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Abstract   Most genomic and evolutionary comparative analyses rely on accurate multiple 

sequence alignments. With their underlying codon structure, protein-coding nucleotide 

sequences pose a specific challenge for multiple sequence alignment. Multiple Alignment of 

Coding Sequences (MACSE) is a multiple sequence alignment program that provided the first 

automatic solution for aligning protein-coding gene datasets containing both functional and 

nonfunctional sequences (pseudogenes). Through its unique features, reliable codon 

alignments can be built in the presence of frameshifts and stop codons suitable for subsequent 

analysis of selection based on the ratio of nonsynonymous to synonymous substitutions. Here 

we offer a practical overview and guidelines on the use of MACSE v2. This major update of 

the initial algorithm now comes with a graphical interface providing user-friendly access to 

different subprograms to handle multiple alignments of protein-coding sequences. We also 

present new pipelines based on MACSE v2 subprograms to handle large datasets and 

distributed as Singularity containers. MACSE and associated pipelines are available at: 

https://bioweb.supagro.inra.fr/macse/. 

Key words: multiple sequence alignment, molecular evolution, phylogenomics, pseudogenes, 

metabarcoding, bioinformatics pipelines. 
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1 Introduction 

Multiple sequence alignment (MSA) is a crucial step in many evolutionary analyses. 

Nonetheless, the most commonly used alignment tools overlook the underlying codon 

structure of protein-coding nucleotide sequences. Accounting for this structure is useful for 

improving the proposed alignment, but it is also a prerequisite for some downstream analyses 

such as selection pressure analysis based on the nonsynonymous to synonymous substitution 

ratio (dN/dS). 

 

MACSE [1] was specifically designed to align protein-coding nucleotide (NT) sequences with 

respect to their amino acid (AA) translation while allowing NT sequences to contain multiple 

frameshifts and/or stop codons (Figure 1). MACSE thus provided the first automatic solution 

for aligning protein-coding gene datasets containing nonfunctional sequences (pseudogenes) 

without disrupting the underlying codon structure. It has also proved useful in detecting 
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undocumented frameshifts in public database sequences and in aligning next-generation 

sequencing reads/contigs against reference coding sequences [2], especially for metabarcod-

ing analysis [3]. 

 

The first MACSE release contained a single program that took coding nucleotide sequences as 

input and aligned them with respect to their codon structures [1]. This early command line 

version included multiple options that allowed end-users to fine-tune the alignment options, 

but its use could be tedious. In order to streamline the program application, we built several 

companion tools that exploit the core MACSE algorithm to tackle related problems [4]. The 

resulting MACSE v2 toolkit was hence much more powerful as it provided the building 

blocks to construct powerful alignment pipelines. However, the number of available 

subprograms and options featured in this version was problematic for occasional users. We 

finally proposed a Graphical User Interface (GUI) to improve the end-user experience. This 

GUI is useful for new users who can test MACSE on a few datasets without first having to 

deal with the command line option complexity. Moreover, the GUI displays the command line 

corresponding to selected options, thus streamlining the transition from the GUI to the 

command line version. 

 

When aligning protein-coding nucleotide sequences, it is often necessary to chain several 

steps such as sequence prefiltering (e.g. to remove unwanted UTR fragments) and then 

producing and filtering the nucleotide alignment based on its amino acid translation. We have 

successfully used MACSE to design effective pipelines for various tasks, such as aligning 

thousands of orthologous sequence datasets from the OrthoMaM database [5] or correcting 

tens of thousands of barcoding reads [6]. In this chapter, we introduce the specificity and key 

functionalities of MACSE v2. We outline some standard use cases to illustrate how MACSE 

subprograms can be chained to produce high quality protein-coding sequence alignments in 

various contexts. All examples mentioned in this chapter can be downloaded from the 

MACSE website https://bioweb.supagro.inra.fr/macse/. The two main pipelines discussed 

here are also available as Singularity containers [7] for easy installation and use on high 

performance computing clusters. 
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2 MACSE basic usage and possible troubleshooting 

2.1 Getting started 

MACSE is written in JAVA and hence runs in a straightforward way on any computer that 

has a Java Runtime Environment (JRE) release installed. If needed, JRE is available for free 

download on the Java website (www.java.com). The most recent MACSE release is then 

available for download on the MACSE website (https://bioweb.supagro.inra.fr/macse). This 

website also contains detailed documentation with several examples for each subprogram, as 

well as detailed explanations of possible applications. Each MACSE release is a single jar 

file. The latest 2019 release is macse_v2.03.jar. It can be launched by typing the following 

command: 

     java -jar macse_v2.03.jar 

ð Launches the GUI version of MACSE (Figure 2). 

MACSE may also be launched by double clicking on the macse_v2.03.jar file. In both cases 

this will launch the graphic user interface of MACSE. Anything typed after macse_v2.03.jar 

will be considered as options passed to MACSE whereas anything typed before will be 

considered as Java virtual machine options. The command line version and GUI versions of 

MACSE may be run via the same MACSE jar file. In the absence of any option, the GUI 

version is launched whereas the command line version is launched as soon as at least one 

option is submitted to MACSE. As MACSE is a set of subprograms, the “-prog” option 

allows users to specify the subprogram to be executed. This is a mandatory option, but if the 

user does not know the subprogram names, any name may be submitted and a help message 

with a list of possible subprograms will be displayed: 

    java -jar macse_v2.03.jar -prog wrongProgram 

ð Launches the command line version of MACSE, and print a help message listing all valid 

subprograms with a one-line description of each of them. 
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Once the name of the subprogram of interest has been selected, e.g. alignSequences, a brief 

help message for this subprogram can be displayed by invoking it without further options and 

a description of what this subprogram is useful for and a list of mandatory options will be 

printed: 

    java -jar macse_v2.03.jar -prog alignSequences 

ð Prints a basic help message of the alignSequences subprogram focusing on its mandatory 

options. 

The “-help” option provides more detailed information and the complete list of options: 

    java -jar macse_v2.03.jar -prog alignSequences -help 

ð Prints a detailed help message of the alignSequences subprogram presenting all available 

options. 

Documentation may also be accessed when using GUI (Figure 2). Once the subprogram of 

interest is selected via the “Programs” menu, a brief description of this subprogram appears at 

the top of the GUI. Options are grouped into categories: mandatory options, output file names, 

alignment parameters, etc. Once an option field is selected by clicking on it, the related 

documentation is displayed at the top of the GUI. The command line corresponding to the 

graphically selected options appears at the bottom of the GUI. Copying this command line 

before running MACSE via the GUI, ensures the traceability of the analysis, while also 

enabling the user to easily run the same analysis via the command line without having to 

manually type the command line. 

 

Hereafter we shorten the command line by omitting the MACSE release version. Note that 

this can also be done by renaming the downloaded jar file by using a symbolic link, by 

defining an environment variable on the system, or through any other technical solution that 

suits the user. For enhanced readability, we also extend the command to several lines, with 

one option per line, and indicate the option name in bold font. It follows that a command such 

as: 

     java -jar macse_v2.03.jar -prog alignSequences -help 
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will hence be written in the rest of this chapter as: 

     java -jar macse.jar -prog alignSequences  

                                    -help 

2.2 Obtaining suitable input sequences 

The most frequent pitfall encountered by new MACSE users arises when the user provides an 

input sequence file containing fragments of nonprotein-coding nucleotide sequences. In case 

of unexpected MACSE behavior, the first thing to check is that the input sequence file 

contains nucleotide sequences in a valid fasta format. To do so, users may try to open it with a 

sequence/alignment viewer such as SeaView [8] or AliView [9], which are very convenient to 

visualize sequences and alignments produced by MACSE. These viewers accept the '!' 

character in both nucleotide and amino acid sequences and it is also possible to visually 

highlight the codon structure of the aligned nucleotide sequences. 

 

A second aspect to verify is that the sequences are all in forward direction. This could be 

harder to check depending on how the sequences have been obtained, but MACSE will not be 

able to correctly align sequences in reverse orientation. A solution could be to blast them 

against public protein databases using blastx. All sequences for which the best hit occurs with 

a negative reading frame should probably be reverse translated. Alternatively, MAFFT [10] 

has convenient functionalities (--adjustdirection or --adjustdirectionaccurately) that can 

reorient nucleotide sequences in a multiple sequence alignment. 

 

The last point is to ensure that the input sequences do not contain nonprotein-coding 

fragments. Typically, nonprotein-coding fragments in CDS are found when UTRs (or introns) 

are not trimmed out. This often occurs when dealing with de novo assembled contigs. Contigs 

should have their nonprotein-coding parts removed before alignment with MACSE. This 

could be done using dedicated annotation tools such as prot4EST [11], UTRme [12] or other 

similar tools. Alternatively, the MACSE trimNonHomologousFragments subprogram may be 
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used. This subprogram will not focus specifically on noncoding regions but it will mask any 

long fragment that is nonhomologous (at the amino acid level) to other sequences. 

 

The trimNonHomologousFragments subprogram was initially developed to filter long 

insertions that may be caused, for instance, by annotation errors such as undetected introns or 

UTRs. Having to handle long insertions in one or a few sequences could drastically slow 

down the alignment process. Alignment of these nonhomologous regions is mostly useless, as 

they would probably be removed by any alignment filtering tools in subsequent analyses. 

 

The trimNonHomologousFragments subprogram mainly aims at removing long nonhomolo-

gous fragments but keeps smaller ones to limit the risk of removing fragments that are 

actually homologous. Several options are provided to adjust the stringency of this prefiltering 

step but we advise against being too strict at this early stage of the analysis. At this stage, a 

sequence that has been trimmed along almost its entire length is likely not at all homologous 

to other sequences, so it might be better to remove it completely. For a sequence to be kept in 

the output fasta file, the percentage of this sequence that should remain after homology 

prefiltering, can be adjusted (-min_homology_to_keep_seq). Full details of this prefiltering 

process can be output in a fasta file (-out_mask_detail) in which the original sequences are 

written using a mix of upper case (for preserved nucleotides) and lower case (for removed 

nucleotides) letters. In any case, the trimNonHomologousFragment subprogram outputs a 

CSV file summarizing the impact of this prefiltering process on each sequence. This file 

contains the number of nucleotides (including, or not, noninformative ‘N’ nucleotides) that 

have been removed from the whole sequence and from its extremities. Note that the name of 

this output file can be specified (-out_trim_info option): 

    java -jar macse.jar -prog trimNonHomologousFragments  

                                    -seq ENSG00000125812_GZF1_raw.fasta  

                          -out_trim_info output_stats.csv 

                          -min_homology_to_keep_seq 0.6 

ð Prefilters long nonhomologous sequence fragments; if more than 60% of a sequence is 

filtered then this sequence is entirely removed. 
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2.3 Most common usages 

The alignSequences subprogram is the core feature of the MACSE v2 toolkit. Its single 

mandatory option is a fasta file containing the coding nucleotide sequences to align. These 

nucleotide sequences need to be in forward direction, as alignSequences ignores their reverse 

complements, and they should be protein-coding sequences all along. Indeed, as alignSe-

quences relies on sequence protein translations to align sequences, if there are any UTR or 

intron fragments, alignSequences would waste a lot of time producing meaningless 

alignments.  

 

To align CDSs of the Pg3 gene in the Medicago genus [13] stored in the fasta file named 

Pg3_Medicago.fasta, the simplest command line is: 

     java -jar macse.jar -prog alignSequences 

                                    -seq Pg3_Medicago.fasta 

ð Aligns sequences contained in the Pg3_Medicago.fasta file with default parameters (Figure 

1). 

 

The alignSequences subprogram, like most other MACSE subprograms, generates two fasta 

files, one containing the aligned protein-coding nucleotide sequences as codons and another 

containing the corresponding amino acid alignment. By default, the names of these files are 

based on the input file name but the desired output file names can be specified using the “-

out_NT” and “-out_AA” options. 

 

Since MACSE relies on amino acid translation, it lets you specify the genetic code adapted to 

your protein-coding sequences. The NCBI has assigned a unique number to each genetic 

code, which is convenient to easily specify which code should be used. By default, MACSE 

uses “the standard code” but a different default genetic code may be specified for a dataset 

using the “-gc_def” option. For instance, the invertebrate mitochondrial code is the fifth on 

the NCBI list. The command line below is hence adapted to align mitochondrial COX1 

sequences of grasshoppers: 
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    java -jar macse.jar -prog alignSequences 

                                    -seq grasshoppers_COX1.fasta  

                                   -gc_def 5 

ð Aligns invertebrate mitochondrial sequences with the specified genetic code “5”. 

If the dataset contains sequences that use different genetic codes, they will have to be 

specified in a separated text file (“-gc_file” option) containing, on each line, the name of a 

sequence and the number of the corresponding genetic code. Any sequence absent from this 

file will be translated using either the genetic code specified by the -gc_def option or, in the 

absence of this option, the standard genetic code. For example, to align metazoan 

mitochondrial COX1 sequences from different phyla [14], the following command may be 

used to specify the 5 different genetic codes with the -gc_file option: 

    java -jar macse.jar -prog alignSequences 

                                    -seq Singh2009_cox1.fasta 

                                    -gc_file Singh2009_cox1_gc_file.txt 

                                   -out_NT Singh2009_cox1_NT.fasta 

                                   -out_AA Singh2009_cox1_AA.fasta 

ð Aligns metazoan mitochondrial sequences with their corresponding genetic codes (Figure 

3). 

The translateNT2AA sub-program could also be used to simply translate protein-coding 

sequences using either the default standard genetic code if not specified or the genetic code 

specified using the -gc_def and -gc_file options: 

    java -jar macse.jar -prog translateNT2AA 

                                    -seq Singh2009_cox1.fasta 

                                    -gc_file Singh2009_cox1_gc_file.txt 

ð Translates metazoan mitochondrial sequences with their corresponding genetic codes. 

The key options described so far are present in most MACSE subprograms.  
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Another set of options concerns the costs used to compare alternative alignments and select 

the best one. Like most alignment software, MACSE lets users tune the ratio between gap 

extension cost and gap opening cost. Increasing the gap opening cost (or decreasing the gap 

extension cost) will tend to favor alignments where gaps are grouped in long stretches. 

MACSE also allows adjustment of the relative cost of gaps appearing at the sequence 

extremities (terminal gaps) as opposed to those appearing inside the sequences (internal gaps). 

By default, external gaps are less penalized as they often reflect the fact that a sequence was 

partially sequenced rather than that a nucleotide insertion/deletion has occurred. Similarly, 

one or two missing nucleotides at the sequence extremities lead to incomplete codons (hence 

technically frameshifts) but such external frameshifts should not be as penalized as those 

occurring in the middle of a sequence (internal frameshifts). When a dataset contains a mix of 

genes and pseudogenes or of high quality sequences (e.g. a CDS from the Swiss-Prot 

database) and low quality sequences (e.g. de novo assembled contigs), it is also relevant to 

assign different penalties for the frameshifts and stop codons appearing in such different types 

of sequence. To deal with such cases, MACSE allows users to define two sets of sequences by 

providing two fasta files as input instead of a single one. The most reliable sequences are in 

the file provided by the “-seq” options, whereas the least reliable ones are in the file provided 

by the “-seq_lr” option. As it allows stop codons and frameshifts, and allows users to assign 

them different penalty costs based on the sequence in which they appear and on their position 

within this sequence, MACSE features many more cost-related options than usual alignment 

software. These different cost options are summarized in Tables 1 and 2. 
 

Table 1: MACSE options to adjust stop codon and frameshift costs in sequences.  

  Internal   Terminal  
  frameshift stop  frameshift stop 
Reliable sequences  -fs -stop  -fs_term -- 
Less reliable sequences  -fs_lr -stop_lr  -fs_lr_term -- 
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Table 2: MACSE options to adjust gap costs.  

  Internal gap   Terminal gap  

Sequence \ event  opening extension  opening extension 

Any sequences  -gap_op -gap_ext  -gap_op_term gap_ext_term 

 

 
As frameshifts and stop codons are much less unexpected in pseudogenes than in nucleotide 

sequences coding for a functional protein, users may opt to decrease the cost of such events. 

For instance, the following parameters and options may be used to align both functional and 

pseudogenized sequences from the mammalian CHIA4 gene [15]: 

    java -jar macse.jar -prog alignSequences 

                                   -seq Emerling2018_CHIA4_functional.fasta 

                                   -seq_lr Emerling2018_CHIA4_pseudo.fasta 

                                   -fs_lr 10 

                                   -stop_lr 10 

                                   -out_NT Emerling2018_CHIA4_NT.fasta 

                                   -out_AA Emerling2018_CHIA4_AA.fasta 

ð Aligns a mix of functional CDS and pseudogenes (Figure 4). 

The default parameters work fine for most cases, but in the MACSE online documentation we 

provide some guidelines to help adjust parameter costs for some specific types of sequence 

datasets. Note that the default values for each parameter appear in the GUI. 

3 MACSE-based pipelines suitable for datasets of various sizes 

3.1 Pipelines based on MACSE as Singularity containers 

We designed MACSE V2 as a toolkit dedicated to multiple alignment of protein-coding 

sequences that can be leveraged via both the command line and a Graphical User Interface 
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(GUI). We used this toolkit to develop some convenient pipelines as described in this chapter. 

We share these pipelines as Singularity containers [7] since they also depend on a few other 

tools and some environment setups. A Singularity container contains everything needed to 

execute a specific task. The developer building the container has to handle dependencies and 

the environment configuration so that end-users will not need to worry about this. To run a 

Singularity container named “container.sif” that is in your current directory, just type the 

following command in your Linux terminal: 

    singularity run ./container.sif 

3.2 Basic pipelines and batch facilities 

Using the command line version of MACSE, it is quite easy for bioinformaticians to build an 

analysis pipeline chaining multiple MACSE subprograms to conduct tailored-made analyses 

on several input datasets. Scripting language or, even better, workflow managers are tools of 

choice for such tasks, but not everyone masters such tools. The “multiPrograms” subprogram 

of MACSE allows basic scripting for nonbioinformaticians. Its main option (-

MACSE_command_file) allows specifying the file containing a list of MACSE commands 

that will be run sequentially. Each line of this command file must contain a single MACSE 

command starting by "-prog" (i.e. omitting "java -jar macse.jar"). The '@' character can be 

used before each file path to point towards the directory containing the command file itself 

(useful if the command file is not in the current directory). To prepare this command file, the 

end-user can apply the GUI on a single example to generate the required command line, copy 

this command line (using copy/paste or the “copy to clipboard” button) multiple times into a 

text file and then replace the initial dataset name by a different one on each line. The basic 

usage of this subprogram is: 

    java -jar macse.jar -prog multiPrograms  

                                    -MACSE_command_file align_multi.macse 
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ð Launches all MACSE commands stored in the align_multi.macse file; for instance, to align 

sequences from three loci this file contains three lines: 

-prog alignSequences -seq LOC_19470.fasta 

-prog alignSequences -seq LOC_48720.fasta 

-prog alignSequences -seq LOC_72220.fasta 

When dealing with amino acid translation of nucleotide coding sequences, it is necessary to 

handle a larger alphabet (20 amino acids versus only four possible nucleotides) but then the 

sequences are three times shorter. However, because MACSE aligns protein-coding 

nucleotide sequences while accounting for their amino acid translations in the three possible 

reading frames, it needs to cope with longer nucleotide sequences and a larger amino acid 

alphabet. Moreover, most algorithmic optimizations of amino acid sequence alignment rely on 

the fact that their amino acid sequences are invariable and gaps can be inserted only between 

amino acids. This means that amino acids never change throughout the alignment process. 

This is not the case with MACSE because frameshifts can potentially be introduced anywhere 

in a sequence, at any step of the alignment process. Amino acids of a given nucleotide 

sequence could therefore vary during the alignment process depending on the reading frames 

used at a given stage to translate the sequence. Optimizations generally used in alignment 

software are thus harder to incorporate into MACSE because the amino acid sequences may 

vary along the alignment process and different reading frames can be used to translate a single 

sequence. This specificity is a powerful feature of MACSE but it increases the memory 

requirements and computation times. Thus, for datasets containing numerous long sequences, 

using the core alignSequences subprogram of MACSE with default options may not be 

feasible. In such cases, the alignSequences subprogram could be run to obtain a draft 

alignment that will hopefully unravel most frameshifts. Different strategies are presented in 

the following section to get the most of MACSE when dealing with datasets of various sizes.  

 

MACSE is run through the Java virtual machine, so for relatively large datasets the memory 

that Java is allowed to use will have to be increased via the “-Xmx” option. This is not a 

MACSE option per se, but it is definitely essential: 
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    java -jar –Xmx 600m macse.jar -prog alignSequences 

ðAligns larger datasets by allocating more memory to Java using the Xmx option. 

3.3 Aligning dozens of sequences 

If the dataset is not too large, MACSE can be used to perform the whole alignment itself. We 

advise using this strategy, when possible, to get the most accurate frameshift placements. The 

command line for such an analysis could be as simple as launching MACSE with default 

options and allocating some extra memory for the Java virtual machine: 

    java -jar –Xmx 600m macse.jar -prog alignSequences 

         -seq Pg3_Medicago.fasta 

ð The most simple MACSE use case. 

However, in most cases, it could be worth prefiltering possible UTRs or other long 

nonhomologous fragments contained in the sequences using the trimNonHomologousFrag-

ment MACSE subprogram. Some analyses, e.g. dN/dS estimation, are highly sensitive to 

alignment errors, which are favored by the presence of even short nonhomologous fragments. 

For such analyses, we strongly advise [16] also using HMMCleaner [17] to post-filter less 

reliable parts of your amino acid alignment and report this masking/filtering at the nucleotide 

level. The filtered alignment obtained with HMMCleaner may contain some isolated codons, 

surrounded only by gaps or masked codons, as well as sequences with very few remaining 

codons. It would make sense to remove such sequences and filter isolated codons. The 

reportMaskAA2NT subprogram of MACSE may be used to report the filtering performed by 

HMMCleaner at the nucleotide level and to perform some post-processing filtering of such 

isolated codons and patchy sequences. By using MACSE subprograms for these various 

filtering steps, the traceability of the filtering process is achieved by keeping track of every 

single nucleotide that has been masked. Finally, it could be convenient to be able to observe 

frameshifts and stop codons in the final alignment, but their presence might be problematic 

for downstream analyses. The alignments obtained with MACSE may be post-processed to 
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replace stop codon and frameshift symbols by more standard ones using the exportAlignment 

subprogram of MACSE. Producing a reliable alignment of a dataset may hence require 

chaining several steps using HMMCleaner together with multiple MACSE subprograms. We 

provide a pipeline to automatize this process, while letting end-users turn on or off the various 

filtering steps. The script, written in Bash, is encapsulated in a Singularity container. 

 

We called this pipeline MACSE_ALFIX (Figure 5), since it is mostly based on MACSE and 

chains the ALigning, Filtering and eXporting steps. The script produces several output files 

that are stored in a single directory and named using a common prefix. The three mandatory 

options of this script are therefore the input file name, the output directory name, and the 

prefix of the output file names 

    singularity run ./MACSE_ALFIX_v01.sif  

                              --in_seq_file LOC_48720.fasta  

                              --out_dir RES_LOC_48720  

                              --out_file_prefix LOC_48720 

ð The most simple use case of the MACSE_ALFIX pipeline. 

3.4 Aligning hundreds of sequences 

The computing and memory resources required by MACSE depend on the number and length 

of the sequences to align. The longest sequence plays a key role in the memory and 

computation time required by MACSE. When dealing with some long sequences, it may be 

necessary to significantly increase the memory allocated to the Java virtual machine (using 

the “-Xmx option”) but the computation time with the default options of the alignSequences 

subprogram may still be prohibitive. The v2 release of MACSE introduced several options 

that help balance the computation time and alignment accuracy by limiting the number of 

alignment refinement steps (“-max_refine_iter”) or by gradually narrowing the alignment 

refinement steps to more local improvements (“-local_realign_init” and “-local_realign_dec” 

options). As an illustrative example, to build the tenth release of the OrthoMaM database, we 
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had to build more than 20,000 alignments containing up to 116 sequences that could be 

several Kb long. We designed a pipeline based on MACSE v2 that is well suited for this task. 

The filtering steps are similar to those of the MACSE_ALFIX pipeline but the main 

alignment step here is done by chaining the alignSequences subprogram with MAFFT. The 

key is to use alignSequences with options that enable MACSE to quite rapidly generate a draft 

alignment of the coding nucleotide sequences in which potential frameshifts are identified. 

The resulting amino acids sequences are then aligned using MAFFT, which is much faster 

than MACSE for aligning fixed amino acid sequences. The drawback of this approach is that 

some frameshifts may not be as accurately positioned within sequences as they would be with 

the MACSE_ALFIX pipeline, which may lead HMMCleaner to remove some extra residues. 

For large datasets of sequences expected to contain few frameshifts, as was the case with the 

OrthoMaM CDS database, this strategy seems to work remarkably well. The OMM_MACSE 

pipeline (Figure 6) has the same mandatory options as the MACSE_ALFIX pipeline: 

    singularity run ./OMM_MACSE_v10.01.sif  

                              --in_seq_file LOC_48720.fasta  

                              --out_dir RES_LOC_48720  

                              --out_file_prefix LOC_48720 

ð The most simple use case of the OMM_MACSE pipeline for larger datasets. 

 

Note that, if a dataset contains some pseudogenes or contigs assembled de novo, it may be 

worth using the refineAlignment subprogram of MACSE to polish the alignment obtained by 

MAFFT and adjust frameshift positions before applying HMMCleaner. 

3.5 Aligning thousands of sequences 

If you have a very large number of sequences, trying to align them simultaneously is dubious 

for several technical reasons [16]. It is preferable, as advised by R. Edgar, in the MUSCLE 

3.8 [18] user guide (http://www.drive5.com/muscle/muscle_userguide3.8.html), to tackle this 

problem by leveraging clustering and alignment methods. One possibility is to first build 



17 

clusters of reasonable size that pool similar sequences (e.g. using UCLUST [19]) in order to 

align them separately. In a second step, these alignments can be combined to produce the final 

super-alignment. When there are only two clusters/alignments (e.g. align1.fasta and 

align2.fasta), they can be aligned with the alignTwoProfiles subprogram of MACSE to 

produce a single alignment containing all the sequences. This subprogram has many options 

(mostly the same as alignSequences) but only the options allowing users to specify the two 

input alignment files (options -p1 and -p2) are mandatory: 

    java -jar macse.jar -prog alignTwoProfiles 

                                    -p1 align1.fasta  

                          -p2 align2.fasta 

ð Aligns two previously computed alignments. 

When dealing with a handful of clusters, several alignTwoProfiles invocations may be 

chained to build the global alignment. The idea here is to take the output of one alignTwoPro-

files invocation as the p1 profile for the next one. For instance, four alignments can be 

combined using a MACSE command file as follows: 

    java -jar macse.jar -prog multiPrograms  

                                     -MACSE_command_file align_multi.macse 

 

where align_multi.macse is a text file containing this four lines: 

-prog alignTwoProfiles -p1 ali1.fasta     -p2 ali2.fasta -out_NT ali12.fasta 

-prog alignTwoProfiles -p1 ali12.fasta   -p2 ali3.fasta -out_NT ali123.fasta 

-prog alignTwoProfiles -p1 ali123.fasta -p2 ali4.fasta -out_NT aliAll.fasta 

ð Basic strategy to align four previously computed alignments. 

Using this basic strategy, the final alignment will depend on the order in which the profiles 

are sequentially added. Under the same rationale as for usual multiple sequence alignment, it 

would be better to first align the most similar alignments. More elaborate strategies can be 

designed using MACSE, but this is beyond the scope of this chapter. 
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3.6 Metabarcoding applications 

Metabarcoding analysis often requires handling of thousands of sequences. Such datasets are 

not directly tractable with the alignSequence subprogram of MACSE, but they can be handled 

by sequentially adding the newly obtained sequences to a reference alignment containing 

sequences of related taxa for the targeted barcoding locus (e.g. COX1, matK, rbcL, etc...). We 

successfully used this approach in the Moorea BIOCODE project on coral reef biodiversity 

[6]. 

 

The initial alignment can be either built from scratch or from an improved version of an 

existing alignment (using the refineAlignment subprogram of MACSE to unravel some 

potential sequencing errors/frameshifts). The reference alignment does not need to be huge. 

For instance, rather than using all available COX1 sequences available in the BOLD database 

[20], for a given taxonomic group it may be better to collect some carefully checked 

sequences that reflect the molecular diversity of the taxonomic groups of interest. Those 

carefully selected sequences may be aligned using one of the previously detailed strategies 

(e.g. using the MACSE_ALFIX pipeline). Then, using the enrichAlignment subprogram, 

problematic reads can be detected while adding the remaining reads to the reference 

alignment. By default, enrichAlignment adds sequences to an alignment (referred to as the 

initial alignment) in sequential mode: each sequence is aligned with the current alignment, i.e. 

that contains the sequences of the initial alignment plus those previously added. Some 

enrichAlignment options allow users to set thresholds/conditions for a sequence to be 

discarded and/or to specify that all new sequences must be aligned with the unmodified initial 

alignment. 

 

The following command line may be used to sequentially enrich an alignment by adding only 

reads that do not induce too many frameshifts (-maxFS_inSeq), stop codons (-

maxSTOP_inSeq) and insertion (maxINS_inSeq) events: 

     java -jar macse.jar -prog enrichAlignment 

                                    -align Moorea_BIOCODE_small_ref.fasta 
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                                    -seq Moorea_BIOCODE_small_ref.fasta  

                          -seq_lr noctural_diet_sample.fasta 

                          -gc_def 5  

                          -fs_lr 10  

                          -stop_lr 10  

                          -maxFS_inSeq 0  

                          -maxINS_inSeq 0  

                          -maxSTOP_inSeq 1 

ð Enrich an initial alignment by conditionally adding sequences to it. 

 

Alternatively, for large datasets, it could be better to work with a fixed alignment (option -

fixed_alignment_ON). Working with a fixed alignment is especially convenient when dealing 

with (meta)barcoding data since such analyses usually require handling of numerous highly 

similar sequences that are not expected to contain indels. When using this option, all 

sequences to be added are compared with the same initial alignment. The key advantage is 

that this allows task parallelization. For example, if there are 50,000 reads/sequences to be 

added to the initial alignment, this large dataset may be split into 50 sets of 1,000 sequences 

each and then the tasks may be run in parallel on 50 computers/CPUs. Moreover, if each of 

the 50,000 sequences can be correctly aligned with the original alignment without inserting 

gap events in this original alignment, then the aligned version of the 50,000 sequences (that 

were independently computed) can be merged to the initial alignment to get a valid global 

alignment. 

 

The enrichAlignment MACSE subprogram not only produces the two usual FASTA output 

files respectively containing the nucleotide and amino acid alignments, but also a tabular text 

file providing detailed information for each read, including whether it has been added or not 

and how many stop codons, frameshifts and insertion events are required to align this read 

with the reference alignment. This helps to understand why some reads were discarded, to 

spot reads that have been added but contain few unexpected events (e.g. one internal 

frameshift) and to compute some overall statistics regarding the input read quality. 
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4 Conclusion 

This chapter describes typical MACSE use cases along with associated command lines and 

provides two examples of pipelines built from the different MACSE subprograms. In its latest 

version, MACSE is suitable for bioinformaticians who need to create their own pipelines and 

for finely controlling the parametering of each subprogram, but it is also accessible to 

nonspecialists via its graphical interface. 
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6 Figures 

6.1 Figure 1 

MACSE alignment of a set of nucleotide sequences containing functional genes as well as 

pseudogenes (marked by a white star). The nucleotide alignment (NT) and its amino acid 

(AA) translation are edited with SeaView (‘codon-colors’ option for the NT alignment). 

Frameshifts caused by deletions and insertions are represented by the ‘!’ character. A white 

frame highlights Frameshifts and stop codons. 

 



6.2 Figure 2 

Presentation of the MACSE graphical user interface showing the different parts of the main 

window: the “program” menu allowing users to choose the subprograms accompanied by a 

table listing all of them (with their mandatory options and the required files) and the location 

where each element can be found (where a brief description of the selected subprogram or 

option can be found, the different menus, the command line etc.). 

 
 



6.3 Figure 3 

MACSE alignment of 54 metazoan mitochondrial COX1 sequences from Singh et al. [14] 

using five different mitochondrial genetic codes corresponding to the different taxonomic 

groups. The nucleotide alignment (NT) and its amino acid (AA) translation are edited with 

SeaView (‘codon-colors’ option for the NT alignment). 

 



6.4 Figure 4 

MACSE alignment of 48 mammalian CHIA4 nucleotide sequences from Emerling et al. [15] 

containing 18 functional genes and 30 pseudogenes (_pseudo). The nucleotide alignment and 

its AA translation are edited with SEAVIEW (‘codon-colors’ option for the NT alignment). 

Frameshifts caused by deletions are represented by the ‘!’ character. A white frame highlights 

Frameshifts and stop codons. 

 



6.5 Figure 5 

Schematic representation of the MACSE_ALFIX pipeline. Boxes represent input/output 

sequence data (blue when unaligned and green when aligned) and are accompanied (on the 

left) by a small illustrative diagram. On the arrows it is mentioned which subprogram/tool is 

used and whether this step is optional or not (on/off button). On the right side, additional 

output files generated are represented in order to provide users with a full traceability picture. 

The central part of the pipeline, with a colored background, corresponds to the alignment and 

filtering of the homologous sequences that could be a bottleneck for large datasets. 
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6.6 Figure 6 

Schematic representation of the OMM_MACSE pipeline. Boxes represent input/output 

sequence data (blue when unaligned and green when aligned) and are accompanied, on the 

left, by a small illustrative diagram. On the arrows it is mentioned which subprogram/tool is 

used and whether this step is optional or not (on/off button). On the right side, additional 

output files generated are represented in order to provide users with a full traceability picture. 

The central part of the pipeline, with a colored background, corresponds to the alignment and 

filtering of the homologous sequences. This part is the only one that differs from the 

MACSE_ALFIX pipeline (Figure 5) and is better suited for large datasets. 
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