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Abstract

Maximizing a monotone submodular function under various constraints is a classical and
intensively studied problem. However, in the single-pass streaming model, where the elements
arrive one by one and an algorithm can store only a small fraction of input elements, there is
much gap in our knowledge, even though several approximation algorithms have been proposed
in the literature.

In this work, we present the first lower bound on the approximation ratios for cardinality and
matroid constraints that beat 1 − 1

e
in the single-pass streaming model. Let n be the number

of elements in the stream. Then, we prove that any (randomized) streaming algorithm for a
cardinality constraint with approximation ratio 2

2+
√

2
+ ε requires Ω

(
n

K2

)
space for any ε > 0,

where K is the size limit of the output set. We also prove that any (randomized) streaming
algorithm for a (partition) matroid constraint with approximation ratio K

2K−1
+ε requires Ω

(
n

K

)

space for any ε > 0, where K is the rank of the given matroid.
In addition, we give streaming algorithms when we only have a weak oracle with which we

can only evaluate function values on feasible sets. Specifically, we show weak-oracle streaming
algorithms for cardinality and matroid constraints with approximation ratios K

2K−1
and 1

2
, re-

spectively, whose space complexity is exponential in K but is independent of n. The former
one exactly matches the known inapproximability result for a cardinality constraint in the weak
oracle model. The latter one almost matches our lower bound of K

2K−1
for a matroid constraint,

which almost settles the approximation ratio for a matroid constraint that can be obtained by
a streaming algorithm whose space complexity is independent of n.

∗Supported by JST ERATO Grant Number JPMJER1201, Japan, and by JSPS KAKENHI Grant Number

JP17K00028.

http://arxiv.org/abs/2002.05477v1


1 Introduction

A set function f : 2E → R on a ground set E is submodular if it satisfies the diminishing marginal

return property, i.e., for any subsets S ⊆ T ( E and e ∈ E \ T ,

f(S ∪ {e}) − f(S) ≥ f(T ∪ {e})− f(T ).

A function is monotone if f(S) ≤ f(T ) for any S ⊆ T ⊆ E. Submodular functions play a

fundamental role in combinatorial optimization, as they capture rank functions of matroids, edge

cuts of graphs, and set coverage, just to name a few examples.

In addition to their theoretical interests, submodular functions have attracted much attention

from the machine learning community because they can model various practical problems such

as online advertising [1, 27, 38], sensor location [28], text summarization [33, 34], and maximum

entropy sampling [31]. Many of these problems can be formulated as non-negative monotone

submodular function maximization under a cardinality constraint or a matroid constraint. Namely,

(Cardinality constraint) maximize f(S) subject to |S| ≤ K, S ⊆ E. (1)

(Matroid constraint) maximize f(S) subject to S ∈ I, S ⊆ E, (2)

where f : 2E → R+ is a monotone submodular function, K ∈ Z+ is a non-negative integer, and

M = (E,I) is a matroid with independent family I. Note that a matroid constraint includes a

cardinality constraint as a special case: Choose the matroid in (2) to be the uniform matroid of

rank K.

In some applications mentioned before, the amount of input data is much larger than the main

memory capacity of individual computers. Then, it is natural to consider the streaming model,

where each item in the ground set E arrives sequentially, and we are allowed to use a small amount

of memory. Unless stated otherwise, we always consider single-pass algorithms, that is, algorithms

that scan the entire stream only once.

Submodular maximization under the streaming model has received much attention recently.

Algorithms with various approximation ratios and space requirements have been proposed for the

cardinality constraint [2, 26], the knapsack constraint [24, 25, 42], and the matroid constraint [10,

13]. However, there are only a few inapproximability results. McGregor and Vu [35] showed

that any streaming algorithm for maximizing a coverage function under a cardinality constraint

with approximation ratio better than 1− 1
e requires Ω

(
n
K2

)
space, where n := |E| is the number of

elements. Norouzi-Fard et al. [37] showed that any streaming algorithm for maximizing a monotone

submodular function under a cardinality constraint with approximation ratio better than K
2K−1

requires Ω
(
n
K

)
space, assuming that we can only evaluate function values of feasible sets, which we

call the weak oracle model. A standard value oracle is called strong for comparison.

1.1 Our contributions

The first contribution of this work is giving inapproximability results for cardinality and matroid

constraints that beat 1− 1
e in the strong oracle model for the first time.
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Table 1: Summary of results

Constraint Approximation ratio Space usage Oracle Reference

Cardinality

Algorithm
1
2 − ε O

(
K
ε

)
weak [26]

K
2K−1 − ε Õ

(
K22K

ε

)
weak Theorem 1.4

Hardness

1−
(
1− 1

K

)K
+ ε,∀ε > 0 Ω

(
n
K2

)
strong [35]

K
2K−1 + ε,∀ε > 0 Ω

(
n
K

)
weak [37]

2
2+

√
2
+ ε,∀ε > 0 Ω

(
n
K2

)
strong Theorem 1.2

Matroid

Algorithm
1
4 K logO(1) n strong [10, 13]

1
2 − ε Õ

(
K5K+1

ε

)
weak Theorem 1.5

Hardness K
2K−1 + ε,∀ε > 0 Ω

(
n
K

)
strong Theorem 1.3

Before explaining our results, we first note that, in the context of submodular maximization, it

is standard to assume that a value oracle of a function f is given and the complexity of algorithms

is measured based on the number of oracle calls [2, 10, 13, 24, 25, 26, 42]. However, a value oracle

of f is too powerful in the streaming setting if we are allowed to put an exponential number of

queries. In fact, if we have a free access to the value oracle, we can maximize f even without seeing

the stream by querying about every subset. This observation leads to the following natural model,

which we call the element-store model.

Definition 1.1 (Element-store model). Let E = {e1, . . . , en} be the ground set and f : 2E → R+

be a set function. A streaming algorithm in the element-store model maintains a set of elements

S, which is initially an empty set, and possess an additional memory M . At step t ∈ {1, . . . , n},
the item et is given to the algorithm, and the algorithm updates S and the content of M using the

values of f(S′) for S′ ⊆ S ∪ {et} and the content of M . Finally, the algorithm outputs a subset of

S. The space complexity of the algorithm is the sum of the number of words stored in M and the

maximum size of S over the n steps.

The weak oracle model is equivalent to constraining S always to be a feasible set. We note that

all known streaming algorithms for submodular function maximization [2, 10, 13, 24, 25, 26, 42] lie

in the element-store model. Now, we state our results.

Theorem 1.2. For any K ∈ N and ε > 0, any (randomized) streaming algorithm for monotone

submodular function maximization under a cardinality constraint in the element-store model with

approximation ratio 2
2+

√
2
+ ε ≈ 0.585 + ε requires Ω

(
n
K2

)
space.

Theorem 1.3. For any K ∈ N and ε > 0, any (randomized) streaming algorithm for monotone

submodular function maximization under a partition matroid constraint in the element-store model

with approximation ratio K
2K−1 + ε requires Ω

(
n
K

)
space.

Indeed, the same inapproximability results hold for any streaming algorithm in the element-

store model with unbounded computational power and memory space for M , as long as the number
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of elements stored in S is bounded. The proof techniques can be found in Section 1.2.

Next, we complement the previous and obtained inapproximability results by showing (weak-

oracle) streaming algorithms for cardinality and matroid constraints. We first present a weak-

oracle streaming algorithm for a cardinality constraint with approximation ratio K
2K−1 − ε, which

is slightly better than the previous best approximation ratio of 1
2 [2, 26] and exactly matches the

known inapproximability for the weak oracle model [37]. Although the space usage is exponential

in K, it does not depend on the number of elements n.

Theorem 1.4. There exists a weak-oracle
(

K
2K−1 − ε

)
-approximation streaming algorithm for

monotone submodular function maximization under a cardinality constraint with O
(
K22K log(K/ε)

ε

)

space.

Then, we extend the algorithm given in Theorem 1.4 to a weak-oracle streaming algorithm for

a matroid constraint with approximation ratio 1
2 − ε, which almost matches the inapproximability

of K
2K−1 + ε given in Theorem 1.3. This almost settles the the approximation ratio for a matroid

constraint that can be achieved by a streaming algorithm with space complexity independent of n,

for both the weak and strong oracle models.

Theorem 1.5. There exists a weak-oracle
(
1
2 − ε

)
-approximation streaming algorithm for mono-

tone submodular function maximization under a matroid constraint with O
(
K5K+1 log(K/ε)

ε

)
space.

All the previous and obtained results are summarized in Table 1. Here, Õ(·) hides a polyloga-

rithmic factor in K
ε .

1.2 Our techniques

Lower bound construction We first describe the intuition behind our proof of Theorem 1.2.

The elements of the ground set E are colored either blue, red, or purple, and we have a large

number of n − K blue elements, K − 1 red elements, and one purple element. Let B, R, and P

be the set of blue, red, and purple elements, respectively, that is, |B| = n − K, |R| = K − 1,

and |P | = 1. We note that the colors of elements are not revealed to algorithms. We design our

monotone submodular function f : 2E → Z+ so that it is colorwise-symmetric meaning that the

value of f(S) is uniquely determined by the number of blue, red, and purple elements in a subset

S. We write f(b, r, p) to denote the value of f(S) when there are b blue elements, r red elements,

and p purple elements in S. We will assume that f(0,K − 1, 1) gives the optimal value.

In the input stream, blue and red elements arrive in a random order, and then the purple element

arrives at the end. We design f so that it is hard to distinguish blue and red elements (without

using the purple element). More precisely, f satisfies the property f(b+1, 0, 0) = f(b, 1, 0) for any

non-negative integer b. As the number of blue elements is much larger than that of red elements

and the space is limited, with high probability, we must immediately throw away red elements from

the memory right after they arrive. Thus, with high probability, we obtain the values f(K, 0, 0),

f(K − 1, 1, 0) or f(K − 1, 0, 1), i.e., most of the time the algorithm ends up with at least K − 1

3



blue elements. On the basis of some ideas suggested by computer simulations, we construct f so

that the maximum of the three values is small.

The proof outline of Theorem 1.3 is similar, but is more involved. We first regard that the ground

set E is partitioned into classes C1, . . . , CK such that |C1| = · · · = |CK−1| =: m and |CK | = 1, and

we constrain that the output set takes at most one element from each class, which is a partition

matroid constraint. For each class i, there is a unique “right” element, referred to as the red element

of the class, and for the first K−1 classes, there are a large number of “wrong” elements, referred to

as blue elements of the class. We will define a monotone submodular function f : 2E → R+ whose

value is determined by (1) the presence/absence of the red element of class from 1 to K, and (2)

the number of blue elements of class from 1 to K − 1. More precisely, given a set S, we denote

by ri and bi the numbers of red and blue elements of class i in S for 1 ≤ i ≤ K, respectively, and

then f(S) takes the form of f(r1, r2, . . . , rK ; b1, b2, . . . , bK). We note that ri ∈ {0, 1} for all i, and

bK should always be 0. We call such a function colorwise-symmetric with respect to the partition

{C1, . . . , CK}. We will assume that f(1, . . . , 1; 0, . . . , 0) gives the optimal value.

In the input stream, for each i ∈ {1, . . . ,K− 1} in this order, the blue and red elements of class

i arrive in a random order, and then the unique red element of class K arrives. We design f so

that it is hard to distinguish blue and red elements in each class. More precisely, f satisfies the

property

f(r1, . . . , ri−1, 1, 0, . . . , 0; b1, . . . , bi−1, bi , 0, . . . , 0)

=f(r1, . . . , ri−1, 0, 0, . . . , 0; b1, . . . , bi−1, bi + 1, 0, . . . , 0)

for any 1 ≤ i ≤ K − 1, r1, . . . , ri−1 ∈ {0, 1}, and b1, . . . , bi ∈ {0, 1, . . . ,m}. Combined with

the monotonicity of f , we can show that the maximum value we can obtain via any algorithm

is f(0, . . . , 0, 1; 1, . . . , 1, 0) with high probability. Again on the basis of some ideas suggested by

computer simulations, we can construct f so that this value is small.

We note that we took a different approach from the information-theoretic argument based on

communication complexity used to show existing lower bounds [35, 37], because we wanted to show

lower bounds when the value oracle for a submodular function is available, and it is not clear how we

can integrate it in the communication complexity setting. In [35], coverage functions were explicitly

constructed from instances of a communication complexity problem, and hence we can regard that

the sets used to define the coverage functions are given one by one in a streaming fashion, and we

do not need the value oracle. In [37], the issue was avoided by assuming that the value oracle is

weak.

Our algorithms Our algorithms for cardinality and matroid constraints, given in Theorems 1.4

and 1.5, all use branching, depending on the property of the first element o1 of the optimal solution

OPT in the stream. Here we explain the simplest case of cardinality constraint to highlight the

basic ideas. We devise a general procedure which takes two parameters k and s. The former is the

upper bound on the size of the optimal solution while the latter is the allowed size of the solution.
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Such a procedure would guarantee that the returned solution achieves the approximation ratio of
s

k+s−1 , where we observe that the ratio improves when s is large relatively to k.

In the first branch, we assume that the value of o1 is sufficiently large and we simply take the

first element e whose value is above a certain threshold and then recurse on all the elements after e

(with parameters k − 1 and s− 1). Doing this guarantees that the element we first take is of large

value (“bang for the buck”), and more critically, o1 (and hence the rest of OPT) is not “missed” in

the recursion. In the second branch, we assume that the value of o1 is too small and we can as well

just focus on OPT− o1, by recursing directly on all remaining elements (with parameters k−1 and

s). Even though the value of OPT− o1 is slightly smaller than OPT, the approximation ratio for

the recursion is improved, as the available space s grows relatively to the optimal solution size.

For the case of matroid constraint, the above branching strategy need more careful handling. It

is based on the idea of taking the first element that resembles o1 and use it to recurse on OPT−o1.

There is an extra issue that the element e resembling o1 may not form an independent set together

with OPT − o1. This issue is circumvented by using an extra set of candidates of o1, based on a

known fact in matroid theory.

1.3 Related work

Maximizing a monotone submodular function subject to various constraints is a subject that has

been extensively studied in the literature. Although the problem is NP-hard even for a cardinality

constraint, it can be approximated in polynomial time within a factor of 1− 1
e . See e.g., [3, 21, 22, 40].

On the other hand, even for a cardinality constraint, we need an exponential number of function

evaluations to obtain approximation ratio better than 1− 1
e [36, 39]. Also, even when the submodular

function is explicitly given (as a coverage function), Feige [19] proved that the problem with a

cardinality constraint cannot be approximated in polynomial time within a factor of 1− 1
e + ε for

any constant ε > 0 unless P is equal to NP. Besides a cardinality constraint, the problem has

also been studied under (multiple) matroid constraint(s), p-system constraint, multiple knapsack

constraints. See [9, 11, 12, 15, 16, 18, 20, 29, 32, 41] and the references therein.

Multi-pass streaming algorithms, where we are allowed to read a stream of the input multi-

ple times, have also been studied [3, 10, 23, 25]. In particular, Chakrabarti and Kale [10] gave

an O(ε−3)-pass streaming algorithms for a generalization of the maximum matching problem and

the submodular maximization problem with cardinality constraint. Huang and Kakimura [23] de-

signed an O(ε−1)-pass streaming algorithm with approximation guarantee 1/2−ε for the knapsack-

constrained problem. Other than the streaming setting, recent applications of submodular function

maximization to large data sets have motivated new directions of research on other computational

models including parallel computation model such as the MapReduce model [7, 6, 30] and the

adaptivity analysis [4, 5, 14, 17].

The maximum coverage problem is a special case of monotone submodular maximization under

a cardinality constraint where the function is a set-covering function. For the special case, McGregor

and Vu [35] and Batani et al. [8] gave a (1 − e−1 − ε)-approximation algorithm in the multi-pass
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streaming setting.

1.4 Organization

We prove our lower bound for strong-oracle algorithms for a cardinality constraint (Theorem 1.2)

and a matroid constraint (Theorem 1.3) in Sections 2 and 3, respectively. We explain our weak-

oracle algorithms and analyze them (Theorems 1.4 and 1.5) in Section 4.

2 Lower Bounds for Cardinality Constraints

In this section, we prove Theorem 1.2. As described in the introduction, the ground set E is

partitioned into a blue set B, a red set R, and a purple set P , where |B| = n−K, |R| = K−1, and

|P | = 1. We design a colorwise-symmetric function f : 2E → Z+ such that f(b+1, 0, 0) = f(b, 1, 0)

for any non-negative integer b ≤ |B| − 1 and the values f(K, 0, 0), f(K − 1, 1, 0) and f(K − 1, 0, 1)

are small. More specifically, we show the following:

Lemma 2.1. For any large enough integer n and any integer h ≥ K, there exists a colorwise-

symmetric function f : 2E → Z+ with |E| = n that satisfies the following conditions.

(i) f is monotone submodular.

(ii) [Indistinguishability] f(b+ 1, 0, 0) = f(b, 1, 0) holds for all 0 ≤ b ≤ n−K − 1.

(iii) [Output value] f(K, 0, 0) = f(K−1, 1, 0) = hK+ (K−1)K
2 and f(K−1, 0, 1) = (K − 1)2+h(h+1)

2

hold.

(iv) [Optimal value] f(0,K − 1, 1) = (K − 1)(h+K − 1) + h(h+1)
2 holds.

We defer the construction of our hard function and its analysis to Sections 2.1–2.3.

Below we prove Theorem 1.2 using Lemma 2.1. We will use the following bound in the proof.

Proposition 2.2. We have (
1− k2

n

)
nk

k!
≤
(
n

k

)
≤ nk

k!
.

Proof. The claim holds from (
n

k

)
=

∏k−1
i=0 (n− i)

k!

and

nk ≥
k−1∏

i=0

(n− i) ≥ (n− k)k =

(
1− k

n

)k

nk ≥
(
1− k2

n

)
nk.

Proof of Theorem 1.2. Let h ≥ K be an integer determined later, and let f : 2E → Z+ with |E| = n

be the colorwise-symmetric function as in Lemma 2.1.

Let D be the uniform distribution over orderings (e1, . . . , en) of elements of E, conditioned

on that e1, . . . , en−1 include all the red and blue elements. Note that en is the (unique) purple
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element. By Yao’s minimax principle, to prove Theorem 1.2, it suffices to show that any deter-

ministic streaming algorithm A with o
(

n
K2

)
space on an input sampled from D does not achieve

approximation ratio more than K
2K−1 in expectation.

Let (e1, . . . , en) denote a sequence of elements sampled from D. Let St be the set of elements

that A holds after the t-th step, that is, the t-th element et has arrived and A has updated the set

of elements it holds (by adding et and/or discarding elements already in the set). We define S0 = ∅
for convenience, and note that an algorithm chooses a subset of Sn as the output of A. Note also

that, for each 1 ≤ t ≤ n, the set St is completely determined by St−1 and the values of f(S) and

f(S ∪ {et}) (S ⊆ St−1), as A is deterministic.

For a set of indices I ⊆ {1, . . . , n}, we define SI = {ei | i ∈ I}. Then, for t ∈ {0, 1, . . . , n − 1},
we iteratively define a canonical set I∗t of indices (not elements) as follows. First, we set I∗0 = ∅.
Then, for each 1 ≤ t ≤ n− 1, we define I∗t as the set of indices of elements in St when A had SI∗

t−1

after the (t− 1)-th step and all but at most one element in SI∗
t−1

∪ {et} are blue. Note that I∗t is

uniquely determined because A is deterministic, and by Property (ii) of Lemma 2.1, the value of

f(SI ∪ {et}) for I ⊆ I∗t−1 is uniquely determined from the size of I.

We say that A followed the canonical process if A holds the set SI∗
t

after the t-th step for each

1 ≤ t ≤ n− 1. For 1 ≤ t ≤ n− 1, let Xt be the event that SI∗
t−1

has one or more red elements and

et is red. Then, the probability that A does not follow the canonical process is bounded by the

probability that
∨n−1

t=1 Xt happens. First, we have

Pr[Xt] ≤
∑K−2

r=1

(s
r

)(n−s−2
K−2−r

)
(n−1
K−1

) ,

where s is the space usage of the algorithm, because the probability that SI∗
t−1

has r red balls and

et is red is at most
(s
r

)(n−s−2
K−2−r

)
/
(n−1
K−1

)
. Then by a union bound, we have

Pr
[n−1∨

t=1

Xt

]
≤

n−1∑

t=1

Pr[Xt] ≤ (n− 1)

∑K−2
r=1

(s
r

)(n−s−2
K−2−r

)
(n−1
K−1

)

≤ (n− 1)

∑K−2
r=1

sr

r!
(n−s−2)K−2−r

(K−2−r)!(
1− K2

n

)
(n−1)K−1

(K−1)!

(By Proposition 2.2)

=
K − 1(

1− K2

n

)
(n− 1)K−2

K−2∑

r=1

(
K − 2

r

)
sr(n− s− 2)K−2−r

=
K − 1(

1− K2

n

)
(n− 1)K−2

(
(n − 2)K−2 − (n− s− 2)K−2

)

=
K − 1

1− K2

n

(
n− 2

n− 1

)K−2
(
1−

(
1− s

n− 2

)K−2
)

≤ K − 1

1− K2

n

s(K − 2)

n− 2
(By (1− x)d ≥ 1− dx)

=
1

1− K2

n

O

(
K2s

n

)
.
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Let Y be the event that SI∗
n−1

has one or more red elements. We have

Pr[Y ] ≤ 1−
(n−s−1

K−1

)
(n−1
K−1

) ≤ 1−

(
1− K2

n−s

)
(n−s−1)K−1

(K−1)!

(n−1)K−1

(K−1)!

(By Proposition 2.2)

= 1−
(
1− K2

n− s

)(
1− s

n− 1

)K−1

≤ 1−
(
1− K2

n− s

)(
1− s(K − 1)

n− 1

)
(By (1− x)d ≥ 1− dx)

=
K2

n− s
+

(
1− K2

n− s

)
s(K − 1)

n− 1
.

As long as K = o(
√
n) and s = o

(
n
K2

)
, the probability that none of X1, . . . ,Xn−1, and Y

happens is at least 1− o(1) by setting the hidden constant in s to be small enough. If none of the

events has happened, the algorithm A can only obtain values for sets S with S ⊆ SI∗
t−1

∪ {et} for

some 1 ≤ t ≤ n and |S| ≤ K. As SI∗
t−1

∪{et} for any 1 ≤ t ≤ n−1 contains at most one red element

and SI∗
n−1

contains no red element, the value of f(S) is upper-bounded by max{f(K, 0, 0), f(K −
1, 1, 0), f(K−1, 0, 1)}, which is given by Property (iii) of Lemma 2.1. Recall that the optimal value

is given by Property (iv) of Lemma 2.1. Therefore, the approximation ratio (in expectation over

D) is

(1− o(1)) ·
max

{
hK + (K−1)K

2 , (K − 1)2 + h(h+1)
2

}

(K − 1)(h +K − 1) + h(h+1)
2

+ o(1) · 1.

The ratio is minimized when h is ⌊
√
2(K − 1)⌋ or ⌈

√
2(K − 1)⌉. When K approaches to infinity,

the ratio is

(1− o(1)) · 2

2 +
√
2
+ o(1) > 0.585,

as desired.

2.1 Construction of Hard Functions

We first define our function, and then describe the intuition behind the construction. The next

two subsections give its correctness proof.

Definition 2.3. We define a colorwise-symmetric function f : 2E → Z+ recursively by its marginal

return: Define

f(0, 0, 0) = 0 and f(0, 0, 1) =
h(h + 1)

2
.

We denote the marginal returns of f by

∆r(b, r) = f(b, r + 1, 0) − f(b, r, 0) = f(b, r + 1, 1)− f(b, r, 1),

∆b(b, 0, 0) = f(b+ 1, 0, 0) − f(b, 0, 0),

∆b(b, 0, 1) = f(b+ 1, 0, 1) − f(b, 0, 1),
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where they are defined by

∆r(b, r) =





K − 1 + h− b if 0 ≤ b ≤ h+ r,

K − 1−
⌈
r+b−h

2

⌉
if h+ r + 1 ≤ b ≤ h+ 2(K − 2)− r,

0 if h+ 2(K − 2)− r + 1 ≤ b,

∆b(b, 0, 0)(= ∆r(b, 0)) =





K − 1 + h− b if 0 ≤ b ≤ h,

K − 1−
⌈
b−h
2

⌉
if h+ 1 ≤ b ≤ h+ 2(K − 2),

0 if h+ 2(K − 2) + 1 ≤ b,

∆b(b, 0, 1) =





K − 1 if 0 ≤ b ≤ h,

K − 1−
⌈
b−h
2

⌉
if h+ 1 ≤ b ≤ h+ 2(K − 2),

0 if h+ 2(K − 2) + 1 ≤ b.

The value f(b, r, p) is determined in the following way: we start with the “base value”, f(0, 0, p)

(the presence of the purple element), then add the blue elements one by one until there are b of

them (each increasing the marginal value by ∆b(i, 0, p) for 0 ≤ i ≤ b − 1), and then add the red

elements one by one until there are r of them (each increasing the marginal value by ∆r(b, i) for

0 ≤ i ≤ r − 1). In other words, we have

f(b, r, p) = f(0, 0, p) +
b−1∑

j=0

∆b(j, 0, p) +
r−1∑

i=0

∆r(b, i). (3)

2.1.1 Ideas behind the function

We start with several simple observations. The marginal values ∆b(b, 0, 0), ∆b(b, 0, 1) and ∆r(b, r)

are monotonically non-increasing as the parameters b and r increase1. This conforms with the

property of diminishing marginal return of a submodular function. The next thing to notice is that,

by design, the values ∆b(b, 0, 0) are exactly identical to ∆r(b, 0). So f(b + 1, 0, 0) = f(b, 0, 0) +

∆b(b, 0, 0) = f(b, 0, 0) + ∆r(b, 0) = f(b, 1, 0) and this is required by Lemma 2.1(ii).

We next explain why the marginal values ∆b(b, 0, 0), ∆b(b, 0, 1) and ∆r(b, r) are chosen in such

a manner. A concrete example can be very useful to reveal the patterns generated by them. Assume

that K = 4 (thus 3 red elements and 1 purple element, and a large number of blue elements) and

we choose h = 4. Table 2 gives the function values when the purple element is absent or present,

along with ∆r(b, r), the marginal value of adding a red element. We observe that for every fixed r,

∆r(b, r) is strictly monotonically decreasing in b until b = h+ r (we color it differently); when b is

1To see ∆r(b, r) ≥ ∆r(b + 1, r), it suffices to show when b = h + r and when b = h + 2(K − 2) − r. They

follow because ∆r(h + r, r) = K − r − 1 ≥ K − 1 − ⌈r + 1
2
⌉ = ∆r(h + r + 1, r) and ∆r(h + 2(K − 2) − r, r) =

K − 1 − ⌈K − 1⌉ ≥ 0 = ∆r(h+ 2(K − 2) − r + 1, r). To see ∆r(b, r) ≥ ∆r(b, r + 1), the only tricky cases are when

b = h+ r + 1 and when b = h+ 2(K − 2) − r. It holds that ∆r(h+ r + 1, r) = K − 1− r − 1 = ∆r(h+ r + 1, r + 1)

and ∆r(h+ 2(K − 2)− r, r) = 1 ≥ 0 = ∆r(h+ 2(K − 2)− r, r + 1).
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beyond h+ r, the same value ∆r(b, r) appears twice before decreasing. Notice that the smaller the

r = i, ∆r(b, i) decreases in b more slowly (conforming with the submodularity).

Table 2: The function values along with the marginal value ∆r(b, r) when K = h = 4. After the

value b = h + r (we color it specially), the same ∆r(b, r)’s appear twice before decreasing. Also

notice that the values f(b+ 1, 0, 0) = f(b, 1, 0) for all 0 ≤ b ≤ n−K − 1 (Lemma 2.1(ii)).

p = 0 r = 0 r = 1 r = 2 r = 3

b f ∆r f ∆r f ∆r f

0 0 7 7 7 14 7 21

1 7 6 13 6 19 6 25

2 13 5 18 5 23 5 28

3 18 4 22 4 26 4 30

4 22 3 25 3 28 3 31

5 25 2 27 2 29 2 31

6 27 2 29 1 30 1 31

7 29 1 30 1 31 0 31

8 30 1 31 0 31 0 31

9 31 0 31 0 31 0 31

10 31 — 31 — 31 — 31

p = 1 r = 0 r = 1 r = 2 r = 3

b f ∆r f ∆r f ∆r f

0 13 7 20 7 27 7 34

1 16 6 22 6 28 6 34

2 19 5 24 5 29 5 34

3 22 4 26 4 30 4 34

4 25 3 28 3 31 3 34

5 28 2 30 2 32 2 34

6 30 2 32 1 33 1 34

7 32 1 33 1 34 0 34

8 33 1 34 0 34 0 34

9 34 0 34 0 34 0 34

10 34 — 34 — 34 — 34

Indeed we choose all marginal values ∆r(b, r), ∆b(b, 0, 0) and ∆b(b, 0, 1) with two objectives.

(1) The indistinguishability of red and blue elements (i.e., Lemma 2.1(ii)), which forces ∆r(b, 0) =

∆b(b, 0, 0), and (2) creating a particular pattern of f(b,K − 1, 0) and f(b,K − 1, 1). As can be

observed in this example, f(b,K − 1, 1) is simply the optimal value for all b, while f(b,K − 1, 0)

increases by the amount of h, h−1, down to 1 when b increases from 0 to h and stop growing when

b is beyond h. The fact that we want f(b,K − 1, 0) to stop growing when b is beyond h explains

why ∆r(b, r) behaves somehow differently when b is beyond h+ r.

2.2 Correctness of Function Values

In this section, we show that the function f defined in Definition 2.3 satisfies Lemma 2.1 (ii)–(iv).

Since ∆b(b, 0, 0) = ∆r(b, 0) for each b, we immediately have (ii) of Lemma 2.1. Moreover, it

follows from (3) that

f(K, 0, 0) =
K−1∑

j=0

∆b(j, 0, 0) = hK +
(K − 1)K

2
,

f(K − 1, 1, 0) = ∆r(K − 1, 0) +

K−2∑

j=0

∆b(j, 0, 0) =

K−1∑

j=0

∆b(j, 0, 0) = hK +
(K − 1)K

2
,
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f(K − 1, 0, 1) =

K−2∑

j=0

∆b(j, 0, 1) + f(0, 0, 1) = (K − 1)(K − 1) +
h(h + 1)

2
.

It also holds that

f(0,K − 1, 1) =

K−2∑

i=0

∆r(0, i) + f(0, 0, 1) = (K − 1)(h +K − 1) +
h(h + 1)

2
.

Thus (iii) and (iv) of Lemma 2.1 follow.

2.3 Monotonicity and Submodularity

Below we prove Lemma 2.1 (i), that is, the function f defined in Definition 2.3 is monotone and

submodular. To this end, it suffices to show the following lemma.

Lemma 2.4. Let f : 2E → Z+ be the colorwise-symmetric function defined in Definition 2.3. Then

we have

1. f(b1, r1, 1) − f(b1, r1, 0) ≥ f(b2, r2, 1) − f(b2, r2, 0) ≥ 0 for 0 ≤ b1 ≤ b2 ≤ |B| and 0 ≤ r1 ≤
r2 ≤ |R|.

2. f(b1, r1 + 1, p1) − f(b1, r1, p1) ≥ f(b2, r2 + 1, p2) − f(b2, r2, p2) ≥ 0 for 0 ≤ b1 ≤ b2 ≤ |B|,
0 ≤ r1 ≤ r2 ≤ |R| − 1, and 0 ≤ p1 ≤ p2 ≤ 1.

3. f(b1 + 1, r1, p1)− f(b1, r1, p1) ≥ f(b2 + 1, r2, p2)− f(b2, r2, p2) ≥ 0 for 0 ≤ b1 ≤ b2 ≤ |B| − 1,

0 ≤ r1 ≤ r2 ≤ |R|, and 0 ≤ p1 ≤ p2 ≤ 1.

Proof. (1) By definition, it holds that, for ℓ = 1, 2,

f(bℓ, rℓ, 1)− f(bℓ, rℓ, 0) =

bℓ−1∑

j=0

(
∆b(j, 0, 1) −∆b(j, 0, 0)

)
+ f(0, 0, 1) − f(0, 0, 0).

Since ∆b(j, 0, 0) = ∆b(j, 0, 1) if j ≥ h+ 1, the RHS is equal to

min{bℓ−1,h}∑

j=0

(
K − 1− (K − 1 + h− j)

)
+

h(h+ 1)

2
≥ −

h∑

j=0

(h− j) +
h(h + 1)

2
= 0.

Hence the marginal return with respect to p is non-negative. Moreover,

(
f(b1, r1, 1) − f(b1, r1, 0)

)
−
(
f(b2, r2, 1) − f(b2, r2, 0)

)
=

min{h,b2−1}∑

j=min{h,b1−1}
(h− j) ≥ 0,

since h− j ≥ 0 for j ≤ h. Thus (1) holds.

(2) We observe that ∆r(b, r) is a monotonically non-increasing function with respect to b, and a

monotonically non-increasing function with respect to r (See the footnote in Section 2.1.1). Hence

it holds that

∆r(b1, r1) ≥ ∆r(b1, r2) ≥ ∆r(b2, r2) ≥ 0.
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This implies that

f(b1, r1 + 1, p1)− f(b1, r1, p1) = ∆r(b1, r1) ≥ ∆r(b2, r2) = f(b2, r2 + 1, p2)− f(b2, r2, p2) ≥ 0.

Thus (2) holds.

(3) We first observe the following claims.

Claim 1. Let 0 ≤ r ≤ |R|.

1. For 0 ≤ b ≤ h+ r − 1, it holds that 2∆r(b+ 1, r) = ∆r(b, r) + ∆r(b+ 2, r).

2. For h+ r ≤ b, it holds that ∆r(b, r) = ∆r(b+ 1, r − 1).

Proof. They follow from the definition of ∆r. (1) clearly holds when b + 2 ≤ h + r, because ∆r

is a linear function with respect to b . When b = h + r − 1, (1) also holds since 2∆r(b + 1, r) =

2(K − 1 − r), ∆r(b, r) = K − r, and ∆r(b + 2, r) = K − 1 − (r + 1). For (2), the equality holds

when h+ r+1 ≤ b, since ∆r depends on b+ r. Moreover, when h+ r = b, the equality holds since

∆r(b, r) = ∆r(b+ 1, r − 1) = K − 1− r.

Claim 2. For 0 ≤ b ≤ |B| − 2, 0 ≤ r ≤ |R|, and 0 ≤ p ≤ 1, it holds that

f(b+ 1, r, p) − f(b, r, p) ≥ f(b+ 2, r, p) − f(b+ 1, r, p) ≥ 0.

Proof. We first consider the case when b ≤ h+ r − 2. We will show that the first inequality holds

by induction on r. The inequality holds when r = 0 as ∆b(b, 0, p) ≥ ∆b(b + 1, 0, p). Suppose that

r > 0. Then we have

f(b+ 1, r, p) − f(b, r, p) =
(
f(b+ 1, r − 1, p) + ∆r(b+ 1, r − 1)

)
−
(
f(b, r − 1, p) + ∆r(b, r − 1)

)

≥ f(b+ 2, r − 1, p) + ∆r(b+ 1, r − 1)− f(b+ 1, r − 1, p)−∆r(b, r − 1)

= f(b+ 2, r, p) − f(b+ 1, r, p)

+ 2∆r(b+ 1, r − 1)−∆r(b, r − 1)−∆r(b+ 2, r − 1),

where the inequality holds by the induction hypothesis. Therefore, it follows from Claim 1 (1) that

for 0 ≤ b ≤ h+ r − 2,

f(b+ 1, r, p) − f(b, r, p) ≥ f(b+ 2, r, p) − f(b+ 1, r, p).

Thus, the claimed inequality holds when b ≤ h+ r− 2. This implies that, for 0 ≤ b ≤ h+ r− 2, we

have f(b+ 1, r, p) − f(b, r, p) ≥ f(h+ r + 1, r, p) − f(h+ r, r, p).

Next suppose that h + r − 1 ≤ b. We may assume that r > 0, as the case when r = 0 easily

follows. By definition, it holds that

f(b+ 1, r, p) − f(b, r, p) =
r−1∑

i=0

(
∆r(b+ 1, i)−∆r(b, i)

)
+∆b(b, 0, p).
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Since ∆r(b, i) = ∆r(b+ 1, i − 1) for i = 1, . . . , r − 1 by Claim 1 (2), we have

f(b+ 1, r, p) − f(b, r, p) = ∆r(b+ 1, r − 1)−∆r(b, 0) +∆b(b, 0, p) = ∆r(b+ 1, r − 1),

where the last equality follows from ∆r(b, 0) = ∆b(b, 0, p) for b ≥ h. Similarly, f(b+2, r, p)− f(b+

1, r, p) = ∆r(b+ 2, r − 1). Hence

f(b+ 1, r, p) − f(b, r, p) = ∆r(b+ 1, r − 1) ≥ ∆r(b+ 2, r − 1) = f(b+ 2, r, p) − f(b+ 1, r, p).

Thus the claimed inequality holds.

Moreover, for h+ r − 1 ≤ b ≤ |B| − 2, we have f(b+ 1, r, p) − f(b, r, p) ≥ f(|B|, r, p)− f(|B| −
1, r, p) = ∆r(|B|, r − 1) ≥ 0. Thus the monotonicity also holds.

Claim 3. For 0 ≤ b ≤ |B| − 1, 0 ≤ r ≤ |R|, and 0 ≤ p ≤ 1, it holds that

f(b+ 1, r, 0) − f(b, r, 0) ≥ f(b+ 1, r, 1) − f(b, r, 1).

Proof. We will show the claim by induction on r. The inequality holds when r = 0 as ∆b(b, 0, 0) ≥
∆b(b, 0, 1). Suppose that r > 0. Then

f(b+ 1, r, 0) − f(b, r, 0) = (f(b+ 1, r − 1, 0) + ∆r(b+ 1, r − 1))− (f(b, r − 1, 0) + ∆r(b, r − 1))

≥ f(b+ 1, r − 1, 1) + ∆r(b+ 1, r − 1)− f(b, r − 1, 1) −∆r(b, r − 1)

= f(b+ 1, r, 1) − f(b, r, 1),

where the inequality holds by the induction hypothesis. Thus the claim holds.

It holds that, for 0 ≤ b ≤ |B| − 1, 0 ≤ r1 ≤ r2 ≤ |R|, and 0 ≤ p ≤ 1,

f(b+ 1, r1, p)− f(b, r1, p) ≥ f(b+ 1, r2, p)− f(b, r2, p), (4)

since f(b+ 1, rℓ, p)− f(b, rℓ, p) =
∑rℓ−1

i=0 (∆r(b+ 1, i) −∆r(b, i)) + ∆b(b, 0, p) for ℓ = 1, 2.

Therefore, applying Claims 2 and 3 with (4), we have

f(b1 + 1, r1, p1)− f(b1, r1, p1) ≥ f(b1 + 1, r2, p1)− f(b1, r2, p1)

≥ f(b2 + 1, r2, p1)− f(b2, r2, p1) ≥ f(b2 + 1, r2, p2)− f(b2, r2, p2).

Since the monotonicity follows by Claim 2, we complete the proof of (3).

3 Lower Bounds for Matroid Constraints

In this section, we prove Theorem 1.3. As described in the introduction, we assume that the ground

set E is partitioned into classes C1, . . . , CK such that |C1| = · · · = |CK−1| =: m and |CK | = 1.

Note that the number of elements n := |E| is (K − 1)m + 1. We design a monotone submodular

function f : 2E → Z+ that is colorwise-symmetric with respect to the partition {C1, . . . , CK} such

that it is hard to distinguish blue and red elements in each class whereas we need to hit all the red

elements to get the optimal value. We will specify the exact values of f in the next section. Here,

we summarize the critical properties of f and use them to prove Theorem 1.3.
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Lemma 3.1. For any large enough integer m and any positive integer K, there exists a colorwise-

symmetric function f : 2E → Z+ with respect to a partition E =
⋃K

i=1Ci with |C1| = · · · = |CK−1| =
m and |CK | = 1 such that

(i) f is monotone submodular.

(ii) [Optimal value] f(1, . . . , 1; 0, . . . , 0) = (2K − 1)!.

(iii) [Output value] f(0, . . . , 0, 1; 1, . . . , 1, 0) = K(2K − 2)!.

(iv) [Indistinguishability] For any 1 ≤ i ≤ K − 1 and r1, . . . , ri−1, b1, . . . , bi, we have

f(r1, . . . , ri−1, 1, 0, . . . , 0; b1, . . . , bi−1, bi , 0, . . . , 0)

=f(r1, . . . , ri−1, 0, 0, . . . , 0; b1, . . . , bi−1, bi + 1, 0, . . . , 0).

Proof of Theorem 1.3. We modify the proof of Theorem 1.2.

Let f : 2E → Z+ be the function as in Lemma 3.1. For 1 ≤ i ≤ K − 1, let Ti = {(i − 1)m +

1, . . . , im} and let TK = {n}. Let D be the uniform distribution over orderings (e1, . . . , en) of

elements of E, conditioned on that for each 1 ≤ i ≤ K, the set {et | t ∈ Ti} consists of all the

elements of class i. By Yao’s minimax principle, to prove Theorem 1.3, it suffices to show that

any deterministic streaming algorithm A with o
(
n
K

)
space on an input sampled from D does not

achieve approximation ratio more than K
2K−1 in expectation.

We define St for t ∈ {0, 1, . . . , n} and SI for I ⊆ {1, . . . , n} as in the proof of Theorem 1.2. For

t ∈ {0, 1, . . . , n − 1}, we iteratively define a canonical set I∗t of indices (not elements) as follows.

First, we set I∗0 = ∅. Then, for each 1 ≤ t ≤ n− 1, we define I∗t as the set of indices of elements in

St when A had SI∗
t−1

after the (t−1)-th step and all but at most one element in SI∗ ∪{et} are blue.

Note that I∗t is uniquely determined because A is deterministic, and by Property (iv) of Lemma 3.1,

the value of f(SI ∪ {et}) for I ⊆ I∗t is uniquely determined from the sizes of I ∩ T1, . . . , I ∩ TK−1.

We say that A followed the canonical process if A holds the set SI∗
t

after the t-th step for each

1 ≤ t ≤ n− 1. For 1 ≤ t ≤ n− 1, let Xt be the event that SI∗
t−1

has one or more red elements and

et is red. Then, the probability that A does not follow the canonical process is bounded by the

probability that
∨n−1

t=1 Xt happens.

To bound Pr[Xt], we introduce some notations. Let s be the space usage of the algorithm.

For i ∈ {1, . . . ,K − 1}, let si = |I∗t−1 ∩ Ti|. For t ∈ {1, . . . , n − 1}, let it ∈ {1, . . . ,K − 1} be

the class that the t-th element belongs to, that is, the unique integer i with t ∈ Ti. Then for any

t ∈ {1, . . . , n − 1}, we have

Pr[Xt] ≤
K−2∑

r=1

max
r1,...,rK−1∈{0,1}:∑

i6=it
ri≤r

sit
m

∏

i 6=it

srii (m− si)
1−ri

m
≤

K−2∑

r=1

(s
r

)rmK−2−r

mK−1

=
1

m

K−2∑

r=1

( s

rm

)r
≤ s

m(m− s)
= O

( s

m2

)
.

Here, we regard r as the number of red elements in SI∗
t−1

and regard r1, . . . , rK−1 ∈ {0, 1} as

the numbers of red elements in SI∗
t−1∩T1 , . . . , SI∗

t−1∩TK−1
, respectively. The first inequality holds
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because the probability that et is red is sit
m and the probability that SI∗

t−1∩Ti
has ri red elements is

s
ri

i
(m−si)

1−ri

m .

Now by a union bound, we have

Pr

[
n−1∨

t=1

Xt

]
≤

n−1∑

t=1

Pr[Xt] = O
( sn

m2

)
= O

(
Ks

m

)
.

Let Y be the event that SI∗
n−1

has one or more red elements. Then, we have

Pr[Y ] ≤ 1−
K−1∏

i=1

m− si
m

≤ 1− (m− s)mK−2

mK−1
=

s

m
.

As long as Ks = o(n), the probability that none of X1, . . . ,Xn−1, and Y happens is at least

1−o(1) by setting the hidden constant in s to be small enough. If none of the events has happened,

the algorithm A can only obtain values for sets S with S ⊆ SI∗
t−1

∪{et} for 1 ≤ t ≤ n and |S| ≤ K.

As SI∗
t−1

∪ {et} for any 1 ≤ t ≤ n− 1 contains at most one red element and SI∗
n−1

contains no red

element, the values the algorithm can observe is at most K(2K − 2)! by Properties (iii) and (iv) of

Lemma 3.1. Recall that the optimal value is (2K − 1)! by Property (ii) of Lemma 3.1. Therefore,

the approximation ratio (in expectation over D) is

(1− o(1)) · K(2K − 2)!

(2K − 1)!
+ o(1) · 1 = (1− o(1))

K

2K − 1
+ o(1).

3.1 Construction of the Hard Function

We begin by describing some characteristics of the function we will define. Let b̂i = min{bi, 2(K −
i)}. The function will be expressed as a polynomial of ri and b̂i for all 1 ≤ i ≤ K. In other words,

the number of blue elements matter only up to a certain ceiling: For class i, if there are more than

2(K − i) blue elements in the class i, the function value is the same as if there are exactly 2(K − i)

blue elements. To be more precise, we decree that

f(r1, · · · rK ; b1, . . . , bK) = f(r1, . . . , rK ; b̂1, . . . , b̂K).

We now define the function f recursively. For t = 1, . . . K, let ft be a function on the last t

classes CK−(t−1), . . . , CK , that is, ft takes the form of

ft(rK−(t−1), . . . , rK ; bK−(t−1), . . . , bK)

Define

f1(rK ; bK) = rK ,

and assume the function ft−1 is already defined for some t ≥ 2. We then define the function ft.

For that purpose, we give some notation. Let mt = (2t − 1)!. As we will see later, the function

15



value of ft−1 is between 0 and mt−1. Suppose that we are given rK−(t−1), rK−(t−2), . . . , rK and

bK−(t−1), bK−(t−2), . . . , bK . Define2

δt−1 = mt−1 − ft−1(rK−(t−2), . . . , rK ; b̂K−(t−2), . . . , b̂K).

We also define

dt = 2(t− 1)− b̂K−(t−1) and st = 1− rK−(t−1).

The term dt (resp., st) is simply the gap between b̂K−(t−1) (resp., rK−(t−1)) and its potential

maximum. We remark that both of them are non-negative, and b̂K−(t−1) + dt = 2(t − 1) and

rK−(t−1) + st = 1. We can then express ft as follows:

ft(rK−(t−1), . . . , rK ; bK−(t−1), . . . , bK) = mt − at · dt, (5)

where

at = 2mt−1st + δt−1(dt − 1).

The function ft is set up in such a way so that ft(1, . . . , 1; 0, . . . , 0) is exactly mt = (2t − 1)!

for any t. As we will show, this maximizes ft. On the other hand, ft(0, . . . , 0; 0, . . . , 0) = 0,

which is the minimum of ft. To see the significance of the term at, recall that the term δt−1

encodes the difference between the maximum of ft−1 and the actual value attained by the given

rK−(t−2), . . . , rK and b̂K−(t−2), . . . , b̂K — therefore always non-negative. Then we can regard at as

a linear combination of st and dt (both are decided by the number of red/blue elements of class

K−(t−1)), where the coefficients are respectively 2mt−1 and δt−1 (both are decided by the number

of red/blue elements from later classes K − (t− 1) + 1, . . . ,K). See Lemma 3.4 for a more precise

summary of the above discussion.

3.2 Concrete Example and Some Observations

We present a concrete example to highlight several interesting properties of the function constructed

in Section 3.1, and to share some of our experiences in searching for such a function. Let K = 3.

All the function values when 0 ≤ b1 ≤ 2(K − 1) = 4 and 0 ≤ b2 ≤ 2(K − 2) = 2 are shown in

Tables 3 and 4. We remark that having more blue elements does not increase the value further, as

mentioned in Section 3.1.

We can first observe that, individually, the values of a single red/blue element of the first K−1

classes are all equal, and the value of the unique red element in the last class is half of them. In

the present example, an element in the first two classes has value 48 while an element in the last

class has value 24. In fact, we have the following observation for the constructed function f . Note

that bK should always be 0.

2Here we note that the terms δt−1, dt, and st indeed depend on the value of rK−(t−1), rK−(t−2), . . . , rK and

bK−(t−1), bK−(t−2), . . . , bK . However, we choose to avoid the cumbersome notation of associating the former with the

latter.
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r1 = 0, r2 = 0 r1 = 1, r2 = 0 r1 = 0, r2 = 1 r1 = 1, r2 = 1
❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

0 0 48 72 0 48 96 120 0 48 72 72 0 96 120 120

1 48 72 84 1 84 108 120 1 72 84 84 1 108 120 120

2 84 92 96 2 108 116 120 2 92 96 96 2 116 120 120

3 108 108 108 3 120 120 120 3 108 108 108 3 120 120 120

4 120 120 120 4 120 120 120 4 120 120 120 4 120 120 120

Table 3: When the unique element of C3 is absent, i.e., r3 = 0.

r1 = 0, r2 = 0 r1 = 1, r2 = 0 r1 = 0, r2 = 1 r1 = 1, r2 = 1
❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

❍
❍
❍
❍
❍

b̂1

b̂2
0 1 2

0 24 48 72 0 72 96 120 0 72 72 72 0 120 120 120

1 60 72 84 1 96 108 120 1 84 84 84 1 120 120 120

2 88 92 96 2 112 116 120 2 96 96 96 2 120 120 120

3 108 108 108 3 120 120 120 3 108 108 108 3 120 120 120

4 120 120 120 4 120 120 120 4 120 120 120 4 120 120 120

Table 4: When the unique element of C3 is present, i.e., r3 = 1.

Lemma 3.2. The constructed function f satisfies the following.

f(0, . . . , 0, 1, 0, . . . , 0; 0, . . . , 0) =




(2K − 2)! if 1 is at the last class K

2(2K − 2)! otherwise

f(0, . . . , 0; 0, . . . , 0, 1, 0, . . . , 0) = 2(2K − 2)!,

The proof will be given in Section 3.4.

In the present example, the optimal value is 120, which is reached by a set of 2(K − 1) blue

elements of class 1, i.e, f(0, 0, 0; 4, 0, 0) = 120, though it is infeasible. The optimal value is also

obtained by a set of all the red elements, which is equal to the sum of the values of each red element.

In the example, we see that f(1, 1, 1; 0, 0, 0) = f(1, 0, 0; 0, 0, 0)+f(0, 1, 0; 0, 0, 0)+f(0, 0, 1; 0, 0, 0) =

48 + 48 + 24 = 120.

Lemma 3.3. The constructed function f satisfies that

f(1, . . . , 1; 0, . . . , 0) = f(1, 0, . . . , 0; 0, . . . , 0) + f(0, 1, 0, . . . , 0; 0, . . . , 0) + · · ·
· · · + f(0, . . . , 0, 1; 0, . . . , 0) = (2K − 1)!,

f(0, . . . , 0; 2(K − 1), 0, . . . , 0) = (2K − 1)!.

The proof will be given in Section 3.4.

By the construction, the function f(r1, r2, r3; b1, b2, b3) can be expressed as the following poly-

nomial:

f(r1, r2, r3; b1, b2, b3) = m3 − (2m2s3 + (2m1s2 + s1(d2 − 1)) d2(d3 − 1)) · d3
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= 120− (12s3 + (2s2 + s1(d2 − 1)) d2(d3 − 1)) · d3, (6)

where we recall that mt = (2t−1)!, dt = 2(t−1)− b̂K−(t−1) and st = 1−rK−(t−1) for t = 1, 2, 3. We

can observe that f is a polynomial in si’s and di’s, where, for each monomial, si’s have degree at

most 1 and di’s have degree at most 2. This implies that the discrete second derivative with respect

to bi’s is constant when bi is in [0, 2(K − i)]. Take the current example with r1 = r2 = r3 = b2 = 0.

When b1 increases from 0 to 4, the discrete first derivative is 48, 36, 24, 12 and the discrete

second derivative is a constant, which is 12. It can be verified that the same property holds for

all columns and all rows in Tables 3 and 4. In fact, we noticed in computer-aided search that

imposing the additional constraint of constant second derivative does not change the ratio between

the optimal value and the value an algorithm finds, making the found function more structured

and generalizable. Based on computer-aided search imposing this additional constraint for small

values of rank K, we found the recurrence in the previous section.

3.3 Correctness of the Function

We first show the monotonicity of the constructed function ft, which implies Lemma 3.1 (i) and

(ii) when t = K.

Lemma 3.4. For any t = 1, 2, . . . ,K, the constructed function ft satisfies the following.

1. ft is monotone in rK−(t−1), . . . , rK and in bK−(t−1), . . . , bK .

2. ft reaches the maximum, which is mt = (2t− 1)!, when rK−(t−1) = · · · = rK = 1.

3. ft reaches the minimum, which is 0, when rK−(t−1) = · · · = rK = bK−(t−1) = · · · = bK = 0.

Proof. We prove by induction on t. When t = 1, it is straightforward to verify the lemma. Consider

when t ≥ 2.

For (1), suppose that r1K−(t−1) ≥ r2K−(t−1), · · · , r1K ≥ r2K and b1K−(t−1) ≥ b2K−(t−1), · · · , b1K ≥
b2K . For ℓ = 1, 2, let δℓt−1, dℓt, sℓt and f ℓ

t denote the realizations of δt−1, dt, st and ft, based on
⋃K

j=K−(t−1){rℓj , bℓj}. By the induction hypothesis, ft−1 is monotone, and hence we see 0 ≤ δ1t−1 ≤
δ2t−1. Furthermore, as b1K−(t−1) ≥ b2K−(t−1), we have b̂1K−(t−1) ≥ b̂2K−(t−1), implying that d1t ≤ d2t .

Now it holds by (5) that

f1
t − f2

t = δ2t−1(d
2
t − 1)d2t − δ1t−1(d

1
t − 1)d1t + 2mt−1

(
s2td

2
t − s1td

1
t

)

≥ δ2t−1(d
2
t − 1)d2t − δ1t−1(d

1
t − 1)d1t

≥ δ1t−1

(
(d2t − 1)d2t − (d1t − 1)d1t

)
≥ 0

where the first inequality holds because s2t ≥ s1t and d2t ≥ d1t , the second inequality is from δ2t−1 ≥
δ1t−1, and the last inequality follows from the fact that the function x(x − 1) is monotonically

increasing for a non-negative integer x. (1) is then proved.

For (2), when rK−(t−1) = rK−(t−2) = · · · = rK = 1, by the induction hypothesis, ft−1 takes the

maximum mt−1, and hence δt−1 = 0. Then at = 0, since st = 0 and δt−1 = 0. Hence the ft-value
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in this case is equal to mt. In addition, it holds that mt is an upped bound of ft, since atdt is

non-negative in (5). Indeed, atdt = 0 when dt = 0, and when dt ≥ 1, at is non-negative since δt−1

is non-negative by the induction hypothesis. Thus mt is the maximum value of ft, which implies

(2).

For (3), when rK−(t−1) = rK−(t−2) = · · · = rK = bK−(t−2) = · · · = bK = 0, the induction

hypothesis gives that δt−1 = mt−1. Since st = 1 and dt = 2(t − 1) when rK−(t−1) = bK−(t−1) = 0,

it holds that

atdt = mt−1(2st + dt − 1)dt = mt−1(2t− 1)(2t− 2) = (2t− 1)!,

which is exactly mt. Thus ft(0, . . . , 0; 0, . . . , 0) = 0 by (5). Since ft is monotone by (1), it is

minimum.

Therefore, (1)–(3) hold.

We calculate the function value obtained by an algorithm (Lemma 3.1 (iii)).

Lemma 3.5. For any t = 1, 2, . . . ,K, the constructed function ft satisfies the following.

ft(0, . . . , 0, 1; 1, . . . , 1, 0) = t · (2t− 2)!.

Proof. We prove by induction on t. When t = 1, it is straightforward to verify the lemma. By the

induction hypothesis, ft−1(0, . . . , 0, 1; 1, . . . , 1, 0) = (t− 1) · (2t− 4)!. Then δt−1 = (t− 2) · (2t− 4)!.

As st = 1 and dt = 2t− 3, it holds by (5) that

ft(0, . . . , 0, 1; 1, . . . , 1, 0) = (2t− 1)!− (2 · (2t− 3)! + (2t− 4)!(t− 2)(2t − 4)) (2t− 3) = t · (2t− 2)!,

where the last equality is easy to verify.

We next deal with submodularity of the constructed function.

Lemma 3.6. For any t = 1, 2, . . . ,K, the constructed function ft satisfies the following: Suppose

that r1K−(t−1) ≥ r2K−(t−1), . . . , r
1
K ≥ r2K and b1K−(t−1) ≥ b2K−(t−1), . . . , b

1
K ≥ b2K . Then

1. For any integer i with K − (t− 1) ≤ i ≤ K such that r1i = 0, it holds that

ft(r
1
K−(t−1), . . . , r

1
i + 1, . . . , r1K ; b1K−(t−1), . . . , b

1
K)− ft(r

1
K−(t−1), . . . , r

1
i , . . . , r

1
K ; b1K−(t−1), . . . , b

1
K)

≤ ft(r
2
K−(t−1), . . . , r

2
i + 1, . . . , r2K ; b1K−(t−1), . . . , b

2
K)− ft(r

2
K−(t−1), . . . , r

2
i , . . . , r

2
K ; b2K−(t−1), . . . , b

2
K).

(7)

2. For any integer i with K − (t− 1) ≤ i ≤ K, it holds that

ft(r
1
K−(t−1), . . . , r

1
K ; b1K−(t−1), . . . , b

1
i + 1, . . . , b1K)− ft(r

1
K−(t−1), . . . , r

1
K ; b1K−(t−1), . . . , b

1
i , . . . , b

1
K)

≤ ft(r
2
K−(t−1), . . . , r

2
K ; bℓK−(t−1), . . . , b

2
i + 1, . . . , b2K)− ft(r

2
K−(t−1), . . . , r

2
K ; b2K−(t−1), . . . , b

2
i , . . . , b

2
K).

(8)
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Proof. We proceed by induction on t. The base case t = 1 is easy to verify. For the induction step

where t ≥ 2, let dℓt, s
ℓ
t and δℓt−1 denote the realizations of dt, st, and δt−1 based on

⋃K
j=K−(t−1){rℓj , bℓj}

for ℓ = 1, 2. As b1K−(t−1) ≥ b2K−(t−1), we have b̂1K−(t−1) ≥ b̂2K−(t−1), and thus d1t ≤ d2t .

First assume that i ≥ K − (t − 2). Then it follows from (5) that the left-hand side of (7) is

equal to

d1t (d
1
t − 1)(ft−1(r

1
K−(t−2), . . . , r

1
i + 1, . . . , r1K ; b1K−(t−2), . . . , b

1
K)

− ft−1(r
1
K−(t−2), . . . , r

1
i , . . . , r

1
K ; b1K−(t−2), . . . , b

1
K)).

Similarly, the right-hand side of (7) is equal to

d2t (d
2
t − 1)(ft−1(r

2
K−(t−2), . . . , r

2
i + 1, . . . , r2K ; b2K−(t−2), . . . , b

2
K)

− ft−1(r
2
K−(t−2), . . . , r

2
i , . . . , r

2
K ; b2K−(t−2), . . . , b

2
K)).

Since d1t (d
1
t − 1) ≤ d2t (d

2
t − 1) as d1t ≤ d2t and both d1t and d2t are non-negative integers, (7) holds

by the induction hypothesis. The argument for (8) is identical.

Next assume that i = K−(t−1). Then (7) holds, because the LHS and RHS of (7) are equal to

2mt−1d
1
t and 2mt−1d

2
t , respectively, and d1t ≤ d2t . For (8), first observe that, if b1K−(t−1) ≥ 2(t− 1),

then d1t = 0, implying that the LHS of (8) is zero, and hence (8) is trivial since ft is monotone by

Lemma 3.4. So assume that b1K−(t−1) < 2(t − 1), implying that d2t ≥ d1t > 0. Furthermore, by the

monotonicity, we have δ1t−1 ≤ δ2t−1. It follows from (5) that the LHS and RHS of (8) are equal to

2mt−1st + 2δ1t−1(d
1
t − 1) and 2mt−1st + 2δ2t−1(d

2
t − 1),

respectively. Since d1t ≤ d2t , this proves the lemma.

We are left with proving indistinguishability. We begin by proving that when only elements of

a particular class are present, the ft-values are entirely determined by their cardinality.

Lemma 3.7. For any t = 2, 3, . . . ,K and any non-negative integer b, it holds that

ft(1, 0, . . . , 0; b, 0, . . . , 0) = ft(0, 0, . . . , 0; b + 1, 0, . . . , 0).

Proof. Let d1t and d2t , δ
1
t−1 and δ2t−1 be the realizations of dt and δt−1 based on (1, 0, . . . , 0; b, 0, . . . , 0)

and (0, 0, . . . , 0; b+1, 0, . . . , 0), respectively. Then δ1t−1 = δ2t−1 = mt−1 holds by Lemma 3.4. By (5),

the two function values stated in the lemma can be written as

ft(1, 0, . . . , 0; b , 0, . . . , 0) = mt − (d1t − 1)d1tmt−1,

ft(0, 0, . . . , 0; b + 1, 0, . . . , 0) = mt − (d2t + 1)d2tmt−1,

respectively. If b ≥ 2(t − 1), then both d1t and d2t are 0, which gives the equivalence of the two

above expressions. So assume that b+ 1 ≤ 2(t− 1), and hence d1t = d2t + 1. Then, since

(d1t − 1)d1t = (d2t + 1)(d2t + 1− 1) = (d2t + 1)d2t ,

the above two expressions are equivalent. The proof follows.
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The next lemma generalizes the previous one: if we fix the numbers of red and blue elements of

classes before class i, then the function value is entirely determined by the cardinality of elements

in class i. This proves Lemma 3.1 (iv) by setting t = K.

Lemma 3.8. For any i = 2, 3, . . . ,K and any integer t such that K − i+ 1 ≤ t ≤ K, it holds that

ft(rK−(t−1), . . . , ri+1, 1, 0, . . . , 0; bK−(t−1), . . . , bi+1, bi, 0, . . . , 0)

= ft(rK−(t−1), . . . , ri+1, 0, 0, . . . , 0; bK−(t−1), . . . , bi+1, bi + 1, 0, . . . , 0).

Proof. We prove by induction on t. The base case t = K − i+ 1 follows from Lemma 3.7. For the

induction step when t > K − i+ 1, let δℓt−1 be the realization of δt−1 based on
⋃i

j=K−(t−2){rℓj , bℓj}
for ℓ = 1, 2. Induction hypothesis then states that δ1t−1 = δ2t−1 and the proof follows by observing

how the function is defined by recurrence (5).

Lemma 3.1 follows from Lemmas 3.4, 3.5, 3.6, and 3.8.

3.4 Proof of Observations in Section 3.2

We first prove Lemma 3.2.

Proof of Lemma 3.2. Let t be an integer from 2 to K. We first compute ft(1, 0, . . . , 0; 0, . . . , 0).

By Lemma 3.4, ft−1(0, . . . , 0; 0, . . . , 0) = 0 and hence δt−1 = mt−1. Hence, since st = 0 and

dt = 2(t− 1), it follows from (5) that

ft(1, 0, . . . , 0; 0, . . . , 0) = mt −mt−1(2st + dt − 1)dt = mt −mt−1(2t− 2)(2t − 3) = 2 · (2t− 2)!.

On the other hand, since st = 1 and dt = 2(t− 1)− 1 in the case of ft(0, . . . , 0; 1, 0, . . . , 0),

ft(0, . . . , 0; 1, 0, . . . , 0) = mt −mt−1(2st + dt − 1)dt = mt −mt−1(2t− 2)(2t − 3) = 2 · (2t− 2)!.

Suppose that we are given rK−(t−1), rK−(t−2), . . . , rK and bK−(t−1), bK−(t−2), . . . , bK . Let f ′ be

the value of ft(rK−(t−1), rK−(t−2), . . . , rK ; bK−(t−1), bK−(t−2), . . . , bK). Then

ft+1(0, rK−(t−1), rK−(t−2), . . . , rK ; 0, bK−(t−1), bK−(t−2), . . . , bK)

= mt+1 − (2mtst+1 + (mt − f ′)(dt+1 − 1))dt+1

= (2t)(2t− 1) · f ′.

Therefore, when rK−(t−1) = 1 and rK−(t−2) = · · · = rK = bK−(t−1) = bK−(t−2) = · · · = bK = 0 (2 ≤
t ≤ K), it follows that

f(0, . . . , 0, 1, 0, . . . , 0; 0, . . . , 0) = (2K − 2)(2K − 3) · · · (2t)(2t− 1)ft(1, 0, . . . , 0; 0, . . . , 0)

= (2K − 2)(2K − 3) · · · (2t)(2t− 1) (2 · (2t− 2)!) = 2 · (2K − 2)!.

Similarly, we have f(0, . . . , 0; 0, . . . , 0, 1, 0, . . . , 0) = 2 · (2K − 2)!. Moreover, since f1(1; 0) = 1 by

the definition, it holds that

f(0, . . . , 0, 1; 0, . . . , 0) = (2K − 2)(2K − 3) · · · 2 · f1(1; 0) = (2K − 2)!.

Thus Lemma 3.2 holds.
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Below we prove Lemma 3.3.

Lemma 3.3. It follows from Lemma 3.4 that

f(1, . . . , 1; 0, . . . , 0) = fK(1, . . . , 1; 0, . . . , 0) = (2K − 1)!.

Moreover, Lemma 3.3 imlplies that

f(1, 0, . . . , 0; 0, . . . , 0) + f(0, 1, . . . , 0; 0, . . . , 0) + · · ·+ f(0, . . . , 0, 1; 0, . . . , 0)

= (K − 1) · (2 · (2K − 2)!) + (2K − 2)! = (2K − 1)!.

Thus the first equality holds.

We next consider computing f(0, . . . , 0; 2(K − 1), 0, . . . , 0). Since fK−1(0, . . . , 0; 0, . . . , 0) = 0,

we have δK−1 = mK−1. Hence, since sK = 1 and dK = 0 in this case, we see from (5) that

fK(0, . . . , 0; 2(K − 1), 0, . . . , 0) = mK −mK−1(2sK + (dK − 1))dK = mK .

Thus Lemma 3.3 follows.

4 Algorithms

In this section, we present algorithms for a cardinality constraint and a matroid constraint, respec-

tively.

We first establish some convention here. We call the input problem the original instance, in

which all elements in the stream are considered. Furthermore,

• K denotes the size constraint for the input cardinality constraint or the rank of the input

matroid;

• OPT is the optimal solution of the original instance;

• f : 2E → Z+ is the input submodular function.

All algorithms are given in the form of a general procedure with a set of parameters (in par-

ticular, a re-defined submodular function and a modified cardinality/matroid constraint). Each

invocation of the general procedure is called a branch. A branch considers all remaining elements

that have not arrived so far (i.e., a suffix of the entire stream of elements). For a branch, we use

the following notation.

• k denotes the size constraint for a new cardinality constraint or the rank of the new matroid

(as a rule k ≤ K);

• OPT is the intersection of OPT and the remaining elements considered by this branch;

• g is a submodular function derived from f . More specifically, g(T ) = f(T | S) := f(T ∪
S)− f(S), where S is a subset of elements that have already arrived so far before this branch

starts.
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Whenever OPT is non-empty, we denote by o1 the first element that arrives in the stream

among all elements in OPT.

In the description of the algorithms, we assume that we are given an approximate v ∈ R+ so

that v ≤ f(OPT) ≤ (1 + ε)v. and we will explain in Section 4.3 how to implement them without

knowing the value v.

4.1 Cardinality Constraint

We start by defining the main procedure Cardinality. The procedure takes four parameters k, s, v,

and g; we assume that OPT satisfies the conditions that g(OPT) ≥ v and |OPT| ≤ k, and s is an

upper bound that we impose on the size of the returned solution of Cardinality(k, s, v, f).

Cardinality(k, s, v, g) is described in Algorithm 1. Its basic idea can be simply described as

follows. We target the approximation ratio of s
s+k , which, intuitively, states that the ratio should

get better as the allowed solution size s is increased with respect to k, the upper bound on the size

of OPT. In case that k or s = 1, we simply choose the element that gives the largest g-value. So

assume that k, s ≥ 2.

Depending on the value of g(o1) (for which we have no prior knowledge), we create two branches:

• Branch 1: If g(o1) is sufficiently large (precisely at least v
k+s−1), we just take the first element

e so that g(e) ≥ v
k+s−1 . Then e precedes o1 (or is just o1) and the rest of OPT. We define a

new submodular function g′ = g(· | e). We then invoke Cardinality(k, s− 1, v − g(e), g′).

• Branch 2: If g(o1) is too small, we simply ignore it and invoke Cardinality(k− 1, s, k+s−2
k+s−1v, g)

directly.

The output is just the better outcome of the two branches.

Lemma 4.1. Suppose that k ≥ 1 and s ≥ 1. Suppose that there is a set OPT in the input stream

so that g(OPT) ≥ v and |OPT| ≤ k. Then Cardinality(k, s, v, g) returns a solution S such that

g(S) ≥ s
k+s−1v and |S| ≤ s.

Proof. We begin by noting our assumption is that |OPT| ≤ k and g(OPT) ≥ v. If OPT = ∅, then

v ≤ f(∅), implying that any solution satisfies the lemma. Therefore, in the following, we assume

that OPT 6= ∅.
We now prove by induction, first on k and then on s. In the base case k = 1, as the algorithm

chooses an element e maximizing g(e), we have g(e) ≥ g(o1) = g(OPT) ≥ v.

For the induction step k > 1, we apply induction on s. In the base case s = 1, again the

algorithm chooses an element e maximizing g(e), so g(e) ≥ g(o1) ≥ g(OPT)
k ≥ v

k , where the second

inequality follows from submodularity. For the induction step s > 1, the algorithm creates two

branches. Now consider two possibilities.

• Suppose that g(o1) ≥ v
k+s−1 . Then Branch 1 is bound to find an element e with g(e) ≥ v

k+s−1

and e either precedes o1 or is just o1. As g′(OPT) ≥ g(OPT)− g(e) ≥ v − g(e), we can then
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Algorithm 1

1: procedure Cardinality(k, s, v, g)

2: if k ≥ 2 and s ≥ 2 then

3: (Branch 1)

4: Let e be the first element such that g(e) ≥ v
k+s−1 .

5: Define g′ = g(· | e).
6: Apply Cardinality(k, s − 1, v − g(e), g′) on all the elements after e.

7: Let S′ be the returned solution.

8: S1 := S′ + e.

9: (Branch 2)

10: Apply Cardinality(k − 1, s, k+s−2
k+s−1v, g) on all the elements.

11: Let S2 be the returned solution.

12: if g(S1) > g(S2) then return S1.

13: else return S2.

14: if k = 1 or s = 1 then return argmaxe g(e).

apply induction hypothesis on Cardinality(k, s − 1, v − g(e), g′), which returns a solution S′

with g′(S′) ≥ s−1
k+s−2

(
v − g(e)

)
and |S′| ≤ s− 1. Then

g(S1) = g′(S′) + g(e) ≥ s− 1

k + s− 2
v +

k − 1

k + s− 2
g(e) ≥ s

k + s− 1
v.

Clearly, |S1| ≤ s.

• Suppose that g(o1) < v
k+s−1 . Then g(OPT − o1) ≥ g(OPT) − g(o1) ≥ k+s−2

k+s−1v, due to

submodularity. By the induction hypothesis, Cardinality(k − 1, s, k+s−2
k+s−1v, g) in Branch 2

returns a solution S2 with g(S2) ≥ s
k+s−2

k+s−2
k+s−1v = s

k+s−1v. Clearly, |S2| ≤ s.

Therefore, one of the two branches gives the desired solution. This finishes the induction step

on s and then also on k. The proof follows.

Theorem 4.2. Suppose that v ≤ f(OPT). Then,the algorithm Cardinality(K,K, v, f) returns a

solution S with f(S) ≥ K
2K−1v. The space complexity (for a fixed v) is O

(
K22K

)
.

Proof. The first part follows from Lemma 4.1. For space requirement, let Γ(k, s) denotes the space

required for Cardinality(k, s, v, g) and let c be some constant. Then it follows from the algorithm

that (1) Γ(k, s) ≤ c when k = 1 or s = 1, and (2) Γ(k, s) ≤ Γ(k− 1, s) + Γ(k, s− 1) + c when k > 1

and s > 1. It is easy to verify this recurrence leads to Γ(k, s) ≤ k2k+sc. The proof follows.

Therefore, if we are given v such that v ≤ f(OPT) ≤ (1+ε)v, Cardinality(K,K, v, f) returns a so-

lution S with f(S) ≥
(

K
2K−1 − ε

)
f(OPT). Our algorithm consists in invoking Cardinality(K,K, v, f)

for v in some interval, while updating the interval dynamically. See Section 4.3 for details.

24



Algorithm 2

1: procedure Matroid(k, v, g, I)

2: if k > 1 then

3: β := maxb∈Z+
b

K4 ≤ v
2 .

4: for 0 ≤ b ≤ β do

5: T := ∅.
6: while |I ∪ T | < K do

7: Let e be the first element in the remaining stream satisfying (1) I ∪ T + e ∈ I,

and (2) g(e) ≥ bv
K4 .

8: Branch (b, |T |+ 1)

9: Define g′ = g(· | e).
10: Apply Matroid(k − 1, (1− 1

K4 )v − 2g(e), g′, I + e) on all the elements after e.

11: Let the returned solution be S′.

12: Sb,|T |+1 := e+ S′.

13: T := T + e.

14: Branch 0

15: S0 := argmaxe,e∈I g(e).

16: return argmax {g(S) | S ∈ {Sb,j | b = 0, . . . , β, j = 1, . . . , k} ∪ S0}.

4.2 Matroid Constraint

Let M = (E,I) be a given matroid, whose ground set E is the entire stream of elements. Assume

that the rank of M is K. We present the procedure Matroid(k, v, g, I) as Algorithm 2. Again g

is the submodular function defined over the remaining elements, among which OPT satisfies the

conditions that g(OPT) ≥ v and |OPT| = k ≤ K. Moreover, an independent set I ∈ I is also

given as a part of the input; such a set I should guarantee that I ∪OPT ∈ I.

We now give the intuition of this procedure. We guess out possible values of g(o1) in intervals

of v
K4 (between 0 and 0.5v). For each possible interval

[
bv
K4 ,

(b+1)v
K4

]
of g(o1), we create a branch,

and we could potentially take the first element e so that I + e ∈ I, g(e) ≥ bv
K4 , and then define

g′ = g(· | e) and invoke Matroid(k − 1, (1 − 1
K4 )v − 2g(e), g′, I + e) on the elements after e. So

far the idea is similar to the previous cardinality case. The problem of this approach is that there

is no guarantee that (I + e) ∪ (OPT − o1) ∈ I, that is a required condition for the procedure

Matroid(k − 1, (1 − 1
K4 )v − 2g(e), g′ , I + e).

To remedy this issue, we introduce the following idea. For each possible interval
[

bv
K4 ,

(b+1)v
K4

]
of

g(o1), we create a set T , initialized as ∅. Every time a new element e arrives so that (1) I∪T+e ∈ I,

and (2) g(e) ≥ bv
K4 , we add e into T and create a new branch Matroid(k−1, (1− 1

K4 )v−2g(e), g′, I+e),

where g′ = g(· | e). As we will show (see the proof of Lemma 4.5), at least one of the elements

e ∈ T satisfies the property (I + e)∪ (OPT− o1) ∈ I. Apparently, |T | ≤ K, so in total we have at

most K + 1 branches for each b.

The following fact is well-known.
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Proposition 4.3. Suppose that C1 and C2 are two circuits and x ∈ C1 ∩ C2. Then, for any

y ∈ C1\C2, there exists another circuit C ⊆ C1 ∪ C2 − x and C ∋ y.

Lemma 4.4. Let T =
{
e1, . . . , e|T |

}
. Suppose that I∪T ∈ I and I∪OPT ∈ I holds. Furthermore,

suppose that for each ei ∈ T , I∪OPT+ei contains a circuit Ci so that Ci 6∋ o1. Then I∪T+o1 ∈ I.

Proof. We prove by establishing a more general statement: there is no circuit C∗ ⊆ I ∪ OPT ∪ T

so that C∗ ∋ o1 (this implies that the lemma as I ∪ T ∈ I). We proceed by contradiction. Assume

that such a circuit C∗ does exist and we will establish the following claim.

Claim 4. Suppose that C∗ ∋ o1 and C∗ ⊆ I ∪OPT∪T and C∗∩T 6= ∅. Then, there exists another

circuit C ⊆ I ∪OPT ∪ T , C ∋ o1 and |C ∩ T | < |C∗ ∩ T |.

Proof. To prove the claim, assume that ei ∈ C∗ ∩ T . Then by Proposition 4.3, we have a circuit

C ⊆ Ci ∪C∗ − ei and C ∋ o1 (recall that Ci is the circuit contained in I ∪OPT+ ei and Ci 6∋ o1).

Clearly, |C ∩ T | < |C∗ ∩ T |.

Now by this claim, we conclude that there is a circuit C ⊆ I ∪OPT and C ∋ o1, a contradiction

to the assumption that I ∪OPT ∈ I.

Lemma 4.5. Suppose that there is a set OPT in the input stream so that g(OPT) ≥ v, I∪OPT ∈ I,

and |OPT| = k. Then Matroid(k, v, g, I) returns a solution S so that g(S) ≥ 1
2

(
1 − 1

2K−k

)
v and

I ∪ S ∈ I.

Proof. We prove by induction on k. For the base case k = 1, Branch 0 is bound to get an element

e so that g(e) ≥ g(OPT) ≥ v. So assume that k > 1. Then there exists b with 0 ≤ b ≤ β such

that bv
K4 ≤ g(o1) ≤ (b+1)v

K4 . Let T =
{
e1, . . . , e|T |

}
be the set collected for this b at the moment

immediately before o1 arrives. There are two possibilities.

• If some element ei ∈ T satisfies the condition that either I ∪ OPT + ei is independent or

contains a circuit Ci and Ci ∋ o1, then I ∪ OPT + ei − o1 ∈ I. Moreover, it holds that

g′(OPT− o1) ≥ g(OPT)− g(o1)− g(e) ≥
(
1− 1

K4

)
v − 2g(e) as g(o1) ≤ g(e) + v

K4 .

• Otherwise, that is, if every element ei ∈ T satisfies the condition that I ∪OPT+ ei contains

a circuit Ci and Ci 6∋ o1, then by Lemma 4.4, I ∪ T + o1 ∈ I, implying that o1 will be added

into T .

In both cases, we know that there exists an element e ∈ T ∪ {o1} so that (1) g(e) ≥ bv
K4 , (2)

g′(OPT − e) ≥
(
1− 1

K4

)
v − 2g(e), and (3) (I + e) ∪ (OPT − o1) ∈ I. Furthermore, all elements

of OPT − o1 are considered by Matroid(k − 1,
(
1− 1

K4

)
v − 2g(e), g′, I + e). Then by induction

hypothesis, in Branch(b, j) for some j, we obtain a solution

g(Sb,j) ≥ g(e) +

((
1− 1

K4

)
v − 2g(e)

)
1

2

(
1− 1

2K − k + 1

)

≥ 1

2

(
1− 1

2K − k

)
v.
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This finishes the induction step.

The fact that the returned solution S satisfies S ∪ I ∈ I is easy to verify.

Theorem 4.6. Suppose that v ≤ f(OPT). Then the algorithm Matroid(K, v, f, ∅) returns a solution

S guaranteeing that f(S) ≥
(
1
2 − 1

2K

)
v. The space complexity (for a fixed v) is O

(
K5K+1

)
.

Proof. The first part follows from Lemma 4.5. For the space complexity, consider the branching

tree with Matroid(K, v, f, ∅) as the root. By the algorithm, each node has at most O(K5) branches.

Furthermore, the space required for such a node is K + c for some constant c (for each branch, we

need to store an element). The depth of such a tree is at most K. So the total complexity is at

most O(K5K+1).

4.3 Implementation

We now explain how to implement the algorithms described in the preceding sections without

knowing the optimal value v. We adapt the dynamic-update technique in [2].

We here explain the cardinality case. The matroid case is analogous. We will let v be a

number of the form
(
1 + ε

)i for some i ∈ Z. We observe that maxe f(e) ≤ f(OPT) ≤ Kmaxe f(e).

Let m be the maximum of f(e) among all elements e that have arrived so far. The algorithm

Cardinality(K,K, v, f) is activated only when m
(1+ε)2

≤ v ≤ Km
ε . The critical observation is that, if

f(OPT) > Km
ε , then the set of optimal items OPT′ \OPT that have arrived so far has the property

that

f(OPT′) ≤
∑

oi∈OPT′

f(oi) ≤ Km ≤ εf(OPT).

Therefore, the first time an element e arrives so that m := f(e) and m ≤ f(OPT) ≤ Km
ε , there

exists a subset OPT = OPT\OPT′ so that f(OPT) ≥ (1− ε)f(OPT). This means that we can use

OPT instead of OPT to perform the algorithm. Then the interval
[

m
(1+ε)2

, Km
ε

]
contains v such

that v ≤ f(OPT) ≤ (1 + ε)v, since m ≤ f(OPT) ≤ Km
ε . It follows from Theorem 4.2 that, using

O
(
K22K

)
space, Cardinality(K,K, v, f) returns a solution S with f(S) ≥ K

2K−1v, implying that

f(S) ≥ K

2K − 1
(1− ε)f(OPT) ≥ K

2K − 1
(1−O(ε))f(OPT).

The number of guesses for v is equal to O
(
log1+ε

(
K
ε

))
= O

(
log(K/ε)

ε

)
.

Theorems 1.4 and 1.5 follow from the preceding discussion and Theorems 4.2 and 4.6.
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