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Abstract

We study the dynamics of price discovery in decentralized two-sided markets.

We show that there exist memoryless dynamics that converge to the core of the

underlying assignment game in which agents’ actions depend only on their current

payoff. However, we show that for any such dynamic the convergence time can grow

exponentially in relation to the population size. We present a natural dynamic in

which a player’s reservation value provides a summary of his past information and

show that this dynamic converges to the core in polynomial time in homogeneous

markets.

Keywords: assignment game, price discovery, information, convergence time

1 Introduction

We consider the classical assignment game, where workers and firms seek to match to

a single partner (Koopmans and Beckmann, 1957; Shapley and Shubik, 1972). The

outcome of the assignment game is given by a matching of workers to firms along with

prices specifying the transfer from each firm to its matched worker. The core (Gillies,
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1959) is used to define the equilibrium outcomes of the market. An outcome is in the

core if no coalition of workers and firms can strictly improve their payoffs by rematching

among themselves. Koopmans and Beckmann (1957) and Shapley and Shubik (1972)

showed that the core of the assignment game is non-empty, and that the set of core

outcomes can be easily calculated in centralized markets.

In this paper we study whether uncoupled, decentralized, natural market dynamics can

lead to core outcomes. Each agent arrives at the market with private information re-

garding his valuations, but is unaware of other agents’ valuations. Agents reach the core

outcome through a sequence of random meetings with potential partners. Specifically,

upon meeting a potential partner, agents can decide whether to keep their tentative match

or rematch at a new price. After sufficient time, the matching and associated transfers

may constitute a core outcome. We formally define such price discovery dynamics as a

stochastic process. A dynamic converges to the core if it reaches an absorbing matching

and prices are in the core with probability one.

We say that a dynamic is effectively convergent if the required time for it to reach a

core outcome grows at most polynomially in the population size. It is known that there

are simple uncoupled dynamics that converge to the core (Bayati et al., 2015; Nax and

Pradelski, 2015; Klaus and Payot, 2015), but the time required for convergence may be

so large that the dynamic is unlikely to converge in a reasonable amount of time.1

Our first result shows that an effectively convergent dynamic must require agents to

keep some additional memory beyond their current matching. We consider a class of

memoryless dynamics in which agents make their decision based only on their current

tentative matching. Formally, the transitions of the stochastic process depend only on the

current tentative matching and prices. We show that there are simple markets where the

expected time of convergence for every memoryless dynamic grows exponentially with

the population size. Loosely speaking, when the tentative matching is close to a core

outcome, the dynamic is more likely to move away from any core outcome since it is

more and more unlikely to encounter an unmatched agent. Reaching the core requires

an almost consecutive sequence of lucky draws, which are increasingly unlikely as the

population size grows.

Nonetheless, we show that there is an effectively convergent dynamic that requires little

additional memory. In each period of the proposed dynamic, a randomly selected agent

acts as an auctioneer. Agents from the other side of the market then participate in the

1See Foster and Vohra (1997); Hart and Mas-Colell (2000, 2003) for the introduction and early results
of uncoupled dynamics.
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auction, bidding the value they need to receive in order to break their current tenta-

tive match. A new match is formed between the auctioneer and the highest bidder at

the second highest price. The additional memory takes the form of a non-zero reserva-

tion value for unmatched agents. This reservation value remembers the value the agent

received when they were last matched and decreases over time while agents remain un-

matched. We show that this natural dynamic is effectively convergent for markets where

firms differ in their value for a worker, but otherwise value all workers equally (and vice

versa). We also present simulation experiments for more general markets suggesting that

this dynamic is effectively convergent for generic markets. Intuitively, the reservation

value makes the dynamic smooth, allowing agents to effectively ‘learn’ their ‘value’ over

time.

2 Related literature

Early empirical work found ambiguous evidence for whether assignment markets are

effectively convergent. Chamberlin (1948) was pessimistic, motivating Smith (1962) to

conduct experiments for markets with homogeneous goods. After as little as three trading

periods, prices were close to the market clearing price. The effectiveness of the Walrasian

double auction (Walras, 1883) has since been confirmed in numerous experimental studies

(Davis and Holt, 1994).

Theoretically, the constructive proofs showing the non-emptiness of the core for assign-

ment games already provide centralized mechanisms to find core outcomes (Koopmans

and Beckmann, 1957; Shapley and Shubik, 1972), and these are known to be effectively

convergent (Edmonds and Karp, 1972). Subsequent auction mechanisms propose one-

sided incentive compatible mechanisms guaranteeing convergence (Crawford and Knoer,

1981; Kelso and Crawford, 1982; Demange et al., 1986; Bertsekas, 1988; Bertsekas and

Castanon, 1993).2

A more recent strand of the literature studies price discovery dynamics in the absence of

a central market authority (Bayati et al., 2005, 2008; Nax and Pradelski, 2015; Newton

and Sawa, 2015; Klaus and Newton, 2016; Hamza and Shamma, 2017).3 In particular,

2A related literature studies search markets with sequential bargaining (Rubinstein and Wolinsky,
1985; Gale, 1987; Lauermann, 2013; Lauermann et al., 2018). The main difference to the markets
we consider is that agents leave the market once they match. This strand of work is thus concerned
with analyzing the trade-off between matching in the current period and foregoing potentially better
matches in the future versus the search cost incurred by remaining in the market (usually represented
by discounting future profits).

3A series of related papers studies similar processes for one-sided markets (Andersson et al., 2014;
Biró et al., 2014) and markets where firms can hire multiple workers (Nax and Pradelski, 2016; Fujishige
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Nax and Pradelski (2015) use a learning rule based on aspiration adaptation (Sauermann

and Selten, 1962; Selten, 1998) which found extensive support in laboratory experiments

(Tietz and Weber, 1972; Tietz et al., 1978; Scholz et al., 1983). Aspiration-based learning

rules were subsequently used by Nax (2015), Pradelski (2015), and Hamza and Shamma

(2017) and form the basis for our proposed effectively convergent dynamic.

There is also a related literature on one-to-one matching with non-transferable utility

(Gale and Shapley, 1962; Roth and Sotomayor, 1992). Roth and Vande Vate (1990)

propose a decentralized dynamic and show that it converges in finite time. Ackermann

et al. (2011) show that the latter dynamic is not effectively convergent. Biró and Norman

(2013) provide an empirical study on time to convergence (next to analytical results).

While generally there is no dynamic that is incentive compatible for both sides of the

market, Kanoria et al. (2018) and Hassidim and Romm (2015) show that for naturally

arising markets the core is generally small, thus allowing for approximately incentive

compatible dynamics.4

Returning to the transferable utility assignment games we study, a series of papers pro-

pose effectively convergent dynamics for specific classes of games and operating under

varying information requirements (Bayati et al., 2015; Pradelski, 2015; Assadi et al.,

2015; Pradelski and Nax, 2020). In particular, Bayati et al. (2015) propose a dynamic

where players know the outside options of the other players. Their dynamic is not uncou-

pled and also not incentive compatible. Pradelski (2015) shows that the introduction of a

correlation device gives rise to an effectively convergent dynamic, which makes firms more

powerful at some times and workers at others. Finally, Assadi et al. (2015) study the

reduced market with homogeneous goods and propose an effectively convergent dynamic.

Importantly, their dynamic gives preference to unmatched agents when rematches occur.

While these results shed light on specific dynamics, it is not yet understood whether the

decentralized assignment game is generally hard to solve; this is the central question that

we address.

3 Model

We consider the model of the two-sided assignment game as introduced by Koopmans

and Beckmann (1957) and Shapley and Shubik (1972).

In this context, a market E = (F,W,v, c) consists of firms i ∈ F and workers j ∈ W .

Let N = F∪W denote the set of all agents and set f = |F |, w = |W |, n = f + w. Each

and Yang, 2017).
4See Ashlagi et al. (2017) for an analogue result for non-transferable utility markets.
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firm can be matched to a single worker, and each worker can be matched to a single firm.

The value of matching the i-th firm with the j-th worker is vi(j) ∈ N, and the cost of

worker j matching to firm i is cj(i) ∈ N. All agents have an outside option of remaining

unmatched, which results in a value of 0.

It will be useful to denote the match value of firm i and worker j by

αij =

vi(j)− cj(i) if vi(j)− cj(i) > 0

∅ else

Let α = (αij)i∈F,j∈W and α∗ = maxi,j: αij 6=∅ αij.

We say that a market E is a homogeneous goods market if for all i, j we have that vi(j) = vi,

and cj(i)=cj. In other words, each firm offers an identical job and each worker provides

the same labor. Otherwise, the market is a heterogeneous goods market.

The matching between workers and firms µ : F ∪W → F ∪W satisfies µ(i) ∈ W ∪ {i},
µ(j) ∈ F ∪ {j}, and µ(µ(k)) = k for all k ∈ F ∪W . We denote that k is unmatched by

µ(k) = k. Payoffs are given by Φ = (φk)k∈F∪W where φi + φj = vi(j) − cj(i) for all i, j

such that µ(i) = j ∈ W , and φk = 0 for all k ∈ F ∪W such that µ(k) = k. An outcome

of the market is then given by (µ,Φ).

In this context, a matching µ is optimal if for all matchings µ′,
∑

i,j αij ·µij ≥
∑

i,j αij ·µ′ij.
Similarly, we say that the payoff profile Φ is ε-stable if φk ≥ 0 for all k ∈ F ∪Wand for

any i ∈ F, j ∈ W :

φi + φj > vi(j)− cj(i)− 2ε (3.1)

Note that φk ≥ 0 implies that the assignment is individually rational, that is, every player

prefers his assignment over being unmatched.

An outcome (µ,Φ) is in the ε-core of the assignment game if µ is optimal and Φt is

ε-stable.

3.1 Memoryless dynamics

We first study uncoupled memoryless dynamics where agents only know their current

payoffs and their costs or values. We describe such dynamics as a Markov process. The

state of the dynamics at time t ∈ N0 is given by a tentative outcome [µt,Φt]. We denote

transition probabilities by

P([µt+1,Φt+1]; [µt,Φt], E).

5



Definition 1. Fix some ε > 0. We say that a dynamic is a memoryless dynamic if it

satisfies the following properties:

I: Strict blocking. A player is assigned a new match only if his payoff increases by at

least ε. That is, if P([µt+1,Φt+1]; [µt,Φt], E) > 0, µt+1(k) 6= µt(k), and µt+1(k) 6= k (that

is, k is matched), then, φt+1
k > φtk + ε.

II: Single pair transitions. Any transition that has positive probability under P in-

volves at most one newly matched pair. The outcome changed only for the newly matched

pair, and possibly for the two players who were previously matched to the players in the

new pair, and have now become unmatched. That is, if P([µt+1,Φt+1]; [µt,Φt], E) > 0,

then there exists i ∈ F, j ∈ W such that µt+1(i) = j, µt(i) 6= j and (µt+1
k = µtk, φ

t+1
k = φtk)

for all k ∈ W ∪ F \ {i, µt(i), j, µt(j)}.

III: ε-core-absorbing. An outcome [µ,Φ] is a fixed point of P if and only if [µ,Φ]

is ε-stable. That is, P([µ,Φ]; [µ,Φ], E) = 1 if and only if [µ,Φ] is ε-stable. In addition,

starting from every tentative outcome [µ0, φ0] the expected time to reach a fixed point is

finite.

IV: Random selection. The stochastic transitions can be decomposed into the following

procedure. First, select an agent k ∈ N uniformly at random. Then agent k selects a new

matching in accordance to I-III. Formally,

P([µt+1,Φt+1]; [µt,Φt], E) =
∑
k

pkPk([µt+1,Φt+1]; [µt,Φt], E)

where pk = 1/|F ∪W |. The transitions in the support of Pk are generated by allowing

k to make a proposal based on his available information. That is, the only agents whose

assignment changed are {k, µt(k), µt+1(k), µt(µt+1(k))} and Pk([µt+1,Φt+1]; [µt,Φt], E) =

0 if µt(l) 6= µt+1(l) or φt+1
j 6= φtj for l 6∈ {k, µt(k), µt+1(k), µt(µt+1(k))} . On the support

of Pi we have that transition probabilities depend only on the tentative payoffs of k and

the potential new match µt+1(k).

As discussed in the introduction, for a dynamic to represent a realistic description of a

market, the dynamic should converge in a reasonable time window. We thus define:

Definition 2. A dynamic is effectively convergent if for any economy E with n = |F∪W |
agents, the expected convergence time to the ε-core from any initial state is O(nr) for some

r > 0.
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In other words, a dynamic is not effectively convergent if there exists a sequence of

markets for which the expected convergence time grows superpolynomially in the size of

the market.

4 Memoryless dynamics are not effectively conver-

gent

We can now state our main result:

Theorem 1. Any memoryless dynamic is not effectively convergent. That is, there exists

a sequence of markets E` with n` → ∞ such that, starting from the majority of states,

for any memoryless dynamic the expected (with respect to the stochastic mapping F)

convergence time to the ε-core grows exponentially in the number of players.

An informal intuition for the result is that random selection causes the market to oscillate

for a long time before converging. When certain agents are selected they will rematch

with a partner that is already matched correctly, thus moving the allocation away from

a core allocation. We show that when the current state is far away from a core outcome

such bad transitions are unlikely. On the other hand, when the current state is close to

a core outcome bad transitions are likely. Thus there is a tendency for the market to

oscillate around states which are not very far nor very close to the core. A dual to the

latter process is a biased random walk on a finite line, biased towards the origin. Finally,

note that a simple extension of our analysis can be used to show that the convergence to

the core can be slow if only agents on one side are selected.

Proof. We construct a specific market with homogeneous goods to give an example for

which convergence is exponential for the majority of starting states. Suppose that there

are more firms than workers (f > w) and f = w+ c, where c is a constant. In particular

we shall choose the market defined by matrix α which has a unique price supported in

an ε-core allocation (∀i ∈ W : φi = 10 − ε).5 Note that, in this market, the matching

does not matter, and convergence to the ε-core reduces to finding the correct price.

5Note that a payoff of 10 is not achievable by Property I (strict blocking) unless it is at that level in
the starting state. We assume that this is not the case, which is consistent with the consideration of the
majority of possible starting states.
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α =



10 10 ... 10

10 10 ... 10

10 10 ... 10

10 10 ... 10

... ... ... 10

10 10 10 10




f

︸ ︷︷ ︸
w

(4.1)

We say that the payoff of worker i ∈ W ’s is correct if φti = 10−ε and firm j ∈ W ’s payoff

correct if φti = ε. A worker (or firm) with correct payoff is said to be priced correctly.

Let kt = | {i ∈ W : φti = 10− ε} | be the number of matched workers who are holding the

correct payoff. Once all workers are holding the correct payoff it follows that all matched

firms do so too, since for matched i, j, we have φti +φtj = 10, implying that the ε-core has

been reached. Consequently, to prove the theorem it suffices to show that the time until

kt = w is exponential in w.

Given the restriction by Property II (single pair transitions) we have kt+1 ∈ {kt−1, kt, kt+

1}. If kt ≤ w − 1 there exists at least one firm and one worker that are not correctly

priced. (If kt = w the ε-core has been reached.) Let ltW be the number of under-priced

workers (φti < 10 − ε) and ltF the number of under-priced firms (φtj < ε). Note that

workers can never be overpaid, that is, φti ≤ 10− ε ∀i ∈ W,∀t. Therefore:

ltW + kt = w (4.2)

ltF + kt ≤ f (4.3)

Since f > w there exist unmatched firms with payoff 0. But as the correct payoff is ε,

we have ltF > 0 for all t . To summarize, we have for kt < w:

ltW , l
t
F > 0 (4.4)

To proceed, we first consider the probability that the random variable kt increases. By

Property I (strict blocking), in order to rematch at the correct price, an under-priced

worker (firm) needs to be rematched with an under-priced firm (worker). This requires

that the randomly selected agent i is either one of the ltW under-priced workers or one of

the ltF under-priced firms. By Property IV (random selection) this implies the following
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upper bound:

P(kt+1 = kt + 1) ≤ P(kt+1 = kt + 1|kt+1 6= kt) (4.5)

≤ ltW
n

+
ltF
n

(4.6)

≤
(
w − kt

n
+
f − kt

n

)
(4.7)

≤ n− 2kt

n
(4.8)

Next, consider the probability that kt decreases. This occurs when a correctly priced firm

leaves its current partner. By Property I (strict blocking) the firm must strictly increase

its payoff and the new match must have a price that is at least 2ε. The probability that a

correctly priced firm is selected is kt

n
, and for such a firm the only potential partners that

satisfy Property I (strict blocking) must be under-priced workers. Such a worker always

exists if kt < w. Therefore, given kt+1 6= kt, the selection of any correctly priced firm will

give a transition that decreases kt with probability 1 (kt > 0). By Property IV (random

selection) this implies the following lower bound:

P(kt+1 = kt − 1|kt+1 6= kt) ≥ kt

n
· 1 (4.9)

Thus conditional on kt+1 6= kt we find:

P(kt+1 = kt + 1|kt+1 6= kt) =
P(kt+1 = kt + 1|kt+1 6= kt)

P(kt+1 = kt + 1|kt+1 6= kt) + P(kt+1 = kt − 1|kt+1 6= kt)

≤
1− 2kt

n

1− 2kt

n
+ kt

n

=
(n− kt)− kt

n− kt
= 1− kt

n− kt
(4.10)

and, likewise:

P(kt+1 = kt − 1|kt+1 6= kt)= 1− P(kt+1 = kt + 1|kt+1 6= kt)

≥
kt

n

1− 2kt

n
+ kt

n

=
kt

n− kt
(4.11)

Consider the latter probability for k > 5
6
w and suppose that c < 1

6
w. The latter assump-

tion is permissible as we assume that c is a constant and we are interested in the limit as

w increases. We then have:

P(kt+1 = kt − 1|kt+1 6= kt, k >
5

6
w) >

5
6
w

n− 5
6
w

=
5
6
w

7
6
w+c

>
5
6
w

8
6
w

=
5

8
(4.12)
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We now define a random walk that is coupled with the process kt for k > 5
6
w. Let Y t

be a random variable taking values in {
⌈
5
6
w
⌉
, . . . , w} with Y 0 =

⌈
5
6
w
⌉

if k0 ≤ 5
6
w and

Y 0 = k0 otherwise. Then, let

Y t+1 =



Y t if kt+1 = kt or kt+1 ≤ 5
6
w

Y t + 1 if kt+1 = kt + 1 and kt+1 > 5
6
w

Y t − 1 w.p. 1
ρ(kt)
· 5
8

if kt+1 = kt − 1 and kt+1 > 5
6
w

Y t + 1 w.p. 1− 1
ρ(kt)
· 5
8

if kt+1 = kt − 1 and kt+1 > 5
6
w

(4.13)

where ρ(kt) := P(kt+1 = kt − 1|kt+1 6= kt). By Equation (4.12) the probabilities in

Equation (4.13) are well defined. By construction, kt ≤ Y t for all t. The probabilities

conditional on changing are:

P(Y t+1 = Y t + 1|Y t+1 6= Y t) = 1− ρ(kt) + ρ(kt) ·
[
1− 1

ρ(kt)
· 5

8

]
=

3

8
(4.14)

P(Y t+1 = Y t − 1|Y t+1 6= Y t) = ρ(kt) · 1

ρ(kt)
· 5

8
=

5

8
(4.15)

Note that conditioning on the time steps where Y t+1 6= Y t the transition probabilities are

independent of kt. Y t constitutes a lazy biased random walk with reflecting boundary

at
⌈
5
6
w
⌉

and absorbing boundary at w. Lazy refers to the fact that sometimes the value

doesn’t change, that is, Y t+1 = Y t. In particular, the random walk is biased towards⌈
5
6
w
⌉
. This model is an instance of the gambler’s ruin problem. It is known that the time

to reach the absorbing state w is exponential in the number of steps (1
6
w) and thus is

exponential in n (see Epstein 2009). Recalling that kt ≤ Y t, this concludes the proof by

noting that the exponential convergence time in n holds when starting from the majority

of states as we only needed to consider the behavior for k > 5
6
w.

5 Little information gives rise to an effectively con-

vergent dynamic

In the previous section we showed how any memoryless dynamic that allows players to

base their decision only on their current payoff is not effectively convergent. In this sec-

tion, we study how the addition of little information gives rise to an effectively convergent

dynamic. We allow unmatched players to keep information about their payoff when last

matched.

Since for any information structure one can trivially design a dynamic that is not effec-
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tively convergent (that is, the time to convergence scales exponentially in the population

size) we need to specify a matching and pricing rule. A natural candidate is the second

price auction with reserve prices. Following Nax and Pradelski (2015), we introduce re-

serve prices that are dependent on a player’s previous period reserve price rather than

only on a player’s previous period payoff. This gives unmatched players information

about their payoff when last matched. As discussed in Section 2 this is motivated by

aspiration adaptation of Sauermann and Selten (1962) and Selten (1998) and experimen-

tally confirmed by Tietz and Weber (1972) and Roth and Erev (1995). To describe it,

define a player’s period-t reserve price by

dti =

φt−1i if matched in period t− 1,

(dt−1i − δ)+ else
(5.1)

with ε > δ > 0.6 For ease of exposition suppose that the selected player is a worker

j ∈ W . He then runs a second price auction with reserve price cj + (dj + ε). The players

on the other side of the market bid vi − (di + ε) and the highest bidder, say i′, receives

the match with payoff for i: max{cj + (dj + ε),maxi 6=i′ vi − (di + ε}). When there are

several highest bidders assume that one is selected uniformly at random.

I′: Reserve price strict blocking. A player is assigned a new match if and only

if as a consequence his payoff is at least ε greater than his reserve price. That is, if

P([µt+1,Φt+1]; [µt,Φt], E) > 0, and µt+1(k) 6= µt(k), then, φt+1
k > dtk + ε.

Remark. We note that the proposed dynamic remains uncoupled and also satisfies Prop-

erties II (single-pair transitions), III (ε-core-absorbing), IV′ (random selection, where IV′

adheres to Property I′) and Property I′.

We first show that for markets with homogeneous goods the second price auction with

reserve prices is effectively convergent. Intuitively, reserve prices introduce a monotonicity

(in expectation) that allows agents to ‘learn’ their correct payoff. We then conduct a series

of computational experiments which support the conjecture that the dynamic is also

effectively convergent for randomly generated markets with heterogeneous goods.7

6If δ > 0 does not hold, the proposed dynamic does not converge to the ε-core since a player may get
‘stuck’ with a reserve price that is not supported in a core outcome.

7Notably, similar simulation results have been shown for non-transferable utility matching markets
(Biró and Norman, 2013) while the negative result by Ackermann et al. (2011) shows that in general
efficiency may not be guaranteed. Clearly, our simulations can not give an indication for a general result.
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5.1 Fast convergence in markets with homogeneous goods

Recall that in a market with homogeneous goods each firm is offering an identical job

and each worker is offering identical work. That is, for all i ∈ F , vi(j) = vi for all j ∈ W
and for all j ∈ W , cj(i) = cj for all i ∈ F . Also recall that α∗ = maxi,j: αij 6=∅ αij.

Theorem 2. For any market with homogeneous goods with ε/δ ∈ N, ε > δ, from any

starting state, the expected convergence time to the ε-core of the repeated second price

auction with reserve price is O(n3+2 ε
δ · log(n) · eα

∗
δ · α∗

ε
) periods. Further, the dynamic is

ε-core-absorbing.

For readability the proof of the latter Theorem is relegated to the Appendix.

5.2 Fast convergence in markets with heterogeneous goods

This section complements the previous results with simulations for markets with hetero-

geneous goods. We consider the random assignment markets described in Kanoria et al.

(2018) with different types of firms (TF = 1, ..., τF ) and workers (TW = 1, ..., τW ). Denote

by τ(i) the type of an agent i ∈ N and assume that match values are additively separable,

that is, of the general form:

αij = u(τ(i), τ(j)) + β
τ(j)
i + γ

τ(i)
j (5.2)

In particular this means that a match value is the sum of a utility u(τ(i), τ(j)) that

depends only on the agents’ types and idiosyncratic components. The latter depend on

the identity of one of the agents and only the type of the other agent (β
τ(j)
i and γ

τ(i)
j ). Note

that when there is a single firm type and a single worker type, we revert to the market

with homogeneous goods studied above. When there are as many firm and worker types

as there are firms and workers, the above definition posits no restrictions on the match

values.

In the computational experiments reported in this section, assignment games with input

values f, w, τF , τW are generated by randomly selecting a type in TF (respectively TW )

for each firm (respectively worker). The utility components are drawn from uniform

distributions with:

u(τ(i), τ(j)) ∼ U [0, 1, 2, . . . 100] (5.3)

β
τ(j)
i ∼ U [0, 1, 2, . . . 20] (5.4)

γ
τ(i)
j ∼ U [0, 1, 2, . . . 20] (5.5)
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We shall fix ε = 1, δ = 0.5 throughout. We report four computational experiments where

we analyze the rate of convergence for different number of types as the population size

is increasing. We chose the experiments to cover markets with the same number of firms

and workers and markets with a different number of firms and workers. Further we vary

whether both sides of the market have different types or only one side.

Experiment 1: f = w and τF = τW

Experiment 2: f = w + 4 and τF = τW

Experiment 3: f = w and τF = 1

Experiment 4: f = w + 4 and τF = 1

We analyze the growth of the number of steps to convergence (T ) as the number of agents

increases (w = 4, 8, 12, . . . , 48) for different number of types (τW = 1, 2, 0.5 · w, 1.0 · w).8

We randomly sampled 100 assignment games for each of these 4 · 4 · 12 = 192 cases and

for each sampled assignment game we ran 100 simulations and then took the average

number of steps to convergence as a proxy for the expectation.9

Taking the logarithm, if T grows exponentially we should see linear growth, if T is sub-

exponential the growth should be logarithmic. We thus estimate the following three

models where T is the time to convergence and w is the number of workers:

log(T (w)) = β0+β1 · w + β2 · log(w) + ε1 (Model 1)

log(T (w)) = β0+β1 · w + ε2 (Model 2)

log(T (w)) = β0+ β2 · log(w) + ε3 (Model 3)

where ε1, ε2, ε3 are assumed to be normally distributed error terms with mean 0. In most

of the 16 analyzed datasets β1 turns out to be statistically insignificant or negative in

Model 1, while β2 is significantly positive.10 Nevertheless, in three of the datasets β1 is

significantly positive. Using Bayesian model selection (BIC test, see Schwarz 1978; Kass

and Raftery 1995; Raftery 1995) we find strong evidence that also in these cases Model 3

is the preferred model. This allows us to reject Models 1 and 2, thus selection Model 3 as

our preferred model and confirming our hypothesis that the convergence rate is growing

polynomially in the population size. We note that the minimal R2 across all regressions

8The increments are chosen in order to ensure that in each market each type is represented with the
same proportion.

9We thus have a total of 1,920,000 simulations with an average run-time of 15 seconds (mainly varying
with the population size). Simulations were run on ETH Zurich’s EULER cluster.

10Note that, if β1 is negative this only yields further support to the hypothesis that the growth rate is
logarithmic (polynomial for the original data).
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for Model 3 is 0.748 while the maximum is 0.992, thus suggesting that our models have

very strong predictive power. The regressions and the BIC tests can be found in the

Appendix.

Figures 5.1-5.4 show the results for the four experiments. The x-axis shows the number

of workers (w) and the y-axis the logarithm of the number of time steps to convergence

to the ε-core (log(T )). Each box-plot shows the 25th to 75th percentiles and the lines

show the full range of observations of the average convergence times for 100 randomly

sampled assignment games. Each plot analyzes the four different number of types (τW =

1, 2, 0.5 · w, 1.0 · w) for different numbers of workers (and firms). The regressions show

the fitted logarithmic Model 3.

In summary, our results support the hypothesis that for most markets (randomly gen-

erated) little additional information not only suffices to design effectively convergent

dynamics for markets with homogeneous goods but also for markets with heterogeneous

goods. However, our simulations suggest that the expected rate of convergence does vary

significantly. In Experiments 1-3 the market with homogeneous goods shows the fastest

convergence times, while in Experiment 4 it is the opposite. The particularities of differ-

ent markets with heterogeneous goods are not simple derivatives of a given market with

homogeneous goods. In particular, our proof technique for markets with homogeneous

goods does not promise to extend to this more general case.

Figure 5.1: Simulations for Experiment 1: f = w and τF = τW
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Figure 5.2: Simulations for Experiment 2: f = w + 4 and τF = τW
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Figure 5.3: Simulations for Experiment 3: f = w, τF = 1
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Figure 5.4: Simulations for Experiment 4: f = w + 4, τF = 1
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6 Conclusion

Price discovery (Chamberlin, 1948; Smith, 1962) and more generally the question of de-

centralized dynamics leading to equilibrium (Hayek, 1945) has been studied by economists

for at least a century. With more and more market places moving online this topic has

sparked renewed interest. In this paper, we first showed that for an important class of

markets it is difficult to find core outcomes by decentralized dynamics. Any memoryless

dynamic, that is, a dynamic that only relies on the primitives of the game – the current

payoffs and matching – is not effectively convergent (the convergence rate grows exponen-

tially in the population size). Next, we proposed a natural, uncoupled dynamic based on

a second price auction with reserve prices and showed that through the addition of little

information, an effectively convergent dynamic for price discovery exist in markets with

homogeneous goods. Simulation experiments provide evidence for our conjecture that

this also holds for a high proportion of markets with heterogeneous goods. Our analysis

suggests that decentralized markets are not trivial, but effectively convergent dynamics

can be designed with fairly little memory requirements. Further study is needed to bet-

ter understand the effect of markets with heterogeneous goods and of exogenous changes

such as market entry and exit.
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Appendix

Proof of Theorem 2

We prove the theorem via several steps. We assume throughout w.l.o.g. w ≤ f .

Definition 3. Say that reserve prices (di)i∈F , (dj)j∈W are (ε, δ)-pre-stable if for all i ∈
F, j ∈ W matched (not necessarily to each other):

di + dj > αij − 2ε (6.1)

and for all i ∈ F, j ∈ W :

di + dj > αij − 2ε− δ (6.2)

Note that if δ < ε is the smallest unit, the latter equation is equivalent to:

di + dj ≥ αij − 2ε (6.3)

Lemma 4. The expected time until reserve prices are (ε, δ)-pre-stable is O(n log(n)).

Proof. If player i is activated as auctioneer in period t, by the end of the period i has

• rematched and dti + dtj ≥ αij for all j (since the highest bidder wins),

• remains in previous match and dti +dtj > αij−2ε for all j (since otherwise he would

have rematched), or

• remains unmatched and thus in period t− 1, dt−1i + dt−1j > αij − 2ε for all j (since

otherwise he would have found a match).

Hence at the end of period t, dti + dtj > αij − 2ε− δ for all j and the assertion holds for

the auctioneer.

We shall now show that once the assertion holds for a player it holds in all subsequent

periods. Suppose that in t − 1 either i is matched and dt−1i + dt−1j > αij − 2ε for all j

or i is unmatched and dt−1i + dt−1j > αij − 2ε− δ for all j. Suppose that j is selected as

auctioneer in period t. Then, by the previous arguments, at the end of period t either j

• is matched and dt−1j + dt−1i′ > αji′ − 2ε for all i′, or

• is unmatched and dt−1j + dt−1i′ > αji′ − 2ε− δ for all i′.
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In particular for i the assertion still holds since the only player with whom she could

violate the condition is j because only auctioneers (potentially) reduce their reserve prices.

To summarize, after each player is selected at least once a pre-stable state is reached.

The expected waiting time is O(n log(n)) (by the Coupon Collectors Problem, see, for

example, Feller, 1950).

Corollary 5. If for some T > 0,(dTi )i∈F , (d
T
j )j∈W is (ε, δ)-pre-stable, then:

1. for all t ≥ T (dti)i∈F , (d
t
j)j∈W is (ε, δ)-pre-stable

2. no two matched players can rematch in the next period

3. the number of matchings is non-decreasing

Definition 6. Let mt be the number of matched workers in period t (which is the same

as the number of matched firms).

Lemma 7. Suppose the market consists of homogeneous goods. If for some T > 0,(dTi )i∈F , (d
T
j )j∈W

is (ε, δ)-pre-stable and mt < w, then for all t ≥ T the expected time for mt to increase is

O(n1+2ε/δ · eα
∗
δ ).

Proof. By Corollary 5(3), the number of matched agents only increases when two un-

matched agents match. Hence we are interested in the following probability:

P(unmatched as auctioneer) · P(other unmatched wins auction) (6.4)

Since mt < w, P(unmatched as auctioneer) ≥ 1
n
. The expected waiting time for this

event is bounded above by n.

We introduce a known decomposition of markets with homogeneous goods (see, for exam-

ple, Kanoria et al. (2018)) where match values αij are composed of non-negative values

βi, γj such that:

αij = βi + γj (6.5)

Given two unmatched agents i, j suppose that there exists a feasible match for each of
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them i′, j′, that is:

di + dj′ = αij′ − 2ε = βi + γj′ − 2ε (6.6)

di′ + dj = αi′j − 2ε = βi′ + γj − 2ε (6.7)

By adding the two equations we find:

di + dj = βi + γj − 2ε+ βi′ + γj′ − 2ε− (di′ + dj′) (6.8)

≤ αij − 2ε+ αi′j′ − 2ε− (αi′j′ − 2ε) (6.9)

≤ αij − 2ε (6.10)

Hence if i, j are feasible with some player they are also feasible with each other.

Since αij are multiples of δ we have for all i, j, that di, dj are multiples of δ. Thus if

di + dj ≯ αij − 2ε (i, j are feasible) and di + dj > αij − 2ε− δ (pre-stable) we must have

di + dj = αij − 2ε. Consequently, if two opposite unmatched agents are feasible for each

other they are also among the highest bidders for each other (and thus might match).

It then suffices to evaluate the probability that two unmatched agents i, j are feasible at

the same time. We shall write a protocol in pseudo-code:

1. The probability that any given player is selected in a period is 1/n. Hence the expected

waiting time until one unmatched agent is feasible is easily seen to be O(n · α∗
δ

). Let i be

the first unmatched agent becoming feasible.

2a. If i re-matches with another unmatched agent we are done.

2b. Otherwise she re-matches with a matched player j′ who in turn leaves her previous

partner unmatched, i′. Denote the player who last turned unmatched by i∗.

3. The new unmatched agent i∗ has to reduce her reserve price by at most 2ε to become

feasible again (since the newly matched players haven’t increased their reserve price by

more than ε each). Note that, as long as mt does not increase, in any subsequent period

there is always at least one unmatched agent, namely i∗, who needs to reduce her reserve

price by at most 2ε.

Now, regarding 1, we evaluate the probability that an unmatched agent from the other

side, j, becomes feasible before i∗ does. j has to reduce his reserve price at most α∗/δ
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times which takes in expectation n · α∗/δ steps. Hence:

P(j becomes feasible before i∗) ≥
(
n− 1

n

)nα∗/δ
(6.11)

=

(
n

n− 1

)α∗/δ (
n− 1

n

)(n+1)α∗/δ

(6.12)

≥
(

n

n− 1

)α∗/δ (
1

e

)α∗/δ
(6.13)

the last inequality holds because we know that
(
1 + 1

n

)n ≤ e ≤
(
1 + 1

n

)n+1
and thus(

1− 1
n

)n ≥ e ≥
(
1− 1

n

)n+1
(“monotonicity from below”). Thus the expected time for

the event ‘j becomes feasible before i∗’ is upper bounded by eα
∗/δ.

Now if j is feasible we have:

P(i∗ becomes feasible before j matches|j is feasible) ≥
(

1

n

)2ε/δ

, (6.14)

where the lower bound constitutes the probability of selecting i∗ 2ε/δ consecutive times.

Thus, the expected time is upper bounded by n2ε/δ. Combining the two bounds we find

that the expected time before two unmatched agents match is given by:

n2ε/δ · eα∗/δ (6.15)

Thus in total we have:

n1+2ε/δ · eα∗/δ (6.16)

Corollary 8. The expected time until mt = w is O(n2+2ε/δ · eα
∗
δ ).

Proof. This follows by applying Lemma 7 for all n players.

Lemma 9. Suppose that for T > 0, mT = w. The expected time until an ε-stable state is

reached is O(n2 · α∗
ε

).

Proof. If w = f this is immediately the case once all players are matched. Otherwise,

suppose that w < f . Note that by Corollary 5(3) the number of matchings is non-

decreasing. Thus all workers (the short side of the market) remain matched in all periods

t > T . But matched players do not decrease their reserve prices and only re-match if

their subsequent reserve price increases by at least ε. If the current state is not ε-stable
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there exists at least one (matched) worker and one (unmatched) firm who are feasible.

The expected time until one of them is selected as auctioneer is O(n). We thus have that

the time until an ε-stable state is reached is:

O(n) · n · α
∗

ε
= O(n2 · α

∗

ε
) (6.17)

Combining the bounds from Lemmas 4, 7, 9, and Corollary 8 it follows that overall the

expected time to reach the ε-core is given by:

O(n3+2 ε
δ · log(n) · e

α∗
δ · α

∗

ε
) (6.18)

thus concluding the proof of Theorem 2.

Details of OLS regressions and BIC tests for Section 5.2

This section contains the detailed results of the OLS regressions and Bayesian model

selections (BIC test, see Schwarz 1978; Kass and Raftery 1995; Raftery 1995) for Models

1-3 from Section 5.2. For each experiment there are four regressions for the different

number of types τW (and τF unless it is kept constant at 1). As described in the main

part all regressions show that Model 3 has very high R2 for all cases. Further, when

Model 1 shows a significant value for the linear term the Bayesian model selection again

points strongly to Model 3 (using the classification by Kass and Raftery 1995 for strength

of evidence).
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Experiment 1: f = w, τF = τW

Table 1: τW = 1

Model 1 Model 2 Model 3
w 0.002 0.060∗∗∗

(0.002) (0.001)

log(w) 1.185∗∗∗ 1.215∗∗∗

(0.036) (0.012)

Constant 4.930∗∗∗ 7.019∗∗∗ 4.882∗∗∗

(0.067) (0.025) (0.037)

Observations 1,200 1,200 1,200
R2 0.899 0.809 0.899
BIC -8382.372 -8296.923 -8389.396

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: τW = 2

Model 1 Model 2 Model 3
w −0.014∗∗∗ 0.070∗∗∗

(0.004) (0.002)

log(w) 1.690∗∗∗ 1.439∗∗∗

(0.074) (0.024)

Constant 4.593∗∗∗ 7.573∗∗∗ 4.999∗∗∗

(0.136) (0.044) (0.076)

Observations 1,200 1,200 1,200
R2 0.750 0.642 0.748
BIC -8052.257 -7870.996 -8054.687

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: τW = 0.5 · w
Model 1 Model 2 Model 3

w −0.022∗∗∗ 0.064∗∗∗

(0.002) (0.001)

log(w) 1.730∗∗∗ 1.328∗∗∗

(0.032) (0.011)

Constant 4.633∗∗∗ 7.681∗∗∗ 5.280∗∗∗

(0.058) (0.030) (0.035)

Observations 1,200 1,200 1,200
R2 0.934 0.769 0.924
BIC -8407.188 -8217.127 -8402.415

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: τW = 1.0 · w
Model 1 Model 2 Model 3

w −0.035∗∗∗ 0.069∗∗∗

(0.002) (0.001)

log(w) 2.081∗∗∗ 1.456∗∗∗

(0.031) (0.012)

Constant 3.598∗∗∗ 7.265∗∗∗ 4.605∗∗∗

(0.056) (0.034) (0.037)

Observations 1,200 1,200 1,200
R2 0.948 0.749 0.928
BIC -8412.572 -8134.343 -8390.906

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Experiment 2: f = w + 4, τF = τW

Table 5: τW = 1

Model 1 Model 2 Model 3
w −0.002 0.080∗∗∗

(0.004) (0.002)

log(w) 1.670∗∗∗ 1.628∗∗∗

(0.075) (0.024)

Constant 5.173∗∗∗ 8.117∗∗∗ 5.241∗∗∗

(0.138) (0.045) (0.076)

Observations 1,200 1,200 1,200
R2 0.789 0.702 0.789
BIC -8040.924 -7864.102 -8047.88

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: τW = 2

Model 1 Model 2 Model 3
w −0.007∗ 0.074∗∗∗

(0.004) (0.001)

log(w) 1.637∗∗∗ 1.508∗∗∗

(0.070) (0.023)

Constant 5.581∗∗∗ 8.466∗∗∗ 5.788∗∗∗

(0.128) (0.042) (0.071)

Observations 1,200 1,200 1,200
R2 0.788 0.691 0.787
BIC -8101.308 -7931.802 -8107.183

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7: τW = 0.5 · w
Model 1 Model 2 Model 3

w 0.006∗∗∗ 0.095∗∗∗

(0.002) (0.001)

log(w) 1.808∗∗∗ 1.911∗∗∗

(0.030) (0.010)

Constant 5.389∗∗∗ 8.576∗∗∗ 5.223∗∗∗

(0.055) (0.030) (0.031)

Observations 1,200 1,200 1,200
R2 0.970 0.879 0.969
BIC -8414.732 -8206.331 -8421.043

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: τW = 1.0 · w
Model 1 Model 2 Model 3

w 0.035∗∗∗ 0.095∗∗∗

(0.001) (0.001)

log(w) 1.828∗∗∗ 1.891∗∗∗

(0.015) (0.005)

Constant 5.388∗∗∗ 8.576∗∗∗ 5.287∗∗∗

(0.028) (0.030) (0.016)

Observations 1,200 1,200 1,200
R2 0.992 0.879 0.992
BIC -8468.319 -8255.281 -8475.116

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Experiment 3: f = w, τF = 1

Table 9: τW = 1

Model 1 Model 2 Model 3
w −0.001 0.061∗∗∗

(0.002) (0.001)

log(w) 1.246∗∗∗ 1.228∗∗∗

(0.035) (0.011)

Constant 4.755∗∗∗ 6.952∗∗∗ 4.785∗∗∗

(0.065) (0.025) (0.036)

Observations 1,200 1,200 1,200
R2 0.905 0.807 0.905
BIC -8387.447 -8292.166 -8394.512

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 10: τW = 2

Model 1 Model 2 Model 3
w −0.017∗∗∗ 0.059∗∗∗

(0.002) (0.001)

log(w) 1.545∗∗∗ 1.236∗∗∗

(0.047) (0.015)

Constant 4.544∗∗∗ 7.268∗∗∗ 5.043∗∗∗

(0.085) (0.032) (0.048)

Observations 1,200 1,200 1,200
R2 0.849 0.711 0.843
BIC -8315.307 -8164.99 -8315.349

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 11: τW = 0.5 · w
Model 1 Model 2 Model 3

w −0.015∗∗∗ 0.090∗∗∗

(0.002) (0.001)

log(w) 2.118∗∗∗ 1.853∗∗∗

(0.047) (0.016)

Constant 3.708∗∗∗ 7.442∗∗∗ 4.135∗∗∗

(0.087) (0.039) (0.049)

Observations 1,200 1,200 1,200
R2 0.924 0.798 0.922
BIC -8309.875 -8021.313 -8311.795

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: τW = 1.0 · w
Model 1 Model 2 Model 3

w −0.013∗∗∗ 0.089∗∗∗

(0.002) (0.001)

log(w) 2.056∗∗∗ 1.816∗∗∗

(0.036) (0.012)

Constant 4.044∗∗∗ 7.668∗∗∗ 4.431∗∗∗

(0.066) (0.035) (0.037)

Observations 1,200 1,200 1,200
R2 0.953 0.825 0.951
BIC -8384.385 -8112.93 -8387.24

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Experiment 4: f = w + 4, τF = 1

Table 13: τW = 1

Model 1 Model 2 Model 3
w 0.002 0.082∗∗∗

(0.004) (0.002)

log(w) 1.609∗∗∗ 1.640∗∗∗

(0.078) (0.025)

Constant 5.219∗∗∗ 8.054∗∗∗ 5.168∗∗∗

(0.142) (0.045) (0.079)

Observations 1,200 1,200 1,200
R2 0.780 0.702 0.780
BIC -8010.803 -7847.339 -8017.82

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 14: τW = 2

Model 1 Model 2 Model 3
w 0.005 0.060∗∗∗

(0.004) (0.001)

log(w) 1.098∗∗∗ 1.195∗∗∗

(0.078) (0.025)

Constant 6.420∗∗∗ 8.356∗∗∗ 6.263∗∗∗

(0.143) (0.042) (0.079)

Observations 1,200 1,200 1,200
R2 0.653 0.595 0.653
BIC -8009.301 -7936.876 -8015.697

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: τW = 0.5 · w
Model 1 Model 2 Model 3

w −0.002 0.057∗∗∗

(0.003) (0.001)

log(w) 1.188∗∗∗ 1.161∗∗∗

(0.056) (0.018)

Constant 6.417∗∗∗ 8.511∗∗∗ 6.461∗∗∗

(0.102) (0.033) (0.056)

Observations 1,200 1,200 1,200
R2 0.776 0.691 0.776
BIC -8242.977 -8156.995 - -8250.013

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 16: τW = 1.0 · w
Model 1 Model 2 Model 3

w 0.013∗∗∗ 0.063∗∗∗

(0.002) (0.001)

log(w) 1.013∗∗∗ 1.246∗∗∗

(0.045) (0.015)

Constant 6.639∗∗∗ 8.424∗∗∗ 6.263∗∗∗

(0.083) (0.027) (0.047)

Observations 1,200 1,200 1,200
R2 0.857 0.798 0.854
BIC -8323.708 -8263.219 -8326.783

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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