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The importance of memory for price discovery in decentralized markets

Introduction

We consider the classical assignment game, where workers and firms seek to match to a single partner [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF][START_REF] Shapley | The assignment game 1: The core[END_REF]. The outcome of the assignment game is given by a matching of workers to firms along with prices specifying the transfer from each firm to its matched worker. The core [START_REF] Gillies | Solutions to general non-zero-sum games[END_REF] is used to define the equilibrium outcomes of the market. An outcome is in the core if no coalition of workers and firms can strictly improve their payoffs by rematching among themselves. [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF] and [START_REF] Shapley | The assignment game 1: The core[END_REF] showed that the core of the assignment game is non-empty, and that the set of core outcomes can be easily calculated in centralized markets.

In this paper we study whether uncoupled, decentralized, natural market dynamics can lead to core outcomes. Each agent arrives at the market with private information regarding his valuations, but is unaware of other agents' valuations. Agents reach the core outcome through a sequence of random meetings with potential partners. Specifically, upon meeting a potential partner, agents can decide whether to keep their tentative match or rematch at a new price. After sufficient time, the matching and associated transfers may constitute a core outcome. We formally define such price discovery dynamics as a stochastic process. A dynamic converges to the core if it reaches an absorbing matching and prices are in the core with probability one.

We say that a dynamic is effectively convergent if the required time for it to reach a core outcome grows at most polynomially in the population size. It is known that there are simple uncoupled dynamics that converge to the core [START_REF] Bayati | Bargaining dynamics in exchange networks[END_REF][START_REF] Nax | Evolutionary dynamics and equitable core selection in assignment games[END_REF][START_REF] Klaus | Paths to stability in the assignment problem[END_REF], but the time required for convergence may be so large that the dynamic is unlikely to converge in a reasonable amount of time. 1Our first result shows that an effectively convergent dynamic must require agents to keep some additional memory beyond their current matching. We consider a class of memoryless dynamics in which agents make their decision based only on their current tentative matching. Formally, the transitions of the stochastic process depend only on the current tentative matching and prices. We show that there are simple markets where the expected time of convergence for every memoryless dynamic grows exponentially with the population size. Loosely speaking, when the tentative matching is close to a core outcome, the dynamic is more likely to move away from any core outcome since it is more and more unlikely to encounter an unmatched agent. Reaching the core requires an almost consecutive sequence of lucky draws, which are increasingly unlikely as the population size grows.

Nonetheless, we show that there is an effectively convergent dynamic that requires little additional memory. In each period of the proposed dynamic, a randomly selected agent acts as an auctioneer. Agents from the other side of the market then participate in the auction, bidding the value they need to receive in order to break their current tentative match. A new match is formed between the auctioneer and the highest bidder at the second highest price. The additional memory takes the form of a non-zero reservation value for unmatched agents. This reservation value remembers the value the agent received when they were last matched and decreases over time while agents remain unmatched. We show that this natural dynamic is effectively convergent for markets where firms differ in their value for a worker, but otherwise value all workers equally (and vice versa). We also present simulation experiments for more general markets suggesting that this dynamic is effectively convergent for generic markets. Intuitively, the reservation value makes the dynamic smooth, allowing agents to effectively 'learn' their 'value' over time.

Related literature

Early empirical work found ambiguous evidence for whether assignment markets are effectively convergent. [START_REF] Chamberlin | An experimental imperfect market[END_REF] was pessimistic, motivating [START_REF] Smith | An experimental study of competitive market behavior[END_REF] to conduct experiments for markets with homogeneous goods. After as little as three trading periods, prices were close to the market clearing price. The effectiveness of the Walrasian double auction [START_REF] Walras | Theorie mathematique de la richesse sociale[END_REF] has since been confirmed in numerous experimental studies [START_REF] Davis | Market power and mergers in laboratory markets with posted prices[END_REF].

Theoretically, the constructive proofs showing the non-emptiness of the core for assignment games already provide centralized mechanisms to find core outcomes [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF][START_REF] Shapley | The assignment game 1: The core[END_REF], and these are known to be effectively convergent [START_REF] Edmonds | Theoretical improvements in algorithmic efficiency for network flow problems[END_REF]. Subsequent auction mechanisms propose onesided incentive compatible mechanisms guaranteeing convergence [START_REF] Crawford | Job matching with heterogeneous firms and workers[END_REF][START_REF] Kelso | Job matching, coalition formation, and gross substitutes[END_REF][START_REF] Demange | Multi-item auctions[END_REF][START_REF] Bertsekas | The auction algorithm: A distributed relaxation method for the assignment problem[END_REF][START_REF] Bertsekas | A forward/reverse auction algorithm for asymmetric assignment problems[END_REF].2 

A more recent strand of the literature studies price discovery dynamics in the absence of a central market authority [START_REF] Bayati | Maximum Weight Matching via Max-Product Belief Propagation[END_REF][START_REF] Bayati | Max-product for maximum weight matching: convergence, correctness, and lp duality[END_REF][START_REF] Nax | Evolutionary dynamics and equitable core selection in assignment games[END_REF][START_REF] Newton | A one-shot deviation principle for stability in matching problems[END_REF][START_REF] Klaus | Stochastic stability in assignment problems[END_REF][START_REF] Hamza | A blind matching algorithm for cognitive radio networks[END_REF]. 3 In particular, [START_REF] Nax | Evolutionary dynamics and equitable core selection in assignment games[END_REF] use a learning rule based on aspiration adaptation [START_REF] Sauermann | Anspruchsanpassungstheorie der Unternehmung[END_REF][START_REF] Selten | Aspiration adaptation theory[END_REF] which found extensive support in laboratory experiments [START_REF] Tietz | On the nature of the bargaining process in the Kreskogame[END_REF][START_REF] Tietz | On aspiration forming behavior in repetitive negotiations[END_REF][START_REF] Scholz | Aspiration forming and predictions based on aspiration levels compared between professional and non-professional bargainers[END_REF]. Aspiration-based learning rules were subsequently used by [START_REF] Nax | Equity dynamics in bargaining without information exchange[END_REF], [START_REF] Pradelski | Decentralized dynamics and fast convergence in the assignment game[END_REF], and [START_REF] Hamza | A blind matching algorithm for cognitive radio networks[END_REF] and form the basis for our proposed effectively convergent dynamic.

There is also a related literature on one-to-one matching with non-transferable utility [START_REF] Gale | College admissions and stability of marriage[END_REF][START_REF] Roth | Two-sided matching[END_REF]. [START_REF] Roth | Random paths to stability in two-sided matching[END_REF] propose a decentralized dynamic and show that it converges in finite time. [START_REF] Ackermann | Uncoordinated two-sided matching markets[END_REF] show that the latter dynamic is not effectively convergent. [START_REF] Biró | Analysis of stochastic matching markets[END_REF] provide an empirical study on time to convergence (next to analytical results). While generally there is no dynamic that is incentive compatible for both sides of the market, [START_REF] Kanoria | Convergence of the core in assignment markets[END_REF] and [START_REF] Hassidim | An approximate law of one price in random assignment games[END_REF] show that for naturally arising markets the core is generally small, thus allowing for approximately incentive compatible dynamics. 4 Returning to the transferable utility assignment games we study, a series of papers propose effectively convergent dynamics for specific classes of games and operating under varying information requirements [START_REF] Bayati | Bargaining dynamics in exchange networks[END_REF][START_REF] Pradelski | Decentralized dynamics and fast convergence in the assignment game[END_REF][START_REF] Assadi | Fast convergence in the double oral auction[END_REF][START_REF] Pradelski | Market sentiments and convergence dynamics in decentralized assignment economies[END_REF]. In particular, [START_REF] Bayati | Bargaining dynamics in exchange networks[END_REF] propose a dynamic where players know the outside options of the other players. Their dynamic is not uncoupled and also not incentive compatible. [START_REF] Pradelski | Decentralized dynamics and fast convergence in the assignment game[END_REF] shows that the introduction of a correlation device gives rise to an effectively convergent dynamic, which makes firms more powerful at some times and workers at others. Finally, [START_REF] Assadi | Fast convergence in the double oral auction[END_REF] study the reduced market with homogeneous goods and propose an effectively convergent dynamic. Importantly, their dynamic gives preference to unmatched agents when rematches occur. While these results shed light on specific dynamics, it is not yet understood whether the decentralized assignment game is generally hard to solve; this is the central question that we address.

Model

We consider the model of the two-sided assignment game as introduced by [START_REF] Koopmans | Assignment problems and the location of economic activities[END_REF] and [START_REF] Shapley | The assignment game 1: The core[END_REF].

In this context, a market E = (F, W, v, c) consists of firms i ∈ F and workers j ∈ W . Let N = F ∪W denote the set of all agents and set f = |F |, w = |W |, n = f + w. Each and Yang, 2017).

4 See [START_REF] Ashlagi | Unbalanced random matching markets: The stark effect of competition[END_REF] for an analogue result for non-transferable utility markets.

firm can be matched to a single worker, and each worker can be matched to a single firm. The value of matching the i-th firm with the j-th worker is v i (j) ∈ N, and the cost of worker j matching to firm i is c j (i) ∈ N. All agents have an outside option of remaining unmatched, which results in a value of 0.

It will be useful to denote the match value of firm i and worker j by

α ij =    v i (j) -c j (i) if v i (j) -c j (i) > 0 ∅ else Let α = (α ij ) i∈F,j∈W and α * = max i,j: α ij =∅ α ij .
We say that a market E is a homogeneous goods market if for all i, j we have that v i (j) = v i , and c j (i)=c j . In other words, each firm offers an identical job and each worker provides the same labor. Otherwise, the market is a heterogeneous goods market.

The matching between workers and firms µ :

F ∪ W → F ∪ W satisfies µ(i) ∈ W ∪ {i}, µ(j) ∈ F ∪ {j}, and µ(µ(k)) = k for all k ∈ F ∪ W . We denote that k is unmatched by µ(k) = k.
Payoffs are given by Φ = (φ k ) k∈F ∪W where φ i + φ j = v i (j) -c j (i) for all i, j such that µ(i) = j ∈ W , and φ k = 0 for all k ∈ F ∪ W such that µ(k) = k. An outcome of the market is then given by (µ, Φ).

In this context, a matching µ is optimal if for all matchings µ , i,j

α ij •µ ij ≥ i,j α ij •µ ij .
Similarly, we say that the payoff profile Φ is ε-stable if φ k ≥ 0 for all k ∈ F ∪ W and for any i ∈ F, j ∈ W :

φ i + φ j > v i (j) -c j (i) -2ε (3.1)
Note that φ k ≥ 0 implies that the assignment is individually rational, that is, every player prefers his assignment over being unmatched.

An outcome (µ, Φ) is in the ε-core of the assignment game if µ is optimal and Φ t is ε-stable.

Memoryless dynamics

We first study uncoupled memoryless dynamics where agents only know their current payoffs and their costs or values. We describe such dynamics as a Markov process. The state of the dynamics at time t ∈ N 0 is given by a tentative outcome [µ 

([µ t+1 , Φ t+1 ]; [µ t , Φ t ], E) > 0, then there exists i ∈ F, j ∈ W such that µ t+1 (i) = j, µ t (i) = j and (µ t+1 k = µ t k , φ t+1 k = φ t k ) for all k ∈ W ∪ F \ {i, µ t (i), j, µ t (j)}. III: ε-core-absorbing. An outcome [µ, Φ] is a fixed point of P if and only if [µ, Φ] is ε-stable. That is, P([µ, Φ]; [µ, Φ], E) = 1 if and only if [µ, Φ] is ε-stable.
In addition, starting from every tentative outcome [µ 0 , φ 0 ] the expected time to reach a fixed point is finite.

IV: Random selection. The stochastic transitions can be decomposed into the following procedure. First, select an agent k ∈ N uniformly at random. Then agent k selects a new matching in accordance to I-III. Formally,

P([µ t+1 , Φ t+1 ]; [µ t , Φ t ], E) = k p k P k ([µ t+1 , Φ t+1 ]; [µ t , Φ t ], E) where p k = 1/|F ∪ W |.
The transitions in the support of P k are generated by allowing k to make a proposal based on his available information. That is, the only agents whose assignment changed are {k,

µ t (k), µ t+1 (k), µ t (µ t+1 (k))} and P k ([µ t+1 , Φ t+1 ]; [µ t , Φ t ], E) = 0 if µ t (l) = µ t+1 (l) or φ t+1 j = φ t j for l ∈ {k, µ t (k), µ t+1 (k), µ t (µ t+1 (k))} .
On the support of P i we have that transition probabilities depend only on the tentative payoffs of k and the potential new match µ t+1 (k).

As discussed in the introduction, for a dynamic to represent a realistic description of a market, the dynamic should converge in a reasonable time window. We thus define: Definition 2. A dynamic is effectively convergent if for any economy E with n = |F ∪W | agents, the expected convergence time to the ε-core from any initial state is O(n r ) for some r > 0.

In other words, a dynamic is not effectively convergent if there exists a sequence of markets for which the expected convergence time grows superpolynomially in the size of the market.

Memoryless dynamics are not effectively convergent

We can now state our main result:

Theorem 1. Any memoryless dynamic is not effectively convergent. That is, there exists a sequence of markets E with n → ∞ such that, starting from the majority of states, for any memoryless dynamic the expected (with respect to the stochastic mapping F) convergence time to the ε-core grows exponentially in the number of players.

An informal intuition for the result is that random selection causes the market to oscillate for a long time before converging. When certain agents are selected they will rematch with a partner that is already matched correctly, thus moving the allocation away from a core allocation. We show that when the current state is far away from a core outcome such bad transitions are unlikely. On the other hand, when the current state is close to a core outcome bad transitions are likely. Thus there is a tendency for the market to oscillate around states which are not very far nor very close to the core. A dual to the latter process is a biased random walk on a finite line, biased towards the origin. Finally, note that a simple extension of our analysis can be used to show that the convergence to the core can be slow if only agents on one side are selected.

Proof. We construct a specific market with homogeneous goods to give an example for which convergence is exponential for the majority of starting states. Suppose that there are more firms than workers (f > w) and f = w + c, where c is a constant. In particular we shall choose the market defined by matrix α which has a unique price supported in an ε-core allocation (∀i ∈ W : φ i = 10 -ε).5 Note that, in this market, the matching does not matter, and convergence to the -core reduces to finding the correct price. 

α =              10 
                                    f w (4.1)
We say that the payoff of worker i ∈ W 's is correct if φ t i = 10 -ε and firm j ∈ W 's payoff correct if φ t i = ε. A worker (or firm) with correct payoff is said to be priced correctly. Let k t = | {i ∈ W : φ t i = 10 -ε} | be the number of matched workers who are holding the correct payoff. Once all workers are holding the correct payoff it follows that all matched firms do so too, since for matched i, j, we have φ t i + φ t j = 10, implying that the ε-core has been reached. Consequently, to prove the theorem it suffices to show that the time until k t = w is exponential in w.

Given the restriction by Property II (single pair transitions) we have k t+1 ∈ {k t -1, k t , k t + 1}. If k t ≤ w -1 there exists at least one firm and one worker that are not correctly priced. (If k t = w the ε-core has been reached.) Let l t W be the number of under-priced workers (φ t i < 10 -ε) and l t F the number of under-priced firms (φ t j < ε). Note that workers can never be overpaid, that is, φ t i ≤ 10 -ε ∀i ∈ W, ∀t. Therefore:

l t W + k t = w (4.2) l t F + k t ≤ f (4.3)
Since f > w there exist unmatched firms with payoff 0. But as the correct payoff is ε, we have l t F > 0 for all t . To summarize, we have for k t < w:

l t W , l t F > 0 (4.4)
To proceed, we first consider the probability that the random variable k t increases. By Property I (strict blocking), in order to rematch at the correct price, an under-priced worker (firm) needs to be rematched with an under-priced firm (worker). This requires that the randomly selected agent i is either one of the l t W under-priced workers or one of the l t F under-priced firms. By Property IV (random selection) this implies the following upper bound:

P(k t+1 = k t + 1) ≤ P(k t+1 = k t + 1|k t+1 = k t ) (4.5) ≤ l t W n + l t F n (4.6) ≤ w -k t n + f -k t n (4.7) ≤ n -2k t n (4.8)
Next, consider the probability that k t decreases. This occurs when a correctly priced firm leaves its current partner. By Property I (strict blocking) the firm must strictly increase its payoff and the new match must have a price that is at least 2ε. The probability that a correctly priced firm is selected is k t n , and for such a firm the only potential partners that satisfy Property I (strict blocking) must be under-priced workers. Such a worker always exists if k t < w. Therefore, given k t+1 = k t , the selection of any correctly priced firm will give a transition that decreases k t with probability 1 (k t > 0). By Property IV (random selection) this implies the following lower bound:

P(k t+1 = k t -1|k t+1 = k t ) ≥ k t n • 1 (4.9)
Thus conditional on k t+1 = k t we find:

P(k t+1 = k t + 1|k t+1 = k t ) = P(k t+1 = k t + 1|k t+1 = k t ) P(k t+1 = k t + 1|k t+1 = k t ) + P(k t+1 = k t -1|k t+1 = k t ) ≤ 1 -2k t n 1 -2k t n + k t n = (n -k t ) -k t n -k t = 1 - k t n -k t
(4.10) and, likewise:

P(k t+1 = k t -1|k t+1 = k t )= 1 -P(k t+1 = k t + 1|k t+1 = k t ) ≥ k t n 1 -2k t n + k t n = k t n -k t (4.11)
Consider the latter probability for k > 5 6 w and suppose that c < 1 6 w. The latter assumption is permissible as we assume that c is a constant and we are interested in the limit as w increases. We then have: We now define a random walk that is coupled with the process k t for k > 5 6 w. Let Y t be a random variable taking values in { 5 6 w , . . . , w} with Y 0 = 5 6 w if k 0 ≤ 5 6 w and Y 0 = k 0 otherwise. Then, let

P(k t+1 = k t -1|k t+1 = k t , k > 5 6 w) >
Y t+1 =                Y t if k t+1 = k t or k t+1 ≤ 5 6 w Y t + 1 if k t+1 = k t + 1 and k t+1 > 5 6 w Y t -1 w.p. 1 ρ(k t ) • 5 8 if k t+1 = k t -1 and k t+1 > 5 6 w Y t + 1 w.p. 1 -1 ρ(k t ) • 5 8 if k t+1 = k t -1 and k t+1 > 5 6 w (4.13)
where ρ(k t ) := P(k t+1 = k t -1|k t+1 = k t ). By Equation (4.12) the probabilities in Equation (4.13) are well defined. By construction, k t ≤ Y t for all t. The probabilities conditional on changing are:

P(Y t+1 = Y t + 1|Y t+1 = Y t ) = 1 -ρ(k t ) + ρ(k t ) • 1 - 1 ρ(k t ) • 5 8 = 3 8 (4.14) P(Y t+1 = Y t -1|Y t+1 = Y t ) = ρ(k t ) • 1 ρ(k t ) • 5 8 = 5 8 (4.15)
Note that conditioning on the time steps where Y t+1 = Y t the transition probabilities are independent of k t . Y t constitutes a lazy biased random walk with reflecting boundary at 5 6 w and absorbing boundary at w. Lazy refers to the fact that sometimes the value doesn't change, that is, Y t+1 = Y t . In particular, the random walk is biased towards 5 6 w . This model is an instance of the gambler's ruin problem. It is known that the time to reach the absorbing state w is exponential in the number of steps ( 1 6 w) and thus is exponential in n (see [START_REF] Epstein | The theory of gambling and statistical logic[END_REF]. Recalling that k t ≤ Y t , this concludes the proof by noting that the exponential convergence time in n holds when starting from the majority of states as we only needed to consider the behavior for k > 5 6 w.

5 Little information gives rise to an effectively convergent dynamic

In the previous section we showed how any memoryless dynamic that allows players to base their decision only on their current payoff is not effectively convergent. In this section, we study how the addition of little information gives rise to an effectively convergent dynamic. We allow unmatched players to keep information about their payoff when last matched.

Since for any information structure one can trivially design a dynamic that is not effec-tively convergent (that is, the time to convergence scales exponentially in the population size) we need to specify a matching and pricing rule. A natural candidate is the second price auction with reserve prices. Following [START_REF] Nax | Evolutionary dynamics and equitable core selection in assignment games[END_REF], we introduce reserve prices that are dependent on a player's previous period reserve price rather than only on a player's previous period payoff. This gives unmatched players information about their payoff when last matched. As discussed in Section 2 this is motivated by aspiration adaptation of [START_REF] Sauermann | Anspruchsanpassungstheorie der Unternehmung[END_REF] and [START_REF] Selten | Aspiration adaptation theory[END_REF] and experimentally confirmed by [START_REF] Tietz | On the nature of the bargaining process in the Kreskogame[END_REF] and [START_REF] Roth | Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term[END_REF]. To describe it, define a player's period-t reserve price by

d t i =    φ t-1 i if matched in period t -1, (d t-1 i -δ) + else (5.1)
with ε > δ > 0.6 For ease of exposition suppose that the selected player is a worker j ∈ W . He then runs a second price auction with reserve price c j + (d j + ε). The players on the other side of the market bid v i -(d i + ε) and the highest bidder, say i , receives the match with payoff for i:

max{c j + (d j + ε), max i =i v i -(d i + ε}).
When there are several highest bidders assume that one is selected uniformly at random.

I :

Reserve price strict blocking. A player is assigned a new match if and only if as a consequence his payoff is at least ε greater than his reserve price. That is, if

P([µ t+1 , Φ t+1 ]; [µ t , Φ t ], E) > 0, and µ t+1 (k) = µ t (k), then, φ t+1 k > d t k + ε.
Remark. We note that the proposed dynamic remains uncoupled and also satisfies Properties II (single-pair transitions), III (ε-core-absorbing), IV (random selection, where IV adheres to Property I ) and Property I .

We first show that for markets with homogeneous goods the second price auction with reserve prices is effectively convergent. Intuitively, reserve prices introduce a monotonicity (in expectation) that allows agents to 'learn' their correct payoff. We then conduct a series of computational experiments which support the conjecture that the dynamic is also effectively convergent for randomly generated markets with heterogeneous goods.7 

Fast convergence in markets with homogeneous goods

Recall that in a market with homogeneous goods each firm is offering an identical job and each worker is offering identical work. That is, for all i ∈ F , v i (j) = v i for all j ∈ W and for all j ∈ W , c j (i) = c j for all i ∈ F . Also recall that α * = max i,j: α ij =∅ α ij .

Theorem 2. For any market with homogeneous goods with ε/δ ∈ N, ε > δ, from any starting state, the expected convergence time to the ε-core of the repeated second price auction with reserve price is

O(n 3+2 ε δ • log(n) • e α * δ • α * ε ) periods.
Further, the dynamic is ε-core-absorbing.

For readability the proof of the latter Theorem is relegated to the Appendix.

Fast convergence in markets with heterogeneous goods

This section complements the previous results with simulations for markets with heterogeneous goods. We consider the random assignment markets described in [START_REF] Kanoria | Convergence of the core in assignment markets[END_REF] with different types of firms (T F = 1, ..., τ F ) and workers (T W = 1, ..., τ W ). Denote by τ (i) the type of an agent i ∈ N and assume that match values are additively separable, that is, of the general form:

α ij = u(τ (i), τ (j)) + β τ (j) i + γ τ (i) j (5.2)
In particular this means that a match value is the sum of a utility u(τ (i), τ (j)) that depends only on the agents' types and idiosyncratic components. The latter depend on the identity of one of the agents and only the type of the other agent (β τ (j) i and γ τ (i) j ). Note that when there is a single firm type and a single worker type, we revert to the market with homogeneous goods studied above. When there are as many firm and worker types as there are firms and workers, the above definition posits no restrictions on the match values.

In the computational experiments reported in this section, assignment games with input values f, w, τ F , τ W are generated by randomly selecting a type in T F (respectively T W ) for each firm (respectively worker). The utility components are drawn from uniform distributions with:

u(τ (i), τ (j)) ∼ U [0, 1, 2, . . . 100]
(5.3)

β τ (j) i ∼ U [0, 1, 2, . . . 20] (5.4) γ τ (i) j ∼ U [0, 1, 2, . . . 20] (5.5)
We shall fix ε = 1, δ = 0.5 throughout. We report four computational experiments where we analyze the rate of convergence for different number of types as the population size is increasing. We chose the experiments to cover markets with the same number of firms and workers and markets with a different number of firms and workers. Further we vary whether both sides of the market have different types or only one side. We analyze the growth of the number of steps to convergence (T ) as the number of agents increases (w = 4, 8, 12, . . . , 48) for different number of types (τ W = 1, 2, 0.5 • w, 1.0 • w).8 

We randomly sampled 100 assignment games for each of these 4 • 4 • 12 = 192 cases and for each sampled assignment game we ran 100 simulations and then took the average number of steps to convergence as a proxy for the expectation.9 

Taking the logarithm, if T grows exponentially we should see linear growth, if T is subexponential the growth should be logarithmic. We thus estimate the following three models where T is the time to convergence and w is the number of workers:

log(T (w)) = β 0 +β 1 • w + β 2 • log(w) + 1 (Model 1) log(T (w)) = β 0 +β 1 • w + 2 (Model 2) log(T (w)) = β 0 + β 2 • log(w) + 3 (Model 3)
where 1 , 2 , 3 are assumed to be normally distributed error terms with mean 0. In most of the 16 analyzed datasets β 1 turns out to be statistically insignificant or negative in Model 1, while β 2 is significantly positive.10 Nevertheless, in three of the datasets β 1 is significantly positive. Using Bayesian model selection (BIC test, see Schwarz 1978;[START_REF] Kass | Bayes factors[END_REF][START_REF] Raftery | Bayesian model selection in social research[END_REF] we find strong evidence that also in these cases Model 3 is the preferred model. This allows us to reject Models 1 and 2, thus selection Model 3 as our preferred model and confirming our hypothesis that the convergence rate is growing polynomially in the population size. We note that the minimal R 2 across all regressions for Model 3 is 0.748 while the maximum is 0.992, thus suggesting that our models have very strong predictive power. The regressions and the BIC tests can be found in the Appendix. In summary, our results support the hypothesis that for most markets (randomly generated) little additional information not only suffices to design effectively convergent dynamics for markets with homogeneous goods but also for markets with heterogeneous goods. However, our simulations suggest that the expected rate of convergence does vary significantly. In Experiments 1-3 the market with homogeneous goods shows the fastest convergence times, while in Experiment 4 it is the opposite. The particularities of different markets with heterogeneous goods are not simple derivatives of a given market with homogeneous goods. In particular, our proof technique for markets with homogeneous goods does not promise to extend to this more general case. 

Conclusion

Price discovery [START_REF] Chamberlin | An experimental imperfect market[END_REF][START_REF] Smith | An experimental study of competitive market behavior[END_REF] and more generally the question of decentralized dynamics leading to equilibrium [START_REF] Hayek | The use of knowledge in society[END_REF] has been studied by economists for at least a century. With more and more market places moving online this topic has sparked renewed interest. In this paper, we first showed that for an important class of markets it is difficult to find core outcomes by decentralized dynamics. Any memoryless dynamic, that is, a dynamic that only relies on the primitives of the game -the current payoffs and matching -is not effectively convergent (the convergence rate grows exponentially in the population size). Next, we proposed a natural, uncoupled dynamic based on a second price auction with reserve prices and showed that through the addition of little information, an effectively convergent dynamic for price discovery exist in markets with homogeneous goods. Simulation experiments provide evidence for our conjecture that this also holds for a high proportion of markets with heterogeneous goods. Our analysis suggests that decentralized markets are not trivial, but effectively convergent dynamics can be designed with fairly little memory requirements. Further study is needed to better understand the effect of markets with heterogeneous goods and of exogenous changes such as market entry and exit.

In particular for i the assertion still holds since the only player with whom she could violate the condition is j because only auctioneers (potentially) reduce their reserve prices.

To summarize, after each player is selected at least once a pre-stable state is reached.

The expected waiting time is O(n log(n)) (by the Coupon Collectors Problem, see, for example, [START_REF] Feller | An introduction to probability theory and ist applications[END_REF].

Corollary 5. If for some T > 0,(d T i ) i∈F , (d T j ) j∈W is (ε, δ)-pre-stable, then:

1. for all t ≥ T (d t i ) i∈F , (d t j ) j∈W is (ε, δ)-pre-stable
2. no two matched players can rematch in the next period 3. the number of matchings is non-decreasing Definition 6. Let m t be the number of matched workers in period t (which is the same as the number of matched firms).

Lemma 7. Suppose the market consists of homogeneous goods. If for some T > 0,(d T i ) i∈F , (d T j ) j∈W is (ε, δ)-pre-stable and m t < w, then for all t ≥ T the expected time for m t to increase is

O(n 1+2ε/δ • e α * δ ).
Proof. By Corollary 5(3), the number of matched agents only increases when two unmatched agents match. Hence we are interested in the following probability: P(unmatched as auctioneer) • P(other unmatched wins auction) (6.4) Since m t < w, P(unmatched as auctioneer) ≥ 1 n . The expected waiting time for this event is bounded above by n.

We introduce a known decomposition of markets with homogeneous goods (see, for example, [START_REF] Kanoria | Convergence of the core in assignment markets[END_REF]) where match values α ij are composed of non-negative values β i , γ j such that:

α ij = β i + γ j (6.5)
Given two unmatched agents i, j suppose that there exists a feasible match for each of them i , j , that is:

d i + d j = α ij -2ε = β i + γ j -2ε (6.6) d i + d j = α i j -2ε = β i + γ j -2ε (6.7)
By adding the two equations we find:

d i + d j = β i + γ j -2ε + β i + γ j -2ε -(d i + d j ) (6.8) ≤ α ij -2ε + α i j -2ε -(α i j -2ε) (6.9) ≤ α ij -2ε (6.10)
Hence if i, j are feasible with some player they are also feasible with each other.

Since α ij are multiples of δ we have for all i, j, that d i , d j are multiples of δ. Thus if

d i + d j ≯ α ij -2ε (i, j are feasible) and d i + d j > α ij -2ε -δ (pre-stable) we must have d i + d j = α ij -2ε.
Consequently, if two opposite unmatched agents are feasible for each other they are also among the highest bidders for each other (and thus might match).

It then suffices to evaluate the probability that two unmatched agents i, j are feasible at the same time. We shall write a protocol in pseudo-code:

1. The probability that any given player is selected in a period is 1/n. Hence the expected waiting time until one unmatched agent is feasible is easily seen to be O(n • α * δ ). Let i be the first unmatched agent becoming feasible.

2a. If i re-matches with another unmatched agent we are done.

2b. Otherwise she re-matches with a matched player j who in turn leaves her previous partner unmatched, i . Denote the player who last turned unmatched by i * .

3. The new unmatched agent i * has to reduce her reserve price by at most 2ε to become feasible again (since the newly matched players haven't increased their reserve price by more than ε each). Note that, as long as m t does not increase, in any subsequent period there is always at least one unmatched agent, namely i * , who needs to reduce her reserve price by at most 2ε. Now, regarding 1, we evaluate the probability that an unmatched agent from the other side, j, becomes feasible before i * does. j has to reduce his reserve price at most α * /δ times which takes in expectation n • α * /δ steps. Hence: where the lower bound constitutes the probability of selecting i * 2ε/δ consecutive times. Thus, the expected time is upper bounded by n 2ε/δ . Combining the two bounds we find that the expected time before two unmatched agents match is given by: n 2ε/δ • e α * /δ (6.15)

P(j becomes f easible bef ore i * ) ≥ n -1 n nα * /δ (6.11) = n n -1 α * /δ n -1 n (n+1)α * /δ (6.12) ≥ n n -1 α * /δ
Thus in total we have: n 1+2ε/δ • e α * /δ (6.16)

Corollary 8. The expected time until m t = w is O(n 2+2ε/δ • e α * δ ).
Proof. This follows by applying Lemma 7 for all n players.

Lemma 9. Suppose that for T > 0, m T = w. The expected time until an ε-stable state is

reached is O(n 2 • α * ε ).
Proof. If w = f this is immediately the case once all players are matched. Otherwise, suppose that w < f . Note that by Corollary 5(3) the number of matchings is nondecreasing. Thus all workers (the short side of the market) remain matched in all periods t > T . But matched players do not decrease their reserve prices and only re-match if their subsequent reserve price increases by at least ε. If the current state is not ε-stable there exists at least one (matched) worker and one (unmatched) firm who are feasible.

The expected time until one of them is selected as auctioneer is O(n). We thus have that the time until an ε-stable state is reached is:

O(n) • n • α * ε = O(n 2 • α * ε ) (6.17)
Combining the bounds from Lemmas 4, 7, 9, and Corollary 8 it follows that overall the expected time to reach the ε-core is given by:

O(n 3+2 ε δ • log(n) • e α * δ • α * ε ) (6.18)
thus concluding the proof of Theorem 2.

Details of OLS regressions and BIC tests for Section 5.2

This section contains the detailed results of the OLS regressions and Bayesian model selections (BIC test, see Schwarz 1978;[START_REF] Kass | Bayes factors[END_REF][START_REF] Raftery | Bayesian model selection in social research[END_REF] for Models 1-3 from Section 5.2. For each experiment there are four regressions for the different number of types τ W (and τ F unless it is kept constant at 1). As described in the main part all regressions show that Model 3 has very high R 2 for all cases. Further, when Model 1 shows a significant value for the linear term the Bayesian model selection again points strongly to Model 3 (using the classification by Kass and Raftery 1995 for strength of evidence).

Experiment 1: f = w, τ F = τ W Experiment 3: f = w, τ F = 1 

Experiment 1 :

 1 f = w and τ F = τ W Experiment 2: f = w + 4 and τ F = τ W Experiment 3: f = w and τ F = 1 Experiment 4: f = w + 4 and τ F = 1

Figures 5

 5 Figures 5.1-5.4 show the results for the four experiments. The x-axis shows the number of workers (w) and the y-axis the logarithm of the number of time steps to convergence to the ε-core (log(T )). Each box-plot shows the 25th to 75th percentiles and the lines show the full range of observations of the average convergence times for 100 randomly sampled assignment games. Each plot analyzes the four different number of types (τ W = 1, 2, 0.5 • w, 1.0 • w) for different numbers of workers (and firms). The regressions show the fitted logarithmic Model 3.

  monotonicity from below"). Thus the expected time for the event 'j becomes feasible before i * ' is upper bounded by e α * /δ . Now if j is feasible we have: P(i * becomes feasible before j matches|j feasible)

Table 1

 1 

			: τ W = 1	
		Model 1	Model 2	Model 3
	w	0.002	0.060 * * *	
		(0.002)	(0.001)	
	log(w)	1.185 * * *		1.215 * * *
		(0.036)		(0.012)
	Constant	4.930 * * *	7.019 * * *	4.882 * * *
		(0.067)	(0.025)	(0.037)
	Observations	1,200	1,200	1,200
	R 2	0.899	0.809	0.899
	BIC	-8382.372	-8296.923	-8389.396
	Note:		* p<0.1; * * p<0.05; * * * p<0.01
		Table 2: τ W = 2	
		Model 1	Model 2	Model 3
	w	-0.014 * * *	0.070 * * *	
		(0.004)	(0.002)	
	log(w)	1.690 * * *		1.439 * * *
		(0.074)		(0.024)
	Constant	4.593 * * *	7.573 * * *	4.999 * * *
		(0.136)	(0.044)	(0.076)
	Observations	1,200	1,200	1,200
	R 2	0.750	0.642	0.748
	BIC	-8052.257	-7870.996	-8054.687
	Note:		* p<0.1; * * p<0.05; * * * p<0.01

* p<0.1; * * p<0.05; * * * p<0.01 Experiment 2: f = w + 4, τ F = τ W * p<0.1; * * p<0.05; * * * p<0.01

Table 9

 9 

		: τ W = 1	
		Model 1	Model 2	Model 3
	w	-0.001	0.061 * * *	
		(0.002)	(0.001)	
	log(w)	1.246 * * *		1.228 * * *
		(0.035)		(0.011)
	Constant	4.755 * * *	6.952 * * *	4.785 * * *
		(0.065)	(0.025)	(0.036)
	Observations	1,200	1,200	1,200
	R 2	0.905	0.807	0.905
	BIC	-8387.447	-8292.166	-8394.512
	Note:	* p<0.1; * * p<0.05; * * * p<0.01
		Table 10: τ W = 2	
		Model 1	Model 2	Model 3
	w	-0.017 * * *	0.059 * * *	
		(0.002)	(0.001)	
	log(w)	1.545 * * *		1.236 * * *
		(0.047)		(0.015)
	Constant	4.544 * * *	7.268 * * *	5.043 * * *
		(0.085)	(0.032)	(0.048)
	Observations	1,200	1,200	1,200
	R 2	0.849	0.711	0.843
	BIC	-8315.307	-8164.99	-8315.349
	Note:			

* p<0.1; * * p<0.05; * * * p<0.01

Table 11 :

 11 τ W = 0.5 • w

		Model 1	Model 2	Model 3
	w	-0.015 * * *	0.090 * * *	
		(0.002)	(0.001)	
	log(w)	2.118 * * *		1.853 * * *
		(0.047)		(0.016)
	Constant	3.708 * * *	7.442 * * *	4.135 * * *
		(0.087)	(0.039)	(0.049)
	Observations	1,200	1,200	1,200
	R 2	0.924	0.798	0.922
	BIC	-8309.875	-8021.313	-8311.795
	Note:			

* p<0.1; * * p<0.05; * * * p<0.01

Table 12 :

 12 τ W = 1.0 • w p<0.1; * * p<0.05; * * * p<0.01 Experiment 4: f = w + 4, τ F = 1

		Model 1	Model 2	Model 3
	w	-0.013 * * *	0.089 * * *	
		(0.002)	(0.001)	
	log(w)	2.056 * * *		1.816 * * *
		(0.036)		(0.012)
	Constant	4.044 * * *	7.668 * * *	4.431 * * *
		(0.066)	(0.035)	(0.037)
	Observations	1,200	1,200	1,200
	R 2	0.953	0.825	0.951
	BIC	-8384.385	-8112.93	-8387.24
	Note:	Table 13: τ W = 1	
		Model 1	Model 2	Model 3
	w	0.002	0.082 * * *	
		(0.004)	(0.002)	
	log(w)	1.609 * * *		1.640 * * *
		(0.078)		(0.025)
	Constant	5.219 * * *	8.054 * * *	5.168 * * *
		(0.142)	(0.045)	(0.079)
	Observations	1,200	1,200	1,200
	R 2	0.780	0.702	0.780
	BIC	-8010.803	-7847.339	-8017.82
	Note:	* p<0.1; * * p<0.05; * * * p<0.01
		Table 14: τ W = 2	
		Model 1	Model 2	Model 3
	w	0.005	0.060 * * *	
		(0.004)	(0.001)	
	log(w)	1.098 * * *		1.195 * * *
		(0.078)		(0.025)
	Constant	6.420 * * *	8.356 * * *	6.263 * * *
		(0.143)	(0.042)	(0.079)
	Observations	1,200	1,200	1,200
	R 2	0.653	0.595	0.653
	BIC	-8009.301	-7936.876	-8015.697
	Note:			

* * p<0.1; * * p<0.05; * * * p<0.01

Table 15 :

 15 τ W = 0.5 • w p<0.1; * * p<0.05; * * * p<0.01

		Model 1	Model 2	Model 3
	w	-0.002	0.057 * * *	
		(0.003)	(0.001)	
	log(w)	1.188 * * *		1.161 * * *
		(0.056)		(0.018)
	Constant	6.417 * * *	8.511 * * *	6.461 * * *
		(0.102)	(0.033)	(0.056)
	Observations	1,200	1,200	1,200
	R 2	0.776	0.691	0.776
	BIC	-8242.977	-8156.995	--8250.013
	Note:	* p<0.1; * * p<0.05; * * * p<0.01
		Table 16: τ W = 1.0 • w	
		Model 1	Model 2	Model 3
	w	0.013 * * *	0.063 * * *	
		(0.002)	(0.001)	
	log(w)	1.013 * * *		1.246 * * *
		(0.045)		(0.015)
	Constant	6.639 * * *	8.424 * * *	6.263 * * *
		(0.083)	(0.027)	(0.047)
	Observations	1,200	1,200	1,200
	R 2	0.857	0.798	0.854
	BIC	-8323.708	-8263.219	-8326.783
	Note:			

* 

See Foster and Vohra (1997);[START_REF] Hart | A simple adaptive procedure leading to correlated equilibrium[END_REF] 

2003) for the introduction and early results of uncoupled dynamics.

A related literature studies search markets with sequential bargaining[START_REF] Rubinstein | Equilibrium in a market with sequential bargaining[END_REF][START_REF] Gale | Limit theorems for markets with sequential bargaining[END_REF][START_REF] Lauermann | Dynamic matching and bargaining games: A general approach[END_REF][START_REF] Lauermann | Learning and price discovery in a search market[END_REF]. The main difference to the markets we consider is that agents leave the market once they match. This strand of work is thus concerned with analyzing the trade-off between matching in the current period and foregoing potentially better matches in the future versus the search cost incurred by remaining in the market (usually represented by discounting future profits).

A series of related papers studies similar processes for one-sided markets[START_REF] Andersson | A competitive partnership formation process[END_REF][START_REF] Biró | Solutions for the stable roommates problem with payments[END_REF] and markets where firms can hire multiple workers[START_REF] Nax | Core stability and core selection in a decentralized labor matching market[END_REF][START_REF] Fujishige | On a spontaneous decentralized market process[END_REF] 

Note that a payoff of 10 is not achievable by Property I (strict blocking) unless it is at that level in the starting state. We assume that this is not the case, which is consistent with the consideration of the majority of possible starting states.

If δ > 0 does not hold, the proposed dynamic does not converge to the ε-core since a player may get 'stuck' with a reserve price that is not supported in a core outcome.

Notably, similar simulation results have been shown for non-transferable utility matching markets[START_REF] Biró | Analysis of stochastic matching markets[END_REF] while the negative result by[START_REF] Ackermann | Uncoordinated two-sided matching markets[END_REF] shows that in general efficiency may not be guaranteed. Clearly, our simulations can not give an indication for a general result.

The increments are chosen in order to ensure that in each market each type is represented with the same proportion.

We thus have a total of 1,920,000 simulations with an average run-time of 15 seconds (mainly varying with the population size). Simulations were run on ETH Zurich's EULER cluster.

Note that, if β 1 is negative this only yields further support to the hypothesis that the growth rate is logarithmic (polynomial for the original data).

Appendix Proof of Theorem 2

We prove the theorem via several steps. We assume throughout w.l.o.g. w ≤ f . Definition 3. Say that reserve prices (d i ) i∈F , (d j ) j∈W are (ε, δ)-pre-stable if for all i ∈ F, j ∈ W matched (not necessarily to each other):

and for all i ∈ F, j ∈ W :

Note that if δ < ε is the smallest unit, the latter equation is equivalent to:

Proof. If player i is activated as auctioneer in period t, by the end of the period i has

• rematched and d t i + d t j ≥ α ij for all j (since the highest bidder wins),

• remains in previous match and d t i + d t j > α ij -2ε for all j (since otherwise he would have rematched), or

• remains unmatched and thus in period t -1, d t-1 i + d t-1 j > α ij -2ε for all j (since otherwise he would have found a match).

Hence at the end of period t, d t i + d t j > α ij -2ε -δ for all j and the assertion holds for the auctioneer.

We shall now show that once the assertion holds for a player it holds in all subsequent periods. Suppose that in t -1 either i is matched and d t-1 i + d t-1 j > α ij -2ε for all j or i is unmatched and d t-1 i + d t-1 j > α ij -2ε -δ for all j. Suppose that j is selected as auctioneer in period t. Then, by the previous arguments, at the end of period t either j

• is matched and d t-1 j + d t-1 i > α ji -2ε for all i , or

• is unmatched and d t-1 j + d t-1 i > α ji -2ε -δ for all i .