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The problem of the fluid closure for the collisionless linear Vlasov system is investigated using a perspective from
control theory and model order reduction. The balanced truncation method is applied to the 1D–1V Vlasov system. The
first few reduction singular values are well-separated, indicating potentially low-dimensional dynamics. To avoid large-
dimensional numerical work, a reduced model is formulated using rational interpolation, generalising the seminal work
from Hammett and Perkins. The resulting models are found to outperform the state-of-the-art models for thermal phase
velocities. Thanks to the versatility of this formulation, an application to toroidal gyrokinetic dynamics is discussed.

I. INTRODUCTION

First-principle simulation of plasma turbulence faces a
double challenge of cost and complexity. The physical and
intellectual complexity stem from the non-linearity of the tur-
bulent dynamics. The cost is induced by the kinetic nature of
the instability drive. Simulating the gyrokinetic description of
tokamak turbulence is now routine for numerous codes, but re-
quires maintaining high-performance codes running smoothly
on supercomputers. While simulations get longer and longer,
the amount of actually analysed information remains limited in
proportion. A few fluid moments of the distribution function
(density, velocity, pressure. . . ) are extracted out of the tens
of grid points used to simulate dynamics in velocity space,
and the rest is discarded. Reaching more day-to-day investiga-
tion of turbulent transport requires lighter models for tractable
simulations. However, the obvious fluid systems fail to sim-
ulate dynamics close to the marginal instability threshold1.
Collisionless closures are a way forward to avoid this short-
fall while retaining dynamics in a low-dimensional space2,3.
Those so-called Landau-fluid models have been applied both
to magnetohydrodynamics4–7 and to gyro-fluids8,9.
The collisionless closure problem arises due to the non-

determination of the fluid moment ℓ + 1 in the ℓ-fluid reduc-
tion. The goal is to find the best linear combination to recover
relevant kinetic effects, to recover the kinetic response �kin (Z)
as a function of the phase velocity Z . Several methods have
been suggested in the literature10. Asymptotic methods use a
Taylor2,11 or Padé12,13 expansion of the kinetic response func-
tion�kin for Z � 1 and Z � 1 to constrain the free parameters.
As such, they explicitly choose an asymptotic frequency range,
and are limited to it. Other authors have introduced the excita-
tion frequency as a parameter14,15. This renders the simulation
of the closed model very difficult, because strongly non-linear.
These methods have an even larger number of free parameters,
and rely heavily on physical choices and orderings11.
In this paper, we will discuss two different methods, namely

balanced truncation16–18 and rational interpolation19–21. The
balanced truncation method considers the Vlasov equation as
a control system. The forcing is the electric potential, and
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observables are the fluid moments. Balanced truncation de-
velops the distribution on components ranked by their dy-
namical reachability and observability through moments. By
construction, the balanced reduced model only depends on
the ground Vlasov equation and on the chosen observables.
Rational interpolation rather constructs a phenomenological
model, matching the kinetic dispersion relation at well-chosen
phase velocities. As such, it provides an effective generalisa-
tion of the Padé-based methods to an arbitrary set of expansion
points.
In a first part, the two methods are reviewed and their con-

nection to the usual collisionless closures are discussed. In a
second part, the two methods are applied numerically to the
1D–1V Vlasov–Poisson problem. The precision of the recon-
struction and temporal evolution in the Vlasov problem are
compared. The influence of the model on the behaviour of
the Vlasov–Poisson problem is discussed, using the Landau
damping and bump-on-tail instability as benchmarks. Finally,
the extensions to the toroidal gyrokinetic problem and to non-
linear simulations are discussed.

II. REDUCTION OF THE KINETIC EQUATION

We consider the linear one-dimensional electrostatic Vlasov
problem

mC 5 + 8:E 5 = 8:F ′q (1)

where : is the spatial wave-number, F ′(E) is the derivative
of the equilibrium distribution function with respect to the
velocity, 5 (E) the fluctuation of the distribution function, q
the electrostatic potential. The velocity is normalised to the
thermal velocity, and the potential to the thermal potential.
Without loss of generality, we will only consider one value of
: > 0, the other cases can be deduced by symmetry.
We consider a choice of observable quantities, for instance

a few fluid moments like the density =, the velocity D, the
pressure ?. The electric potential q is considered as an input,
unconstrained by Poisson equation, and forces the dynamics of
the state 5 . The mapping from the electric potential q to these
moments is a linear time-invariant dynamical system. This
mapping corresponds to an open-loop control system. The
eventual Poisson equation provides a closed-loop condition,
feeding back the observable = into the input q. Control theory
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and model order reduction theory have developed useful tools
for analysing the structure of such systems, and for constructing
reduced-order models matching such an input–output relation
q ↦→ (=, D, ?), without solving for the full state space, here the
distribution function 5 22.
The frequency response of the density from the Vlasov dy-

namics can be computed analytically as

=(Z) = q(Z)
∫ +∞

−∞

F ′(E)
E − Z − 8 f|: |

dE (2)

with Z = l/|: | the phase velocity of the perturbation, nor-
malised to the thermal velocity. We have introduced a small
damping rate f. The integral on the right-hand-side is sin-
gular if f = 0. The so-called Landau prescription enables to
evaluate it for positive damping rate f. This corresponds to
the Laplace transform formalism, and enforces causality. The
resulting =/q function is holomorphic, and can be extended to
the negative complex plane.

When the equilibrium distribution function is aMaxwellian,
the frequency response if expressed using the Fried and Conte
functionZ23–25.

�kin (Z) =
=

q
= −1 − Z

√
2
Z

(
Z
√
2

)
(3)

III. THE FLUID HIERARCHY TRUNCATION

In order to reduce the simulation cost, we need a reduction
step. The traditional method involves the formulation of the
fluid hierarchy. It consists in the projection of the Vlasov
equation (1) against graded polynomials. For instance, the
fluid moments <ℓ verify

<ℓ =

∫
Eℓ 5 dE (4)

mC<ℓ + 8:<ℓ+1 = −8:qℓ
∫

Eℓ−1F dE (5)

where <0 is the density =, <1 is the momentum #eqD, <2 is
the pressure ?. The equation for each moment <ℓ requires the
one for the next moment, ad infinitum. Practical applications
require to truncate this hierarchy somehow.

The last relevant moment has to be expressed using the
available information. In the linear setting, it is just a linear
combination of its forebearers and of the forcing q. Once
the fluid hierarchy is closed, the frequency response can be
constructed, and compared to the kinetic response�kin. One of
the simplest closure ansatz corresponds to putting the integral
of the ℓ + 1st Hermite polynomial to zero. Other definitions
are possible, like setting the ℓ + 1st cumulant to zero10. In the
linear setting, both are equivalent. For instance, this 4-field
fluid model writes∫

(E4 − 6E2 + 3) 5 dE ≈ 0 (6)

�Fluid 4 (Z) =
Z2 − 3

Z4 − 6Z2 + 3
(7)

This transfer function is real, all its poles are on the real axis,
so the model is conservative: it is not able to reproduce a
damping mechanism as in the kinetic case. It should be noted
that even- and odd-dimensional models in this family behave
differently. Even-dimensional models correctly reproduce the
adiabatic response = = −q for l → 0. Odd-dimensional
models are more precise at high frequency, at the expense of an
incorrect adiabatic response. For instance, the 5-dimensional
fluid model writes∫

(E5 − 10E3 + 15E) 5 dE ≈ 0 (8)

�Fluid 5 (Z) =
Z2 − 7

Z4 − 10Z2 + 15
(9)

It correctly decays asymptotically as 1/Z2, but the adiabatic
response is � (Z = 0) = −7/15 instead of the correct −1.

IV. REVIEW OF THE BALANCED TRUNCATION METHOD

Balanced truncation allows approaching the model reduc-
tion problem as a linear optimisation problem18. Instead of a
term-by-term matching of some expansion, it can be thought
as a uniformly-weighted matching. This method is systematic,
and only depends on (i) the original model equation, (ii) an
energy functional on the input variables and (iii) a quadratic
functional on the output variables. The reduced model is con-
structed by removing hard-to-reach and hard-to-observe states
from the dynamics.

A. Notions of reachability and observability

Given a potential perturbation q(C), the response of the
distribution function is given by

5 (C, E) =
∫

6g (E)8:q(C − g)dg (10)

6g (E) = e−8:Eg−fgF ′(E) (11)

6 defines an infinite family of distribution functions, indexed
by g. All solutions to equation (1) are superpositions inside
this family of states, as given by equation (10). From the
opposite point of view, let 5 (E) be an arbitrary distribution
function. The easier 5 is to represent as a linear combination
of 6g , the closer it is to an actual solution of (1). Conversely,
the more energy :2 |q |2 a state requires to appear, the more
convoluted q is in (10), the less reachable it is.

To quantify this, we reduce the infinite family 6 to a set of
principal components26. In order to achieve this, we construct
the so-called reachability Gramian R

R(E′, E′′) =
∫ +∞

0
6g (E′)6∗g (E′′)dg

=
F ′(E′)F ′(E′′)
2f + 8: (E′ − E′′) (12)
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This (infinite-dimensional) matrix is symmetric, positive and
bounded. It can be diagonalised as

R(E′, E′′) =
+∞∑
?=0

_2? 5? (E′) 5 ∗? (E′′) (13)

The orthonormal eigenvectors 5? correspond to principal com-
ponents. The eigenvalues _2? allow to order them from most
reachable (high _?) to least reachable (low _?). All the distri-
butions functions in the family 6g can be written as an (infin-
ite) sum of 5? . For numerical application, we will discretise
the velocity space. The Gramian R will become a matrix
R?@ = R(?ΔE, @ΔE).
To diagonalise, we need the 5? to be orthogonal, but we are

yet define with which inner product. We need a second sym-
metric matrix to define this orthogonality. It can be provided
by measuring the observability of the states. Given a distri-
bution function 5 at C = 0, the density at later times is given
by

=(C) =
∫
e−8:EC−fC 5 (E)dE (14)

A state that cannot be observed is of no interest for us. Con-
versely, a state that is clearly and strongly visible for a long
time is physically relevant and should be captured. For our
toy model, we chose to only measure the density response =.
The signal strength for a state 5 can be measured as a squared
norm of = for positive times. We introduce the observability
Gramian O∫ +∞

0
|=(C) |2dC =

∫
O(E′, E′′) 5 ∗ (E′) 5 (E′′)dE′dE′′ (15)

O(E′, E′′) = 1
2f − 8: (E′ − E′′) (16)

As a symmetric positive matrix, O provides an inner product.
We can proceed to computing our principal components equa-
tion (13). In this case, _? is called a Hankel singular value.
The orthonormality of the 5? makes_2? scalewith their observ-
ability. Therefore, the _? measure the product of observability
and reachability for a distribution component 5? . Since the
components are orthogonal with respect toO, we can construct
the dual basis `?

`? (E′) =
∫
O(E′, E′′) 5? (E′′)dE′′ (17)∫

`? (E) 5@ (E)dE = X?@ (18)

B. Usage for model order reduction

We decompose the perturbed distribution function on the
basis defined by the 5? , weighted by new dynamical variables
G? . The functions `? give a projection basis, a set of general-

ised moments to consider for the reduction.

5 (C, E) =
+∞∑
?=0

G? (C) 5? (E) (19)

G? (C) =
∫

`? (E) 5 (C, E)dE (20)

By plugging this form into the Vlasov equation (1) and pro-
jecting against the `? , we can formulate the evolution of the
G? as

¤G? =
+∞∑
@=0

�?@G@ + �?q (21)

<ℓ =

+∞∑
@=0

�ℓ@G@ (22)

with the matrices

�?@ =

∬
dGdE`? (G, E) (−8:E) 5@ (G, E) (23)

�? =

∬
dGdE`? (G, E)F ′(E)8: (24)

�ℓ@ =

∫
dEEℓ 5@ (G, E) (25)

Truncating the sum in equation (19) provides a finite-
dimensional model, with state defined by the G? . The open-
loop reduced model is guaranteed to be stable as soon as the
original model is, which is the case for equation (1). However,
and this will be developped below, this does not guarantee the
stability of the closed-loop model, like Vlasov–Poisson.
The relevance of the truncation is defined by the sequence of

Hankel singular values _? . The accuracy of the reducedmodel
is defined by the sum of neglected singular values18. More
generally, the sequence of singular values allows to estimate
the reducibility of the original equation. The faster they decay,
the shorter the sum (19) can be to reach the same accuracy.
This method departs from the more traditional principal

component analysis26,27 by using the observability Gramian
instead of the implicit identity matrix. The latter is determined
by the data acquisition choice rather than physics, and leads
to poorer reduced models28. We remark the scaling of the
Gramians does notmodify the reduced basis, making the scalar
f/|: | the only regularisation parameter.

C. Numerical investigation

The kinetic equation (1) describes dynamics in a continuous-
velocity space. Grid-based simulations require a discretisation
in the velocity space. Because of the finite grid, the discrete
system is plagued by a return to initial conditions. With a
uniform radial grid of step ΔE, the impulse response is written

5 (C, 9ΔE) = e−8 9:ΔEC−fC 8:F ′( 9ΔE)q(C = 0) (26)

The first exponential factor is periodic in time, of period ) =
2c/:ΔE. This periodicity is a spurious numerical echo. It is
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Figure 1. Hankel singular values of the balanced truncation problem.

due to the discretisation, and can be thought as aliasing in :E
space. Relevant simulations thus require a regularisation to
remove this effect, such as f � :ΔE. This can be achieved
either through a thinner grid, or by strong enough collision
term. However, one must care not too increase f too much, to
avoid modifying too much the very dynamics we are trying to
approximate.

We compute numerically the twoGramianmatrices (12) and
(16) on a uniform velocity grid between −5 and 5 times the
thermal velocity, with ΔE = 10−2. Regularisation is f/:ΔE =
2. It should be noted that up to a scaling factor, the twomatrices
(12) and (16) only depend on f and : through the ratio f/|: |.
As a consequence, in the following and until paragraph VIB,
we shall consider only : = 1.
We use the Schur-based computation method from Penzl 29 .

Given the Cholesky factorisation of the matrices R = ''†

and O = $$†, the singular value decomposition of '†$ is
computed. The singular values are exactly the Hankel singular
values _? . The left singular vectors D? yield the distribution
components 5? = 'D? .
Hankel singular values are plotted figure 1. The figure

outlines seven outstandingwell-separated singular values and a
bulk of singular values with Gaussian decrease. The first seven
correspond to truncation relevant modes. The bulk modes are
a reminder of Van-Kampen modes around each velocity grid
point. These actually are purely numerical components, due
to the finite-time recurrence of the Fourier-space formulation.
Increasing f/ΔE decreases the bulk, and unearthes additional
discrete modes.

The strong separation between the first singular values is
promising for model order reduction perspectives. In our case,
the singular values drop 5 orders of magnitude in the first
7 singular values. The relevance of additional dimensions
for the description decays rapidly. From this consideration,
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Figure 2. Plot of the components corresponding to the first four
Hankel singular values. Above: norm of the distribution components
5: (E). Below: complex angle of the distribution components 5: (E).

the dynamics of the linear Vlasov equation (1) appears to be
low-dimensional, and a reduced model should be accessible.
Conversely, the singular values corresponding to the bulk are
very close together. Adding components 5? from this bulk
should not increase the accuracy of a reduced model.
The balanced truncation basis is shown figure 2. The struc-

tures are different from the Hermite polynomial used for fluid
modelling. The complex amplitude of the components 5? is
reminiscent of the derived equilibrium | 5? | ∼ F ′(E). Surpris-
ingly, the complex argument of the 5? (E) decreases monoton-
icallywith E. This indicates that only negative velocity-Fourier
wave-numbers :E < 0 are involved.
Indeed, the filamentation process appears as an advection

in velocity-Fourier space: :E = :E (C = 0) + :C. Meanwhile,
polynomial moments observe the neighbourhood of :E = 0:
<ℓ = (−8m:E )ℓ 5 (0). For a mode with :E > 0 at C = 0, the
value of :E drifts towards :E → +∞, and the mode is never
observed. Conversely, negative :E modes pass once by :E = 0,
are observed, before going away at :E → +∞.

V. REVIEW OF INTERPOLATION-BASED REDUCTION

Balanced truncation requires to construct two Gramian
matrices. For a velocity grid of size #E , each Gramian has
size #2E . This renders the method computationally expensive.
Furthermore, the performances of the method are bounded by
those of the discrete Vlasov model.

On the contrary, interpolation-based model order reduction
is a phenomenological method. It only requires the eval-
uation of the reference kinetic frequency response function
�kin, equation (3). The closure problem is a reduction of the
infinite-dimensional Vlasov equation to a finite dimensional
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dynamical system whose variables are the fluid moments. Be-
cause of the finite dimension, the associated transfer function
=/q is a rational function of the phase velocity Z , akin to equa-
tion (7). Instead of constructing a projection basis equations
(19–20) for the Vlasov equation, we can try to directly approx-
imate the reduced transfer function. Several methods have
been employed to this end22,30. We chose to present the inter-
polation framework31,32: how to construct a rational transfer
function �red which interpolates �kin at chosen points?

This can be done using the so-called Loewner framework33.
The method has found wide applications, not limited to model
order reduction34–38. First, let us generalise the problem. Our
reduced linear time-invariant system (equation (21)) can be
written in the so-called descriptor form as

� ¤G = �G + �q (27)
= = �G (28)

where � and � are two square matrices, where � is invertible.
� is a column matrix, and � is a row matrix. G is the state
variable. The associated response function is

�red (Z) = � · (−8Z� − �)−1 · � (29)

This representation is highly redundant: changing G into (−1G
for some matrix ( does not change the dynamics, only the
matrices �, �, �. Neither does left-multiplying the equation
(27) by a matrix ) , only the matrices �, �, �. This freedom
allows to chose the coefficients in � and �, and then to fill-up
the matrices � and �.

A. Construction of the matrices

We want to construct a set of matrices �, �, �, � such that
�red (U?) = �kin (U?) and �red (V@) = �kin (V@) for two sets
of (possibly complex) frequencies U? and V@ . We chose to
define arbitrarily �? and �@ to the interpolated values. The
response function �red will interpolate �kin as soon as the
inverted matrix −8Z� − � allows to select the right coefficient
off �? or �@ . This can be achieved by constructing the two
matrices � and � such that, for all ?, @,

(−8U?)�?@ − �?@ = �@ (30)
(−8V@)�?@ − �?@ = �? (31)

�? = �kin (U?) (32)
�@ = �kin (V@) (33)

The first equation is our selection rule: � must be the ?th
row of −8U?� − �. This guarantees that �red (U?) = � ·
(−8U?� − �)−1 · � = �? . Likewise, the second equation
forces �red (V@) = �@ . Finally, the definitions of � and � give
the values to be interpolated.

By modifying equations (30–33), the method can be gen-
eralised to also interpolate the derivatives33 and to match the
asymptotic behaviour at high frequency. In order to interpolate
the point U? up to order , the trick is to arrange the successive
derivatives of �red in order after the value. The matrix � is

such that, for 0 6 A 6  ,

�@+A =
1
8AA!

�
(A )
red (V@) (34)

= � · [(−8V@� − �)−1 · �]A · (−8V@� − �)−1 · �(35)

By straightforward recursion, this is equivalent to asserting, in
addition to (30), that for 1 6 A 6  ,

−8V@�?,@+A − �?,@+A = �?,@+A−1 (36)

For points at infinity, the formulation is reversed: for 1 6 A 6
 ,

�red (Z) =
+∞∑
A=0

� · 8�−1 · [8� · �−1]A · �
ZA+1

≈
 ∑
A=0

8�?+A

ZA+1
(37)

�?,@ = �@ (38)
�?+A ,@ = 8�?+A−1,@ (39)

Using the two last equations, we recognise the well-known
form of the fluid equations (5) as

� · �−1 =
©«
0 −8

. . .
. . .

0 −8
W0 · · · · · · W#

ª®®®®¬
(40)

� · �−1 =
(
1 0 · · · 0

)
(41)

�? = −8:
∫

E?�eqdE (42)

where W gives the coefficient of the closure. We recover that
any solution formulated as the closure of the # th moment
matches the behaviour at infinity at order # . Two-sided inter-
polation “U = V” is possible, doubling the order of interpola-
tion.

B. Collisionless closures as special cases

For instance, to compute an order ℓ realisation matching
the high-frequency behaviour at order 2ℓ, we consider setting
U = V all infinite. If ℓ is even, it corresponds to setting the
ℓ + 1st cumulant to zero. In this case, the Loewner matrices
have anti-diagonal (Hankel) structure, and can be written as

�red (Z) =
∑
A>1

8AWA

ZA
(43)

� =
©«

W1 · · · 8ℓ−1Wℓ
...

. . .
...

8ℓ−1Wℓ · · · 82ℓ−2W2ℓ−1

ª®®¬ (44)

� =
©«

W2 · · · 8ℓ−1Wℓ+1
...

. . .
...

8ℓ−1Wℓ+1 · · · 82ℓ−2W2ℓ

ª®®¬ (45)

� = � =
(
W1 · · · 8ℓ−1Wℓ

)
(46)

If ℓ is odd, the matrix � is singular, the model is degenerate.
In order to have the models corresponding to zeroing the ℓth
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cumulant, we need interpolate the adiabatic dynamics by set-
ting Vℓ = 0 (but keep Uℓ = ∞). In that case, the matrices
become

� =

©«
W1 · · · 8ℓ−2Wℓ−1 � (0)
8W2 · · · 8ℓ−1Wℓ 8W1
...

. . .
...

...

8ℓ−1Wℓ · · · 82ℓ−3W2ℓ−2 8ℓ−1Wℓ−1

ª®®®®¬
(47)

� =
©«

W2 · · · 8ℓ−2Wℓ W1
...

. . .
...

...

8ℓ−1Wℓ+1 · · · 82ℓ−3W2ℓ−1 8ℓ−1Wℓ

ª®®¬ (48)

� =
(
W1 · · · 8ℓ−1Wℓ

)
(49)

� =
(
W1 · · · 8ℓ−2Wℓ−1 � (0)

)
(50)

In addition, the 3-field and 4-field Hammett–Perkins mod-
els correspond to all infinite U, with V = (∞, 0, 0) and
V = (∞, 0, 0, 0). This choice of interpolation points directly
corresponds to the Padé approximation order in2. More gen-
erally, we expect all the closures found by Hunana et al. 12,13
to be computable by this method, using only high-order inter-
polation at 0 and∞.
This interpolation method is very lightweight, and almost

phenomenological: the model is built so as to match the be-
haviour at phase velocities U? and V@ . However, the choice
of those U? and V@ is completely free, and left to the wisdom
of the physicist. The hydrodynamic behaviour is encoded by
interpolation at infinity, while kinetic effects happen for finite
phase velocities. The symmetry between positive and neg-
ative phase velocities advises using interpolation points with
the same symmetry. While optimality properties have been
shown for some special relations between the interpolation
points19,20, this choice has not been retained here because of
numerical difficulties.

VI. NUMERICAL COMPARISON WITH KNOWN CLOSURE
SCHEMES

We compute two interpolated models: a 3-dimensional
model matching high-frequency behaviour at order 3 and in-
terpolating �kin at Z = 0,±1.3; and a 4-dimensional model
matching high-frequency behaviour at order 2, interpolating
at order 2 at Z = 0, and at order 1 at Z = ±1.3 and Z = ±7.04.
The value of 1.3 has been chosen inside the thermal region.
The value of 7.04 has been chosen so as to preserve the sign of
the imaginary part. Choosing symmetric interpolation points
makes the model real when written in physical coordinates.
Those are compared to the zero-cumulant fluid models and to
Hammett–Perkins models. Wang’s closure15 is equivalent to
4-field Hammett–Perkins, and is not studied separately.

�Balanced 3 (Z) =
−0.014Z2 − 0.8168Z + 4.767

−8Z3 + 3.634Z2 + 6.8868Z − 4.735

�Interpolation 3 (Z) =
−8Z + 2.65

−8Z3 + 2.65Z2 + 4.6138Z − 2.65

�Hammett-Perkins 3 (Z) =
−8Z + 1.596

−8Z3 + 1.596Z2 + 3.08Z − 1.596

�Fluid 3 (Z) = −
8Z

−8Z3 + 3.08Z

�Balanced 4 (Z) =
0.0028Z3 + 1.04Z2 + 5.5298Z − 17.426

Z4 + 5.9288Z3 − 17.996Z2 − 27.328Z + 17.441

�Interpolation 4 (Z) =
Z2 + 4.7838Z − 10.268

Z4 + 4.8368Z3 − 12.967Z2 − 17.6528Z + 10.268

�Hammett-Perkins 4 (Z) =
Z2 + 3.5198Z − 5.615

Z4 + 3.5198Z3 − 8.615Z2 − 10.5568Z + 5.615

�Fluid 4 (Z) =
Z2 − 3.0

Z4 − 6.0Z2 + 3.0

For most cases, the stationary limit Z → 0 verifies � → −1,
recovering the expected adiabatic response at low-frequency
= ∼ −=0 × 4q/) . For high-frequency waves Z →∞, the fluid,
Hammett–Perkins and interpolated formulations correctly give
� ∼ Z−2. Balanced truncation is worse performing in this re-
gion, exhibiting a slower decrease � ∼ UZ−1+ (1+V)Z−2, with
U and V going to 0when increasing the number of components.

A. Accuracy of the Vlasov dynamics

The error on density are plotted figure 3, as the complex
modulus |�model (Z) − �kin (Z) |. For reference, the kinetic re-
sponse |�kin (Z) | is plotted in dotted line. Adding components
5? to the balancedmodel from the bulk ofVan–Kampenmodes
does not increase accuracy. Our newmodels outperforms both
Hammett–Perkins formulations in the thermal phase velocity
region, without a significant penalty in the low phase velocity
region. Unsurprisingly, the best response in the high phase
velocity region is obtained from more conventional fluid mod-
els, because of very weak kinetic effects in this regime. As
the interpolated models explicitly constrain their behaviour at
infinity, their performances are comparable. Landau phase-
mixing phenomenon is embedded into the balanced truncation
formulation as a damping term. This is confirmed by looking
at the eigenvalues of the balanced truncation system, table I,
whose imaginary part are well below the f = 0.02 regular-
isation term. More generally, all the eigenvalues of both the
balanced truncation and interpolation model have a larger neg-
ative real part than the Hammett–Perkins model, hinting at a
stronger damping behaviour. The imaginary parts come in the
thermal range, and in conjugate pairs to keep the symmetry
between positive and negative phase velocity.
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Figure 3. Reduced model error for density as a function of phase
velocity. The “kinetic response” curve corresponds to |�kin (Z) |,
to be used as a baseline for comparison. The “balanced” curves
correspond to the response of the balanced truncation model. The
“fluid” curves correspond to the zero-cumulant models.

Model Eigenvalues
Balanced 3 −1.1918 ±1.576 − 1.2228

Interpolation 3 −0.8638 ±1.508 − 0.8948
Hammett-Perkins 3 −0.6718 ±1.472 − 0.4638

Fluid 3 0 ±1.732
Balanced 4 ±0.678 − 1.4858 ±2.087 − 1.4798

Interpolation 4 ±0.617 − 1.2728 ±1.956 − 1.1468
Hammett-Perkins 4 ±0.555 − 1.0048 ±1.922 − 0.7558

Fluid 4 ±0.742 ±2.334

Table I. Eigenvalues of the reduced models.

B. Coupled Vlasov–Poisson problem

The previous section investigated the behaviour of the un-
coupled Vlasov equation. We now try to recover two well-
known features of the Vlasov–Poisson system: Landau damp-
ing and bump-on-tail instability. The dispersion relation is

:2 = � (Z) (51)

with � one of the frequency responses above, and : is the
spatial wave-number scaled to the Debye length. We solve this
dispersion relation by computing the right-hand-side � (Z) on
a grid of complex Z . For each value of<[Z], seek the value of
=[Z] where the imaginary part=[� [Z]] is closest to zero. The
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Figure 4. Numerical dispersion relations for the Landau-damping
test.

value of :2 is given by <[� [Z]]. A more elaborate method
would be to solve the polynomial equations arising from the
transfer functions, but precision is not an issue.
The results are given figure 4. We observe that for : > 0.4,

the behaviour of the 4-field balanced truncation model is very
close to the kinetic result. Unfortunately, a very low : instabil-
ity appears, related to high phase velocities. Even though the
maximal growth rate is small (smaller than the regularisation
f for the “balanced 4” model), closures produced by balanced
truncation are unphysical. This is due to the aberrant behaviour
of the transfer function for high phase velocities: the analytic
response is closest to the positive real axis for Z → ∞, and
the reduced model tends to overshoot. The violated property
is known as positivity or passivity22: the real part of 8Z=/q
must be positive when =[Z] > 0. This corresponds to an
energy flow from the wave to the particles, so that ®z · ®� > 0.
Balanced-truncation itself only guarantees open-loop stability,
passivity-preserving extensions of the method exist39 but pose
significant numerical difficulties.
The interpolation method outperforms the Hammett–

Perkins method in both cases. While being less precise than
the balanced model for : > 0.4, the passivity constraint is
respected, and Landau damping damps. The optimal choice
in terms of interpolation error should be U = V opposite com-
plex conjugates of the dynamical poles20. Unfortunately, this
choice leads to the same kind of passivity breakage.
We also benchmark the bump-on-tail instability. It can be

excited by mixing another cold Maxwellian into the equilib-
rium. To study it, we double the state space, once for the bulk,
once for the beam. We use the same method for solving the
dispersion relation

:2 = � (Z) + =1�
(
Z − D1√
)1

)
(52)
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Figure 5. Numerical dispersion relations for the bump-on-tail distri-
bution function. The bump-on-tail case uses =1, D1, )1 = (.2, 3, .01).
The slope of the distribution function is reversed for 2.7 < E < 3.

where =1 = 0.2, D1 = 3 and )1 = 0.01 are the density,
velocity and temperature of the cold beam. In the region
where the slope of the distribution function is reversed, for
2.7 < Z < 3, the system is unstable. Farther from this phase
velocity (including opposive phase velocity), the waves are
Landau-damped. The results are shown on figure 5. As a func-
tion of the wavenumber : , two branches appear, corresponding
to positive and negative phase velocities. As earlier, both in-
terpolation and balanced truncation methods feature a damped
branch, with a modulated shape near :_� = 0.4 compared
to stock Landau damping. In addition, an unstable branch
appears in the :_� < 0.5 region, which corresponds to the
expected bump-on-tail instability. Once again, the balanced
truncation method fails in the region :_� < 0.1. Meanwhile,
both interpolation and balanced method outperform both the
Hammett–Perkins and the zero-cumulant fluid models for the
bump-on-tail instability.

VII. DISCUSSION OF THE METHOD

A. Back to real space

The obtained models have been derived in terms of the
phase velocity Z = l/: . In order to formulate them in real
space, they need to be extended to : < 0 (the equations for
: = 0 are trivial). The correct way to achieve that is to use
the symmetries of the dynamical system. Changing : → −:
corresponds to discussing frequencies l with negative real
part. To keep the causality properties, the imaginary part of
l must remain the same. The transformation rule is then

l→ −l∗. The state-space model is

−8lG = �:G + �:q for : > 0
+8l∗G = −�:G − �:q for : < 0

or in general

−8lG = |: |<[�]G + 8:=[�]G + |: |<[�]q + 8:=[�]q(53)

We recover the Hammett–Perkins prescription of a |: | term.
In real space, this is associated to a non-local operator instead
of a regular G-derivative.

B. Application to other kinetic problems

Since the interpolation method only requires evaluations
of the frequency response function, it is very versatile and
can be applied to other kinetic problems. For instance, we
can consider the linear gyrokinetic problem. Analytical work
allows to perform the resonant integrals formally in terms of
the Fried and Conte function, leaving smooth integrals in other
directions. The KineZero model performs such computations
as part of the QuaLiKiz code40–42.
An interpolatory reduced model can be formulated to inter-

polate simultaneously the few first moments of the perturbed
distribution function. For instance, the density perturbation =
writes

=/q =
∫

l − l∗
l − : | |E | | − =D�

F dE | |d`d\ (54)

where l is the mode frequency, = its toroidal wave number,
D� the toroidal precession angular velocity. l∗ denotes the
diamagnetic frequency split into the contributions l∗=,D,) of
the density, parallel velocity and temperature gradients

l∗ = l∗= +
E | |
Eth
l∗D + l∗)

(
<
2 E
2
| | + `�
)

− 3
2

)
(55)

A reduced model for the response =/q can be formulated
using three rational functions �∗=,D,4

=/q = (l − l∗=)�∗= − l∗D�∗D − l∗)
(
�∗4 −

3
2

)
(56)

�∗=
(l
=

)
≈

∫
1

l − : | |E | | − =D�
F dE | |d`d\ (57)

�∗D
(l
=

)
≈

∫
E | |/Eth

l − : | |E | | − =D�
F dE | |d`d\ (58)

�∗4
(l
=

)
≈

∫ (
<
2 E
2
| | + `�

)
/)

l − : | |E | | − =D�
F dE | |d`d\ (59)

The rational functions �∗=,D,4 can be built so as to have the
same denominator. As such, equation (56) readily translates
into a simulable system, and contains a fluid closure.
In this local linear setting, the functions �∗=,D,4 are inde-

pendent of the density and temperature gradients. Rather, the
gradients only appear in the assembled observables like (56).
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The closure coefficients obtained by this method are independ-
ent of the gradients, as seen by Sarazin et al. 11 .
Real-time interpretation of experimental data, especially for

future devices such as Iter is a strong motivation to create fast
surrogate models based on quasilinear assumptions. Signific-
ant speedups have been obtained for instance by43 using neural
networks trained on a QuaLiKiz database. The same rational
functions (57–59) can be used to accelerate the resolution of
the gyrokinetic dispersion relation. QuaLiKiz computes the
density response =/q semi-analytically for several values of the
complex eigenfrequency l, for use in a black-box root-finding
algorithm. This procedure can be replaced by the resolution
of a polynomial equation in complex space.

1 + =2@2d2∗ = (l − l∗=)�∗= − l∗D�∗D − l∗)
(
�∗4 −

3
2

)
Extensions of the method for parametric model order
reduction44 allow to include the dependency on the bal-
looning angle or the � × � shear as additional parameters:
�∗=,D,4 (l, =, \1 , W� ). Compared to neural networks predict-
ing the fluxes, this method should require a smaller amount of
interpolation data points, while preserving desirable properties
like a sharp threshold.

C. Non-linear extension

The balanced truncation and interpolation methods are built
for linear systems, and their applicability to non-linear sys-
tems is not straightforward. However, several methods can be
employed to extend the validity of the found closure to the
non-linear setting.

The simplest heuristic is to make use of Galilean invariance,
replacing the time derivative by the material derivative mC →
mC+®D· ®∇ (seeMattor andParker 14 for instance). A related venue
happens by writing the linear closures in terms of linearised
cumulants. Under this form, the linearised cumulants can be
replaced naturally by their non-linear expression, providing
with a non-linear model.

More sophisticated methods have been devised to extend
both balanced truncation and interpolation to systems with a
so-called bilinear non-linearity34,45,46. (Bi-linear refers here
to a non-linearity multiplying the state 5 by the input q, in
opposition to so-called quadratic non-linearity, multiplying 5
by 5 .) Those methods aim at embedding the non-linearity as
products of a fluid moment and the electric field, instead of
introducing a quadratic Reynolds stress ®D ⊗ ®D.

Progress has also been made for fluid systems using bal-
anced proper orthogonal decomposition on nonlinear simu-
lations instead of their linearisation28. In the cited works,
balancing has shown to improve significantly the relevance of
the decompositions. See Goumiri et al. 47 for an application
to plasma physics. Other methods based on neural networks
have also shown promising results48.
Since the idea is to formulate a reduced ordermodel to accel-

erate simulations, the interpolation method can be leveraged
to compute a reduced model directly in discrete time. This
can be done by interpolating at values of e8lΔC instead of the

frequency38 l. The complexity would not change much —
everything would still be in a largely opaque matrix—, while
the numerical accuracy may benefit.

VIII. CONCLUSION

The reduction of the collisionless Vlasov equation has been
investigated using the balanced truncation method. This
method constructs a simplified dynamical space, whose basis
is chosen so as to maximise both the reachability and the ob-
servability of its individual vectors. The rapid decay of the
Hankel singular values indicate a strong reducibility of the
Vlasov model. The balanced truncation reduced models re-
construct the Vlasov dynamics accurately in the thermal phase
velocity region, but have degraded performances in the asymp-
totic low and high phase velocity regimes. In particular, the
energy wrongly flows from the particles to the wave in the high
phase velocity regime. This violation comes from the difficulty
to approximate the Landau damping rate l4/:3 exp(−l2/:2)
as a rational function. The rational approximation found by
balanced truncation overshoots to negative values. As a result,
the coupled Vlasov–Poisson dynamics features a spurious in-
stability at high phase velocities, which makes it unusable as a
fluid closure. General positivity-preserving model reduction
is still an open problem22, but existing algorithms may allow
more systematic application of the method.
We have formulated a novel non-collisional closure method

based on interpolation of the linear response function, and ap-
plied it to the Vlasov–Poisson problem. The method general-
ises derivations based on asymptotic matching at low and high
frequency. The resulting model outperforms usual Hammett
and Perkins’ formulation in the thermal phase velocity range,
for both the density response, the Landau damping rate and the
bump-on-tail instability growth rate. The general method is
very versatile, and should allow for efficient and cheap model
order reduction for gyrokinetic toroidal drift waves in the col-
lisionless regime.
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