u in ]0, 1], where q = p/(p− 1) and Π(q) =
∫∞
0
tqe−tdt.

From Proposition 2.1 and (1.8), we immediately get the result below.
Corollary 2.1. Let (Mn)n be a martingale such that E(Mp

n+) <∞ for some p > 1. Set M∗n = max(M0,M1, . . . ,Mn).
Then Q1(M∗n, u) ≤ Qp(Mn, (Π(q))1−p u) for any u in ]0, 1].

Proof of Proposition 2.1. Let V is a random variable with uniform law over [0, 1]. Integrating Q̃X , we get from
(1.2) that

Q1,1(X,u) = E
(
QX(uV ) log(1/V )

)
, (2.1)

where log denotes the Neper logarithm. Next, since E log(1/V ) = 1,

Q1,1(X,u) = −t+ E(log(1/V )(QX(uV ) + t)) ≤ −t+ E(log(1/V )(QX(uV ) + t)+). (2.2)

Now, applying the Hölder inequality, with exponents q = p/(p− 1) and p,

E
(
log(1/V )(QX(uV ) + t)+

)
≤ ‖ log(1/V )‖q ‖(QX(uV ) + t)+‖p.

Since log(1/V ) has the law E(1), ‖ log(1/V )‖q = (Π(q))1/q and, setting w = uv,∫ 1

0

(QX(uv) + t)p+dv = u−1
∫ u

0

(QX(w) + t)p+dw ≤ u−1
∫ 1

0

(QX(w) + t)p+dw.

Hence
E
(
log(1/V )(QX(uV ) + t)+

)
≤ (Π(q))1/qu−1/p‖(X + t)+‖p. (2.3)

Combining (2.2) and (2.3), we now get that, for any real t,

Q1,1(X,u) ≤ −t+
(
(Π(q))1−pu

)−1/p‖(X + t)+‖p, (2.4)

which implies Proposition 2.1. �
Remark 2.1. From (1.4), Qp(Mn, u) ≤ u−1/p‖Mn+‖p. Hence, if M0 = 0, Corollary 2.1 applied with u = 1 implies
the known inequality ‖M∗n‖1 ≤ (Π(q))1/q‖Mn+‖p. The constant (Π(q))1/q in this inequality is sharp, which proves that
our constant is also sharp. We refer to Theorem 7.8 in Osekowski (2012) for more about this.

We now discuss Corollary 2.1. If the martingale (Mn)n is conditionally symmetric, then, by the Lévy symmetrization
inequality, HM∗

n
(x) ≤ 2HMn

(x) for any real x, which implies that Qp(M∗n, u) ≤ Qp(Mn, u/2) for p ≥ 1 and u in ]0, 1].
Therefrom, for conditionally symmetric martingales,

Q1(M∗n, u) ≤ Qp(Mn, u/2) for any p ≥ 1. (2.5)

If p = 2, Corollary 2.1 also yields Q1(M∗n, u) ≤ Q2(Mn, u/2). Recall now that Π(q) = E(τ q), if τ is a random variable
with law E(1). Thus, if p > 2, then 1 < q < 2 and Π(q) = E(τ q) < (Eτ)2−q(Eτ2)q−1 = 2q−1, which implies that
(Π(q))1−p > 1/2, since (q − 1)(1 − p) = −1. Consequently, for p > 2 Corollary 2.1 is more efficient than (2.5). For
example, if p = 3, Q1(M∗n, u) ≤ Q3(Mn, 16u/(9π)) by Corollary 2.1, and 16/(9π) = 0.565... > 1/2.
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3. Martingales in Lp for p in ]1, 2]

In this section, p is any real in ]1, 2] and (Mn)n is a martingale in Lp. Our aim is to obtain upper bounds on the
risks of Mn and M∗n. From (1.4), these upper bounds can be derived from upper bounds on the moments of order p
of (Mn + t)+. At the present time, moment inequalities with sharp constants are only available for the absolute value
of Mn. More precisely, by Proposition 1.8 in Pinelis (2015a),

IE
(
|Mn|p

)
≤ IE(|M0|p) +Kp E(|X1|p + · · ·+ |Xn|p), where Kp = sup

x∈[0,1]
( pxp−1 + (1− x)p − xp ). (3.1)

As shown by Pinelis (2015a), the constant Kp is sharp. The constant Kp is decreasing with respect to p, K2 = 1 and
limp↘1Kp = 2. However, for conditionally symmetric martingales, it is known since a long time that the constant in
the above inequality is equal to 1 for any p in ]1, 2]. So it seems clear that the constants in the one-sided case are
smaller than Kp. Below we give a new inequality.

Theorem 3.1. Let p be any real in ]1, 2] and (Mn)n be a martingale in Lp. Then

E
(
Mp

n+

)
≤ E(Mp

0+) + ∆p, with ∆p = E(Xp
1+ + · · ·+Xp

n+) + (p− 1)p−1E(Xp
1− + · · ·+Xp

n−). (3.2)

Before proving Theorem 3.1, we give an application to risks.

Corollary 3.1. Let p be any real in ]1, 2] and (Mn)n be a martingale in Lp such that M0 = 0. Set q = p/(p−1). Then
Qp(Mn, u) ≤ ∆

1/p
p (u1−q − 1)1/q for any u in ]0, 1]. Hence Q1(M∗n, u) ≤ ∆

1/p
p (Π(q)u1−q − 1)1/q for any u in ]0, 1].

Remark 3.1. If p = 2, q = 2 and Π(q) = 2. Then we get from Corollary 3.1 that

Q2(Mn, u) ≤
√

E(M2
n)(1/u− 1), Q1(M∗n, u) ≤

√
E(M2

n)(2/u− 1). (3.3)

The first inequality is a version of an inequality of Tchebichef (1874), often called Cantelli’s inequality. For p < 2,
(p− 1)p−1 < 1. In that case the results are new.

Proof of Corollary 3.1. We start by the first inequality. Let u be any real in ]0, 1[. From Theorem 3.1 applied to
(t + Mn)n, we get Qp(Mn, u) ≤ −t + u−1/p

(
tp + ∆p

)1/p. Now the function f : t 7→ −t + u−1/p
(
∆p + tp

)1/p has a

unique minimum at point t = tu = ∆
1/p
p (u1−q − 1)−1/p and f(tu) = ∆

1/p
p

(
u1−q − 1

)1/q, which completes the proof of
the first inequality in the case u < 1. Since Qp(Mn, .) is nonincreasing, the case u = 1 follows by taking the limit as
u ↑ 1. The second part follows from the first part, Corollary 2.1 and the fact that (1− p)(1− q) = 1. �

Proof of Theorem 3.1. Theorem 3.1 follows immediately from the Lemma below by induction on n. �

Lemma 3.1. Let Z and X be real-valued random variables in Lp for some p in ]1, 2]. If E(X | Z) = 0, then
E
(
(Z +X)p+

)
≤ E(Zp

+) + E(Xp
+) + (p− 1)p−1E(Xp

−).

Proof of Lemma 3.1. Define the function ϕ : R2 → R by

ϕ(z, x) = (z + x)p+ − z
p
+ − pz

p−1
+ x. (3.4)

From the assumption E(X | Z) = 0, E
(
(Z+X)p+

)
−E(Zp

+) = E
(
ϕ(Z,X)

)
. Consequently Lemma 3.1 follows immediately

from the upper bound
ϕ(z, x) ≤ xp+ + (p− 1)p−1xp− for any (x, z) ∈ R× R. (3.5)

We now prove (3.5). If z ≤ 0, then ϕ(z, x) = (z + x)p+ ≤ x
p
+, which proves (3.5) for z ≤ 0.

If z ≥ 0, let the function ηx be defined by ηx(z) = ϕ(z, x). The function ηx is continuous on [0,∞[, differentiable on
]0,∞[, and η′x(z) = p

(
(z + x)p−1+ − zp−1 − (p− 1)zp−2x

)
for z > 0. If z ≥ x−, z + x ≥ x+ + x ≥ 0, which implies that

(z+ x)p−1+ = (z+ x)p−1. Then the concavity of t 7→ tp−1 ensures that η′x(z) ≤ 0. It follows that ηx is nonincreasing on
[x−,∞[. If x ≥ 0, then x− = 0 and ηx(z) ≤ ηx(0) = xp+, which proves (3.5) for z ≥ 0 and x ≥ 0.

Finally, if z ≥ 0 and x < 0, z + x ≤ 0 for z in [0, x−]. Thus η′x(z) = pzp−2(−z + (p− 1)x−) for z in ]0, x−]. Since ηx
is nonincreasing on [x−,∞[, it follows that ηx has a unique maximum at point z = (p− 1)x− and, subsequently,

ηx(z) ≤ ηx((p− 1)x−) =
(
−(p− 1)p + p(p− 1)p−1

)
xp− = (p− 1)p−1xp−, (3.6)

which proves (3.5) for z ≥ 0 and x < 0, therefore completing the proof of (3.5). �

Numerical comparisons. To conclude this section, we compare the upper bounds given by Corollary 3.1 with the
inequality below, derived from (3.1) and Theorem 4.1 in Rio (2018):

Q1(Mn, u) ≤ Σ1/p
p u−1/p(1 + (1− u)1−pup−1)−1/p, with Σp = Kp E

(
|X1|p + · · ·+ |Xn|p

)
. (3.7)
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For the numerical comparisons we assume that
∑n

k=1 E(Xp
k+) =

∑n
k=1 E(Xp

k−) = 1. Then Corollary 3.1 yields

Q1(Mn, u) ≤
(
1 + (p− 1)p−1

)1/p
u−1/p(1− uq−1)1/q, with q = p/(p− 1), (3.8)

and Σp = 2Kp in (3.7). The table below gives values of the upper bounds (3.7) and (3.8) for p = 3/2, in which case
2Kp = 2

(
1 + 1/

√
2
)1/2 and 1 + (p− 1)p−1 = 1 + 1/

√
2. Here (3.8) provides better bounds for u ≤ 0.25 and u ≥ 0.9922.

Value of u 0.999 0.990 0.900 0.75 0.50 0.25 0.10 0.010 0.001
(3.7) 0.186 0.387 0.808 1.18 1.90 3.53 7.27 38.34 185.8
(3.8) 0.180 0.390 0.881 1.31 2.06 3.52 6.61 30.77 142.8

4. The case p = 3

In this section, (Mn)n is a martingale in L2 such that M0 = 0. We assume that, for some sequence (σk)k>0 of
nonrandom positive reals,

E(X3
k+) <∞ and E(X2

k | Fk−1) ≤ σ2
k almost surely, for any positive k. (4.1)

Although the above condition on the conditional variances is very strong, is is sometimes fulfilled. In particular,
the second part of (4.1) holds for martingale decompositions associated to dynamical systems or suprema of empirical
processes. We refer to Chazottes and Gouëzel (2012), Inequality (4.9), page 861, for dynamical systems and to Marchina
(2021) for empirical processes. The main result of this section is the upper bound below on E

(
(Mn + t)3+

)
.

Theorem 4.1. Let Y be a random variable with law N(0, 1) and (Mn)n be a martingale such that M0 = 0, satisfying
(4.1). Set Vn = σ2

1 + · · ·+ σ2
n. Then E

(
(Mn + t)3+

)
≤ E

(
(Y
√
Vn + t)3+

)
+
∑n

k=1 E
(
X3

k+

)
for any real t.

Remark 4.1. From Theorem 4.1 with t = 0, E(M3
n+) ≤ V 3/2

n E(Y 3
+) +

∑n
k=1 E

(
X3

k+

)
, which is is a one-sided version

of the Rosenthal inequality, with the optimal constants. We refer to Pinelis (2015b) and the references therein for more
about the constants in the Rosenthal inequalities.
Proof of Theorem 4.1. Let (Yk)k>0 be a sequence of independent random variables with law N(0, 1), independent
of the sequence (Mn)n. Define the random variables Tn

k and the reals Dn
k for k in [1, n] by

Tn
k = Mk−1 + (σk+1Yk+1 + · · ·+ σnYn), Dn

k = E
(
(Tn

k +Xk)3+ − (Tn
k + σkYk)3+

)
, (4.2)

with the convention that Tn
n = Mn−1. Then

E
(
(Mn + t)3+ − (Y

√
Vn + t)3+

)
= Dn

1 + · · ·+Dn
n. (4.3)

Now the function ϕ defined by ϕ(x) = x3+ for x in R is two times continuously differentiable and ϕ′(x) = 3x2+,
ϕ′′(x) = 6x+. Hence, applying the Taylor integral formula at order 2 to the function ϕ at point Tn

k ,

Dn
k = 3E

(
(Tn

k+)2(Xk − σkYk)
)

+ 3E
(
Tn
k+(X2

k − σ2
kYk)

)
+ 6

∫ 1

0

(1− t)Rk,n(t)dt, (4.4)

with Rk,n(t) = E
(
((Tn

k + tXk)+ − Tn
k+)X2

k − ((Tn
k + tσkYk)+ − Tn

k+)σ2
kY

2
k

)
. (4.5)

From the martingale assumption, the first term on right hand in (4.4) is equal to 0. Next

E
(
Tn
k+(X2

k − σ2
kYk)

)
= E

(
Tn
k+(E(X2

k | Fk−1)− σ2
k)
)
≤ 0,

since Tn
k+ ≥ 0 and E(X2

k | Fk−1)− σ2
k ≤ 0 almsot surely.

From the above inequalities, the two first terms in (4.4) are nonpositive. It remains to bound up the integral term
in (4.4). First (Tk,n + tXk)+ − Tk,n+ ≤ tX+

k for any t in [0, 1], which implies that

E
(
((Tn

k + tXk)+ − Tn
k+)X2

k

)
≤ tE(X3

k+). (4.6)

And second the normal law is symmetric, whence

E
(
((Tn

k + tσkYk)+ − Tn
k+)Y 2

k

)
= 1

2 E
(
((Tn

k + tσkYk)+ + (Tn
k − tσkYk)+ − 2Tn

k+)Y 2
k

)
.

Since the function x 7→ x+ is convex, (Tn
k + tσkYk)+ + (Tn

k − tσkYk)+ − 2Tn
k+ ≥ 0. It follows that

E
(
((Tn

k + tσkYk)+ − Tn
k+)Y 2

k

)
≥ 0. (4.7)

Now (4.5), (4.6) and (4.7) imply that Rk,n(t) ≤ tE(X3
k+). Finally, putting this inequality in (4.4) and integrating, we

get that Dn
k ≤ E(X3

k+), which, by (4.3), implies Theorem 4.1. �

From Theorem 4.1, (1.11) and Corollary 2.1, we immediately get the result below.
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Corollary 4.1. Let Y be a random variable with law N(0, 1) and (Mn)n be a martingale such that M0 = 0, satisfying
(4.1). Set Vn = σ2

1 + σ2
2 + · · ·+ σ2

n . Then, for any u in ]0, 1],

Q1(Mn, u) ≤ Q3(Mn, u) ≤ inf
{
− t+ u−1/3

(
E
(
(Y
√
Vn + t)3+

)
+

n∑
k=1

E(Y 3
k+)
)1/3

: t ∈ R
}
, (a)

Q1(M∗n, u) ≤ inf
{
− t+

( 9π

16u

)1/3(
E
(
(Y
√
Vn + t)3+

)
+

n∑
k=1

E(Y 3
k+)
)1/3

: t ∈ R
}
. (b)

Numerical comparisons. To conclude this section, we compare Corollary 4.1(a) with upper bounds derived from
estimates of the Kantorovich distance in the central limit theorem in the independent case. If M0 = 0 and the
increments Xk are independent, then, from a result of Goldstein (2010), for any 1-Lipschitz function f ,

E
(
f(Mn)− f(Y

√
Vn)

)
≤ E

(
|X1|3 + · · ·+ |Xn|3

)
, with Vn = VarMn. (4.8)

Now, since E(Mn) = E(Y ) = 0, by (4.8) and the elementary equality x+ = (x+ |x|)/2,

E
(

(Mn + t)+ − (Y
√
Vn + t)+

)
≤ 1

2 E
(
|X1|3 + · · ·+ |Xn|3

)
for any real t. Hence, by (1.11) applied with p = 1, for any u in ]0, 1],

Q1(Mn, u) ≤
√
VnQ1(Y, u) + (2u)−1E

(
|X1|3 + · · ·+ |Xn|3

)
. (4.9)

The table below gives numerical values for the upper bounds of (4.9) and Corollary 4.1(a) and their respective limits
Q1(Y, u) and Q3(Y, u) (as the Liapounov ratio tends to 0) in the case Vn = 1 and

L+
3 := E(X3

1+ + · · ·+X3
n+) = E(X3

1− + · · ·+X3
n−) := L−3 ,

for L+
3 = 10−m, m = 1, 2, 3 and u = 2k−2 10−k, k = 0, 1, 2. For sake of completeness, the values of the usual

subGaussian bound
√

2| log u| are also included. One can observe that the convergence to the limit is much faster in
Corollary 4.1(a) than in (4.9). As a by-product, Corollary 4.1(a) still provides better bounds for u ≤ 1/20 if L+

3 = 10−2,
which is in the range of normal approximation, since the Liapounov ratio L3 := L+

3 + L−3 is equal to 2.10−2.

Value of (k,m) (0,1) (1, 1) (2,1) (0,2) (1,2) (2,2) (0,3) (1,3) (2,3)
Value of Q1(Y, u) 1.27 2.06 2.67 1.27 2.06 2.67 1.27 2.06 2.67
Inequality (4.9) 1.67 4.07 12.67 1.31 2.26 3.67 1.274 2.08 2.77
Corollary 4.1(a) 1.50 2.48 3.67 1.47 2.26 3.05 1.463 2.23 2.84
Value of Q3(Y, u) 1.462 2.22 2.81 1.462 2.22 2.81 1.462 2.22 2.81
Value of

√
2| log u| 1.665 2.447 3.035 1.665 2.447 3.035 1.665 2.447 3.035
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