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Abstract
We give improved multi-pass streaming algorithms for the problem of maximizing a monotone
or arbitrary non-negative submodular function subject to a general p-matchoid constraint in the
model in which elements of the ground set arrive one at a time in a stream. The family of
constraints we consider generalizes both the intersection of p arbitrary matroid constraints and
p-uniform hypergraph matching. For monotone submodular functions, our algorithm attains a
guarantee of p+ 1 + ε using O(p/ε)-passes and requires storing only O(k) elements, where k is the
maximum size of feasible solution. This immediately gives an O(1/ε)-pass (2 + ε)-approximation
for monotone submodular maximization in a matroid and (3 + ε)-approximation for monotone
submodular matching. Our algorithm is oblivious to the choice ε and can be stopped after any
number of passes, delivering the appropriate guarantee. We extend our techniques to obtain the
first multi-pass streaming algorithms for general, non-negative submodular functions subject to a
p-matchoid constraint. We show that a randomized O(p/ε)-pass algorithm storing O(p3k log(k)/ε3)
elements gives a (p+ 1 + γ̄off +O(ε))-approximation, where γ̄off is the guarantee of the best-known
offline algorithm for the same problem.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Approximation algorithms analysis

Keywords and phrases submodular maximization, streaming algorithms, matroid, matchoid

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.62

Category APPROX

Funding Chien-Chung Huang: This work was funded by the grants ANR-19-CE48-0016 and ANR-
18-CE40-0025-01 from the French National Research Agency (ANR).
Justin Ward: This work was supported by EPSRC New Investigator Award EP/T006781/1.

1 Introduction

Many discrete optimization problems in theoretical computer science, operations research,
and machine learning can be cast as special cases of maximizing a submodular function f
subject to some constraint. Formally, a function f : 2X → R≥0 is submodular if and only
if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ X. One reason for the ubiquity of
submodularity in optimization settings is that it also captures a natural “diminishing returns”
property. Let f(e | A) , f(A + e) − f(A) be the marginal increase obtained in f when
adding an element e to a set A (where here and throughout we use the shorthands A+ e
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and A− e for A ∪ {e} and A\{e}, respectively). Then it is well-known that f is submodular
if and only if f(e | B) ≤ f(e | A) for any A ⊆ B and any e 6∈ B. If additionally we have
f(e | A) ≥ 0 for all A and e 6∈ A we say that f is monotone.

Here, we consider the problem of maximizing both monotone and arbitrary submodular
functions subject to an arbitrary p-matchoid constraint on the set of elements that can be
selected. Formally, a p-matchoidMp = (Ip, X) on X is given by a collection of matroids
{Mi = (Xi, Ii)} each defined on some subset of X, where each e ∈ X is present in at most
p of these subsets. A set S ⊆ X is then independent if and only if S ∩ Xi ∈ Ii for each
matroidMi. One can intuitively think of a p-matchoid as a collection of matroids in which
each element “participates” in at most p of the matroid constraints. The resulting family
of constraints is quite general and captures both intersections of p matroid constraints (by
letting Xi = X for allMi) and matchings in p-uniform hypergraphs (by considering X as a
collection of hyperedges and defining a uniform matroid constraint for each vertex, ensuring
that at most one hyperedge containing this vertex is selected).

In many applications of submodular optimization, such as summarization [19, 1, 21, 23]
we must process datasets so large that they cannot be stored in memory. Thus, there
has been recent interest in streaming algorithms for submodular optimization problems.
In this context, we suppose the ground set X is initially unknown and elements arrive
one-by-one in a stream. We suppose that the algorithm has an efficient oracle for evaluating
the submodular function f on any given subset of X, but has only enough memory to store
a small number of elements from the stream. Variants of standard greedy and local search
algorithms have been developed that obtain a constant-factor approximation in this setting,
but their approximation guarantees are considerably worse than that of their simple, offline
counterparts.

Here, we consider the multi-pass setting in which the algorithm is allowed to perform
several passes over a stream – in each pass all of X arrives in some order, and the algorithm is
still only allowed to store a small number of elements. In the offline setting, simple variants
of greedy [15] or local search [18, 13] algorithms in fact give the best-known approximation
guarantees for maximizing submodular functions subject to the p matroid constraints or a
general p-matchoid constraint. However, these algorithms potentially require considering all
elements in X each time a choice is made. It is natural to ask whether this is truly necessary,
or whether we could instead recover an approximation ratio nearly equal to these offline
algorithms by using only a constant number of passes through the data stream.

1.1 Our Results
Here we show that for monotone submodular functions, O(1/ε)-passes suffice to obtain
guarantees only (1 + ε) times worse than those guaranteed by the offline local search
algorithm. We give an O(p/ε)-pass streaming algorithm that gives a p+ 1 + ε approximation
for maximizing a monotone submodular function subject to an arbitrary p-matchoid constraint.
This immediately gives us an O(1/ε) pass streaming algorithm attaining a 2+ε approximation
for matroid constraints and a 3 + ε approximation for matching constraints in graphs. Each
pass of our algorithm is equivalent to a single pass of the streaming local search algorithm
described by Chakrabarti and Kale [6] and Chekuri, Gupta, and Quanrud [7]. However,
obtaining a rapid convergence to a p+ 1 + ε approximation requires some new insights. We
show that if a pass makes either large or small progress in the value of f , then the guarantee
obtained at the end of this pass can be improved. Balancing these two effects then leads
a carefully chosen sequence of parameters for each pass. Our general approach is similar
to that of Chakrabarti and Kale [6], but our algorithm is oblivious to the choice of ε. This
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Table 1 Summary of known approximation ratios for maximizing monotone and non-monotone
submodular functions. M means that f is monotone, and NN means that f is non-negative. In
stating results parameterized by p, we let o(1) denote a term that approaches zero as p increases.

Constraint Offline
M NN

matroid e/(e− 1) [5] 2.598 [3]
rank p hypergraph b-matching p+ ε [13] p2+ε

p−1 [13]
p matroid intersection p+ ε [18] p2+(p−1)ε

p−1 [18]
p-matchoid p+ 1 [15] ep

(1−ε)(2−o(1)) [12, 8]

Constraint Streaming Multipass
M NN M NN #-passes

matroid 4 [6, 7, 11] 5.8284 [11] 2 + ε [6] O
(
ε−1)

rank p hypergraph b-matching 4p [7, 11] 4p+ 2− o(1) [11] p+ 1 + ε [6] O
(

p4 log(p)
ε3

)
p matroid intersection 4p [6, 7, 11] 4p+ 2− o(1) [11] p+ 1 + ε [6] O

(
p4 log(p)

ε3

)
p-matchoid 4p [7, 11] 4p+ 2− o(1) [11]

allows us to give a uniform bound on the convergence of the approximation factor obtained
after some number d of passes. This bound is actually available to the algorithm, and so we
can certify the quality of the current solution after each pass. In practice, this allows for
terminating the algorithm early if a sufficient guarantee has already been obtained. Even in
the worst case, however, we improve on the number of passes required by similar previous
results by a factor of O(ε−2). Our algorithm only requires storing O(k) elements, where k
is the rank of the given p-matchoid, defined as the size of the largest independent set of
elements.

Building on these ideas, we also give a randomized, multi-pass algorithm that uses
O(p/ε)-passes and attains a p+ 1 + γ̄off +O(ε) approximation for maximizing an arbitrary
submodular function subject to a p-matchoid constraint, where γ̄off is the approximation
ratio attained by best-known offline algorithm for the same problem. To the best of our
knowledge, ours is the first multipass algorithm when the function is non-monotone. In
this case, our algorithm requires storing O(p

3k log k
ε3 ) elements. We remark that to facilitate

comparison with existing work, we have stated all approximation guarantees as factors γ ≥ 1.
However, we note that if one states ratios of the form 1/γ less than 1, then our results lead
to 1/γ − ε approximations in which all dependence on p can be eliminated (by setting simply
selecting some ε′ = pε).

1.2 Related Work

There is a vast literature on submodular maximization with various constraints and different
models of computation. In the offline model, the work on maximizing a monotone submodular
function goes back to Nemhauser, Wolsey and Fischer [24]. Monotone submodular functions
are well studied and many new and powerful results have been obtained since then. The
best approximation algorithm under a matroid constraint is due to Calinescu et al. [5] which
is the best that can be done using a polynomial number of queries [24] (if f is given as a
value oracle) or assuming P 6= NP [9] (if f is given explicitly). For more general constraints,
Lee, Sviridenko and Vondrák obtained a p + ε approximation algorithm under p matroid

APPROX/RANDOM 2020
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Table 2 Summary of our results maximizing monotone and non-monotone submodular functions.

Constraint Our results
monotone non-negative #-passes

matroid 2 + ε 4.598 + ε O
(

1
ε

)
rank p hypergraph b-matching p+ 1 + ε p+ 1 + p2

p−1 +O(ε) O
(

p
ε

)
p matroid intersection p+ 1 + ε p+ 1 + p2

p−1 +O(ε) O
(

p
ε

)
p-matchoid p+ 1 + ε p+ 1 + ep

(1−ε)(2−o(1)) +O(ε) O
(

p
ε

)

constraints [18]. Feldman et al. [13] obtained the same approximation ratio for the general
class of p-exchange systems. For general p-matchoid constraints, the best approximation
ratio is p+ 1, which is attained by the standard greedy algorithm [15].

Non-monotone objectives are less understood even under the simplest assumptions. The
current best-known result for maximizing a submodular function under a matroid constraint
is 2.598 [3], which is far from the 2.093 hardness result [16]. Table 1 gives the best known
bounds for the constraints that we consider in the paper.

Due to the large volume of data in modern applications, there has also been a line
of research focused on developing fast algorithms for submodular maximization [2, 22].
However, all results we have discussed so far assume that the entire instance is available
at any time, which may not be feasible for massive datasets. This has motivated the
study of streaming submodular maximization algorithms with low memory requirements.
Badaniyuru et al. [1] achieved a 2 + ε-approximation algorithm for maximizing a monotone
submodular function under a cardinality constraint in the streaming setting. This was
recently shown to be the best possible bound attainable in one pass with memory sublinear
in the size of the instance [14]. Chakrabarti and Kale [6] gave a 4p-approximation for the
intersection of p matroid constraints or p-uniform hypergraph matching. Later, Chekuri
et al. [7] generalized their argument to arbitrary p-matchoid constraints, and also gave a
modified algorithm for handling non-monotone submodular objectives. A fast, randomized
variant of the algorithm of [6] was studied by Feldman, Karbasi and Kazemi [11], who
showed that it has the same approximation guarantee when f is monotone and achieves a
2p+ 2

√
p(p+ 1) + 1 = 4p+ 2− o(1)-approximation for general submodular function.

When multiple passes through the stream are allowed, less is known and the tradeoff
between the approximation guarantee and the number of passes requires more attention.
Assuming cardinality constraints, one can obtain a e

e−1 + ε-multipass streaming algorithm
in O

(
ε−1) passes (see [2, 17, 20, 21, 25]). Huang et al. [17] achieved a 2 + ε-approximation

under a knapsack constraint in O
(
ε−1) passes. For the intersection of p partition matroids

or rank p hypergraph matching, the number of passes becomes dependent on p. Chakrabarti
and Kale [6]1 showed that if one allows O

(
p4 log(p)

ε3

)
-passes, a p + 1 + ε approximation is

possible. Here we show how to obtain the same guarantee for an arbitrary p-matchoid
constraint, while reducing the number of passes to O(p/ε).

1 In [6] a bound of O(log p/ε3) is stated. We note that there appears to be a small oversight in their
analysis, arising from the fact that their convergence parameter κ in this case is O(ε3/p4). In any case,
it seems reasonable to assume that p is a small constant in most cases.
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Algorithm 1 The multi-pass streaming local search algorithm.

procedure MultipassLocalSearch(α, β1, . . . , βd)
S0 ← ∅;
for i = 1 to d do

Let S̃ be the output of StreamingLocalSearch(α, βi, Si−1);
Si ← S̃;

return Sd;

procedure StreamingLocalSearch(α, β, Sinit)
S ← Sinit;
foreach x in the stream do

if x ∈ Sinit then discard x;
Cx ← Exchange(x, S);
if f(x|S) ≥ α+ (1 + β)

∑
c∈Cx

ν(c, S) then
S ← S\Cx + x;

return S;

Algorithm 2 The procedure Exchange(x, S).

procedure Exchange(x, S)
Cx ← ∅;
foreach M` = (X`, I`) with x ∈ X` do

S` ← S ∩X`;
if S` + x 6∈ I then

T` ← {y ∈ S` : S` − y + x ∈ I`};
Cx ← Cx + arg mint∈T`

ν(t, S);

return Cx;

2 The main multi-pass streaming algorithm

Our main multi-pass algorithm is given by the procedure MultipassLocalSearch in
Algorithm 1. We suppose that we are given a submodular function f : 2X → R≥0 and a
p-matchoid constraintMp = (Ip, X) on X given as a collection of matroids {Mi = (Xi, Ii)}.
Our procedure runs for d passes, each of which uses a modification of the algorithm of
Chekuri, Gupta, and Quanrud [7], given as the procedure StreamingLocalSearch. In
each pass, procedure StreamingLocalSearch maintains a current solution S, which is
initially set to some Sinit. Whenever an element x ∈ Sinit arrives again in the subsequent
stream, the procedure simply discards x. For all other elements x, the procedure invokes
a helper procedure Exchange, given formally in Algorithm 2, to find an appropriate set
Cx ⊆ S of up to p elements so that S\Cx + x ∈ I. It then exchanges x with Cx if this gives
a significantly improved solution. This improvement is measured with respect to a set of
auxiliary weights ν(x, S) maintained by the algorithm. For u, v ∈ X, let u ≺ v denote that
“element u arrives before v” in the stream. Then, we define the incremental value of an
element e with respect to a set T as

ν(e, T ) = f(e | {t′ ∈ T : t′ ≺ e}) .

APPROX/RANDOM 2020
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There is a slight difficulty here in that we must also define incremental values for the elements
of Sinit. To handle this difficulty, we in fact define ≺ with respect to a pretend stream
ordering. Note that in all invocations of the procedure StreamingLocalSearch made by
MultipassLocalSearch, the set Sinit is either ∅ or the result of a previous application of
StreamingLocalSearch. In our pretend ordering (≺) all of Sinit first arrives in the same
relative pretend ordering as the previous pass, followed by all of X\Sinit in the same order
given by the stream X. We then define our incremental values with respect to this pretend
stream ordering.

Using these incremental values, StreamingLocalSearch proceeds as follows. When
an element x 6∈ Sinit arrives, StreamingLocalSearch computes a set of elements Cx ⊆ S
that can be exchanged for x. StreamingLocalSearch replaces Cx with x if and only
if the marginal value f(x | S) with respect to S is at least (1 + β) times larger than the
sum of the current incremental values ν(c, S) of all elements c ∈ Cx plus some threshold α,
where α, β > 0 are given as parameters. In this case, we say that the element x is accepted.
Otherwise, we say that x is rejected. An element x ∈ S that has been accepted may later be
removed from S if x ∈ Cy for some later element y that arrives in the stream. In this case
we say that x is evicted.

The approximation ratio obtained by one pass of StreamingLocalSearch depends on
the parameter β in two ways, which can be intuitively understood in terms of the standard
analysis of the offline local search algorithm for the problem. Intuitively, if β is chosen to
be too large, more valuable elements will be rejected upon arrival and so, in the offline
setting, our solution would be only approximately locally optimal, leading to a deterioration
of the guarantee by a factor of (1 + β). However, in the streaming setting, the algorithm
only attempts to exchange an element upon its arrival, and so the final solution will not
necessarily be even (1 + β)-approximately locally optimal – an element x may be rejected
because f(x | S) is small when it arrives, but the processing of later elements in the stream
can evict some elements of S. After these evictions, we could have f(x | S) larger. The key
observation in the analyses of [6, 7] is that the total value of these evicted elements – and so
also the total increase in the marginal value of all rejected elements – can be bounded by
O( 1

β ) times the final value of f(S) at the end of the algorithm. Intuitively, if β is chosen
to be too small, the algorithm will make more exchanges, evicting more elements, which
may result in rejected elements being much more valuable with respect to the final solution.
Selecting the optimal value of β thus requires balancing these two effects.

Here, we observe that this second effect depends only on the total value of those elements
that were accepted after an element arrives. To use this observation, we measure the
ratio δ = f(Sinit)/f(S̃) between the value of the initial solution Sinit of some pass of
StreamingLocalSearch and the final solution S̃ produced by this pass. If δ is relatively
small – and so one pass makes a lot of progress – then this pass gives us an improvement of
δ−1 over the ratio already guaranteed by the previous pass since f(S̃) = δ−1f(Sinit). On the
other hand, if δ is relatively large – and so one pass does not make much progress – then
the total increase in the value of our rejected elements can be bounded by 1−δ

β f(S̃), and so
the potential loss due to only testing these elements at arrival is relatively small. Balancing
these two effects allows us to set β smaller in each subsequent passes and obtain an improved
guarantee.

We now turn to the analysis of our algorithm. Here we focus on a single pass of
StreamingLocalSearch. For T,U ⊆ X we let f(T | U) , f(T ∪ U)− f(U). Throughout,
we use S to denote the current solution maintained by this pass (initially, S = Sinit). The
following key properties of incremental values will be useful in our analysis. We defer the
proof to the Appendix.
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I Lemma 1. For any T ⊆ U ⊆ X,
1.
∑
e∈T ν(e, T ) = f(T )− f(∅)

2. ν(e, U) ≤ ν(e, T ) for all e ∈ T .
3. f(T | U\T ) ≤

∑
t∈T ν(t, U)

4. At all times during the execution of StreamingLocalSearch, ν(e, S) ≥ α for all e ∈ S.
Let A denote the set of elements accepted during the present pass. These are the elements

which were present in the solution S at some previous time during the execution of this pass.
Initially we have A = S = Sinit and whenever an element is added to S, during this pass we
also add this element to A. Let Ã and S̃ denote the sets of elements A and S at the end of
this pass. Note that we regard all elements of Sinit as having been accepted at the start of
the pass. The following lemma follows from the analysis of Chekuri, Gupta, and Quanrud [7]
in the single-pass setting. We give a complete, self-contained proof in Appendix A. Each
element e ∈ Ã\S̃ was accepted but later evicted by the algorithm. For any such evicted
element, we let χ(e) denote the value of ν(e, S) at the moment that e was removed from S.

I Lemma 2. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the solution produced
at the end of one pass of StreamingLocalSearch and Ã be the set of all elements accepted
during this pass. Then,

f(OPT ∪ Ã) ≤ (p+ βp− β)
∑
e∈Ã\S̃

χ(e) + (p+ βp+ 1)f(S̃) + kα .

We now derive a bound for the summation
∑
e∈Ã\S̃ χ(e) (representing the value of evicted

elements) in terms of the total gain f(S̃)− f(Sinit) made by the pass, and also bound the
total number of accepted elements in terms of f(OPT ).

I Lemma 3. Let f : 2X → R≥0 be a submodular function. Suppose that S̃ is the solution
produced at the end of one pass of StreamingLocalSearch and Ã is the set of all elements
accepted during this pass. Then, |Ã| ≤ f(OPT )/α and∑

e∈Ã\S̃

χ(e) ≤ 1
β

(
f(S̃)− f(Sinit)

)
.

Proof. We consider the quantity Φ(A) ,
∑
e∈A\S χ(e). Suppose some element a with Ca 6= ∅

is added to S by the algorithm, evicting the elements of Ca. Then (as each element can be
evicted only once) Φ(A) increases by precisely ∆ ,

∑
e∈Ca

χ(e). Let S−a , S+
a and A−a , A+

a

be the sets S and A, respectively, immediately before and after a is accepted. Since a is
accepted, we must have f(a | S−a ) ≥ α+ (1 + β)

∑
e∈Ca

ν(e, S−a ). Then,

f(S+
a )− f(S−a ) = f(S−a \Ca + a)− f(S−a )

= f(a | S−a \Ca)− f(Ca | S−a \Ca)
≥ f(a | S−a )− f(Ca | S−a \Ca) (by submodularity)

≥ f(a | S−a )−
∑
e∈Ca

ν(e, S−a ) (by Lemma 1 (3))

≥ α+ (1 + β)
∑
e∈Ca

ν(e, S−a )−
∑
e∈Ca

ν(e, S−a ) (since a is accepted)

= α+ β
∑
e∈Ca

χ(e) . (by definition of χ(e))

= α+ β∆

APPROX/RANDOM 2020
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It follows that whenever Φ(A) increases by ∆, f(S) must increase by at least β∆. Initially,
Φ(A) = 0 and f(S) = f(Sinit) and at the end of the algorithm, Φ(A) =

∑
e∈Ã\S̃ χ(e) and

f(S) = f(S̃). Thus, β
∑
e∈Ã\S̃ χ(e) ≤ [f(S̃)− f(Sinit)].

It remains to show that |Ã| ≤ f(OPT)/α. For this, we note that the above chain of
inequalities also implies that every time an element is accepted (and so |A| increases by one),
f(S) also increases by at least α. Thus, we have f(OPT ) ≥ f(S̃) ≥ α|Ã|. J

Using Lemma 3 to bound the sum of exit values in Lemma 2 then immediately gives us the
following guarantee for each pass performed in MultipassLocalSearch. In the ith such
pass, we will have Sinit = Si−1, S̃ = Si, and β = βi. We let Ai denote the set of Ã of all
elements accepted during this particular pass.

I Lemma 4. Let f : 2X → R≥0 be a submodular function. Consider the ith pass of
StreamingLocalSearch performed by MultipassLocalSearch, and let Ai be the set of
all elements accepted during this pass. Then, |Ai| ≤ f(OPT )/α and

f(OPT ∪Ai) ≤ (p/βi + p− 1) [f(Si)− f(Si−1)] + (p+ pβi + 1)f(Si) + kα .

3 Analysis of the multipass algorithm for monotone functions

We now show how to use Lemma 4 together with a careful selection of parameters α and
β1, . . . , βd to derive guarantees for the solution f(Si) produced after the ith pass made in
MultipassLocalSearch. Here, we consider the case that f is a monotone function. In
this case, we have f(OPT ) ≥ f(OPT ∪Ai) for all i. We set α = 0 in each pass. In the first
pass, we will set β1 = 1. Then, since S0 = ∅ Lemma 4 immediately gives:

f(OPT ) ≤ f(OPT ∪A1) ≤ (2p− 1) [f(S1)− f(∅)] + (2p+ 1)f(S1) = 4pf(S1) . (1)

For passes i > 1, we use the following, which relates the approximation guarantee obtained
in this pass to that from the previous pass.

I Theorem 5. For i > 1, suppose that f(OPT) ≤ γi−1 · f(Si−1) and define δi = f(Si−1)
f(Si) .

Then,

f(OPT ) ≤ min
{
γi−1δi, ( pβi

+ p− 1)(1− δi) + p+ βip+ 1
}
· f(Si) + kα .

Proof. From the definition of γi−1 and δi, we have:

f(OPT ) ≤ γi−1f(Si−1) = γi−1δif(Si) .

On the other hand, f(Si)− f(Si−1) = (1− δi)f(Si). Thus, Lemma 4 gives:

f(OPT ) ≤ [(p/βi + p− 1) (1− δi) + p+ βip+ 1] f(Si) + kα . J

Now, we observe that for any fixed guarantee γi−1 from the previous pass, γi−1δi is an
increasing function of δi and ((p/βi + p− 1)(1− δi) + p+ βip+ 1) is an decreasing function
of δi. Thus, the guarantee we obtain in Theorem 5 is always at least as good as that obtained
when these two values are equal. Setting:

γi−1δi = ( pβi
+ p− 1)(1− δi) + p+ βip+ 1,

and solving for δi gives us:

δi = p(1 + βi)2

p+ βi(γi−1 − 1 + p) . (2)



C.-C. Huang, T. Thiery, and J. Ward 62:9

In the following analysis, we consider this value of δi since the guarantee given by Theorem 5
will always be no worse than that given by this value. The analysis for a single matroid
constraint follows from our results for p-matchoids, but the analysis and parameter values
obtained are much simpler, so we present it separately, first.
I Theorem 6. Suppose we run Algorithm 1 for an arbitrary matroid constraint and monotone
submodular function f , with βi = 1

i . Then 2(1 + 1
i )f(Si) ≥ f(OPT) for all i > 0. In

particular, after i = 2
ε passes, (2 + ε)f(Si) ≥ f(OPT ).

Proof. Let γi be the guarantee for our algorithm after i passes. We show, by induction on i,
that γi ≤ 2(i+1)

i . For i = 1, we have β1 = 1 and so from (1) we have γ1 = 4, as required. For
i > 1, suppose that γi−1 ≤ 2i

i−1 . Since p = 1 and βi = 1/i (2) gives:

δi ≤
(1 + 1

i )
2

1 + 1
i (

2i
i−1 )

=
(i+1)2

i2

(i−1)+2
i−1

= (i− 1)(i+ 1)
i2

.

Thus, by Theorem 5, the ith pass of our algorithm has guarantee γi satisfying:

γi ≤ γi−1δi ≤
2i
i− 1

(i− 1)(i+ 1)
i2

= 2(i+ 1)
i

,

as required. J

I Theorem 7. Suppose we run Algorithm 1 for an arbitrary p-matchoid constraint and
monotone submodular function f , β1 and

βi = γi−1 − 1− p
γi−1 − 1 + p

for i > 1, where γi is given by the recurrence γ1 = 4p and

γi = 4p γi−1(γi−1 − 1)
(γi−1 − 1 + p)2

for i > 1. Then
(
p+ 1 + 4p

i

)
f(Si) ≥ f(OPT) for all i > 0. In particular, after i = 4p

ε

passes, (p+ 1 + ε)f(Si) ≥ f(OPT ).
Proof. We first show that approximation guarantee of our algorithm after i passes is given
by γi. Setting β1 = 1, we obtain γ1 = 4p from (1), agreeing with our definition. For passes
i > 1, let βi = γi−1−1−p

γi−1−1+p . As in the case of matroid constraint, Theorem 5 implies that the
guarantee for pass i will be at most δiγi−1, where δi is chosen to satisfy (2). Specifically, if
we set

δi =
p
(

1 + γi−1−1−p
γi−1−1+p

)2

p+ γi−1−1−p
γi−1−1+p (γi−1 − 1 + p)

=
p
(

2(γi−1−1)
γi−1−1+p

)2

γi−1 − 1 = 4p(γi−1 − 1)
(γi−1 − 1 + p)2 ,

then we have δiγi−1 = γi.
We now show by induction on i that γi ≤ p+ 1 + 4p

i . In the case i = 1, we have γ1 = 4p
and the claim follows immediately from p ≥ 1. In the general case i > 0, and we may assume
without loss of generality that γi−1 ≥ 1. Otherwise the theorem holds immediately, as each
subsequent pass can only increase the value of the solution. Then, we note (as shown in
Appendix B) that for p ≥ 1 and γi−1 ≥ 1, γi is an increasing function of γi−1. By the
induction hypothesis, γi−1 ≤ p+ 1 + 4p

i−1 . Therefore:

γi ≤
4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 ≤ p+ 1 + 4p
i ,

as required. The last inequality above follows from straightforward but tedious algebraic
manipulations, which can be found in Appendix B. J
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Algorithm 3 The randomized multi-pass streaming algorithm.

procedure MultipassRandomizedLocalSearch(α, β1, . . . , βd,m)
S0 ← ∅, S′0 ← ∅;
for i = 1 to d do

Let (S̃, S′) be the output of RandomizedLocalSearch(Si−1, α, βi,m);
Si ← S̃, S′i ← arg max{f(S′i−1), f(S′)};

return S̄ = arg max{f(Sd), f(S′d)};

procedure RandomizedLocalSearch(Sinit, α, β,m)
S ← Sinit; B ← ∅;
foreach x in the stream do

if f(x | S) ≥ α+ (1 + β)
∑
e∈Cx

ν(e, S) then
B ← B + x;

if |B| = m then
x← uniformly random element from B;
Cx ← Exchange(x, S);
B ← B − x; S ← S + x− Cx;
foreach x′ in B do

Cx′ ← Exchange(x′, S);
if f(x′ | S) < α+ (1 + β)

∑
e∈Cx′

ν(e, S) then
B ← B − x′;

S′ ← Offline(B);
return (S, S′);

4 A multi-pass algorithm for general submodular functions

In this section, we show that the guarantees for monotone submdodular maximization can
be extended to non-monotone submodular maximization even when dealing with multiple
passes. Our main algorithm is given by procedure MultipassRandomizedLocalSearch
in Algorithm 3. In each pass, it calls a procedure RandomizedLocalSearch, which is
an adaptation of StreamingLocalSearch, to process the stream. Note that each such
pass produces a pair of feasible solutions S and S′, which we now maintain throughout
MultipassRandomizedLocalSearch. The set S is maintained similarly as before and
gradually improves by exchanging “good” elements into a solution throughout the pass. The
set S′ will be maintained by considering the best output of an offline algorithm that we run
after each pass as described in more detail below.

To deal with non-monotone submodular functions, we will limit the probability of elements
being added to S. Instead of exchanging good elements on arrival, we store them in a buffer
B of size m. When the buffer becomes full, an element is chosen uniformly at random and
added to S. Adding a new element to the current solution may affect the quality of the
remaining elements in the buffer and thus we need to re-evaluate them and remove the
elements that are no longer good. As before, we let A denote the set of elements that were
previously added to S during the current pass of the algorithm. Note that we do not consider
an element to be accepted until it has actually been added to S from the buffer. For any
fixed set of random choices, the execution of RandomizedLocalSearch can be considered
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as the execution of StreamingLocalSearch on the following stream: we suppose that an
element x arrives whenever it is selected from the buffer and accepted into S. All elements
that are discarded from the buffer after accepting x then arrive, and will also be rejected by
StreamingLocalSearch. Any elements remaining in the buffer after the execution of the
algorithm do not arrive in the stream. Applying Lemma 4 with respect to this pretend stream
ordering allows us to bound f(S̃) with respect to f(OPT \B) (that is, the value of the part of
OPT that does not remain in the buffer B) after a single pass of RandomizedLocalSearch.
Formally, let B̃i be the value of the buffer after the ith pass of our algorithm. Then, applying
Lemma 4 to the set OPT\B̃i, and taking expectation, gives:

E[f(Ai∪(OPT\B̃i))] ≤(p/β + p− 1) (E[f(Si)]− E[f(Si−1)])+(p+βp+1)E[f(Si)]+αk . (3)

In order to bound the value of the elements in B̃i, we apply any offline γ̄off-approximation
algorithm Offline to the buffer at the end of the pass to obtain a solution S′. In Mul-
tipassRandomizedLocalSearch, we then remember the best such offline solution S′i
computed across the first i passes. Then, in the ith pass, we have

E[f(OPT ∩ B̃i)] ≤ γ̄off E[f(S′)] ≤ γ̄off E[f(S′i)] . (4)

From submodularity of f and Ai ∩ B̃i = ∅ we have f(Ai ∪ OPT) ≤ f(Ai ∪ (OPT\B̃i)) +
f(OPT ∩ B̃i). Thus, combining (3) and (4) we have:

E[f(Ai ∪OPT )] ≤ (p/β + p− 1) (E[f(Si)]− E[f(Si−1)])
+ (p + βp + 1)E[f(Si)] + γ̄off E[f(S′i)] + αk . (5)

To relate the right-hand side to f(OPT ) we use the following result from Buchbinder et al. [4]:

I Lemma 8 (Lemma 2.2 in [4]). Let f : 2X → R≥0 be a non-negative submodular function.
Suppose that A is a random set where no element e ∈ X appears in A with probability
more than p. Then, E[f(A)] ≥ (1− p) f(∅). Moreover, for any set Y ⊆ X, it follows that
E[f(Y ∪A) ] ≥ (1− p)f(Y ).

We remark that a similar theorem also appeared earlier in Feige, Mirrokni, and Vondrák [10]
for a random set that contains each element independently with probability exactly p.
Here, the probability that an element occurs in Ai is delicate to handle because such
an element may either originate from the starting solution Si−1 or be added during the
pass. Thus, we use a rougher estimate. By definition Ai ⊆ Ai ∪ Ai−1 ∪ . . . ∪ A1. Thus,
Pr[e ∈ Ai] ≤ Pr[e ∈ Ai ∪ . . . ∪A1]. The number of selections during the jth pass is at most
|Aj | and by Lemma 4 (applied to the set OPT \ B̃j due to our pretend stream ordering in
each pass j), |Aj | ≤ f(OPT \ B̃j)/α ≤ f(OPT )/α in any pass. Here, the second inequality
follows from the optimality of OPT , and the fact that any subset of the feasible solution
OPT is also feasible for our p-matchoid constraint. Thus, the total number of selections in
the first i passes at most

∑i
j=1 |Aj | ≤ i · f(OPT)/α. We select an element only when the

buffer is full, and each selection is made independently and uniformly at random from the
buffer. Thus, the probability that any given element is selected when the algorithm makes a
selection is at most 1/m and by a union bound, Pr[e ∈ Ai ∪ . . . ∪A1] ≤ i · f(OPT)/(mα).
Let d be the number of passes that the algorithm makes and suppose we set α = εf(OPT )/2k
(in Appendix C we show that this can be accomplished approximately by guessing f(OPT ),
which can be done at the expense of an extra factor O(log k) space). Finally, let m = 4dk/ε2.
Then, applying Lemma 8, after i ≤ d passes we have:

E[f(Ai ∪OPT )] ≥(1− d · f(OPT )/(mα)) f(OPT ) ≥(1− ε/2) f(OPT ) . (6)
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Our definition of α also implies that αk ≤ (1− ε/2)f(OPT ). Using this and (6) in (5), we
obtain:

(1− ε)f(OPT )
≤ (p/β + p− 1)(E[f(Si)]− E[f(Si−1)]) + (p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′i)] . (7)

As we show in Appendix C, the rest of the analysis then follows similarly to that in Section 3,
using the fact that f(S̄) = max{f(Sd), f(S′d)}.

I Theorem 9. Let Mp = (X, I) be a p-matchoid of rank k and let f : 2X → R≥0 be a
non-negative submodular function. Suppose there exists an algorithm for the offline instance
of the problem with approximation factor γ̄off . For any ε > 0, the randomized streaming
local-search algorithm returns a solution S̄ ∈ I such that

f(OPT ) ≤(p+ 1 + γ̄off +O(ε))E[f(S̄)]

using a total space of O
(
p3k log2 k

ε3

)
and O

(
p
ε

)
-passes.
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A Proof of Lemma 2

Here, we give a self-contained analysis of the single-pass algorithm of Chekuri, Gupta,
and Quanrud [7], corresponding to Algorithm 1 initialized with Sinit = ∅. First, we prove
Lemma 1, which concerns properties of the incremental values maintained by Algorithm 1.

I Lemma 1. For any T ⊆ U ⊆ X,
1.
∑
e∈T ν(e, T ) = f(T )− f(∅)

2. ν(e, U) ≤ ν(e, T ) for all e ∈ T .
3. f(T | U\T ) ≤

∑
t∈T ν(t, U)

4. At all times during the execution of StreamingLocalSearch, ν(e, S) ≥ α for all e ∈ S.
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Proof. Property (1) follows directly from the telescoping summation∑
e∈T

ν(e, T ) =
∑
e∈T

[f(e ∪ {t′ ∈ T : t′ ≺ e})− f({t′ ∈ T : t′ ≺ e}] = f(T )− f(∅).

Property (2) follows from submodularity since T ⊆ U implies that {t′ ∈ T : t′ ≺ e} ⊆
{t′ ∈ U : t′ ≺ e}.

For property (3), we note that:

f(T | U\T ) =
∑
t∈T

f(t | U\T ∪{t′ ∈ T : t′ ≺ t}) ≤
∑
t∈T

f(t | {u′ ∈ U : u′ ≺ t}) =
∑
t∈T

ν(t, U) ,

where the first equation follows from a telescoping summation, and the inequality follows
from submodularity, since {u′ ∈ U : u′ ≺ t} ⊆ U \ T ∪ {t′ ∈ T : t′ ≺ t}.

We prove property (4) by induction on the stream of elements arriving. Initially S = ∅.
Thus, the first time that any element x is accepted, we must have Cx = ∅ and so f(x | S) ≥ α.
After this element is accepted, we have ν(x, S) = ν(x, {x}) = f(x | ∅) = α. Proceeding
inductively, then, let S−x and S+

x be the set of elements in S before and after some new
element x arrives and is processed by Algorithm 1, and suppose that ν(s, S−x ) ≥ α for all
s ∈ S−x . Then, if x is rejected, we have S+

x = S−x and so ν(s, S+
x ) = ν(s, S−x ) ≥ α for all

s ∈ S+
x . If x is accepted, then S+

x = S\Cx + x and f(x | S−x ) ≥ α+ (1 + β)
∑
e∈Cx

ν(e, S−x ).
Thus,

ν(x, S+
x ) ≥ f(x | S+

x − x) ≥ f(x | S−x ) ≥ α+ (1 + β)|Cx|α ≥ α ,

where the first inequality follows from property (2) of the lemma, the second from submodu-
larity, and the third from the induction hypothesis and the assumption that x is accepted.
For any other s ∈ S+

x , we have {t′ ∈ S\Cx : t′ ≺ s} ⊆ {t′ ∈ S : t′ ≺ s} and so by property
(3) of the lemma, ν(s, S+

x ) ≥ ν(s, S−x ) ≥ α, as required. J

In our analysis we will use the following structural lemma from Chekuri et al. [7]
(here, restated in our notation). This lemma applies to the execution of our algorithm
StreamingLocalSearch when Sinit = ∅, and so no element is discarded upon arrival due
to x ∈ Sinit. However, we note that the execution of our algorithm is in fact exactly the same
as this algorithm executed on the pretend stream ordering introduced in Section 2 to define
the incremental values ν. Specifically, in each pass of our algorithm, the set Sinit is a feasible
solution produced by the preceding pass and in the pretend stream ordering, all elements of
Sinit arrive in our pretend ordering in the same relative (pretend) order as this preceding
pass. It follows that whenever x ∈ Sinit arrives in our pretend ordering for the present pass,
we have Cx = ∅ and ν(x, S) = ν(x, Sinit) ≥ α by Lemma 1 (4), since x was present in the
feasible solution S = Sinit at the end of the preceding pass. Thus, each x ∈ Sinit will first be
accepted in our pretend stream ordering, and then the rest of X\Sinit is processed, exactly
as in StreamingLocalSearch.

Recall that we let Ã be the set of all elements that were accepted by this pass of
StreamingLocalSearch (and so at some point appeared in S). For each element x ∈ X,
we let S−x be the current set S at the moment that x arrives and S+

x the set after x is
processed. For an element e that is accepted but later evicted from S, let χ(e) be the
incremental value ν(e, S) of e at the moment that e was evicted.

I Lemma 10 (Lemma 9 of [7]). Let T ∈ I be a feasible solution disjoint from Ã, and S̃ be
the output of the streaming algorithm. There exists a mapping ϕ : T → 2Ã such that:
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1. Every s ∈ S̃ appears in the set ϕ(t) for at most p choices of t ∈ T .
2. Every e ∈ Ã\S̃ appears in the set ϕ(t) for at most p− 1 choices of t ∈ T .
3. For each t ∈ T :∑

c∈Ct

ν(c, S−t ) ≤
∑

e∈ϕ(t)\S̃

χ(e) +
∑

s∈ϕ(t)∩S̃

ν(s, S̃) .

Using this charging argument, we can now prove Lemma 2 directly.

I Lemma 2. Let f : 2X → R≥0 be a submodular function. Suppose S̃ is the solution produced
at the end of one pass of StreamingLocalSearch and Ã be the set of all elements accepted
during this pass. Then,

f(OPT ∪ Ã) ≤ (p+ βp− β)
∑
e∈Ã\S̃

χ(e) + (p+ βp+ 1)f(S̃) + kα .

Proof. Let R = OPT\Ã. Since S−r ⊆ Ã for all r, submodularity of f implies that∑
r∈R

f(r | S−r ) ≥
∑
r∈R

f(r | Ã) ≥ f(R ∪ Ã)− f(Ã) = f(OPT ∪ Ã)− f(Ã) . (8)

For any r ∈ R, since r was rejected upon arrival,

f(r | S−r ) ≤ (1 + β)
∑
c∈Cr

ν(c, S−r ) + α . (9)

Thus, applying Lemma 10 we obtain:∑
r∈R

f(r | S−r ) ≤ (1 + β)
∑
r∈R

∑
c∈Cr

ν(c, S−r ) + kα (by (9) and |R| ≤ k)

≤
∑
r∈R

(1 + β)
[ ∑
e∈ϕ(r)\S̃

χ(e) +
∑

s∈ϕ(r)∩S̃

ν(s, S̃)
]

+ kα (by Lemma 10 (3))

≤ (1 + β)
[
(p− 1)

∑
e∈Ã\S̃

χ(e) + p
∑
s∈S̃

ν(s, S̃)
]

+ kα (by Lemma 10 (1) and (2))

where in the last inequality we have also used Lemma 1 (4), which implies that each χ(e)
and ν(s, S̃) is non-negative. Combining the above inequality with (8), we obtain

f(OPT ∪ Ã) ≤ (1 + β)

(p− 1)
∑
e∈Ã\S̃

χ(e) + p
∑
s∈S̃

ν(s, S̃)

+ f(Ã) + kα . (10)

We now bound f(Ã) in terms of the values ν(s, S̃) and χ(e). Since S ⊆ Ã at all times
during the algorithm, and χ(e) = ν(e, S) at the moment e was evicted, we have χ(e) ≥ ν(e, Ã)
by Lemma 1 (2). Thus,

f(Ã)− f(∅) =
∑
a∈Ã

ν(a, Ã) =
∑
s∈S̃

ν(s, Ã) +
∑
e∈Ã\S̃

ν(e, Ã) ≤
∑
s∈S̃

ν(s, S̃) +
∑
e∈Ã\S̃

χ(e) , (11)

where the first equation follows from Lemma 1 (1), and the last inequality follows from
Lemma 1 (2).
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Combining (10) and (11) we have:

f(OPT ∪ Ã) ≤ ((1 + β)(p− 1) + 1)
∑
e∈Ã\S̃

χ(e) + ((1 + β)p+ 1)
∑
e∈S̃

ν(s, S̃) + f(∅) + kα

= (p+ pβ − β)
∑
e∈Ã\S̃

χ(e) + (p+ βp+ 1)
∑
s∈S̃

ν(s, S̃) + f(∅) + kα . (12)

By Lemma 1 (1), we have the following bound for the second summation in (12):

(p+ βp+ 1)
∑
e∈S̃

ν(e, S̃) + f(∅) = (p+ βp+ 1)[f(S̃)− f(∅)] + f(∅) ≤ (p+ βp+ 1)f(S̃) .

Combining this and (12) we obtain:

f(OPT ∪ Ã) ≤ (p+ pβ − β)
∑
e∈Ã\S̃

χ(e) + (p+ βp+ 1)f(S̃) + kα J

B Calculations for the proof of Theorem 7

We recall that

γi = γi−1δi = 4pγi−1(γi−1 − 1)
(γi−1 − 1 + p)2 .

Then, to see that γi is an increasing function of γi−1 for p ≥ 1 and γi−1 ≥ 1, we note that:

d

dγi−1
γi = 4p(γi−1 − 1) + 4pγi−1

(γi−1 − 1 + p)2 − 8pγi(γi−1 − 1)
(γi−1 − 1 + p)3

= 4p(γi−1 − 1)(γi−1 − 1 + p) + 4pγi(γi−1 − 1 + p)− 8pγi−1(γi−1 − 1)
(γi−1 − 1 + p)3 ≥ 0

Where the final inequality follows from γi−1 ≥ 1 and p ≥ 1.
We now verify the following inequality used at the end of Theorem 7:

4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 ≤ p+ 1 + 4p
i .

Rearranging both sides and placing over a common denominator gives:

4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 = 4p ((p+ 1)(i− 1) + 4p) (p(i− 1) + 4p)
(2p(i− 1) + 4p)2

= 4p ((p+ 1)(i− 1) + 4p) (p(i− 1) + 4p)
(2p(i+ 1))2

= ((i− 1)(p+ 1) + 4p) (i+ 3)
(i+ 1)2

= (i− 1)(i+ 3)i(p+ 1) + i(i+ 3)4p
i(i+ 1)2

=
(
i2 + 2i− 3

)
i(p+ 1) + (i2 + 3i)4p
i(i+ 1)2
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and

p+ 1 + 4p
i = (p+ 1)i+ 4p

i

= i(i+ 1)2(p+ 1) + (i+ 1)24p
i(i+ 1)2

=
(
i2 + 2i+ 1

)
i(p+ 1) +

(
i2 + 2i+ 1

)
4p

i(i+ 1)2 .

Then, since p ≥ 1 and i ≥ 1,

(
p+ 1 + 4p

i

)
−

4p
(
p+ 1 + 4p

i−1

)(
p+ 4p

i−1

)
(

2p+ 4p
i−1

)2 = 4i(p+ 1)− 4(i− 1)p
i(i+ 1)2 ≥ 0.

C Additional Details for the Non-Monotone Case

C.1 Guessing the value of f(OPT)
Guessing the value of f(OPT) is a common technique in streaming submodular function
maximization. Badanidiyuru et al. [1] showed how to approximate f(OPT ) within a constant
factor using O(log(k)) space in a single pass. To avoid extra complications, we show how to
guess f(OPT ) in two passes and refer the reader to [1] for an approximation of f(OPT ) on
the fly. Let τ = maxe∈X f(e). Using submodularity, it is easy to see that τ ≤ f(OPT ) ≤ kτ .
Consider the set

Λ =
{

2i | i ∈ Z, τ ≤ 2i ≤ k · τ
}
.

Then there exists a value λ ∈ Λ such that f(OPT)
2 ≤ λ ≤ f(OPT ). Setting the parameter

α = ελ/(2k), we get that α ∈ [εf(OPT ) /4k; εf(OPT ) /2k]. The defined range of α is
sufficient for the analysis2. Unfortunately, it is still not possible to know which λ ∈ Λ satisfies
the property. However, it suffices to run the randomized local-search algorithm for every
λ ∈ Λ in parallel and output the best solution of all the copies. This operation increases the
space complexity by a multiplicative O(log2 k) factor, and adds one additional pass to find τ .

C.2 Proof of Theorem 12
Here we give a full proof of the following theorem from Section 4:

I Theorem 9. Let Mp = (X, I) be a p-matchoid of rank k and let f : 2X → R≥0 be a
non-negative submodular function. Suppose there exists an algorithm for the offline instance
of the problem with approximation factor γ̄off . For any ε > 0, the randomized streaming
local-search algorithm returns a solution S̄ ∈ I such that

f(OPT ) ≤(p+ 1 + γ̄off +O(ε))E[f(S̄)]

using a total space of O
(
p3k log2 k

ε3

)
and O

(
p
ε

)
-passes.

2 Equation (6) and the bound αk ≤ εf(OPT) are where we need the exact value of α, using upper and
lower bounds for α yield the same result up to the hidden constant in the term O(ε).
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In the same spirit as in Section 3, we show that we can derive a guarantee with respect
to the solution E[f(Si)] produced after the ith pass even when the function is non-monotone.
In fact, we show that the analysis of the non-monotone case reduces to the monotone case as
shown in the following theorem.

I Theorem 11. Let f be a non-negative submodular function. Assume α = εf(OPT)/2k
and let d ≥ i > 1. Suppose that at the start of the ith iteration of the randomized local-search
algorithm with a buffer of size m = 4dk/ε2 we have (1 − ε)f(OPT ) ≤ γi−1 E[f(Si−1)] +
γ̄off E[f(S′i−1)]. Then,

(1−ε)f(OPT ) ≤ min
{
γi−1δi,

(
p

βi
+ p− 1

)
(1− δi) + p+ βip+ 1

}
·E[f(Si)]+γ̄off E[f(S′i)],

where δi = E[f(Si−1)]
E[f(Si)] .

Proof. From the definition of γi−1 and δi, it follows that,

(1− ε)f(OPT ) ≤ γi−1 E[f(Si−1)] + γ̄off E[f(S′i−1)] ≤ γi−1δi E[f(Si)] + γ̄off E[f(S′i)] . (13)

where in the last inequality we have used the definition of δi and the fact that f(S′i) ≥ f(S′i−1),
which follows from the way S′i is defined in Algorithm 3.

On the other hand, E[f(Si)]− E[f(Si−1)] = (1− δi)E[f(Si)]. Thus, by (7) we also have:

(1−ε)f(OPT )

≤
(
p
βi

+ p− 1
)

(E[f(Si)]− E[f(Si−1)]) + (p+ βp+ 1)E[f(Si)] + γ̄off E[f(S′i)]

=
((

p
βi

+ p− 1
)

(1− δi) + p+ βip+ 1
)
E[f(Si)] + γ̄off E[f(S′i)] . (14)

Since the right-hand side of equation 13 is an increasing function of δi and the right-hand
side of equation 14 is a decreasing function of δi, the guarantee we obtain is always at least
as good as that obtained when these two values are equal. J

As in the monotone case, the lemma enables us to derive values of β so as to minimize the
value of the approximation ratio. The following follows directly from the same calculations
as in Section 3 and Appendix B.

I Theorem 12. Suppose we run Algorithm 3 with a buffer of size m = 4dk/ε2 on a arbitrary
p-matchoid constraint and a submodular function, with α = εf(OPT)/2k, β1 = 1 and
βi = γi−1−1−p

γi−1−1+p where γi is given by the recurrence, γ1 = 4p and γi = 4pγi−1(γi−1−1)
(γi−1−1+p)2 . Then,

(1− ε)f(OPT ) ≤
(
p+ 1 + 4p

i

)
E[f(S̃i)] + γ̄off E[f(S′i)].

In particular after d = 4p
ε passes,

(1− ε)f(OPT ) ≤(p+ 1 + γ̄off + ε)E[f(S̄d)] .

Under a matroid constraint, Algorithm 3 with α = εf(OPT)/2k, βi = 1/i and d = 2ε−1

passes outputs a solution S̄ such that,

(1− ε)f(OPT ) ≤(2 + γ̄off + ε)E[f(S̄)] ,

where γ̄off is the approximation ration of the best offline algorithm for maximizing f under a
matroid constraint.
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We are now ready to complete the proof of Theorem 9. We assume that we know the value
of f(OPT) before hand, which can be accomplished approximately as in Section C.1. Let
ε′ = ε/p with 1/2 ≥ ε′ > 0 and let α = ε′f(OPT )/2k. We want to obtain an additive error
term instead of a multiplicative error term as stated in Theorem 12. By Theorem 12,

(1− ε′)f(OPT ) ≤
(
p+ 1 + γ̄off + 4p

d

)
E[f(S̄d)] =(p+ 1 + γ̄off)

(
1 +O

(
d−1))E[f(S̄d)] .

Using the fact that (1− ε′)−1 ≤ 1 + 2ε′ for ε′ ∈ (0, 1/2], we get that,

f(OPT ) ≤(p+ 1 + γ̄off)
(
1 +O

(
d−1))(1 + 2ε′)E[f(S̄d)] . (15)

Since ε′ = ε/p, setting d = O(p/ε) we finally obtain the desired result:

f(OPT ) ≤(p+ 1 + γ̄off)(1 +O(ε/p))(1 + 2ε/p)E[f(S̄d)] ≤(p+ 1 + γ̄off +O(ε))E[f(S̄d)].

For the space complexity, we note that the randomized local-search algorithm stores the
buffer B and maintains two past solutions Si, S′i ∈ I, together with the current solution
S ∈ I. Hence, the total space needed is equal to O(|B|+ |S′i|+ |Si|+ |S|) = O(m+ 3k) =
O
(
p3kε−3), times an additional factor of O(log k) for guessing f(OPT). The number of

passes is d = O(p/ε).
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