

Upper bounds for superquantiles of martingales Emmanuel Rio

▶ To cite this version:

Emmanuel Rio. Upper bounds for superquantiles of martingales. 2021. hal-03100101v1

HAL Id: hal-03100101 https://hal.science/hal-03100101v1

Preprint submitted on 6 Jan 2021 (v1), last revised 16 Feb 2021 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Upper bounds for superquantiles of martingales

Emmanuel Rio

Université de Versailles, Laboratoire de mathématiques, UMR 8100 CNRS, Bâtiment Fermat, 45 Avenue des Etats-Unis, F-78035 Versailles, France. E-mail: emmanuel.rio@uvsq.fr

Key words: Quantiles, Superquantiles, Conditional Value at Risk, Risks, Martingales, Deviation inequalities. *Mathematical Subject Classification* (2010): Primary 60E05.

Abstract

Let $(M_n)_n$ be a discrete martingale in L^p for p in [1,2] or p = 3. In this note, we give upper bounds on the superquantiles of M_n and the quantiles and superquantiles of $M_n^* = \max(M_0, M_1, \ldots, M_n)$.

1. Introduction

Throughout this note, we consider a nondecreasing filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ and a real-valued martingale $(M_n)_{n \in \mathbb{N}}$ adapted to this filtration. We use the notations $X_n = M_n - M_{n-1}$ and $M_n^* = \max(M_0, M_1, \dots, M_n)$ for any positive integer n.

The tail and tail-quantile functions of a real-valued random variable X are defined by

$$H_X(x) = \mathbb{P}(X > x) \text{ for } x \in \mathbb{R}, \ Q_X(u) = \inf\{x \in \mathbb{R} : H_X(x) \le u\} \text{ for } u \in]0,1].$$

$$(1.1)$$

Recall that H_X is cadlag and nonincreasing and Q_X is the cadlag generalized inverse function of H_X . From the definition of Q_X , if U has the uniform law over [0, 1], then $Q_X(U)$ has the same law as X. The tail-quantile function Q_X is often called Value at Risk (VaR). The Conditional Value at Risk (CVaR) or superquantile \tilde{Q}_X of X is defined by

$$\tilde{Q}_X(u) = \int_0^1 Q_X(us) ds$$
, for any $u \in]0, 1].$ (1.2)

Since Q_X is nonincreasing, $\tilde{Q}_X \ge Q_X$. From a result which goes back to Blackwell and Dubins (1963),

$$Q_{M_n^*}(u) \le Q_{M_n}(u) \text{ for any } u \in]0,1].$$
 (1.3)

We also refer to Gilat and Meilijson (1988) for a proof of this result. Consequently any upper bound on the superquantiles of M_n provides the same upper bound on the tail-quantiles of M_n^* . Furthermore (1.3) cannot be improved without additional conditions, as proved by Dubins and Gilat (1978). These facts motivate this note, which is devoted to upper bounds on the superquantiles of M_n and M_n^* .

Our approach to bound up \tilde{Q}_{M_n} is based on the *p*-risks $Q_p(X, .)$ introduced in Pinelis (2014). Let z_+ and z_- denote respectively the positive and the negative part of the real z. The *p*-risk $Q_p(X, .)$ of a real-valued random variable X is defined by

$$Q_p(X,u) = \inf\{-t + u^{-1/p} \| (X+t)_+ \|_p : t \in \mathbb{R}\} \text{ for any } u \in]0,1].$$
(1.4)

These *p*-risks are nondecreasing with respect to *p*. The main feature is that they are easier to bound up than the quantiles or superquantiles. Furthermore, in the case p = 1,

$$Q_1(X,u) = \tilde{Q}_X(u) \quad \text{for any } u \in]0,1]. \tag{1.5}$$

Hence $Q_1(X, .)$ is exactly the superquantile of X. Therefrom

$$\hat{Q}_X(u) \le Q_p(X, u) \text{ for any } u \in]0, 1] \text{ and any } p \ge 1.$$
 (1.6)

We refer to Pinelis (2014) for more about the properties of the *p*-risks.

In order to bound up $\tilde{Q}_{M_n^*}$, we will introduce supersuperquantiles. Let U be a random variable with uniform law over [0, 1]. For a real-valued random variable X, the supersuperquantile $Q_{1,1}(X,.)$ of X is defined by

$$Q_{1,1}(X,u) = \tilde{Q}_{\tilde{Q}_X(U)}(u) \text{ for any } u \in]0,1].$$
(1.7)

Then, from (1.3),

$$Q_{M_n^*}(u) \le Q_{1,1}(M_n, u) \text{ for any } u \in]0, 1],$$
(1.8)

so that any upper bound on the supersuperquantile of M_n yields the same upper bound on $\hat{Q}_{M_n^*}$. Therefore the upper bounds on $\tilde{Q}_{M_n^*}$ will be derived from the inequality below, proved in Section 2: for any p > 1 and any u in]0, 1],

$$Q_{1,1}(X,u) \le Q_p(X,(\Pi(q))^{1-p}u) \text{ where } q = p/(p-1), \ \Pi(q) = \int_0^\infty t^q e^{-t} dt.$$
 (1.9)

According to the above inequalities, it is enough to bound up the *p*-risks of M_n . For martingales in L^p for some p in]1, 2], these upper bounds will be derived from one-sided von Bahr-Esseen type inequalities stated in Section 3. In the case of martingales in L^2 satisfying an additional condition of order 3, these upper bounds will be derived from Inequality (1.11) below. For random variables Y and Z such that $\mathbb{E}(Y^p_+) < \infty$ and $\mathbb{E}(Z^p_+) < \infty$, let

$$D_{p}^{+}(Y,Z) = \sup \left\{ \mathbb{E} \left((Z+t)_{+}^{p} - (Y+t)_{+}^{p} \right) : t \in \mathbb{R} \right\}.$$
(1.10)

Then, from the definition (1.4) of the *p*-risks, it is immediate that

$$Q_p(Z, u) \le \inf\{-t + u^{-1/p} \left(\mathbb{E}(Y+t)_+^p + D_p^+(Y, Z) \right)^{1/p} : t \in \mathbb{R} \} \text{ for any } u \in]0, 1].$$
(1.11)

This inequality will be used in Section 4 to provide upper bounds on the superquantiles of martingales under additional assumptions on the conditional variances of the increments and the moments of order 3 of their positive parts.

2. Comparison inequalities for risks

In this section we prove the comparison inequality (1.9) and we give applications of this inequality to upper bounds on the superquantiles of M_n^* . We now state the main results of this section.

Proposition 2.1. Let p > 1 and X be an integrable real-valued random variable such that $\mathbb{E}(X^p_+) < \infty$. Then $Q_{1,1}(X, u) \leq Q_p(X, (\Pi(q))^{1-p} u)$ for any u in [0, 1], where q = p/(p-1) and $\Pi(q) = \int_0^\infty t^q e^{-t} dt$.

From Proposition 2.1 and (1.8), we immediately get the result below.

Corollary 2.1. Let $(M_n)_n$ be a martingale such that $\mathbb{E}(M_{n+}^p) < \infty$ for some p > 1. Set $M_n^* = \max(M_0, M_1, \ldots, M_n)$. Then $Q_1(M_n^*, u) \leq Q_p(M_n, (\Pi(q))^{1-p} u)$ for any u in [0, 1].

Proof of Proposition 2.1. Let V is a random variable with uniform law over [0, 1]. Integrating \tilde{Q}_X , we get from (1.2) that

$$Q_{1,1}(X,u) = \mathbb{E}(Q_X(uV)\log(1/V)), \qquad (2.1)$$

where log denotes the Neper logarithm. Next, since $\mathbb{E}\log(1/V) = 1$,

$$Q_{1,1}(X,u) = -t + \mathbb{E}(\log(1/V)(Q_X(uV) + t)) \le -t + \mathbb{E}(\log(1/V)(Q_X(uV) + t)_+).$$
(2.2)

Now, applying the Hölder inequality, with exponents q = p/(p-1) and p,

 $\mathbb{E}\left(\log(1/V)(Q_X(uV)+t)_+\right) \le \|\log(1/V)\|_q \|(Q_X(uV)+t)_+\|_p.$

Since $\log(1/V)$ has the law $\mathcal{E}(1)$, $\|\log(1/V)\|_q = (\Pi(q))^{1/q}$ and, setting w = uv,

$$\int_0^1 (Q_X(uv) + t)_+^p dv = u^{-1} \int_0^u (Q_X(w) + t)_+^p dw \le u^{-1} \int_0^1 (Q_X(w) + t)_+^p dw.$$

Hence

$$\mathbb{E}\left(\log(1/V)(Q_X(uV)+t)_+\right) \le (\Pi(q))^{1/q} u^{-1/p} \| (X+t)_+ \|_p.$$
(2.3)

Combining (2.2) and (2.3), we now get that, for any real t,

$$Q_{1,1}(X,u) \le -t + \left((\Pi(q))^{1-p} u \right)^{-1/p} \| (X+t)_+ \|_p,$$
(2.4)

which implies Proposition 2.1. \diamond

Remark 2.1. From (1.4), $Q_p(M_n, u) \leq u^{-1/p} ||M_{n+}||_p$. Hence, if $M_0 = 0$, Corollary 2.1 applied with u = 1 implies the known inequality $||M_n^*||_1 \leq (\Pi(q))^{1/q} ||M_{n+}||_p$. The constant $(\Pi(q))^{1/q}$ in this inequality is sharp, which proves that our constant is also sharp. We refer to Theorem 7.8 in Osekowski (2012) for more about this.

We now discuss Corollary 2.1. If the martingale $(M_n)_n$ is conditionally symmetric, then, by the Lévy symmetrization inequality, $H_{M_n^*}(x) \leq 2H_{M_n}(x)$ for any real x, which implies that $Q_p(M_n^*, u) \leq Q_p(M_n, u/2)$ for $p \geq 1$ and u in [0, 1]. Therefore, for conditionally symmetric martingales,

$$Q_1(M_n^*, u) \le Q_p(M_n, u/2)$$
 for any $p \ge 1$. (2.5)

If p = 2, Corollary 2.1 also yields $Q_1(M_n^*, u) \leq Q_2(M_n, u/2)$. Recall now that $\Pi(q) = \mathbb{E}(\tau^q)$, if τ is a random variable with law $\mathcal{E}(1)$. Thus, if p > 2, then 1 < q < 2 and $\Pi(q) = \mathbb{E}(\tau^q) < (\mathbb{E}\tau)^{2-q}(\mathbb{E}\tau^2)^{q-1} = 2^{q-1}$, which implies that $(\Pi(q))^{1-p} > 1/2$, since (q-1)(1-p) = -1. Consequently, for p > 2 Corollary 2.1 is more efficient than (2.5). For example, if p = 3, $Q_1(M_n^*, u) \leq Q_3(M_n, 16u/(9\pi))$ by Corollary 2.1, and $16/(9\pi) = 0.565... > 1/2$.

3. Martingales in L^p for p in]1, 2]

In this section, p is any real in [1,2] and $(M_n)_n$ is a martingale in L^p . Our aim is to obtain upper bounds on the risks of M_n and M_n^* . From (1.4), these upper bounds can be derived from upper bounds on the moments of order p of $(M_n + t)_+$. At the present time, moment inequalities with sharp constants are only available for the absolute value of M_n . More precisely, by Proposition 1.8 in Pinelis (2015a),

$$\mathbb{E}(|M_n|^p) \le \mathbb{E}(|M_0|^p) + K_p \mathbb{E}(|X_1|^p + \dots + |X_n|^p), \text{ where } K_p = \sup_{x \in [0,1]} (px^{p-1} + (1-x)^p - x^p).$$
(3.1)

As shown by Pinelis (2015a), the constant K_p is sharp. The constant K_p is decreasing with respect to p, $K_2 = 1$ and $\lim_{p \searrow 1} K_p = 2$. However, for conditionally symmetric martingales, it is known since a long time that the constant in the above inequality is equal to 1 for any p in [1, 2]. So it seems clear that the constants in the one-sided case are smaller than K_p . Below we give a new inequality.

Theorem 3.1. Let p be any real in [1,2] and $(M_n)_n$ be a martingale in L^p . Then

$$\mathbb{E}(M_{n+}^p) \le \mathbb{E}(M_{0+}^p) + \Delta_p, \quad with \quad \Delta_p = \mathbb{E}(X_{1+}^p + \dots + X_{n+}^p) + (p-1)^{p-1} \mathbb{E}(X_{1-}^p + \dots + X_{n-}^p). \tag{3.2}$$

Before proving Theorem 3.1, we give an application to risks.

Corollary 3.1. Let *p* be any real in [1,2] and $(M_n)_n$ be a martingale in L^p such that $M_0 = 0$. Set q = p/(p-1). Then $Q_p(M_n, u) \leq \Delta_p^{1/p} (u^{1-q} - 1)^{1/q}$ for any *u* in [0,1]. Hence $Q_1(M_n^*, u) \leq \Delta_p^{1/p} (\Pi(q)u^{1-q} - 1)^{1/q}$ for any *u* in [0,1].

Remark 3.1. If p = 2, q = 2 and $\Pi(q) = 2$. Then we get from Corollary 3.1 that

$$Q_2(M_n, u) \le \sqrt{\mathbb{E}(M_n^2)(1/u - 1)}, \quad Q_1(M_n^*, u) \le \sqrt{\mathbb{E}(M_n^2)(2/u - 1)}.$$
 (3.3)

The first inequality is a version of an inequality of Tchebichef (1874), often called Cantelli's inequality. For p < 2, $(p-1)^{p-1} < 1$. In that case the results are new.

Proof of Corollary 3.1. We start by the first inequality. Let u be any real in]0,1[. From Theorem 3.1 applied to $(t + M_n)_n$, we get $Q_p(M_n, u) \leq -t + u^{-1/p} (t^p + \Delta_p)^{1/p}$. Now the function $f: t \mapsto -t + u^{-1/p} (\Delta_p + t^p)^{1/p}$ has a unique minimum at point $t = t_u = \Delta_p^{1/p} (u^{1-q} - 1)^{-1/p}$ and $f(t_u) = \Delta_p^{1/p} (u^{1-q} - 1)^{1/q}$, which completes the proof of the first inequality in the case u < 1. Since $Q_p(M_n, .)$ is nonincreasing, the case u = 1 follows by taking the limit as $u \uparrow 1$. The second part follows from the first part, Corollary 2.1 and the fact that (1-p)(1-q) = 1.

Proof of Theorem 3.1. Theorem 3.1 follows immediately from the Lemma below by induction on n.

Lemma 3.1. Let Z and X be real-valued random variables in L^p for some p in [1,2]. If $\mathbb{E}(X \mid Z) = 0$, then $\mathbb{E}((Z+X)_+^p) \leq \mathbb{E}(Z_+^p) + \mathbb{E}(X_+^p) + (p-1)^{p-1}\mathbb{E}(X_-^p)$.

Proof of Lemma 3.1. Define the function $\varphi : \mathbb{R}^2 \to \mathbb{R}$ by

$$\varphi(z,x) = (z+x)_{+}^{p} - z_{+}^{p} - pz_{+}^{p-1}x.$$
(3.4)

From the assumption $\mathbb{E}(X \mid Z) = 0$, $\mathbb{E}((Z+X)_+^p) - \mathbb{E}(Z_+^p) = \mathbb{E}(\varphi(Z,X))$. Consequently Lemma 3.1 follows immediately from the upper bound

 $\varphi(z,x) \le x_+^p + (p-1)^{p-1} x_-^p \quad \text{for any } (x,z) \in \mathbb{R} \times \mathbb{R}.$ (3.5)

We now prove (3.5). If $z \leq 0$, then $\varphi(z, x) = (z + x)_+^p \leq x_+^p$, which proves (3.5) for $z \leq 0$.

If $z \ge 0$, let the function η_x be defined by $\eta_x(z) = \varphi(z, x)$. The function η_x is continuous on $[0, \infty[$, differentiable on $]0, \infty[$, and $\eta'_x(z) = p((z+x)_+^{p-1} - z^{p-1} - (p-1)z^{p-2}x)$ for z > 0. If $z \ge x_-$, $z+x \ge x_+ + x \ge 0$, which implies that $(z+x)_+^{p-1} = (z+x)^{p-1}$. Then the concavity of $t \mapsto t^{p-1}$ ensures that $\eta'_x(z) \le 0$. It follows that η_x is nonincreasing on $[x_-, \infty[$. If $x \ge 0$, then $x_- = 0$ and $\eta_x(z) \le \eta_x(0) = x_+^p$, which proves (3.5) for $z \ge 0$ and $x \ge 0$.

Finally, if $z \ge 0$ and x < 0, $z + x \le 0$ for z in $[0, x_-]$. Thus $\eta'_x(z) = pz^{p-2}(-z + (p-1)x_-)$ for z in $[0, x_-]$. Since η_x is nonincreasing on $[x_-, \infty]$, it follows that η_x has a unique maximum at point $z = (p-1)x_-$ and, subsequently,

$$\eta_x(z) \le \eta_x((p-1)x_-) = \left(-(p-1)^p + p(p-1)^{p-1}\right)x_-^p = (p-1)^{p-1}x_-^p,\tag{3.6}$$

which proves (3.5) for $z \ge 0$ and x < 0, therefore completing the proof of (3.5). \diamond

Numerical comparisons. To conclude this section, we compare the upper bounds given by Corollary 3.1 with the inequality below, derived from (3.1) and Theorem 4.1 in Rio (2018):

$$Q_1(M_n, u) \le \Sigma_p^{1/p} u^{-1/p} (1 + (1 - u)^{1-p} u^{p-1})^{-1/p}, \text{ with } \Sigma_p = K_p \mathbb{E} (|X_1|^p + \dots + |X_n|^p).$$
(3.7)

For the numerical comparisons we assume that $\sum_{k=1}^{n} \mathbb{E}(X_{k+}^p) = \sum_{k=1}^{n} \mathbb{E}(X_{k-}^p) = 1$. Then Corollary 3.1 yields

$$Q_1(M_n, u) \le \left(1 + (p-1)^{p-1}\right)^{1/p} u^{-1/p} (1 - u^{q-1})^{1/q}, \text{ with } q = p/(p-1),$$
(3.8)

and $\Sigma_p = 2K_p$ in (3.7). The table below gives values of the upper bounds (3.7) and (3.8) for p = 3/2, in which case $2K_p = 2(1+1/\sqrt{2})^{1/2}$ and $1+(p-1)^{p-1} = 1+1/\sqrt{2}$. Here (3.8) provides better bounds for $u \leq 0.25$ and $u \geq 0.9922$.

Value of u	0.999	0.990	0.900	0.75	0.50	0.25	0.10	0.010	0.001
(3.7)	0.186	0.387	0.808	1.18	1.90	3.53	7.27	38.34	185.8
(3.8)	0.180	0.390	0.881	1.31	2.06	3.52	6.61	30.77	142.8

4. The case p = 3

In this section, $(M_n)_n$ is a martingale in L^2 such that $M_0 = 0$. We assume that, for some sequence $(\sigma_k)_{k>0}$ of nonrandom positive reals,

$$\mathbb{E}(X_{k+}^3) < \infty$$
 and $\mathbb{E}(X_k^2 \mid F_{k-1}) \le \sigma_k^2$ almost surely, for any positive k. (4.1)

Although the above condition on the conditional variances is very strong, is is sometimes fulfilled. In particular, the second part of (4.1) holds for martingale decompositions associated to dynamical systems or suprema of empirical processes. We refer to Chazottes and Gouëzel (2012), Inequality (4.9), page 861, for dynamical systems and to Marchina (2021) for empirical processes. The main result of this section is the upper bound below on $\mathbb{E}((M_n + t)^3_+)$.

Theorem 4.1. Let Y be a random variable with law N(0,1) and $(M_n)_n$ be a martingale such that $M_0 = 0$, satisfying (4.1). Set $V_n = \sigma_1^2 + \cdots + \sigma_n^2$. Then $\mathbb{E}((M_n + t)^3_+) \leq \mathbb{E}((Y\sqrt{V_n} + t)^3_+) + \sum_{k=1}^n \mathbb{E}(X^3_{k+})$ for any real t.

Remark 4.1. From Theorem 4.1 with t = 0, $\mathbb{E}(M_{n+}^3) \leq V_n^{3/2} \mathbb{E}(Y_+^3) + \sum_{k=1}^n \mathbb{E}(X_{k+}^3)$, which is is a one-sided version of the Rosenthal inequality, with the optimal constants. We refer to Pinelis (2015b) and the references therein for more about the constants in the Rosenthal inequalities.

Proof of Theorem 4.1. Let $(Y_k)_{k>0}$ be a sequence of independent random variables with law N(0,1), independent of the sequence $(M_n)_n$. Define the random variables T_k^n and the reals D_k^n for k in [1,n] by

$$T_k^n = M_{k-1} + (\sigma_{k+1}Y_{k+1} + \dots + \sigma_n Y_n), \quad D_k^n = \mathbb{E}\left((T_k^n + X_k)_+^3 - (T_k^n + \sigma_k Y_k)_+^3\right), \tag{4.2}$$

with the convention that $T_n^n = M_{n-1}$. Then

$$\mathbb{E}\left((M_n + t)_+^3 - (Y\sqrt{V_n} + t)_+^3\right) = D_1^n + \dots + D_n^n.$$
(4.3)

Now the function φ defined by $\varphi(x) = x_+^3$ for x in \mathbb{R} is two times continuously differentiable and $\varphi'(x) = 3x_+^2$, $\varphi''(x) = 6x_+$. Hence, applying the Taylor integral formula at order 2 to the function φ at point T_k^n ,

$$D_k^n = 3\mathbb{E}\big((T_{k+}^n)^2(X_k - \sigma_k Y_k)\big) + 3\mathbb{E}\big(T_{k+}^n(X_k^2 - \sigma_k^2 Y_k)\big) + 6\int_0^1 (1-t)R_{k,n}(t)dt,$$
(4.4)

with
$$R_{k,n}(t) = \mathbb{E}\left(\left((T_k^n + tX_k)_+ - T_{k+}^n\right)X_k^2 - \left((T_k^n + t\sigma_k Y_k)_+ - T_{k+}^n\right)\sigma_k^2 Y_k^2\right).$$
 (4.5)

From the martingale assumption, the first term on right hand in (4.4) is equal to 0. Next

$$\mathbb{E}\left(T_{k+}^{n}(X_{k}^{2}-\sigma_{k}^{2}Y_{k})\right) = \mathbb{E}\left(T_{k+}^{n}(\mathbb{E}(X_{k}^{2}\mid F_{k-1})-\sigma_{k}^{2})\right) \leq 0,$$

since $T_{k+}^n \ge 0$ and $\mathbb{E}(X_k^2 \mid F_{k-1}) - \sigma_k^2 \le 0$ almsot surely.

From the above inequalities, the two first terms in (4.4) are nonpositive. It remains to bound up the integral term in (4.4). First $(T_{k,n} + tX_k)_+ - T_{k,n+} \le tX_k^+$ for any t in [0, 1], which implies that

$$\mathbb{E}\left(\left((T_k^n + tX_k)_+ - T_{k+}^n)X_k^2\right) \le t\mathbb{E}(X_{k+}^3).$$
(4.6)

And second the normal law is symmetric, whence

Since the func

$$\mathbb{E}\big(((T_k^n + t\sigma_k Y_k)_+ - T_{k+}^n)Y_k^2\big) = \frac{1}{2}\mathbb{E}\big(((T_k^n + t\sigma_k Y_k)_+ + (T_k^n - t\sigma_k Y_k)_+ - 2T_{k+}^n)Y_k^2\big).$$

tion $x \mapsto x_+$ is convex, $(T_k^n + t\sigma_k Y_k)_+ + (T_k^n - t\sigma_k Y_k)_+ - 2T_{k+}^n \ge 0.$ It follows that

$$\mathbb{E}\left(\left((T_k^n + t\sigma_k Y_k)_+ - T_{k+}^n)Y_k^2\right) \ge 0.$$
(4.7)

Now (4.5), (4.6) and (4.7) imply that $R_{k,n}(t) \leq t\mathbb{E}(X_{k+}^3)$. Finally, putting this inequality in (4.4) and integrating, we get that $D_k^n \leq \mathbb{E}(X_{k+}^3)$, which, by (4.3), implies Theorem 4.1. \diamond

From Theorem 4.1, (1.11) and Corollary 2.1, we immediately get the result below.

Corollary 4.1. Let Y be a random variable with law N(0,1) and $(M_n)_n$ be a martingale such that $M_0 = 0$, satisfying (4.1). Set $V_n = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2$. Then, for any u in [0,1],

$$Q_1(M_n, u) \le Q_3(M_n, u) \le \inf \left\{ -t + u^{-1/3} \left(\mathbb{E}\left((Y\sqrt{V_n} + t)^3_+ \right) + \sum_{k=1}^n \mathbb{E}(Y^3_{k+1}) \right)^{1/3} : t \in \mathbb{R} \right\},$$
(a)

$$Q_1(M_n^*, u) \le \inf \left\{ -t + \left(\frac{9\pi}{16u}\right)^{1/3} \left(\mathbb{E}\left((Y\sqrt{V_n} + t)_+^3 \right) + \sum_{k=1}^n \mathbb{E}(Y_{k+1}^3) \right)^{1/3} : t \in \mathbb{R} \right\}.$$
 (b)

Numerical comparisons. To conclude this section, we compare Corollary 4.1(a) with upper bounds derived from estimates of the Kantorovich distance in the central limit theorem in the independent case. If $M_0 = 0$ and the increments X_k are independent, then, from a result of Goldstein (2010), for any 1-Lipschitz function f,

$$\mathbb{E}(f(M_n) - f(Y\sqrt{V_n})) \le \mathbb{E}(|X_1|^3 + \dots + |X_n|^3), \text{ with } V_n = \operatorname{Var} M_n.$$
(4.8)

Now, since $\mathbb{E}(M_n) = \mathbb{E}(Y) = 0$, by (4.8) and the elementary equality $x_+ = (x + |x|)/2$,

$$\mathbb{E}((M_n+t)_+ - (Y\sqrt{V_n}+t)_+) \le \frac{1}{2} \mathbb{E}(|X_1|^3 + \dots + |X_n|^3)$$

for any real t. Hence, by (1.11) applied with p = 1, for any u in]0, 1],

$$Q_1(M_n, u) \le \sqrt{V_n} Q_1(Y, u) + (2u)^{-1} \mathbb{E} \left(|X_1|^3 + \dots + |X_n|^3 \right).$$
(4.9)

The table below gives numerical values for the upper bounds of (4.9) and Corollary 4.1(a) and their respective limits $Q_1(Y, u)$ and $Q_3(Y, u)$ (as the Liapounov ratio tends to 0) in the case $V_n = 1$ and

$$L_3^+ := \mathbb{E}(X_{1+}^3 + \dots + X_{n+}^3) = \mathbb{E}(X_{1-}^3 + \dots + X_{n-}^3) := L_3^-$$

for $L_3^+ = 10^{-m}$, m = 1, 2, 3 and $u = 2^{k-2} 10^{-k}$, k = 0, 1, 2. For sake of completeness, the values of the usual subGaussian bound $\sqrt{2|\log u|}$ are also included. One can observe that the convergence to the limit is much faster in Corollary 4.1(a) than in (4.9). As a by-product, Corollary 4.1(a) still provides better bounds for $u \le 1/20$ if $L_3^+ = 10^{-2}$, which is in the range of normal approximation, since the Liapounov ratio $L_3 := L_3^+ + L_3^-$ is equal to 2.10^{-2} .

Value of (k, m)	(0,1)	(1, 1)	(2,1)	(0,2)	(1,2)	(2,2)	(0,3)	(1,3)	(2,3)
Value of $Q_1(Y, u)$	1.27	2.06	2.67	1.27	2.06	2.67	1.27	2.06	2.67
Inequality (4.9)	1.67	4.07	12.67	1.31	2.26	3.67	1.274	2.08	2.77
Corollary 4.1(a)	1.50	2.48	3.67	1.47	2.26	3.05	1.463	2.23	2.84
Value of $Q_3(Y, u)$	1.462	2.22	2.81	1.462	2.22	2.81	1.462	2.22	2.81
Value of $\sqrt{2 \log u }$	1.665	2.447	3.035	1.665	2.447	3.035	1.665	2.447	3.035

References

- [1] Blackwell, D. and Dubins, L. A converse to the dominated convergence theorem. Illinois J. Math. 7, 508-514 (1963).
- [2] Chazottes, J. R. and Gouëzel, S. Optimal concentration inequalities for dynamical systems. Comm. Math. Phys. 316, no. 3, 843–889 (2012).
- [3] Dubins, L. and Gilat, D. On the distribution of maxima of martingales. Proc. Amer. Math. Soc. 68, no. 3, 337-338 (1978).
- [4] Gilat, D. and Meilijson, I. A simple proof of a theorem of Blackwell & Dubins on the maximum of a uniformly integrable martingale. Séminaire de Probabilités XXII, 214-216, Lecture Notes in Math. 1321, Springer, Berlin (1988).
- [5] Goldstein, L. Bounds on the constant in the mean central limit theorem. Ann. Probab. 38, no. 4, 1672–1689 (2010).
- [6] Marchina, A. Concentration inequalities for suprema of unbounded empirical processes. To appear in Ann. Henri Lebesgue (2021).
- [7] Osekowski, A. Sharp martingale and semimartingale inequalities. Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) 72. Birkhäuser/Springer (2012).
- [8] Pinelis, I. An Optimal Three-Way Stable and Monotonic Spectrum of Bounds on Quantiles: A Spectrum of Coherent Measures of Financial Risk and Economic Inequality. Risks 2, no. 3, 349-392 (2014).
- [9] Pinelis, I. Best possible bounds of the von Bahr-Esseen type. Ann. Funct. Anal. 6, no 4, 1-29 (2015a).
- [10] Pinelis, I. Exact Rosenthal-type bounds. Ann. Probab. 43, no. 5, 2511-2544 (2015b).
- [11] Rio, E. About Doob's inequality, entropy and Tchebichef. Electron. Commun. Probab. 23, (78), 1-12 (2018).
- [12] Tchebichef, P. Sur les valeurs limites des intégrales. Journal de mathématiques pures et appliquées, 2ème série, 19, 157-160 (1874).