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Abstract. In a pioneering series of experiments, Yves Couder, Emmanuel Fort and coworkers demonstrated
that droplets bouncing on the surface of a vertically vibrating fluid bath exhibit phenomena reminiscent of
those observed in the microscopic quantum realm. Inspired by this discovery, we here conduct a theoret-
ical and numerical investigation into the structure and dynamics of one-dimensional chains of bouncing
droplets. We demonstrate that such chains undergo an oscillatory instability as the system’s wave-induced
memory is increased progressively. The predicted oscillation frequency compares well with previously re-
ported experimental data. We then investigate the resonant oscillations excited in the chain when the drop
at one end is subjected to periodic forcing in the horizontal direction. At relatively high memory, the drops
may oscillate with an amplitude larger than that prescribed, suggesting that the drops effectively extract en-
ergy from the collective wave field. We also find that dynamic stabilization of new bouncing states can be
achieved by forcing the chain at high frequency. Generally, our work provides insight into the collective be-
havior of particles interacting through long-range and temporally nonlocal forces.

Keywords. Pilot-wave hydrodynamics, Walking droplets, Nonlinear dynamics, Drop interactions, Collective
dynamics, Non-equilibrium systems.

1. Introduction

The seminal experiments of Yves Couder, Emmanuel Fort and collaborators demonstrated that
millimetric droplets bouncing on a vibrating fluid bath exhibit behaviors previously thought
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to be peculiar to the microscopic quantum realm. While bouncers impact the same location
on the liquid interface [1, 2], walkers are propelled along the interface by the pilot-wave field
they generate [3, 4], provided the vibrational forcing acceleration of the bath is sufficiently
large. These walkers, which comprise both the droplet and its self-generated wave field, offer
an intriguing visualization of wave-particle coupling on a macroscopic scale [4]. They have
been shown to exhibit a number of quantum mechanical analogues, including tunneling [5],
quantized Larmor levels [6, 7], double quantization in a harmonic potential [8–10], Zeeman-
like splitting [11], multimodal statistics in circular corrals [12, 13], statistical projection effects
in elliptical corrals [14], Friedel oscillations [15], and the Hong–Ou–Mandel effect [16]. Analogues
of single- and double-slit diffraction [17] remain the subject of ongoing investigation [18–23]. The
relation between this hydrodynamic system and quantum pilot-wave theories has been reviewed
elsewhere [24–26].

A key feature of the walker system is its path memory, as the walker’s trajectory is influenced
by the waves it generates during its prior impacts [6, 27]. These waves are sustained by the vibra-
tional forcing of the bath. While single droplets are influenced by their own history, collections
of bouncers and walkers may interact through the collective wave field they generate. Lattices of
bouncers have been shown to arrange themselves into eight of the eleven possible Archimedean
tilings of the plane [28], and both stationary and spontaneously spinning droplet lattices have
been reported [29–31]. Rectangular and hexagonal lattices of bouncers exhibit oscillatory insta-
bilities that arise as the bath’s vibrational acceleration is increased progressively [32], with propa-
gating oscillations that are reminiscent of phonons in crystalline solids [33]. More recently, a hy-
drodynamic spin lattice was obtained by confining walkers using an array of circular wells sub-
merged in a relatively shallow liquid layer [34, 35]. Each walker executes roughly circular motion
in its own well, but the motions become more correlated as the bath’s forcing acceleration is in-
creased progressively, the result being a large-scale collective dynamics with either antiferromag-
netic or ferromagnetic order.

In addition to the two-dimensional lattices described above, one-dimensional rings and
chains of bouncers and walkers have been shown to exhibit rich phenomenology. Strings of up
to eleven walkers confined to a circular annulus move faster than an individual walker, with the
speed increasing with the number of walkers [36,37]. Thomson et al. [38,39] demonstrated that a
ring of twenty bouncers confined within an annulus may exhibit small-amplitude binary oscilla-
tions, whereas a ring of forty bouncers exhibits a striking solitary wave-like instability. Free rings
of bouncing droplets destabilize into a variety of dynamical states as the bath’s forcing accelera-
tion is increased progressively, including steady rotational motion, periodic radial or azimuthal
oscillations, azimuthal traveling waves and rearrangement into regular polygonal structures [40].
This body of literature shows that lattices of bouncing droplets exhibit behavior reminiscent of
crystal vibrations, which can be profitably clarified and extended by analyzing different ordered
arrangements of bouncers.

We present here a theoretical investigation of free one-dimensional chains of bouncing
droplets, as depicted in Figure 1(a). Particular attention will be paid to driven droplet chains,
in which the drop at one end of the chain is subjected to a time-periodic forcing in the horizon-
tal direction (Figure 1(b)). We note that periodically-driven classical systems, both determinis-
tic [41, 42] and stochastic [43], have a long history of study, and there has been recent interest
in driven many-body quantum systems [44, 45]. However, relatively little is known about driven
classical systems with temporally nonlocal interactions [46], as arise in droplet chains due to
their path memory. While forced bouncing droplet collectives have not yet been studied experi-
mentally, Perrard [47] applied periodic forcing to a single walker by encapsulating a drop of fer-
rofluid within an oil droplet, and then applying a vertical magnetic field with a radial gradient. By
modulating the magnetic field strength, the dynamics of a walker in an oscillatory central force
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Figure 1. (a) A chain of three droplets bouncing on a vertically vibrating fluid bath. Photo
credit: Daniel M. Harris. (b) Schematic of a periodically-forced chain of five droplets, as
considered in Section 4. The first drop is forced sinusoidally in the horizontal direction with
amplitude A1 and frequency f , and the bath is vibrated vertically with peak acceleration γ

and frequency f0. The Faraday wavelength is denoted λF . Drops 1, 2, 3, 4 and 5 are indi-
cated in black, blue, red, yellow, and purple, respectively, a color scheme that is repeated
throughout the manuscript.

F = −(k0 + k1 sinωt )x could be probed. Periodic forcing of such droplets was also achieved by
oscillating a magnet nearby (Supplementary Figure 3 in [8]).

The paper is organized as follows. In Section 2 we describe our theoretical model for the
horizontal dynamics of droplets bouncing in resonance with the waves they generate. In Section 3
we investigate the structure and stability of free droplet chains. In Section 4 we present the
results of a theoretical and numerical investigation of periodically-driven droplet chains. Future
directions are discussed in Section 5.

2. The stroboscopic model

Consider a chain of N droplets with positions xi (t ) constrained to move along a single line
(Figure 1(b)). The droplets have mass m and radius R, and bounce in-phase on the surface of
a bath of the same fluid in the presence of a gravitational acceleration g . The bath is subjected
to a vertical acceleration γsin(2π f0t ), and has surface tension σ, density ρ, kinematic viscosity
ν, and depth H . Provided γ< γF , with γF being the Faraday instability threshold [48], the surface
of the bath would remain flat if not for the presence of the drops. We assume the droplets to
be in a so-called (2,1) bouncing mode, where the (i , j ) notation indicates that the drop’s vertical
motion has period equal to i driving periods, and within this period the drop contacts the bath j
times [49]. The drops’ bouncing period TF = 2/ f0 is thus equal to the bath’s least stable Faraday
mode [50–52], whose wavelengthλF = 2π/kF may be approximated by the water-wave dispersion
relation (π f0)2 = (g kF +σk3

F /ρ) tanh(kF H) for this system [53].
Following the theoretical developments of Moláček and Bush [53], we assume that the drops

move in response to two forces: a wave force −mg h′(xi , t ) proportional to the local slope of the
wave field h(x, t ), and a drag −Dẋi induced during impact and flight. Averaging the horizontal
forces over the bouncing period yields an integro-differential trajectory equation for the droplets’
horizontal positions [54]:

mẍi +Dẋi =−mg h′(xi , t ), h(x, t ) = A

TF

N∑
j=1

∫ t

−∞
J0[kF (x −x j (s))]e−(t−s)/TM ds. (1)

The drops are assumed to generate monochromatic standing waves with spatial profile J0(kF x)
and decay time TM , where J0 is a Bessel function of the first kind. We assume the wave field
to be linear, so that h(x, t ) may be expressed as the sum of waves generated prior to time t .
The wave field in (1) is obtained by approximating the resulting discrete sum as an integral, an

C. R. Mécanique, 2020, 348, n 6-7, 573-589



576 Lauren Barnes et al.

approximation that is valid provided the timescale of horizontal motion is much greater than the
bouncing period, λF /|ẋp | À TF , as is the case in the experiments. The trajectory equation (1) is
referred to as the stroboscopic model, as we have effectively eliminated consideration of the drops’
vertical motion by averaging over the vertical dynamics, and model the drops as continuous
moving sources of standing waves.

The drag coefficient D , memory time TM and wave amplitude A are given by the formulas [27,
53]

D =C mg

√
ρR

σ
+6πµaR

(
1+ ρa g R

12µa f

)
, TM = Td

1−γ/γF

and

A =
p

8πνe TF

3

(kF R)3

3k2
Fσ/(ρg )+1

sinΦ. (2)

Here, C is a dimensionless drag constant, ρa and µa are the density and dynamic viscosity of
air, respectively, Td is the viscous decay time of the surface waves in the absence of forcing, νe is
the bath’s effective kinematic viscosity [53, 55] and sinΦ is the sine of the droplet’s impact phase.
The first term in the formula for D results from the drag induced on the drop during its impact,
the second from its free flight. Note that the memory time TM increases as γ→ γF from below, a
regime in which the standing waves are more persistent. The terms “memory” and bath forcing
acceleration are thus used interchangeably in what follows.

For the sake of simplicity, we neglect the effect of spatial damping, the exponential decay of
surface waves in the far field that has been characterized experimentally [27, 56] and theoreti-
cally [57–59]. We also neglect the dependence of the impact phase sinΦ on both the forcing ac-
celeration γ and the instantaneous wave height, effects that have been quantified in recent exper-
iments [60]. Impact phase variations have been shown to influence the stability of the orbital [61]
and promenade [62] modes executed by pairs of walking droplets, and of free rings of bounc-
ers [40]. We here restrict our attention to a relatively narrow range of forcing accelerations γ, for
which we expect the constant-phase stroboscopic model (1) to capture the qualitative behavior
of bouncing droplet chains.

We proceed by non-dimensionalizing the trajectory equation using the Faraday wavelength
and memory time, and so let x → kF x and t → t/TM in (1). The dimensionless trajectory equation
is thus

κẍi + ẋi =β
N∑

j=1

∫ t

−∞
J1(xi (t )−x j (s))e−(t−s) ds, i = 1, . . . , N , (3)

where κ = m/DTM is the dimensionless mass and β = mg Ak2
F T 2

M /DTF the dimensionless wave
force coefficient. For this study, we adopt fluid parameters comparable to those used in typical
experiments [4, 7, 38, 40, 53]. Specifically, we assume that the fluid bath of depth H = 4 mm
consists of silicone oil with viscosity ν = 20 cSt driven at f0 = 80 Hz, with associated Faraday
wavelength λF = 4.75 mm and viscous decay time Td = 0.018 s. We also assume the droplets to
have radius R = 0.4 mm and mass m = 0.25 mg, for which the time-averaged drag is D = 2.0 mg/s
and wave amplitude A = 3.5 µm through (2). We adopt the value sinΦ = 0.2, which is roughly
consistent with experimental measurements of the impact phase [60] and also provides adequate
agreement between the predicted and observed speeds of walking droplets [53, 54]. For these
parameter values, we obtain the formulas κ≈ 7(1−γ/γF ) and β≈ 0.1/(1−γ/γF )2.

The present study is concerned with chains of bouncers, so we restrict our attention to the
parameter regime 0.65 < γ/γF < 0.78. According to the regime diagrams presented by Moláček
and Bush [53] and Wind-Willassen et al. [63], the lower bound corresponds to the onset of
the (2,1) bouncing mode for drops with vibration number 2π f0/

√
σ/ρR3 ≈ 0.86. The upper
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bound corresponds to the walking threshold β = 2 for a single drop [54], specifically, the critical
vibrational acceleration above which the bouncing state destabilizes into a steadily translating
walking state.

3. Free droplet chains

We proceed by investigating the structure and stability of free chains of bouncing droplets. The
general framework is presented in Section 3.1, and the special case of a chain of N = 5 droplets is
considered in Section 3.2.

3.1. Stability of a chain of bouncers

We first consider an equilibrium state of bouncers located at the fixed positions xi (t ) =χi , where
χi < χ j for i < j . Substituting this into (3), we find that the positions χi satisfy the system
of equations

∑N
j=1 J1(χi − χ j ) = 0 for i = 1, . . . , N . These conditions imply that the horizontal

component of the wave force on each drop vanishes. Defining the inter-drop distances di =
χi+1 −χi for i = 1, . . . , N −1, we obtain an equivalent system of equations

−
i−1∑
j=1

J1

(
i−1∑
k= j

dk

)
+

N−1∑
j=i

J1

(
j∑

k=i
dk

)
= 0, i = 1, . . . , N −1. (4)

These equations may be summed to obtain the corresponding equation for i = N .
We now assess the stability of this equilibrium bouncing state. To that end, we linearize the

governing equations by substituting xi (t ) = χi + εx̃i (t ) into (3) and retaining terms at leading
order in ε. Dropping the tildes in what follows, we obtain the linear system

κẍi + ẋi =β
N∑

j=1
J′1(χi −χ j )

∫ t

−∞
(xi (t )−x j (s))e−(t−s) ds. (5)

This may be recast as a system of ordinary differential equations by introducing the variables
Xi (t ) = ∫ t

−∞ xi (s)e−(t−s) ds:

κẍi + ẋi =β
N∑

j=1
J′1(χi −χ j )(xi −X j ), Ẋi =−Xi +xi . (6)

We may write (6) as a system of first-order ordinary differential equations, ż = Qz , where z =
(x1, . . . , xN , X1, . . . , XN , ẋ1, . . . , ẋN ). The matrix Q has the block form

Q =

 Z Z I
I −I Z
β
κS −β

κP − 1
κ I ,

 , where Pi j = J′1(χi −χ j ), Si j = δi j

N∑
k=1

J′1(χi −χk ), (7)

Z is the N ×N zero-matrix, I the N ×N identity matrix and δi j the Kronecker delta. The stability
of the bouncing state defined by (4) is determined by the eigenvalue s∗ of Q with the largest real
part. Specifically, the state is stable if Re(s∗) < 0, and unstable otherwise. Note that one eigenvalue
of Q is identically zero and is thus neglected from consideration; indeed, the corresponding
eigenvector (1,1,0) reflects the translation invariance of the trajectory equation (3), 1 and 0 being
vectors in RN of ones and zeros, respectively.

C. R. Mécanique, 2020, 348, n 6-7, 573-589
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Figure 2. Schematic of the four symmetric bouncing states n11, n12, n21 and n22 de-
scribed in Section 3.2. The colormap indicates the corresponding wave field h(x) =
(ATM /TF )

∑N
i=1 J0(kF |x − (χi ,0)|) at the onset of the chain’s oscillatory instability. Black dots

indicate the drop positions χi , as determined by solving (8). The eigenvector z∗ corre-
sponding to the unstable mode is depicted by the arrows; the size of the arrow indicates
the magnitude of each component of z∗, and the direction the approximate phase. The
components of z∗ for drops 2 and 4 in the n21-state are small and thus not depicted. The
scale bar shows the Faraday wavelength λF .

3.2. Symmetric five-droplet chain

We now consider the stability of symmetric chains of N = 5 bouncers, which satisfy the condi-
tions d1 = d4 and d2 = d3. Such a configuration is particularly convenient for analysis, since equa-
tion (4) reduces to a system of two equations in the unknowns d1 and d2:

F1(d1,d2) ≡ J1(d1)+ J1(d1 +d2)+ J1(d1 +2d2)+ J1(2d1 +2d2) = 0,
F2(d1,d2) ≡−J1(d1)+ J1(d2)+ J1(2d2)+ J1(d1 +2d2) = 0.

(8)

This system can readily be solved numerically, as its solutions correspond to the intersections of
the zero-level curves of F1 and F2 (Supplementary Figure 1). These bouncing states are color-
coded according to their stability at the lowest value of the forcing acceleration considered,
γ/γF = 0.66, as is deduced by computing the eigenvalues of the matrix Q in (7), with blue (red)
denoting stable (unstable) solutions. The stable equilibria may be labeled as ni j , where the
indices i and j denote increasing values of the inter-drop distances d1 and d2, respectively.

For the remainder of the paper, we will restrict our attention to the four bouncing states n11,
n12, n21 and n22, as depicted in Figure 2. The results of the linear stability analysis of these bounc-
ing states are presented in Supplementary Figure 2. The real part of the least stable eigenvalue s∗

increases with the forcing acceleration γ, and the imaginary part is nonzero, indicating that each
of these states goes unstable to an oscillatory instability as γ is increased progressively. The insta-
bility threshold is the lowest for the state n11; this result may be understood on the basis of the
fact that the oscillation amplitude of the wave kernel J0(kF x) decreases with x, indicating that the
force between droplets generally weakens as the distance between them increases.

The eigenvector z∗ corresponding to the unstable mode at the onset of instability (Re(s∗) =
0) is depicted by the arrows in Figure 2. We note that each of the bouncing states exhibits
a qualitatively similar unstable mode, with the drops in the interior oscillating roughly out-
of-phase with respect to the ones at the edges. The second and fourth drops exhibit weaker
oscillations than the others, and remain roughly stationary for the n21-bouncing state. With
the exception of the n12-state, the drop in the middle exhibits the strongest oscillations, with

C. R. Mécanique, 2020, 348, n 6-7, 573-589
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oscillation amplitudes nearly twice that of the drops on the edges for the n21-state. This result
is qualitatively consistent with the observation of Eddi et al. [32], who conducted experiments
on quasi-1D aggregates of bouncers consisting of more than ten drops along one direction and
three drops in the transverse direction. They observed that the aggregates effectively “melt” from
the center as the bath’s vibrational acceleration is increased progressively, in contrast to classical
melting processes that occur along the edges of a material.

The oscillation frequency of the droplet chain (Supplementary Figure 2(c)) is obtained by
numerically computing the eigenvalues of the matrix Q in (7). An estimate for these frequencies
may be obtained by considering the simplified case of two drops interacting in the low-memory
regime, for which we may approximate Xi ≈ xi in (6). The linearized equation (6) then assumes
the form of a spring-mass system with dimensionless mass κ and spring constant −βJ′1(d), d
being the equilibrium distance between the drops that satisfies J1(d) = 0. The effective frequency

of oscillation is thus f =
√
β|J′1(d)|/κ/(2π), which has the dimensional form

f = 1

2π

√
Ak2

F |J′1(kF d)|g TM

TF
. (9)

Using the value of TM for γ/γF = 0.74, which corresponds to the onset of instability for the n11-
state (Supplementary Figure 2(a)), and the separation distance d/λF = 0.61, which corresponds
to the first nonzero solution of J1(kF d) = 0, we obtain the frequency f = 1.3 Hz from (9). This
result agrees well with the experimental results of Eddi et al. [32], who measured oscillation
frequencies of f = 1 Hz for quasi-1D and 2D hexagonal lattices, and f = 1.3 Hz for 2D square
lattices.

4. Forced droplet chains

We now investigate the response of a droplet chain to a time-periodic forcing applied to the drop
at one end, as depicted in Figure 1(b). Specifically, we assume that the horizontal motion of the
first drop is prescribed, x1(t ) = A1 sin(2π f t ), where the oscillation amplitude A1 and frequency
f are given. As in Section 3.2, we restrict our attention to the four equilibrium states n11, n12, n21

and n22 depicted in Figure 2, and pay particular attention to the state n11 for which the drops
are closest to each other, d1 ≈ d2 ≈ 0.8λF . We consider the parameter regime 0.66 ≤ γ/γF ≤ 0.74,
the lower bound corresponding to the onset of the (2,1) resonant bouncing mode (see Section 2),
and the upper bound being just above the onset of the oscillatory instability for the n11-bouncing
state (Supplementary Figure 2(a)). We also assume the forcing frequency to be much less than the
bouncing frequency f0/2 = 40 Hz, f ¿ f0/2, a regime in which we expect the bouncing dynamics
to remain periodic and thus the stroboscopic model (3) to remain valid. Specifically, we restrict
our attention to the regime f TM ≤ 0.3, which corresponds to forcing frequencies less than 6 Hz
for γ/γF ≥ 0.66.

4.1. Linear theory of forced droplet chains

We begin by assessing the linear response of a droplet chain to a small periodic forcing, A1 ¿λF .
To that end, we define ω = 2π f and substitute xi (t ) = Ai eiωt and Xi (t ) = Ai eiωt /(1 + iω) into
the linear equation (6), which describes the small-amplitude oscillations of a chain of bouncers
around their equilibrium positions. We thus obtain a linear system of equations for the complex
amplitudes Ai , which may be written in the matrix form M a = v , where a = (A2, . . . , AN )/A1.

C. R. Mécanique, 2020, 348, n 6-7, 573-589
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Figure 3. Dependence of the oscillation amplitude |Ai | on the dimensionless forcing fre-
quency f for a chain of five drops initialized in the n11-bouncing state, as predicted by the
linear theory described in Section 4.1 (10). The amplitudes are normalized by the forcing
amplitude A1 applied to the first drop. The colors correspond to the different drops in the
chain, as indicated by the legend in panel (a). Three values of the bath’s forcing acceleration
are shown: (a) γ/γF = 0.66, (b) γ/γF = 0.7 and (c) γ/γF = 0.74. The dashed gray lines denote
the resonant frequency of an unforced droplet chain, as approximated by (9).

Here, M is a (N −1)× (N −1) matrix and v a vector in CN−1 with entries

Mi j =


−κω2 + iω−β

(
N−1∑
k 6=i

J′1(χi+1 −χk+1)+ J′1(χi+1)+ iω

1+ iω
J′1(0)

)
if i = j

β

1+ iω
J′1(χi+1 −χ j+1) if i 6= j ,

vi = − β

1+ iω
J′1(χi+1).

(10)

Figure 3 shows the dependence of the amplitudes |Ai |/A1 on the forcing frequency f for
a chain of five drops initialized in the n11-bouncing state. The corresponding results for the
other bouncing states n12, n21 and n22 are shown in Supplementary Figure 3. The qualitative
features of the curves in Figure 3 and Supplementary Figure 3 may be interpreted on the basis
of the oscillatory modes depicted in Figure 2. Specifically, for the n11 and n22 states, drops 3 and
5 exhibit substantially larger oscillation amplitudes than drops 2 and 4. This is not so for the
other bouncing states; specifically, all of the drops exhibit comparable oscillation amplitudes for
the n12-state, and drops 2 and 4 have rather low amplitudes for the n21-state (Supplementary
Figure 3).

Note that |Ai |/A1 → 1 in the limit f → 0, which is evident from inspection of (10). Moreover,
|Ai |/A1 → 0 in the high-frequency limit f → ∞, a regime that will be treated in Section 4.3.
For intermediate values of the forcing frequency, the oscillation amplitudes are maximized for
a critical value of the forcing frequency. This resonant frequency is approximated well by the
characteristic frequency of a droplet pair in the low-memory limit, as given by (9) and depicted
by the dashed lines in Figure 3. Moreover, the maximum amplitude increases with memory
and may exceed the imposed amplitude A1 (Figures 3(b) and 3(c)). This result suggests that
relatively large-amplitude oscillations may be excited for forcing frequencies near the droplet
chain’s intrinsic resonant frequency, particularly as the waves become more persistent. While the
theory presented in this section is strictly valid for small-amplitude oscillations, such resonant
oscillations will be revisited using numerical simulations of droplet chains, the results of which
are presented in the next section.

C. R. Mécanique, 2020, 348, n 6-7, 573-589
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Figure 4. Numerical solutions of the trajectory equation (3) for a chain of N = 5 drops
initialized in the n11-bouncing state. The first drop (black curve) is subjected to a periodic
forcing of amplitude A1 =λF /8. Panels (a) and (c) show the drop trajectories xi (t ), the time
f t given in units of the forcing period T = 1/ f . Panels (b) and (d) show the cycle-averaged
drop position x̄i (t ), as defined in (11). Simple periodic oscillations are evident in panels (a)
and (b), corresponding to f = 0.08 and bath vibrational acceleration γ/γF = 0.7. Aperiodic
oscillations are shown in panels (c) and (d), corresponding to f = 0.09 and γ/γF = 0.74. The
frequencies f correspond to those for which the third and fifth drops exhibit the largest
oscillations, as shown in Figures 5(b) and 5(c).

4.2. Nonlinear oscillations of forced droplet chains

While the linear equation (10) is straightforward to solve, numerical simulations of the trajectory
equation (3) are required to assess the nonlinear response of a droplet chain to finite-amplitude
oscillations. To that end, we adapt the numerical method described by Oza et al. [64] to solve (3),
which consists of using a fourth-order Adams–Bashforth method for time-stepping combined
with Simpson’s rule for the integrals. The histories of each drop must also be specified, which
we take to correspond to an equilibrium bouncing state, specifically, xi (t ) = χi for t < 0, where
the constants χi are determined by solving (8). The trajectories are evolved up to a final time
tmax ≥ max(50T,600), and the dimensionless time step is taken to be ∆t = min(2−4,T /40), where
T = 1/ f is the forcing period.

Simulated trajectories for a droplet chain initialized in the n11-bouncing state are shown in
Figure 4. At relatively low memory, the drops exhibit simple oscillations (Figure 4(a)). Note that
the drop at the end of the chain (purple) oscillates roughly in-phase with the forced drop (black),
and roughly out-of-phase with respect to the drops in the interior, which is consistent with the
predictions of the linear stability analysis of unforced chains presented in Figure 2. At higher
memory, the drops often exhibit complex aperiodic oscillations, as shown in Figure 4(c). To
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Figure 5. Dependence of the oscillation amplitude Ai on the dimensionless forcing fre-
quency f for a chain of five drops initialized in the n11-bouncing state, as obtained from
numerical simulations of the trajectory equation (3). The amplitudes are normalized by the
forcing amplitude A1 =λF /8 applied to the first drop. The colors correspond to the different
drops in the chain, as indicated by the legend in panel (a). Three values of the bath’s forcing
acceleration are shown: (a) γ/γF = 0.66, (b) γ/γF = 0.7 and (c) γ/γF = 0.74. The dashed gray
lines denote the resonant frequency of an unforced droplet chain, as approximated by (9).

characterize the envelope of the oscillations, we define the cycle-averaged drop position

x̄i (t ) = 1

T

∫ t+T /2

t−T /2
xi (s)ds. (11)

This quantity is constant for the simple oscillatory motion occurring at low memory (Figure 4(b)),
but exhibits oscillations on a timescale long relative to the forcing period T for the complex
motion arising at higher memory (Figure 4(d)).

To quantify the dependence of the oscillation amplitude Ai of each drop on the forcing
frequency f , we define

Ai =
[

2

t0

∫ tmax

tmax−t0

(xi (t )−〈xi 〉)2 dt

]1/2

, where 〈xi 〉 = 1

t0

∫ tmax

tmax−t0

xi (t )dt (12)

and t0 ≤ 5T . Figure 5 shows the oscillation amplitudes Ai /A1 of a droplet chain in the n11-
bouncing state, with the first drop subjected to a forcing amplitude A1 = λF /8. We note that
the predictions of the linear theory (Figure 3) are qualitatively consistent with the simulations;
specifically, the oscillation amplitude of each drop is maximized for a critical value of the forcing
frequency f , which is approximated well by (9) (gray dashed line). Moreover, the maximum
oscillation amplitude increases with memory. At the highest memory considered, γ/γF = 0.74,
the amplitudes of drops 3 and 5 exceed that of the first drop. This indicates that a vibrating chain
of droplets can effectively draw energy from the surface waves and thus execute oscillations
whose amplitude exceeds that which is imposed. We note that the maximum amplitudes in
simulations (Figure 5) are smaller than those predicted by the linear theory (Figure 3), indicating
that nonlinear effects serve to effectively damp the forced oscillations. Similar conclusions may
be drawn for droplet chains forced in the n12, n21 and n22-bouncing states, the results for which
are shown in Supplementary Figures 4(a)–(c), 4(d)–(f) and 4(g)–(i), respectively.

Figure 6 shows the results for a droplet chain initialized in the n11-bouncing state and forced
with a larger amplitude, A1 = λF /4. The behavior is qualitatively different from that predicted by
the linear theory (Figure 3); specifically, the second drop (blue) rather than the third (red) exhibits
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Figure 6. The procedure described in the caption of Figure 5 is repeated for a larger value
of the forcing amplitude, A1 =λF /4.

Figure 7. Complex aperiodic oscillations observed in a chain of N = 5 drops initialized
in the n22-bouncing state on a bath with vibrational forcing acceleration γ/γF = 0.74.
The first drop (black) is subjected to a periodic forcing of amplitude A1 = λF /4 and
dimensionless frequency f = 0.09. (a) Trajectories xi (t ) of each drop, plotted as a function
of the dimensionless time f t . (b) Cycle-averaged inter-drop distances d̄i (t ) = x̄i+1(t )− x̄i (t )
for i = 1 (blue), 2 (red), 3 (yellow) and 4 (purple). The dashed lines indicate the mean inter-
drop distances (d1 +d2)/2 of the symmetric unforced bouncing states n11, n22 and n33, as
given by (8).

the largest oscillations for a critical forcing frequency f , which in turn is overestimated by the ap-
proximate formula (9) (gray dashed line). Moreover, the oscillation amplitudes may exhibit max-
ima at multiple values of the forcing frequency f even at low memory (Figure 6(a)), an effect ab-
sent at the lower forcing amplitude (Figure 5(a)). The results for higher memory are not shown be-
cause the simulated trajectories exhibit intersections in this parameter regime for certain values
of the forcing frequency f . These unphysical solutions are an artifact of the stroboscopic model’s
poor characterization of the waves in the near field. Indeed, the model (1) was derived under the
assumption that the drops are point sources of waves [53], an approximation that is known to be
inadequate when the distance between the drops is comparable to their diameter [61].

For relatively large memory and forcing amplitude A1, the droplets execute aperiodic and pre-
sumably chaotic trajectories, as shown in Figure 7(a). To understand the qualitative features of
this complex dynamics, we plot in Figure 7(b) the cycle-averaged distances between neighboring
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drops, d̄i (t ) = x̄i+1(t )− x̄i (t ), where x̄i (t ) is defined in (11). The dashed lines indicate the mean
inter-drop distances (d1 +d2)/2 of the symmetric unforced bouncing states n11, n22 and n33, as
predicted by (8). We observe that d̄i (t ) exhibits oscillations around the dashed lines, punctuated
by intermittent transitions between them. Unlike the solutions observed for lower forcing ampli-
tude A1 (Figure 4), the droplet chain chaotically jumps between different equilibrium solutions
without settling near any of them.

4.3. High-frequency limit f →∞
As shown in Figures 3, 5 and 6, the drops’ oscillation amplitudes go to zero in the limit of large
forcing frequency, Ai → 0 as f → ∞. In this limit, we find that the chain effectively settles into
a new bouncing state that is dynamically stabilized by the periodic forcing applied to the first
drop. To rationalize this observation, we substitute into (3) the expressions x1(t ) = A1 sinωt and
xi (t ) =χi for i = 2, . . . , N , where ω= 2π f , and obtain

1

ω

∫ ∞

0
J1(χi − A1 sin(τ−σ))e−σ/ωdσ+

N∑
j=2

J1(χi −χ j ) = 0, (13)

where τ =ωt . Note that the integral in (13) is a 2π–periodic function of τ, and can be simplified
in the limit ω→∞:

1

ω

∫ ∞

0
J1(χi − A1 sin(τ−σ))e−σ/ωdσ= 1

ω

∞∑
n=0

e−2πn/ω
∫ 2π

0
J1(χi − A1 sin(τ−σ))e−σ/ωdσ

= 1

ω(1−e−2π/ω)

∫ 2π

0
J1(χi − A1 sin(τ−σ))e−σ/ωdσ= 1

2π

∫ 2π

0
J1(χi − A1 sinσ)dσ+O(ω−1), (14)

where the geometric series formula is used in the second line. The drop positions χi thus satisfy
the following algebraic equation in the limit ω→∞:

1

2π

∫ 2π

0
J1(χi − A1 sinσ)dσ+

N∑
j=2

J1(χi −χ j ) = 0, i = 2, . . . , N . (15)

We solve (15) using numerical continuation in the parameter A1 starting from A1 = 0, the
corresponding solution being the n11-bouncing state as defined by (8). Figure 8(a) shows the
dependence of the inter-drop distances di = χi+1 −χi on the forcing amplitude A1. While the
distances d2 (red), d3 (orange) and d4 (purple) remain roughly constant over the range of forcing
amplitudes considered, the distance d1 (blue) between drops 1 and 2 increases dramatically near
A1/λF ≈ 0.4 and A1/λF ≈ 0.8, with plateaus in between. The plateaus are approximated well by
the dashed lines in Figure 8(a), which denote the values of d1 for unforced droplet chains, as
predicted by (4). Specifically, the dashed line with the lowest value of d1 ≈ 0.8λF corresponds
to the n11 symmetric bouncing state, whereas the other lines with d1 ≈ 1.3λF and d1 ≈ 1.8λF

correspond to asymmetric bouncing states, for which d1 6= d4 and d2 6= d3.
We proceed by assessing the stability of the unforced bouncing states (dashed lines in

Figure 8(a)) for the lowest memory considered, γ/γF = 0.66, using the procedure described in
Section 3.1. Specifically, we find the eigenvalues of the matrix Q in (7), and find that states with
d1 ≈ 0.8λF and d1 ≈ 1.8λF (black dashed lines) are stable, whereas the one with d1 ≈ 1.3λF (gray
dashed line) is unstable. Note that the wave field associated with the unstable bouncing state has
a relatively large amplitude at the positions of the first and second drop (Figure 8(c)), as compared
to the stable n11-state (Figure 8(b)) and the dynamically stabilized state (Figure 8(d)), where the
wave field of a droplet chain forced in the limit of high frequency f →∞ is given by

h(x) = ATM

TF

[
1

2π

∫ 2π

0
J0(kF (x − A1 sinσ))dσ+

N∑
j=2

J0(kF (x −χ j ))

]
. (16)
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Figure 8. Bouncing states of a chain of five drops forced in the limit of high frequency,
f → ∞. (a) The dependence of the inter-drop distances di = xi+1 − xi on the forcing
amplitude A1, as obtained by solving (15). The dashed lines denote the values of d1 for
an unforced droplet chain, black (gray) lines corresponding to stable (unstable) solutions
for γ/γF = 0.66. Panels (b)–(d) show the wave profiles h(x) in microns, as given by (16)
(blue curves), and drop positions (black dots), corresponding to three configurations: (b) an
unforced stable chain in the n11-bouncing state (black square), (c) an unforced unstable
chain (gray square), and (d) a chain forced with amplitude A1/λF = 0.6 (red square).

The physical picture is that high-frequency forcing applied to the first drop may be used
to drive transitions between bouncing states, wherein the distance d1 between the first two
drops increases in increments of size roughly λF /2 as the forcing amplitude A1 is increased
progressively, and the distances between the other drops remain roughly constant. Moreover,
an unstable bouncing state may be effectively stabilized by a high-frequency periodic forcing
of sufficiently large amplitude A1, which leads to a wave field of diminished amplitude at the
position of the second drop. We note that dynamical stabilization of bouncing states through a
qualitatively similar mechanism is observed for droplet chains initialized in the n12, n21 and n22-
states, as shown in Supplementary Figure 5.

5. Discussion

We have presented the results of a theoretical and numerical investigation into chains of bounc-
ing droplets. We have characterized the equilibrium configurations of chains of five droplets, and
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found that they go unstable to an oscillatory instability as the bath’s forcing acceleration γ/γF

is increased progressively. We have observed that, with the exception of the n12-bouncing state,
the drop in the middle of the chain exhibits the largest oscillations at the onset of the instability
(Figure 2). These results are qualitatively consistent with the experiments of Eddi et al. [32], who
found that quasi-1D aggregates of bouncers effectively melt from the interior at a critical value
of the bath’s forcing acceleration. We have also derived an approximation (9) for the oscillation
frequency of a droplet chain at the onset of the instability, whose associated prediction f ≈ 1 Hz
agrees well with the observations of Eddi et al. [32].

We have found that droplet chains may exhibit a complex dynamics when the drop at one
end is subjected to sinusoidal forcing in the horizontal direction. Specifically, simple oscillatory
motion is observed at relatively low memory (Figures 4(a) and 4(b)), while complex aperiodic
behavior is observed at higher memory (Figures 4(c) and 4(d)). As is evident by comparing
Figures 3 and 5, the dependence of the drop oscillation amplitude Ai on the forcing frequency
f is described well by the linear theory presented in Section 4.1, provided the forcing amplitude
A1 on the first drop is relatively small, A1 ¿ λF . The dependence of Ai on f is more complex
for larger values of A1 (Figure 6), a regime in which nonlinear effects are expected to play an
important role. At relatively high memory, the drops may oscillate with an amplitude larger than
that prescribed (Figure 5(c)), Ai > A1, suggesting that the drops effectively extract energy from
the collective wave field and convert it to kinetic energy.

At the largest forcing amplitude A1 and memory considered, periodic forcing may be used as
a mechanism to generate chaotic dynamics (Figure 7(a)). In this regime, the droplet chain ex-
hibits intermittent oscillations between the different bouncing states without settling near any
of them (Figure 7(b)). This physical picture of a walker jumping chaotically between states has
been reported in a number of settings, for example, in a rotating frame [7, 64], harmonic poten-
tial [8–10,65], and circular [12,13] and elliptical corrals [14]. While a walker’s dynamics under pe-
riodic forcing has received less attention, Perrard [47] subjected a walker to a periodically oscil-
lating central force, F = −(k0 +k1 sinωt )x , and observed transitions between circular orbits and
lemniscates for suitable values of k1 and ω.

In the limit in which the applied oscillation frequency of the first drop is large, f → ∞, new
bouncing states may be dynamically stabilized provided the forcing amplitude A1 is sufficiently
large (Figure 8(a)). This phenomenon is similar to the so-called Kapitza pendulum, in which a fast
oscillation of the pivot point stabilizes the upward vertical position of the pendulum and desta-
bilizes the downward vertical position [41,42,66]. We note that dynamic stabilization of unstable
quantum states has also been achieved experimentally, for example in potassium Rydberg atoms
subjected to strong pulsed electric fields [67] and atomic Bose–Einstein condensates subjected
to periodic microwave pulses [68].

Our results indicate that a droplet chain exhibiting relatively large-amplitude oscillations may
be viewed as a damped oscillator forced near resonance. Equation (6), which describes the
linear small-amplitude oscillations of a chain of bouncers around their equilibrium positions,
may thus be compared with the equations of motion of spring-mass-damper chains, which
comprise a series of masses connected by linear springs and subjected to friction forces [69].
This analogy was noted by Borghesi et al. [70] in their study of promenading pairs of walking
droplets. However, three significant differences are evident: first, the damping term ẋi in the
droplet chain is due to a drag, and thus depends only on the velocity of each particle instead of the
particles’ relative velocities ẋi − ẋ j . Second, the interactions are long-range, unlike the nearest-
neighbor interactions of spring-mass-damper chains: each drop experiences a wave field that
results from the sum of the waves generated by all other drops. Third, the drops are coupled by a
fluid-mediated memory and thus temporally nonlocal forces, as the wave force on each droplet is
due to the waves generated in each droplet’s past. Mathematically, the forces are not proportional
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to the difference xi − x j , as for linear springs, but rather to xi −X j , where X j is an exponentially-
weighted integral of the position of drop j . In the low-memory regime, the effective spring
constant is proportional to the memory time TM , as is evident from (9). The drop oscillation
amplitude increases with TM (Figures 5 and 6), a behavior consistent with the fact that the
resonant oscillation amplitude in mass-spring systems increases with the spring constant [69].
We note that spring-mass lattices are the basic model for the description of phonons in crystalline
solids [33], and that analogues of phonons have also been observed in a 1D microfluidic crystal,
which consists of a chain of immiscible drops in a liquid-filled channel [71].

It is our hope that the theoretical predictions presented herein may be validated experimen-
tally, a possible avenue being the protocol described by Perrard [47] for periodically forcing
droplets using an oscillating magnetic field. Longer droplet chains (N À 5) may also be stud-
ied theoretically, although the model (1) would need to be modified to account for the exponen-
tial decay of the surface waves in the far field [40]. A worthwhile future direction would be to ex-
plore hydrodynamic analogues of Floquet engineering [45], wherein a time-dependent forcing
is tuned in order to control a quantum system. While the present study was restricted to chains
of bouncers forced sinusoidally at one end, different forms of periodic forcing could be used to
control the structure and dynamics of more complex bouncing droplet lattices.

Acknowledgments

The second author is supported by the CNRS Momentum funding program. The last author
is supported by the Simons Foundation (Collaboration Grant for Mathematicians, Award No.
587006).

Supplementary data

Supporting information for this article is available on the journal’s website under https://doi.org/
10.5802/crmeca.30 or from the author.

References

[1] J. Walker, “Drops of liquid can be made to float on the liquid. What enables them to do so?”, Sci. Am. 238 (1978), 151.
[2] Y. Couder, E. Fort, C.-H. Gautier, A. Boudaoud, “From bouncing to floating: noncoalescence of drops on a fluid bath”,

Phys. Rev. Lett. 94 (2005), 177801.
[3] Y. Couder, S. Protière, E. Fort, A. Boudaoud, “Walking and orbiting droplets”, Nature 437 (2005), 208.
[4] S. Protière, A. Boudaoud, Y. Couder, “Particle-wave association on a fluid interface”, J. Fluid Mech. 554 (2006), p. 85-

108.
[5] A. Eddi, E. Fort, F. Moisy, Y. Couder, “Unpredictable tunneling of a classical wave-particle association”, Phys. Rev.

Lett. 102 (2009), 240401.
[6] E. Fort, A. Eddi, J. Moukhtar, A. Boudaoud, Y. Couder, “Path-memory induced quantization of classical orbits”, Proc.

Natl. Acad. Sci. 107 (2010), no. 41, p. 17515-17520.
[7] D. M. Harris, J. W. M. Bush, “Drops walking in a rotating frame: From quantized orbits to multimodal statistics”, J.

Fluid Mech. 739 (2014), p. 444-464.
[8] S. Perrard, M. Labousse, M. Miskin, E. Fort, Y. Couder, “Self-organization into quantized eigenstates of a classical

wave-driven particle”, Nat. Commun. 5 (2014), 3219.
[9] S. Perrard, M. Labousse, E. Fort, Y. Couder, “Chaos driven by interfering memory”, Phys. Rev. Lett. 113 (2014), 104101.

[10] S. Perrard, M. Labousse, “Transition to chaos in wave memory dynamics in a harmonic well: Deterministic and noise-
driven behavior”, Chaos 28 (2018), 096109.

[11] A. Eddi, J. Moukhtar, S. Perrard, E. Fort, Y. Couder, “Level splitting at a macroscopic scale”, Phys. Rev. Lett. 108 (2012),
264503.

[12] D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, J. W. M. Bush, “Wavelike statistics from pilot-wave dynamics in a circular
corral”, Phys. Rev. E 88 (2013), 011001.

C. R. Mécanique, 2020, 348, n 6-7, 573-589

https://doi.org/10.5802/crmeca.30
https://doi.org/10.5802/crmeca.30


588 Lauren Barnes et al.

[13] T. Cristea-Platon, P. J. Sáenz, J. W. M. Bush, “Walking droplets in a circular corral: Quantisation and chaos”, Chaos 28
(2018), 096116.

[14] P. J. Sáenz, T. Cristea-Platon, J. W. M. Bush, “Statistical projection effects in a hydrodynamic pilot-wave system”, Nat.
Phys. 14 (2018), p. 315-319.

[15] P. J. Sáenz, T. Cristea-Platon, J. W. M. Bush, “A hydrodynamic analog of Friedel oscillations”, Sci. Adv. 6 (2020), 20.
[16] R. Valani, A. C. Slim, T. Simula, “Hong-Ou-Mandel-like two-drop correlations”, Chaos 28 (2018), 096104.
[17] Y. Couder, E. Fort, “Single particle diffraction and interference at a macroscopic scale”, Phys. Rev. Lett. 97 (2006),

154101.
[18] A. Andersen, J. Madsen, C. Reichelt, S. R. Ahl, B. Lautrup, C. Ellegaard, M. T. Levinsen, T. Bohr, “Double-slit

experiment with single wave-driven particles and its relation to quantum mechanics”, Phys. Rev. E 92 (2015), 013006.
[19] T. Bohr, A. Andersen, B. Lautrup, “Bouncing droplets, pilot-waves, and quantum mechanics”, in Recent Advances in

Fluid Dynamics with Environmental Applications (J. Klapp, L. D. G. Sigalotti, A. Medina, A. López, G. Ruiz-Chavarría,
eds.), Springer International Publishing, Switzerland, 2016, p. 335-349.

[20] R. Dubertrand, M. Hubert, P. Schlagheck, N. Vandewalle, T. Bastin, J. Martin, “Scattering theory of walking droplets
in the presence of obstacles”, New J. Phys. 18 (2016), 113037.

[21] G. Pucci, D. M. Harris, L. M. Faria, J. W. M. Bush, “Walking droplets interacting with single and double slits”, J. Fluid
Mech. 835 (2018), p. 1136-1156.

[22] M. Rode, J. Madsen, A. Andersen, “Wave fields in double-slit experiments with wave-driven droplets”, Phys. Rev.
Fluids 4 (2019), 104801.

[23] C. Ellegaard, M. T. Levinsen, “Interaction of wave-driven particles with slit structures”, preprint, arXiv:2005.12335
(2020).

[24] Y. Couder, E. Fort, “Probabilities and trajectories in a classical wave-particle duality”, J. Phys.: Conf. Ser. 361 (2012),
012001.

[25] J. W. M. Bush, “Pilot-wave hydrodynamics”, Ann. Rev. Fluid Mech. 47 (2015), p. 269-292.
[26] J. W. M. Bush, “The new wave of pilot-wave theory”, Phys. Today 68 (2015), no. 8, p. 47-53.
[27] A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, Y. Couder, “Information stored in Faraday waves: the origin of a path

memory”, J. Fluid Mech. 674 (2011), p. 433-463.
[28] A. Eddi, A. Decelle, E. Fort, Y. Couder, “Archimedean lattices in the bound states of wave interacting particles”,

Europhys. Lett. 87 (2009), 56002.
[29] S. Protière, Y. Couder, E. Fort, A. Boudaoud, “The self-organization of capillary wave sources”, J. Phys.: Condens.

Matter 17 (2005), 3529.
[30] S. I. Lieber, M. C. Hendershott, A. Pattanaporkratana, J. E. Maclennan, “Self-organization of bouncing oil drops: two

dimensional lattices and spinning clusters”, Phys. Rev. E 75 (2007), 56308.
[31] A. Eddi, D. Terwagne, E. Fort, Y. Couder, “Wave propelled ratchets and drifting rafts”, Europhys. Lett. 82 (2008), 44001.
[32] A. Eddi, A. Boudaoud, Y. Couder, “Oscillating instability in bouncing drop crystals”, Euro. Phys. Lett. 94 (2011), 20004.
[33] C. Kittel, Introduction to Solid State Physics, Vol. 8, Wiley, New York, 1976.
[34] P. J. Sáenz, G. Pucci, A. Goujon, T. Cristea-Platon, J. Dunkel, J. W. M. Bush, “Spin lattices of walking droplets”, Phys.

Rev. Fluids 3 (2018), 100508.
[35] P. J. Sáenz, G. Pucci, S. E. Turton, A. Goujon, R. R. Rosales, J. Dunkel, J. W. M. Bush, “Emergent order in hydrodynamic

spin lattices”, (2020) (submitted).
[36] B. Filoux, M. Hubert, N. Vandewalle, “Strings of droplets propelled by coherent waves”, Phys. Rev. E 92 (2015),

041004(R).
[37] A. Rahman, “Standard map-like models for single and multiple walkers in an annular cavity”, Chaos 28 (2018),

096102.
[38] S. J. Thomson, M. M. P. Couchman, J. W. M. Bush, “Collective vibrations of confined levitating droplets”, Phys. Rev.

Fluids 5 (2020), 083601.
[39] S. J. Thomson, M. Durey, R. R. Rosales, “Collective vibrations of a hydrodynamic active lattice”, Proc. R. Soc. A 476

(2020), no. 2239.
[40] M. M. P. Couchman, J. W. M. Bush, “Free rings of bouncing droplets: stability and dynamics”, J. Fluid Mech. (2020)

https://doi.org/10.1017/jfm.2020.648 (in press).
[41] P. L. Kapitza, “Dynamical stability of a pendulum when its point of suspension vibrates”, in Collected Papers of P. L.

Kapitza, Vol. 2 (D. Ter Haar, ed.), Pergamon, Oxford, UK, 1965, p. 714-725.
[42] P. L. Kapitza, “Pendulum with a vibrating suspension”, in Collected Papers of P. L. Kapitza, Vol. 2 (D. Ter Haar, ed.),

Pergamon, Oxford, UK, 1965, p. 726-737.
[43] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, “Stochastic resonance”, Rev. Mod. Phys. 70 (1998), no. 1, p. 223-287.
[44] P. Hänggi, “Driven quantum systems”, in Quantum Transport and Dissipation (T. Dittrich, P. Hänggi, G.-L. Ingold,

G. Schön, W. Zwerger, eds.), Wiley-VCH, New York, 1998, p. 249-286.
[45] M. Bukov, L. D’Aless, A. Polkovnikov, “Universal high-frequency behavior of periodically driven systems: from

dynamical stabilization to Floquet engineering”, Adv. Phys. 64 (2015), no. 2, p. 139-226.

C. R. Mécanique, 2020, 348, n 6-7, 573-589



Lauren Barnes et al. 589

[46] F. L. Traversa, M. Di Ventra, F. Bonani, “Generalized Floquet theory: Application to dynamical systems with memory
and Bloch’s theorem for nonlocal potentials”, Phys. Rev. Lett. 110 (2013), 170602.

[47] S. Perrard, Une mémoire ondulatoire: Etats propres, Chaos et Probabilités. PhD thesis, Université Paris Diderot, 2014,
p. 182-183.

[48] M. Faraday, “On the forms and states of fluids on vibrating elastic surfaces”, Phil. Trans. R. Soc. Lond. 121 (1831),
p. 319-340.

[49] T. Gilet, J. W. M. Bush, “The fluid trampoline: droplets bouncing on a soap film”, J. Fluid Mech. 625 (2009), p. 167-203.
[50] T. B. Benjamin, F. Ursell, “The stability of the plane free surface of a liquid in vertical periodic motion”, Proc. R. Soc.

Lond. A 225 (1954), p. 505-515.
[51] K. Kumar, L. S. Tuckerman, “Parametric instability of the interface between two fluids”, J. Fluid Mech. 279 (1994),

p. 49-68.
[52] K. Kumar, “Linear theory of Faraday instability in viscous liquids”, Proc. R. Soc. A 452 (1996), p. 1113-1126.
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