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Reliable Risk Management for Autonomous Vehicles based on
Sequential Bayesian Decision Networks and Dynamic Inter-Vehicular

Assessment

Dimia Iberraken1,2, Lounis Adouane1 and Dieumet Denis2

Abstract— Guaranteeing the safety of an autonomous vehicle
(AV) is a challenging task, especially if the perceived environ-
ment is highly uncertain and other road users deviate from their
expected trajectories. In this paper, we propose a probabilistic
overall strategy for risk assessment and management of AV in
highway through a Sequential Level Bayesian Decision Network
(SLBDN) and an appropriate analytical formalization of criteria
for anomaly detection based on a Dynamic Predicted Inter-
Distance Profile (DPIDP) between vehicles. Accordingly, the
proposed system is designed to take the suitable maneuver
decision, have a safety retrospection and verification over the
current maneuver risk and take appropriate evasive action au-
tonomously from moving obstacles. Moreover, this probabilistic
framework accounts for measurements uncertainty through an
Extended Kalman Filter (EKF) and for vehicles’ maximum
capacities. Since the proposed strategy has a short response
time, integrating safety verification in the decision-making
process makes real time evasive decisions possible. Several
simulation results show the good performance of the overall
proposed control architecture, mainly in terms of efficiency to
handle probabilistic decision-making even for risky scenarios.

I. INTRODUCTION
A. Motivation

One of the major research topics in the domain of au-
tonomous navigation, is enabling vehicles to cope with any
environment traffic condition while making the appropriate
decision and guaranteeing the safety of maneuvers even
in presence of uncertainty [1], [2]. Although multiple Ad-
vanced Driver Assistance Systems (ADAS) have successfully
improved safety [3], fatal car crashes still occur [4], [5].
This is mainly caused by measurement uncertainties and
unexpected maneuvers of other traffic participants. For this
reason validating the safety of self-driving vehicles while
applying safety verification methods can prove the coherence
of the vehicles behavior, reduce remaining risks and the need
for extensive testing and more importantly allow us to plan
evasive maneuver, in real-time [1], [6], [7].

B. Literature Overview

Safety in the domain of autonomous vehicles denotes the
ability to respect traffic rules and avoid potential collision
with other traffic participants. According to [8], the core of
a robust automotive safety system able to handle the com-
plexity of driving can be partitioned as a situation assessment
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method which defines the current driving state of safety while
taking into account pre-planned trajectories, and a decision-
making strategy that makes the control decision. In this
paper, both of these parts are developed. Traditional decision
making methods involves building a system of rules and
deducing the most suitable maneuver [9]. The disadvantages
of such systems appear when considering traffic scenarios,
unexpected behaviors or perception modules failure that have
not been considered during the construction of the system.
In this case, new rules need to be added and integrated in
the existing system. This increases the complexity of the
decision-making process.

Concerning the situation assessment, researchers have pur-
sued multiple ways to improve situation assessment strate-
gies, during vehicle lane change, through threat measure
indicators such as Time to Collision (TTC) [10]–[12]. By
compromising between optimality and safety, the authors
in [13] have introduced a novel interval-based TTC com-
putation, which considers potential uncertainty sources such
as vehicular communication latency. However, most works
cannot ensure safety if traffic participants deviate from their
predefined behavior as most of the classical safety verifica-
tion approaches, perform the safety assessment offline before
the vehicle is deployed.

In order to avoid collision, online safety verification
methods have been extensively used in the literature [7],
[14], [15]. For example, reachability analysis [16], used
as a safety verification method, calculates the reachable
set of positions of each vehicle in the environment and
possible future collisions are identified when comparing the
intersection of the obtained sets. However if the trajectory
is regarded as unsafe no alternative is proposed to avoid the
collision. Spatial Logic reasoning has also been applied to
safety verification, for proving collision freedom of lane-
change maneuvers [17] or for real-time spatial logic that
can specify constraints in traffic maneuvers on multi-lane
motorway [18], however, modeling a generic model using
logical formulas is a big challenge.

C. Contribution

The proposed paper is to introduce a method to estimate
the current performed maneuver risks in real-time from
a safety standing point of view for any arbitrary traffic
scenarios and investigate the possibility to plan an evasive
action (cf. Section II). In previous work [1], [6], we pro-
posed a probabilistic framework which assesses the overall



surrounding environment by evaluating the collision risk with
all observed vehicles, plan driving maneuvers considering
predictions of road user trajectories and make the decision
on the most suitable actions. This sequencing of decisions is
handled by the means of a robust Sequential Level Bayesian-
Decision Network (SLBDN) (cf. Section II) that handles the
maneuver decision-making and the safety verification over
the current performed maneuver. In this paper, this proba-
bilistic decision-making strategy is extended to handle safety
verification (cf. Section II-A) during vehicle lane change and
with respect to “all” the vehicles in the environment but also
the evasive action selection (cf. Section II-B).
Moreover, using the specific properties of the dynamic
predicted inter-distance profile (DPIDP) between vehicles
(defined in [6], cf. Section II-A.1), used as risk metric input
into the safety verification, anomaly detection criteria are
defined (cf. Section II-A.4). In case any anomaly is detected,
whether the initial suppositions to perform the maneuver are
not anymore confirmed or the perception modules give wrong
information on the system, decisions regarding possible
evasive maneuver are taken, to ensure the vehicles’ safety
while accounting for the vehicles’ maximum capacities (cf.
Section II-B). The Bayesian based approach for handling
safety verification and evasive action selection is novel to
the best of the authors’ knowledge.
In addition, the short-term motion of the ego vehicle and
surrounding vehicles are predicted in this paper, based on
an Extended Kalman Filter (EKF) (cf. Section II-A.3) which
allows to have more reliable AIDP calculation.
This probabilistic decision-making strategy is defined as a
part of a Multi-Controller Architecture (MCA) for automated
driving in highway (detailed in previous work [1]).

The rest of the paper is organized as follows. Section
II formalizes the overall proposed probabilistic decision-
making process. The simulation results will be presented in
Section III and this paper concludes with some prospects on
future works.

II. DECISION-MAKING STRATEGY BASED ON
BAYESIAN-DECISION NETWORKS

It is proposed in this paper a more effective way to take
decisions under uncertain conditions, while taking advantage
of the dynamic of progression of the inter-distance between
vehicles, in order to define better the level of dangerousness
of the current maneuver.
The purpose of the overall network is to conform to the driver
perception of safety and judgment for dangerous situations
and infer the drivers action.

The flowchart presented in Fig. 1, illustrates the sequenc-
ing of decisions and the overall safety verification mechanism
for all the obstacles present in the environment. The first
decision is a part of the Maneuver Decision Level (MDL)
where at each ith ∈N> N sample time, the choice of action
regarding the most suitable maneuver is made (cf. Fig.1).
The probabilistic decision process is based on the current
situation assessment, using the Extended Time To Collision
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Fig. 1. Flowchart illustrating the sequencing of decisions and safety
verifications for all surrounding obstacles. N is an integer value and is
defined as

⌈
Tch
Ts

⌉
with Ts the sampling period and Tch is the control

observation horizon. SO is the set of visible obstacles in the scene with
memory tracking Id. tcirtical are defined in Section II-A.4. ET TC is the
Extended Time To Collision. areq is the required acceleration and is defined
in section II-B.

(ETTC) [1] while taking measurement uncertainty into ac-
count. The possible output maneuvers are: Lane Change Left,
Lane Change Right, Keep Lane with ACC, Maintain Velocity
with CC.

The second decision is a part of the Safety Verification
Decision Level (SVDL) where for each time step Ts, while
the maneuver execution starts, a safety-checking regarding
the action chosen in the MDL and a verification of the
coherence of the maneuver with the predicted pre-planned
trajectory is performed through an improved definition of
anomaly detection criteria based-DPIDP [6] (cf. Section II-
A), used to detect and compensate for possible failure of the
perceptive module or unexpected behaviors.

The third decision is a part of the Evasive Action De-
cision Level (EADL) (cf. Section II-B) where in case the
verification advises to abort the maneuver, the system output
the evasive action based on the vehicles maximum capacities
and on the endangered lanes.

Since the presented method has a short response time
given that Bayesian Networks (BNs) are computationally
tractable (due to the exploitation of conditional independence
relationships) [9], [19], integrating safety verification in the
decision-making process makes real time evasive decisions
possible. In addition, Bayes Theory allows uncertainties to
be incorporated into calculations and provides a way of
combining uncertain data.
A most suitable decision is then obtained by maximizing a
utility function over the possible alternatives of the action



nodes (cf. Section II-C), given the available evidence [19].
We choose discrete actions, instead of low-level controls
like steering or accelerating, since modularized systems
have been reported to perform better, especially in terms
of complexity, functional safety, testability, in autonomous
driving than end-to-end systems [20].

A. Safety verification level: Dynamic Predicted Inter-
Distance Profile (DPIDP)

1) DPIDP definition: It is proposed in this paper a safety
criteria-based on a DPIDP between vehicles in order to
estimate the maneuvers risks during the whole navigation
task. Indeed, the assumption considered is that if nothing
changes in the initial expected dynamic of all the surrounding
dynamic obstacles, the predicted evolution of the inter-
distance between vehicles is not supposed to change [1].

The DPIDP is built based on predictions of all vehicles
future pose. To better understand the approach, we will
analyze the system during a lane change maneuver (cf. Fig
2), as it is considered among the main risky and challenging
maneuvers in highway for autonomous vehicle [21]. An
estimation of the time prediction horizon Tpred [s] is then
calculated by estimating the required time for the vehicle,
given a constant velocity to travel the curvilinear distance of
the lane change trajectory.
On the other hand, we suppose that the obstacle-vehicles
follow a global path already defined to be the center-line
of the lane and the prediction trajectories during the lane
change are constructed for Tpred [s] based on their expected
behaviors.

For each vehicle pair (ego vehicle and obstacle-vehicle)
trajectories, we define a control horizon Nch (number of
control moves) to compute the DPIDP as a function of
Tch (cf. Eq.(7)). The control time horizon is chosen to be:
Tch[s] = max(Tpred)/M, where M is a constant value chosen
accordingly based on a simple estimation of human reaction
time [5].

For each number of control moves Nch, the DPIDP will
be evaluated between the predicted state vector of the ego
vehicle Eq.(1) and the predicted state vector of the chosen
obstacle-vehicle Eq.(3) (cf. Fig. 2) and compared to the
evolution of the Actual Inter-Distance Profile (AIDP) (cf.
Section II-A.3). This gives the system an average time (Tch)
to confirm or not the dangerousness (given by the anomaly
criteria in Section II-A.4) of the situation assessment, to act
accordingly or to reconfigure otherwise. This way of rea-

Fig. 2. Predicted Trajectories during lane change maneuver (See. Simula-
tion Video given in https://bit.ly/2G0Zu27)

Fig. 3. DPIDP between Ego Vehicle and surrounding Obstacle-Vehicles

soning under uncertainty will eventually help ADAS reduce
false alarm and improve performance.
In what follows, the formalisation of the DPIDP is detailed.

2) Analytical formalisation of DPIDP: The motion of
the ego vehicle is described by the tricycle model:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v tan(γ)/lb

(1)

Where X = {x,y,θ} is the state vector with (x,y) the vehi-
cle’s position and θ its orientation, v and γ are output of
the control law (defined in [2]) representing the velocity and
the steering angle respectively, lb is the wheel-base of the
vehicle.

Based on Euler’s Method to solve first order differential
equation with a given initial value, we have:

x(t +h) = x(t)+h v(t) cos(θ(t))

y(t +h) = y(t)+h v(t) sin(θ(t))

θ(t +h) = θ(t)+h v(t) tan(γ(t))/lb

(2)

with t ∈ [t0,Tpred ] and h the step size. The motion of the
surrounding obstacle-vehicles is assumed to be rectilinear
uniformly accelerated and is described by the following
equations:

xobs(t +h) = xobs(t)+
1
2

axobs(t)h
2 + vxobsh

yobs(t +h) = yobs(t)+
1
2

ayobs(t)h
2 + vyobsh

(3)

With (xobs,yobs) the obstacle-vehicle’s position, (vxobs , vyobs )
the speed components and (axobs , ayobs ) the acceleration
components.

The formalization of the DPIDP, defined as function p(t+
h) over the interval t ∈ [t0,Tpred ], is then:



p(t +h) =
((

x(t +h)− xobs(t +h)
)2

+
(

y(t +h)− yobs(t +h)
)2
)1/2

=

((
x(t)+hv(t)cos

(
θ(t)+hv(t)

tan(γ(t))
lb

)
− xobs(t)−h2 1

2
axobs (t)

−hvxobs (t)
)2

+
(

y(t)+ hv(t)cos
(
θ(t)+ hv(t)

tan(γ(t))
lb

)
− yobs(t)

−h2 1
2

ayobs (t)−hvyobs (t)
)2
)1/2

(4)
A Predicted Lower Safety Boundary l(t+h) is constructed

as the projection (parallel curve) of p(t + h) with an offset
shift Do f f set denoting a possible authorized degree of free-
dom over the vehicles mutual velocities (cf. Fig. 3) and is
defined then as:

l(t +h) = p(t +h)−Do f f set (5)

The profiles DPIPD and the PLSB are recalculated each (t0+
Tch).

This above formalisation will allow us to define the
anomaly detection criteria (cf. Section II-A.4).

3) Actual Inter-Distance Profile (AIDP) and EKF-based
uncertainty handling: The collected sensor data are noisy
and uncertain. To deal with these issues, an EKF is used to
estimate and predict the ego vehicle and surrounding vehicles
state vector from the uncertain sensor measurements. The
vehicles motion (Eq.(1)) is described in this paper by the
following discretized car-like vehicle evolution model :{

Xk+1 = f (Xk, vk, γk)+ εX ,k

Yk = g(Xk)+αY,k
(6)

where εX ,k is zero-mean Gaussian noise representing the
process noise and αY,k is the measurement noise.
Hence, the AIDP is calculated based on the EKF state
prediction output and is shown in Figure 4. We can clearly
see in the figure that applying the EKF on the noisy AIDP
allows to avoid false detections as we will see it in Section
II-A.4.

The resulting curve data set: (t,d(t)) defined on the
interval t ∈ [t0, tactual ] is approximated by a polynomial of

Fig. 4. Filtered AIDP by the means of the proposed EKF

second order using the least-squares method that finds the
optimal parameter values x̂ = (a1,b1,c1) by minimizing the
sum, of squared residuals.

4) Criteria for anomaly detection: Further, contrary to
what have been proposed as anomaly criteria in [6], where,
at each sample time, is calculated the current available
lateral error between the actual inter-distance profile (AIDP)
and the DPIDP, it is proposed in this paper to exploit the
dynamic of these measures progress to have more pertinent
risk assessment and management strategies (cf. Section II-
A). We define the anomaly detection criterion as the Critical
Time (tcritical) which is the time interval between the first
variation of d(t) and the intersection point between d(t) and
the function l(t).
The first variation of the function d(t) is characterized as the
time where the error ξ between the evolution of the derivative
of the function d(t) with respect to the expected profile p(t)
is greater then a small value ε . As for the intersection point
tinter (cf. Fig 3), we have to solve the following quartic
equation:(

a1(t +h)2 +b1(t +h)+ c1

)2
=

((
x+hvcos

(
θ − xobs

+hv
tan(γ)

lb

)
−h2 1

2
axobs −hvxobs

)2
+
(

y+ hvcos
(
θ

+ hv
tan(γ)

lb

)
− yobs−h2 1

2
ayobs (t)−hvyobs

)2
−Do f f set

(7)

The positive root value of this quartic equation respecting
the condition tinter > t|ξ |>ε is the tinter value.

The critical time will be then:

tcritical = tinter− t|ξ |>ε (8)

This criterion combines two information. The first one is
that the AIDP crossed the lower boundary (through the
calculation of the intersection point). This will allow us to
detect the endangered obstacle-vehicles. The second one is
the information on criticality of the situation, the smaller
tcritical is (due to a quicker deceleration for instance of the
ahead obstacle-vehicle to overtake), the steeper the descent
is (cf. Fig. 3).

5) Generalisation of the methodology: As a result, for
a scene of one ego vehicle and three obstacle-vehicles, the
above methodology is applied for each ego-vehicle/obstacle-
vehicle pair (cf. Fig. 5), resulting thus in three prediction
profiles.

6) SVDL nodes:
• Anomaly detection criteria of AIDP (node AC-AIDP):

Depending on the values of tcritical , defined in Section
II-A.4, input to the node AC-AIDP (cf. Fig. 6), and for
any vehicle pair that detects an anomaly, we will have
two states:

– Critical time positive means that a value of critical
time is found which means d(t) goes beyond the
limit safety boundary defined by l(t).

– No Anomaly detected.
The AC-AIDP node constitutes the uncertain observa-
tion evidence input to node Status of maneuver (SM).



Fig. 5. DPIDP between Ego Vehicle and surrounding Obstacle-Vehicles

• Status of maneuver (node SM): This node describes the
status of the engaged maneuver based on the observa-
tions that the node AC-AIDP provides. The possible
states are Dangerous (for the case where a critical time
is found), Safe (the observation AC-AIDP does not
endanger the situation).

• Utility Check: UCheck Utility nodes UV defines the cost
related to the decision [22]. In the SLBDN (cf. Fig.
6), UCheck is the cost related to the safety verification
during the lane change maneuver based on the anomaly
criteria.

B. Evasive Action Decision Level (EADL)

In the literature many criteria have been defined [23]–[26]
to compute the remaining time span in which the driver can
still avoid a collision by braking or by steering. In this paper
we propose to compute the required deceleration areq, based
on the definition of the critical time tcritical (cf. Section II-A.4
and Fig. 3) and the evolution of the distance descent (if an
anomaly is detected), in order to choose one of the evasive
action maneuver. Computing the deceleration will allow us
to asses if an emergency braking is possible given the actual
situation configuration and given the vehicles’ maximum
capacity for braking amax. Note that in contrast with previous
work [1], [6], where lateral distance errors (Err1 between
AIDP and DPIDP, Err2 between DPIDP and LSB) is used
as anomaly detection criteria, these dynamic aspects and the
vehicles’ capacities were not taken into account.

Assume that the ego vehicle starts performing a lane
change maneuver at an initial speed v0 and that a change in
the initial configuration happens (obstacle-vehicle 1 comes to
standstill for example), meaning that tcritical exists (cf. Fig. 3).
Given that we can know the distance drop ddrop (between the
first variation of d(t): d|ξ |>ε and the intersection point tinter)
caused by this change and that this distance drop happens
during tcritical and assuming a desired stopping inter-distance
dstop (between the ego vehicle and the obstacle-vehicle 1) and
a stopping velocity v f at the end of the emergency braking
(as the purpose is to avoid the collision), we are able to find

the time required treq for the ego vehicle to reach dstop, if
ddrop remains constant, as:

treq =
d|ξ |>ε −dstop

ddrop
tcritical (9)

Starting from the uniform acceleration equation : v(t) =
at +v0, we will have the required deceleration to reach dstop
defined by:

areq =
v f − v0

treq
(10)

Using the above definitions, we can define the following
nodes as input to the EADL:
• Ego Vehicles’ Maximum Capacity (MaxCap): Depend-

ing on areq, two states are defined: areq ≤ amax and
areq > amax .

• Endangered Lane based Critical Time (E-Lane):
Depending on the values of tcritical for each lane and
for a road configuration of two lanes (lane information
are estimated from OpenSteetMap (OSM) [27] for
example), this node has 3 states: Lane 1, Lane 2, Both
Lanes on the lanes are endangered and emergency
braking is not possible.

• Utility Evasive: UEvasive is the cost related to the evasive
action selection given its input E−Lane and MaxCap.

C. Decision-Making Strategy
In the SLBDN network, three decision nodes are rep-

resented (cf. Fig. 6). Decision 1 (D1) has four possible
maneuvers: Lane Change Left (LCL) and Lane Change
Right (LCR) for lane change maneuvers, Keep Lane ACC
(KLACC) for staying in the considered lane while keeping
a safety distance with the vehicle in front and Maintain
Velocity (MV) which is an alternative decision allowing to
stay in the current lane while maintaining previous velocity
configuration. The decision-making in the MDL has been
detailed in previous works [1], [6]. Decision 2 (D2) has 2
states: Abort Maneuver (AM) that allow us to react to a
dangerous change in the DPIDP by canceling the previous
decision effect on the system and re-configuring by select-
ing the appropriate evasive maneuver (cf. SectionII-B) and
Maneuver is Safe (MS) state that consolidates the previous
decision made in node D1 regarding to safety.
Decision 3 (D3) in the other side, proposes 3 states for
handling anomalies during lane change maneuver (Fig. 2):

1) Continue maneuver (CM): in case for example only
Lane 1 is endangered which means only the pair ego-
vehicle/obstacle-vehicle 1 detects an anomaly (tcritical
is positive).

2) Emergency braking (EB): in case both lane are endan-
gered which means tcritical is positive for each pair of
vehicles in each one of the lane and if the vehicles’
maximum capacity for braking allows it areq ≤ amax.

3) Emergency stopping lane (shoulder lane) (ESL): in
case both lane are endangered and emergency braking
is not possible.

In this paper we show the possibility of handling evasive
action selection based on a Bayesian approach during lane
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Fig. 6. Sequential Level Bayesian Decision Network (SLBDN) Architecture (developed while using Netica software)

change maneuver that is expandable for the whole naviga-
tion.

In order to derive decision strategy, situation assessment
variables represented by a set of chance nodes UC has to
be defined (cf. Fig. 6). UC represents the set of random
variables (X1,X2, ..,Xn) and their conditional probabilistic
dependencies [19].
To identify the most suitable decision, we compute the
Expected Utility (EU) for each decision state and the final
decision is the alternative maximizing this EU. A Multi-
Level Decision Network (MLDN) is a representation of a
joint expected utility function due to the chain rule:

EU(UD) = ∏
X∈UC

P(X |parent(X)) ∑
w∈UV

U(Xparent(w)) (11)

The ultimate goal of the proposed cascade decision-making
strategy is deriving the most suitable decisions given the
available evidence following the temporal order of the set
of decision nodes UD (the action chosen for decision Dn−1
is part of the information available at decision Dn).

III. SIMULATION RESULTS

The simulation results based on experiments performed on
a MATLAB/Simulink car simulator has been implemented
to test the developed algorithms (cf. Fig.2). To demonstrate
the robustness of the proposed approach for handling safe
highway maneuvers, let us show in what follows simulation
examples.

For the different simulations shown below (See. Simula-
tion Video : https://bit.ly/2G0Zu27), it is consid-
ered what follows:

• The scene is constituted of four vehicles in a two-
lane highway: two vehicles on the right lane including
the ego-vehicle (named respectively ego-vehicle and
obstacle-vehicle 1) and two vehicles on the left lane
(named respectively obstacle-vehicle 2 and obstacle-
vehicle 3).

• The initial velocities of the vehicles are given by:
Vegomax = 23m/s, VO1 = 12m/s, VO2 = 25m/s VO3 =
5m/s.

(a) Reconfiguration of the DPIDP

(b) Decision 2: SVDL

(c) Decision 3: EADL

Fig. 7. DPIDP, Decision 2 and Decision 3 when only lane 1 is endangered



A. Safety Verification and evasive action: Lane 1 is endan-
gered

We have selected a dangerous scenario that can occur in a
highway environment where the obstacle-vehicle 1 in front
suddenly brake, while the ego vehicle is trying to perform a
lane change maneuver. In this case, we can see in Fig. 7(a)
that the AIDP crosses the PLSB generating consequently the
SVDL to advise aborting the maneuver (cf. Fig. 7(b)) given
that tcritical is positive. In this case, given that the left lane is
free and given the ability of the system to reconfigure and
adapt to the change (thanks to the properties of the ELC
[6] and to the DPIDP) the evasive action maneuver is to
continue the lane change maneuver (cf. Fig 7(c)) followed
by a reconfiguration of the DPIDP to the new setting which
leads to the state ManeuverisSa f e for D2.

B. Safety Verification and evasive action: Lane 1 and Lane
2 are endangered

In addition to the obstacle-vehicle 1 that comes to stand-
still, it appears in the scene the obstacle-vehicle 3 coming
from behind in the left lane accelerating. At the beginning of
the simulation this obstacle is far and slow enough to allow
the lane change maneuver to start but suddenly accelerates.
Consequently, two of the three DPIDP profiles (cf. Fig. 8(a))
(corresponding to obstacle-vehicle 1 and obstacle-vehicle 3)
alert us through the anomaly criteria that the current situation

(a) DPIDP for the two obstacles

(b) Decision 2: SVDL

Fig. 8. DPIDP and output Decision 2 when both lane are endangered

(a) Decision 3: Scenario 2

(b) Decision 3: Scenario 3

(c) Evading to shoulder lane while using ELC [1]

Fig. 9. Evasive Decisions when both lane are endangered

is dangerous and the lane change maneuver is impossible
according to the acceleration capacities of the ego-vehicle.

In this case the appropriate decision is to abort the ma-
neuver (cf. Fig 8(a)) and two different evasive maneuver are
possible: Emergency braking or Emergency Stopping Lane.
The Emergency braking is possible if and only if areq≤ amax.
In contrast with previous work [6] where a similar scenario
has been shown, the ego-vehicle will automatically try to
brake while not accounting for the vehicles’ capacity for
emergency braking which is not the optimal way. In this
second scenario (Scenario 2), areq > amax =−10m/s2, which
leads the system to choose the Emergency Stopping Lane
as evasive action (cf. Fig. 9(c) and Fig. 9(a)). Due to the
ability of the system anomaly metric DPIDP to reconfigure
within an average control horizon time Tch and adapt to the
changes as the safety is ensured, D2 come back to status
Maneuver is sa f e.

In a third scenario (Scenario 3), where the deceleration of
the Obstacle-vehicle 1 is smoother, areq ≤ amax =−10m/s2.
This induce the third decision to be Emergency braking as



we can see in Figure 9(b).

IV. CONCLUSIONS

This paper proposes to enhance the probabilistic overall
strategy for risk assessment and management of AV in
highway, highlighted in [1] and [6]. The aim of this paper
is to ensure even more AV safety in uncertain environment
and changing dynamic/behaviors of the surrounding vehicles,
while using mainly a Sequential Level Bayesian Decision
Network (SLBDN), and an appropriate analytic formulation
of anomaly detection criteria based on a Dynamic Predicted
Inter-Distance Profile (DPIDP) between vehicles called the
critical time tcritical , allowing us to quantify the risks and the
criticality of the driving situation. In addition, to account for
uncertainties in the state vector of the vehicles, an Extended
Kalman Filter (EKF) is utilized. The proposed methodology
is thus designed to integrate the safety verification algorithms
and the evasive action selection into the decision-making
process while accounting for uncertainties. This enables us
to have a retrospection over the current performed maneuver
risks and take the appropriate evasive action maneuver,
in real time while accounting for the vehicles’ maximum
capacities.
Several simulation results show the good performance of
the overall proposed control architecture, mainly in terms of
efficiency to handle probabilistic decision-making even for
risky scenarios. Topics for future work include to further
analyze and evaluate the generality the overall proposed
approach. Real-time experimentation will also be carried out
mainly in collaboration with the R&D Department of Sherpa
Engineering.
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