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INTRODUCTION

We study sender-receiver games on communication networks, where the information from the sender to the receiver may have to flow through self-interested intermediaries.

The question we address is: When is it possible to emulate direct, or even mediated (i.e., with a mediator), communication between the sender and the receiver as indirect, but unmediated (i.e., without a mediator) communication?

More precisely, consider a sender-receiver game and a communication equilibrium of that game, that is, an equilibrium where the sender and the receiver can communicate privately and securely with a trusted mediator -see [START_REF] Forges | An Approach to Communication Equilibria[END_REF] and [START_REF] Myerson | Multistage Games with Communication[END_REF]. Now, assume that no trusted mediator exists, but there exists a communication network, with the sender and the receiver as two distant nodes -the other nodes are intermediaries. The communication network models the communication possibilities, i.e., who can send a message to whom, and thus naturally induces a multi-stage communication game. The question we address is: When are we guaranteed to have a perfect Bayesian equilibrium (henceforth, PBE) of the multi-stage game that replicates the communication equilibrium? By "guaranteed," we mean that the answer should be independent of the preferences of the intermediaries, and of the selected communication equilibrium.

We prove that we are guaranteed to replicate all communication equilibria as PBE of multi-stage games on communication networks if, and only if, there exist (at least) two disjoint paths of communication between the sender and the receiver. The central insight of our analysis is the tight connection with the concept of strong reliability -a close relative of the concept of reliability in Computer Science. To define the concept of strong reliability, consider the following problem: the sender wishes to transmit a message to the receiver through the communication network. The problem is to construct a communication protocol, with the property that the receiver correctly learns the message sent at all histories consistent with at most k intermediaries deviating at every round of the protocol. (Different intermediaries can deviate at different rounds.) We call this property: k-strong reliability. It guarantees that the transmission of the message can tolerate some mistakes, errors or even deliberate disruptions in communication.

We show that 1-strong reliability (for short, strong reliability) is possible on a network if, and only if, there are two disjoint paths of communication between the sender and the receiver. Thus, the PBE implementation of all communication equilibria on networks and the strong reliability of communication on networks are equivalent, that is, if the former is guaranteed on the network N , so is the latter, and conversely.

We now provide some intuition for such a tight connection between PBE implementation of all communication equilibria and strong reliability. There are two states and two actions, and the sender and the receiver want to match the state. Clearly, there exists an equilibrium of the direct communication game, where the sender truthfully reveals the state and the receiver matches the state. Assume now that the communication between the sender and the receiver is intermediated, with all intermediaries preferring the receiver to un-match the state. The equilibrium distribution (of the direct communication game) is therefore the least preferred outcome of any intermediary -any other distribution is strictly preferred. Thus, if an intermediary deviates at any stage of the indirect multi-stage communication game, to be non-profitable, the deviation must not change the distribution. Now, at any information set which follows the deviation, sequential rationality dictates that no other intermediary must have a profitable deviation either, i.e., no other intermediary must be able to change the distribution. Therefore, not only the correct distribution must be implemented at all on-path histories, but also at histories which are reachable via sequences of unilateral deviations. (We stress that this is a consequence of imposing sequential rationality, a novelty of this paper -see the review of literature.) This is what strong reliability achieves.

Two additional observations are worth noting. First, if we restrict attention to the (unmediated) equilibria of sender-receiver games (i.e., when the sender communicates with the receiver), the same condition on the network is necessary and sufficient. Thus, the connectivity requirement does not increase as we move from the (unmediated) equilibria to the communication equilibria. This is particularly important as some communication equilibria can Pareto-improve over all (unmediated) equilibria. In these instances, indirect communication dominates direct communication. In other words, communicating through layers of intermediaries may actually benefit the sender and the receiver (compared to direct communication). Second, the protocols we construct require several rounds of communication and rich communication possibilities. In particular, players must be able to broadcast messages to any subset of their neighbors. Broadcasting a message to a group insures common knowledge of the message among the group's members. It is a very natural assumption: face-to-face meetings, online meetings via platforms like Zoom or Microsoft Teams, Whatsapp groups, all makes it possible to broadcast to a group.

To sum up, the paper makes two novel contributions. We first show how to emulate a mediator with indirect communication, i.e., we replicate the communication equilibria of cheap-talk games through indirect communication. Second, we show how to do it while insuring sequential rationality. To the best of our knowledge, we are the first to tackle this challenging problem.

Related literature. This paper is related to several strands of literature. The commonality between these strands of literature is the construction of protocols to securely transmit a message from a sender to a receiver on a communication network. The secure transmission of a message requires that (i) the receiver correctly learns the sender's message, and (ii) intermediaries do not obtain additional information about the message, while executing the protocol. Reliability (or resiliency) refers to the first requirement, while secrecy refers to the second.

To start with, there is a large literature in Computer Science, which studies the problem of secure transmission of messages on communication networks. See, among others, [START_REF] Beimel | Reliable Communication Over Partially Authenticated Networks[END_REF], [START_REF] Dolev | Perfectly Secure Message Transmission[END_REF], [START_REF] Linial | Game-Theoretic Aspects of Computing[END_REF], Franklin and Wright (2004), [START_REF] Renault | Probabilistic Reliability and Privacy of Communication Using Multicast in General Neighbor Networks[END_REF], and [START_REF] Renault | Secure Message Transmission on Directed Networks[END_REF]. This literature provides conditions on the topology of the communication networks for the secure transmission of a message from a sender to a receiver. See [START_REF] Renault | Secure Message Transmission on Directed Networks[END_REF] for a summary of these results. An important assumption of all this literature is that the adversary controls a fixed set of nodes throughout the execution of the communication protocols.

The adversary we consider is stronger in that it can control different sets of nodes at each round of communication. To the best of our knowledge, such an adversary has not been studied in the computer science literature. However, we restrict attention to singletons, while the computer science literature considers larger sets. This paper is also related to the literature on repeated games on networks, where the network models the monitoring structure and/or the communication possibilities. See, among others, Ben-Porath and Kahneman (1996), [START_REF] Laclau | A Folk Theorem for Repeated Games Played on a Network[END_REF][START_REF] Laclau | Communication in Repeated Network Games With Imperfect Monitoring[END_REF], [START_REF] Renault | Repeated Proximity Games[END_REF], [START_REF] Tomala | Fault Reporting in Partially Known Networks and Folk Theorems[END_REF] and [START_REF] Wolitzky | Communication with Tokens in Repeated Games on Networks[END_REF]. This literature characterizes the networks for which folk theorems exist. An essential step in obtaining a folk theorem is the construction of protocols, which guarantee that upon observing a deviation, players start a punishment phase. To do so, when a player observes a deviation, he must be able to securely transmit the message "my neighbor has deviated" to all other players.

With the exception of [START_REF] Wolitzky | Communication with Tokens in Repeated Games on Networks[END_REF], none of these papers have imposed sequential rationality, while restricting the communication to a network. Either the communication is restricted to a network, in which case the solution concept is Nash equilibrium [START_REF] Laclau | A Folk Theorem for Repeated Games Played on a Network[END_REF][START_REF] Renault | Repeated Proximity Games[END_REF][START_REF] Tomala | Fault Reporting in Partially Known Networks and Folk Theorems[END_REF], or the communication is unrestricted, in which case sequential rationality is imposed (Ben-Porath and Kahneman, 1996; [START_REF] Laclau | Communication in Repeated Network Games With Imperfect Monitoring[END_REF]. (In the latter case, the network models the structure of observation and/or interaction, but not the communication possibilities.) [START_REF] Wolitzky | Communication with Tokens in Repeated Games on Networks[END_REF] imposes sequential rationality and restricts communication to a network. However, he assumes that either a mutual-minmax Nash equilibrium exists or that players have access to undifferentiated tokens, which can be freely transferred among neighbors, in addition to cheap talk messages. We make none of these assumptions. (In fact, the existence of a mutual-minmax Nash equilibrium imposes restrictions on the preferences of the intermediaries, which is at odd with our analysis.)

This paper is also related to the literature on mediated and unmediated communication in games. Regarding mediated communication, see, among others, [START_REF] Aumann | Subjectivity and Correlation in Randomized Strategies[END_REF], Ben-Porath (1998), [START_REF] Forges | An Approach to Communication Equilibria[END_REF][START_REF] Forges | Universal Mechanisms[END_REF]), Forges and Vida (2013), [START_REF] Myerson | Multistage Games with Communication[END_REF], [START_REF] Renou | Mechanism Design and Communication Networks[END_REF] and [START_REF] Rivera | Incentives and The Structure of Communication[END_REF]. In common with the literature on unmediated communication in games, e.g., Barany (1985), [START_REF] Forges | Universal Mechanisms[END_REF], [START_REF] Forges | Implementation of Communication Equilibria by Correlated Cheap Talk: The Two-Player Case[END_REF], or [START_REF] Gerardi | Unmediated Communication in Games with Complete and Incomplete Information[END_REF], we show that we can emulate mediated communication with unmediated communication. The novelty is that communication is restricted to a network, albeit for a particular class of games, i.e., sender-receiver games.

Renou and Tomala (2012) and Rivera (2018) consider mediated communication games, where not all players can communicate directly with the mediator. The mediator is a fixed node in a communication network. These authors characterize the communication networks, which make it possible to replicate all the equilibrium outcomes of the direct communication game, i.e., when the players can communicate directly with the mediator. 3 There are three major differences with our work. First, we do not have a mediator. In fact, we show how we can emulate the mediator on the network. Second, these authors restrict the communication to be unicast, i.e., group meetings are not allowed, while we consider rich communication possibilities. Third, they do not impose strong 3 [START_REF] Renou | Mechanism Design and Communication Networks[END_REF] study pure adverse selection problems, while [START_REF] Rivera | Incentives and The Structure of Communication[END_REF] extends their analysis to both adverse selection and moral hazard. A common thread of these papers is the need to construct secret and reliable protocols so that players (resp., the mediator) can transmit their private information (resp., private recommendations) to the mediator (resp., the players). reliability (in the sense that the transmission of messages is reliable after all histories consistent with unilateral deviations). While none of their constructions guarantee strong reliability, these authors are nonetheless able to impose sequential rationality. [START_REF] Renou | Mechanism Design and Communication Networks[END_REF] achieve this by restricting attention to games with either independent private values or with a strict punishment. Rivera (2018) needs three disjoint paths of communication.

Finally, this paper is related to the large literature on cheap talk games, pioneered by Crawford and Sobel (1984) and [START_REF] Aumann | Subjectivity and Correlation in Randomized Strategies[END_REF]Hart (1993, 2003). See [START_REF] Forges | Games with Incomplete Information: From Repetition to Cheap Talk and Persuasion[END_REF] for a recent survey. The closest papers to ours are [START_REF] Ivanov | Communication via a Strategic Mediator[END_REF] The sender knows a payoff-relevant state ω ∈ Ω, with ν ∈ ∆(Ω) the prior probability. 4 The receiver takes an action a ∈ A. For all i ∈ {S, R}, player i's payoff function is

u i : A × Ω → R,
which we assume to be measurable.

Direct communication.

In the direct communication game, the sender directly communicates with the receiver, that is, the sender sends a message m ∈ M to the receiver, prior to the receiver choosing an action a ∈ A. A strategy for the sender is a map σ : Ω → ∆(M ), while a strategy for the receiver is a map τ : M → ∆(A). We denote 4 See Appendix A for some mathematical preliminaries.

E d ⊆ ∆(Ω × A) the set of (Bayes-Nash) equilibrium distributions over states and actions of the direct communication game. Note that we may have E d = ∅. 5 Mediated communication. In the mediated communication game, the sender first sends a message m ∈ M to a mediator. The mediator then sends a message r ∈ R, possibly randomly, to the receiver, who then takes an action a ∈ A. A strategy for the sender is a map σ : Ω → ∆(M ), while a strategy for the receiver is a map τ : R → ∆(A). The mediator follows a recommendation rule: φ : M → ∆(R). A communication equilibrium is a communication device ⟨M, R, φ⟩ and an equilibrium (σ * , τ * ) of the mediated game.

Thanks to the revelation principle [START_REF] Forges | An Approach to Communication Equilibria[END_REF][START_REF] Myerson | Multistage Games with Communication[END_REF], we can restrict attention to canonical communication equilibria, where M = Ω, R = A, the sender has an incentive to be truthful (to report the true state), and the receiver has an incentive to be obedient (to follow the recommendation). We denote CE d ⊆ ∆(A × Ω) the set of communication equilibrium distributions over actions and states of the mediated communication

game. It is well-known that E d ⊆ CE d .
It is well known that the set of communication equilibrium payoffs might be strictly bigger than the set of Nash equilibrium payoffs. In particular, both the sender and the receiver might benefit strictly from the mediated communication (see [START_REF] Forges | Correlated Equilibria in a Class of Repeated Games with Incomplete Information[END_REF]; the reader is also referred to [START_REF] Myerson | Game Theory: Analysis of Conflicts[END_REF]. However, this requires the existence of a trusted mediator, a rather strong assumption. A message of this paper is that there is a way to organize the communication between the sender and the receiver so as to emulate the trusted mediator. The communication must be indirect and intermediated. (As we shall see later, the possibility to emulate the mediator with indirect communication will be independent of the preferences of the intermediaries.) We now turn to a formal description of indirect communication.

Communication game on a network (indirect communication).

To model indirect communication, we assume that the sender and the receiver are two distinct nodes on an (undirected) network N . The set of nodes, other than S and R, is denoted I, which we interpret as a set of n intermediaries. Communication between the sender and the receiver transits through these intermediaries. We let N i be the set of neighbors of i ∈ I * := I ∪ {S, R} in the network. Throughout, we assume that the sender and the receiver are not directly connected in the network N . 5 Indeed, notice that the existence of a best-reply is not guaranteed, as we do not assume that the payoff function is continuous nor that the action space is compact.

A communication game on the network N is a multi-stage game with T ≤ ∞ stages, where at each stage players send costless messages to their neighbors and the receiver decides either to take an action (and stop the game) or to continue communicating.

We first define communication mechanisms, denoted M, as the data of the communication technology players can use as well as the sets of messages they can send to each others. We allow for a rich set of communication possibilities. Communication can be private, e.g., private emails or one-to-one meetings, or public, e.g., emails sent to distribution lists or group meetings, or a mix of both. We say that player i broadcasts a message to a (non-empty) subset of his neighbors N ⊆ N i if (i) all players in N receive the same message, and (ii) it is a common belief among all players in N that they have received the same message (in other words, the list of recipients of the message is certifiable among them). Face-to-face group meetings, online meetings via platforms like Zoom or Microsoft Teams, Whatsapp groups, all make it possible to broadcast to a group. An example of a communication mechanism is then: only public messages to neighbors are allowed (broadcasting to all neighbors only) and each player has two different messages that he can send.

Communication unfolds as follows: at each stage t, players broadcast messages to all possible (non-empty) subsets of neighbors. The set of messages player i can broadcast to the subset of neighbors N ∈ 2 N i \ {∅} is M iN . Let M i = N ∈2 N i \{∅} M iN be the set of messages available to player i, and M = i∈I * M i the set of messages available to all players. A few remarks are worth making. First, private messages correspond to broadcasting to singletons. Players can thus send private messages to their neighbors.

Second, the sets of messages available to a player are independent of both time and past histories of messages sent and received. The latter is with loss of generality. However, without such an assumption, the model has no bite. Indeed, if the only message player i can transmit upon receiving the message m is the message m itself, an extreme form of history dependence, then we trivially reproduce direct communication with indirect communication and we can not generate more equilibria.

Our interpretation of the communication network is the following. In modern organizations, most employees, from top-executives to low-level managers, devote a significant fraction of their time to internal communication: they draft and circulate memos, attend and call meetings, write e-mail, etc. The network N captures these communication possibilities, particularly who can call a meeting with whom. If there is a link between players i and j and between players i and k, player i can communicate with players j and k both privately (face-to-face meetings) and publicly (group meetings). In organizations, meetings serve several functions, from communicating information to making decisions through generating ideas. The former, i.e., meetings as information forum, is the closest to the role meetings play in our analysis. When player i broadcasts a message to players j and k, player i informs players j and k.

Finally, we need two additional elements to obtain the communication game from the communication mechanism. First, we assume that at each stage, the receiver can either take an action a ∈ A or continue communicating, in which case he sends a message m R ∈ M R . If the receiver takes the action a, the game stops. Second, we need to associate payoffs with terminal histories. The payoff to player i ∈ I * is u i (a, ω) when the state is ω and the receiver takes action a, with u i : A × Ω → R a measurable function. (If the receiver never takes an action, the payoff to all players is -∞.) Thus, communication is purely cheap talk. We denote Γ(M, N ) the communication game induced by the mechanism M on the network N .

Strategies and equilibrium.

A history of messages received and sent by player i up to (but not including) period t is denoted h t i , with H t i the set of all such histories. A (pure) strategy for player i ∈ I is a collection of maps σ i = (σ i,t ) t≥1 , where at each stage t, σ i,t maps H t i to M i . A (pure) strategy for the sender is a collection of maps σ S = (σ S,t ) t≥1 , where at each stage t, σ S,t maps Ω × H t S to M S . A (pure) strategy for the receiver is a collection of maps σ R = (σ R,t ) t≥1 , where at each stage t, σ R,t maps H t R to M R ∪ A. With a slight abuse of notation, we use the same notation for behavioral strategies. Let

H t = × i∈I * H t i .
We write P σ (•|h t ) for the distribution over terminal histories and states induced by the strategy profile σ = (σ S , σ R , (σ i ) i∈I ), conditional on the history h t ∈ H t .

We write P σ for the distribution, conditional on the initial (empty) history. Note that any equilibrium distribution over actions and states is an element of CE d .

PBE implementation of direct (resp., mediated) communication on a network.

We are now ready to define the PBE implementation of direct communication (resp., mediated communication) on a network. We first start with an informal description. We say that the PBE implementation of direct communication (resp., mediated communication) is possible on a network if for every direct (resp., mediated) communication game, regardless of the preferences of the intermediaries, we can construct a communication game on the network with the property that for any Bayes-Nash equilibrium (resp., communication equilibrium) distribution over actions and states of the direct communication game (resp., mediated communication game), there exists a PBE of the communication game, which replicates that distribution. Definition 1. PBE implementation of direct communication (resp., mediated communication) is possible on the network N if there exists a communication mechanism M on N such that for all utility profiles of the sender, receiver and intermediaries, for all distributions µ ∈ E d (resp., µ ∈ CE d ) of all sender-receiver games, there exists a weak perfect Bayesian equilibrium σ of Γ(M, N ) satisfying:

marg A×Ω P σ = µ.
In other words, if PBE implementation of direct communication (resp. mediated communication) is possible on a network, it means that it is possible to replicate any equilibrium outcome of the direct (resp., mediated) game via intermediated (not to be confused with mediated) communication between the sender and the receiver, without the need for a trusted mediator, and regardless of the preferences of the intermediaries.

The solution concept is PBE, i.e., whenever possible, beliefs are consistent with Bayes rule. As we shall see later, none of our arguments relies on "crazy" off-equilibrium path beliefs. Moreover, stronger solution concepts, such as sequential equilibrium, are generally not defined for arbitrary games as ours. (Remember that we only require the sets of states, actions, and messages to be Polish.) 6 

THE THEOREM

This section characterizes the networks, for which the PBE of direct and mediated communication is possible. We now illustrate, with the help of a simple example, some of the difficulties the requirement of sequential rationality introduces. (Recall that the literature on unmediated communication on networks has not imposed the requirement of sequential rationality so far. 7 ) Suppose that there are two states and two actions. The sender and receiver want to match the state, while the intermediaries want to un-match the state. Clearly, there [START_REF] Ben-Porath | Correlation Without Mediation: Expanding the Set of Equilibria Outcomes by Cheap Pre-Play[END_REF] We consider a generalized version of PBE, where beliefs are updated using Bayes' rule whenever possible, with the use of regular conditional probabilities (similarly to the distributional strategies as in [START_REF] Crawford | Strategic Information Transmission[END_REF].

exists an equilibrium of the direct communication game, where the sender truthfully reveals the state and the receiver matches the state. The equilibrium distribution is the least preferred outcome of any intermediary -any other distribution is strictly preferred.

Thus, if an intermediary deviates at a stage in the indirect communication game, the deviation must not change the distribution to be non-profitable. Now, at any information set which follows the deviation, sequential rationality dictates that no other intermediary must have a profitable deviation either, i.e., no other intermediary must be able to change the distribution. Therefore, not only the correct distribution must be implemented at all on-path histories, but also at histories which are reachable via sequences of unilateral deviations. This observation motivates the notion of strong reliability, which we introduce next. We will prove that strong reliability on a network is in fact equivalent to the PBE implementation of direct, and mediated, communication on that network.

Strong reliability. Consider the following alternative problem: the sender wishes

to transmit the message m ∈ M , a realization of the random variable m with distribution ν, to the receiver, through the network N . We want to construct a protocol, i.e., a communication mechanism and a profile of strategies, such that the receiver correctly "learns" the message sent at all terminal histories consistent with unilateral deviations.

Before introducing formally the concept of strong reliability, we define what we mean by "consistent with unilateral deviations." Fix a strategy profile σ. We define Σ(σ) as the set of strategy profiles such that σ ′ ∈ Σ(σ) if, and only if, there exists a sequence of

intermediaries (i 1 , . . . , i t , . . . ) such that σ ′ t = (σ ′ it,t , σ -it,t
) for all t. Thus, Σ(σ) consists of all strategy profiles consistent with at most one intermediary deviating at each stage.

Note that the same intermediary may deviate at several, or even all, stages. We let

H(σ) be the set of terminal histories consistent with Σ(σ), that is, h ∈ H(σ) if there exists σ ′ ∈ Σ(σ) such that h is in the support of P σ ′ .
We are now ready to define the concept of strong reliability on a network. Definition 2. Transmission of messages is strongly reliable on the network N if there exist a protocol σ and a decoding rule m d :

H T +1 R → M such that P σ ′ h T +1 R : m d (h T +1 R ) = m m = m = 1, for all σ ′ ∈ Σ(σ), for all m.
The study of the reliable transmission of messages on networks is not new, see Dolev messages. An important feature, however, is that the adversary controls the same k nodes throughout the execution of the protocol. This is a natural assumption in Computer Science, where communication is nearly instantaneous. An adversary would not have the time or capacity to take control of different nodes during the execution of the communication protocol. 8 A distinctive feature of our analysis is to consider a dynamic adversary, i.e., an adversary which controls a different set of nodes at each round of the execution of the protocol. (However, we limit our attention to singletons, i.e., k = 1.) To the best of our knowledge, this is new.

The notion of strong reliability has a clear and strong motivation. We want the transmission of messages to be reliable not only in the case of errors and unintentional mistakes, but also in the case of intentional manipulations. For instance, without our notion of strong reliability, if a single e-mail were to not reach its recipients, this would entirely disrupt the communication. And if the content of a single e-mail were to be modified, an entirely different message would be transmitted. Strong reliability guarantees that the communication is resilient to these events.

The network in Figure 1 illustrates some of the difficulties with the requirement of strong reliability. There are three disjoint paths from the sender to the receiver, so it is tempting to use a majority argument. That is: to have the sender transmit his message to intermediaries 1, 2 and 3, and to have all intermediaries forward their messages.

If the intermediaries are obedient, then the receiver obtains three identical copies of the message sent and thus learns it. Suppose now that the sender wishes to transmit the message m. If intermediary 1 reports m ′ ̸ = m at the first stage and intermediary 8

Formally, the reliable transmission of messages requires that

P (σ ′ i ,σ-i) {h T +1 R : m d (h T +1 R ) = m} m = m = 1 for all σ ′
i , for all i ∈ I. This is a weaker requirement that strong reliability.

5 reports m ′′ ̸ = m at the second stage, the receiver then faces the profile of reports (m ′ , m ′′ , m). Thus, we need the receiver to decode it as m. However, the receiver would receive the same profile of reports (m ′ , m ′′ , m) when the sender wishes to transmit the message m ′ , intermediary 3 reports m and intermediary 5 reports m ′′ . Since the receiver would decode it as m, he would learn the wrong message. Such a simple strategy does not work in general. 9 We will need a more sophisticated construction. the one we construct, we will show that strong reliability implies sequential rationality (see the discussion just before Section 3.4).

R

The main result.

We can now state our main result.

Theorem 1. The following statements are equivalent.

(1) PBE implementation of mediated communication is possible on the network N .

(2) PBE implementation of direct communication is possible on the network N .

(3) Transmission of messages is strongly reliable on the network N .

9

This simple strategy works if there are enough disjoint paths. In that example, we need two additional disjoint paths.

(4) The network N admits two disjoint paths between the sender and the receiver.

Theorem 1 states that if there are two disjoint paths between the sender and the receiver in the network, then PBE implementation of mediated communication is possible. In other words, we can replicate the mediator through unmediated communication.

This implies that the sender and the receiver may be better off communicating through intermediaries, rather than directly (see [START_REF] Forges | Correlated Equilibria in a Class of Repeated Games with Incomplete Information[END_REF], for an example where both the sender and the receiver are better off with mediated communication than with direct communication). The theorem also states that the connectivity requirement to implement the communication equilibria is no stronger than the one required to implement the Bayes-Nash equilibrium of the underlying sender-receiver game. (1) ⇒ (4), ( 2) ⇒ (4) and (3) ⇒ (4). It is easy to see that Statement (4) of Theorem 1 is necessary for all other statements to be satisfied. Indeed, if no two disjoint paths between the sender and the receiver exist, there exists an intermediary, who controls all the information transiting between the sender and the receiver. In graph-theoretic terms, the intermediary is a cut of the graph. In games where the sender and the receiver have perfectly aligned preferences, but the intermediaries have opposite preferences, the "cut" can then simulate the histories of messages he would have received in a particular state and behave accordingly. Thus, even in games with perfectly aligned preferences, neither strongly reliable transmission nor wPBE implementation of direct communication holds if there is a "cut" (and, a fortiori, neither wPBE implementation of mediated communication).

(4) ⇒ (3). We prove that if there are two disjoint paths between the sender and the receiver in N , then strong reliability is possible. This is the most important part of the proof, which we now explain in detail.

Suppose that the sender wishes to send the message m to the receiver. We want to find a protocol (a communication mechanism and a strategy profile) such that the receiver correctly learns the message m not only at all on-path histories, but also at all histories consistent with at most one intermediary deviating at each stage of the protocol. We show that such a protocol exists when there are two disjoint paths between the sender and the receiver. Moreover, the receiver learns the message after at most 1 + (n C -3)(2n C -3) stages, where n C is the number of nodes on the two shortest disjoint paths from the sender to the receiver (including the sender and the receiver). We now illustrate our protocol with the help of the network in Figure 2, where n C = 4. (The protocol we construct is slightly more complicated, but they share the same properties.)

R 2 S 1 FIGURE 2.

Illustration of Theorem 1

A similar example for Nash implementation (not requiring any sequential rationality nor strong reliability) has been studied by [START_REF] Franklin | Secure Communication in Minimal Connectivity Models[END_REF] and Renault andTomala (2004, 2008) independently. The basic idea of their protocol is for the sender to broadcast m to intermediaries 1 and 2, who are then supposed to broadcast it, along with authentication keys. Thus, if the receiver observes two identical messages from intermediaries 1 and 2, he decodes it as the correct message. If, however, intermediary 1 (resp., 2) broadcasts message m ′ ̸ = m (a deviation), the sender then broadcasts 1's authentication key to intermediaries 1 and 2, with intermediary 2 (resp., 1) broadcasting it at the next stage. Thus, upon matching 1's authentication key received from intermediary 1 (at the second stage) and intermediary 2 (at the fourth stage), the receiver correctly learns that intermediary 1 (resp., 2) is the deviator and decodes the message as m. While simpler than ours, this protocol is not strongly reliable. If intermediary 2 does not correctly broadcast the authentication key of intermediary 1, the receiver does not learn the correct message. In addition, since intermediary 2 (resp., 1) learns whether intermediary 1 (resp., 2) deviated, we cannot guarantee sequential rationality.

In adversarial problems, intermediary 2 would also deviate after observing the deviation of intermediary 1. To the best of our knowledge, none of the previous contributions are able to address that issue and, ultimately, to emulate the mediator.

Our communication protocol circumvents this issue by adding repetition: new authentication keys are drawn at each stage, and the receiver will only analyzes messages that he has received several times from an intermediary. This latter requirement ensures that evidence in favor of a deviation (via authentication keys) will actually be transmitted by the other intermediary; indeed, at the stages where the first intermediary keeps sending the same false message, then other players are not deviating at these stages and his authentication key has time to be transmitted trough the other disjoint path of the network. Hence, the receiver cannot learn a false message (see Lemma 1 in the appendix). Moreover, this requirement of analyzing several messages cannot be too large in order for the receiver to learn the message; in particular, a deviator cannot distract the protocol with false alerts of deviation (see Lemma 2 in the appendix).

Formally, our protocol has six stages, which we now describe. To start with, the sender broadcasts the message m to intermediaries 1 and 2 at stage t = 1. At all other stages t = 2, . . . , 6, the protocol requires the intermediaries to broadcast the message m and an authentication key x t i , where x t i is the authentication key of intermediary i at stage t, an uniform draw from [0, 1], independent of all messages the intermediary has sent and received. Finally, if the sender observes intermediary i broadcasting a message m ′ ̸ = m at stage t, the sender broadcasts the triplet (i, t, x t i ) at stage t + 1 (in addition to his other messages). We interpret the triplet (i, t, x t i ) as stating that intermediary i has deviated at stage t and his authentication key is x t i . If an intermediary receives the triplet (i, t, x t i ) at stage t + 1, the protocol requires the intermediary to broadcast that triplet at all subsequent stages. The receiver does not send messages. At the end of the six stages, the receiver decodes the message as follows. If at any stage, the receiver has received the same message from both intermediaries, then he decodes it as being the correct message. In all other instances, if the receiver has received the same message m i from intermediary i at stages t 1 , t 2 and t 3 (t 1 < t 2 < t 3 ), and he has not received the triplet (i, t 1 , x t 1 i ) from the other intermediary by stage t 3 , then he assumes that the correct message is m i . 10 We now argue that the protocol guarantees the strong reliability of the transmission.

To start with, since at most one intermediary deviates at any stage, the protocol guarantees that the receiver obtains at least one sequence of three identical messages from either intermediary 1 or 2 (the stages in the sequence need not be consecutive). Moreover, if at any stage, the receiver obtains the same message from both intermediaries, it must be the correct message (since at least one intermediary is broadcasting the correct 10 Equivalently, the receiver assumes that the correct message is m i when he has received m i from intermediary i at stages t 1 , t 2 and t 3 , and all triplets (i, t 1 , y t1 i ) received from the intermediary 3 -i by stage t 3 are such that y t1 i is different from x t1 i , the authentication key received from i at stage t 1 .

message). So, assume that the receiver obtains the message m i from intermediary i at stages t 1 , t 2 and t 3 (t 1 < t 2 < t 3 ). If m i ̸ = m (hence intermediary i is deviating at stages t 1 , t 2 and t 3 ), the protocol requires the sender to broadcast the triplet (i, t 1 , x t 1 i ) at stage t 1 +1 ≤ t 2 . The protocol also requires intermediary j ̸ = i to broadcast the triplet (i, t 1 , x t 1 i ) at all stages after having received it. Hence, the receiver obtains the triplet at stage t 3 at the latest. Indeed, since intermediary i is deviating at the stages (t 1 , t 2 , t 3 ), intermediary j ̸ = i cannot be deviating at t 2 and t 3 . Since the authentication key received from intermediary j at either t 2 or t 3 matches the key received from intermediary i at t 1 , the receiver learns that the message m i is not correct. The correct message must therefore be the one broadcasted by intermediary j at stage t 1 , that is, m. Alternatively, if m i = m, the sender does not broadcast the triplet (i, t 1 , x t 1 i ). Intermediary j may pretend that the sender had sent the triplet (i, t 1 , y t 1 i ) at stage t 1 + 1. However, the probability that the reported authentication key y t i matches the actual authentication key x t i is zero and, therefore, the receiver correctly infers that the message is m.

We now preview some secondary aspects of the above construction. First, the protocol is robust to deviations by the sender at all stages but the initial stage (where the sender broadcasts m). Indeed, if the sender deviates at stage t ≥ 2, the two intermediaries don't, and the receiver then correctly learns the message. Similarly, it is trivially robust to deviations by the receiver at all stages but the last one. The protocol we construct shares these two properties, which are key in proving that (4) ⇒ (1) as we shall see.

Second, the protocol starts with the two immediate successors of the sender on the two disjoint paths to the receiver learning the message m. At the end of the communication protocol, the receiver also learns the message. In general, the receiver is not the immediate successor of these intermediaries; other intermediaries are. The key step in our construction is to show that at least one of the immediate successors of these intermediaries correctly learns the message at the end of a first block of communication.

Therefore, as the protocol goes through blocks, the receiver eventually learns the message. Moreover, each block has 2n C -3 stages. (Recall that n C is the total number of nodes on the two disjoint paths from the sender to the receiver, including them.) Thus, the receiver learns the message in at most 1 + (2n C -3)(n C -3) stages, where the two immediate successors of the sender learns m immediately and then each of the remaining n C -3 players, who do not know m yet, learns the message progressively over time.

(4) ⇒ (1). The gist of the proof consists in repeatedly using the protocol constructed above to simulate the mediator, with the help of jointly controlled lotteries. To get a flavor of our construction, let us again consider the network in Figure 2. Assume that Ω and A are finite sets. Fix a canonical communication equilibrium φ : Ω → ∆(A). For all ω ∈ Ω, let A ω be a partition of [0, 1] into |A| subsets, with the subset A ω (a) corresponding to a having Lebesgue measure φ(a|ω). 11The protocol has three distinct phases. In the first phase, the sender broadcasts the state ω to the intermediaries 1 and 2. The second phase replicates the communication device. To do so, the sender and intermediary 1 simultaneously choose a randomly generated number in [0, 1]. Let x and y be the numbers generated by the sender and intermediary 1, respectively. Players then follow a strongly reliable communication protocol constructed above, which makes it possible for intermediary 1 to strongly reliably transmit y to intermediary 2 since there are two disjoint paths between them on the same circle. 12 Thus, at the end of the second phase, the sender and both intermediaries know ω, x and y, while the receiver only knows y. The third phase starts once the sender and both intermediaries have learnt x and y. 13 At the first stage of the third phase, the sender and the intermediaries simultaneously compute x + y (mod [0, 1]), output the recommendation a if x + y (mod [0, 1]) ∈ A ω (a), and each starts a copy of the communication protocol constructed above to strongly reliably transmit the recommendation to the receiver. Thus, the three communication protocols are synchronized and start at the very same stage. At the end of the third phase, the receiver learns the recommendations sent by the sender and both intermediaries. Since at most one of them can deviate at the stage where they broadcast their recommendation, the receiver decodes at least two identical recommendations and plays it.

It is then straightforward, albeit tedious and cumbersome, to define belief systems to guarantee the sequential rationality of the equilibria we construct. To see this, let σ be a Nash equilibrium of the communication game we construct. There are four strongly reliable protocols which are run independently one from another, so we can consider them separetely. For each such protocol, consider any history h t i consistent with unilateral deviations, i.e., there exists σ ′ ∈ Σ(σ) such that h t i is in the support of P σ ′ . If intermediary i's belief at h t i is the "conditioning" of P σ ′ on h t i , then strong reliability implies sequential rationality. Indeed, for all σ ′ ∈ Σ(σ), for all σi , the concatenated

strategy profile ⟨σ ′ , (σ i , σ -i )⟩ = ((σ ′ t ′ ) t ′ <t , (σ i,t ′ , σ -i,t ′ ) t ′ ≥t
) is consistent with unilateral deviations, i.e., ⟨σ ′ , (σ i , σ -i )⟩ ∈ Σ(σ). Strong reliability thus implies that P ⟨σ ′ ,(σ i ,σ -i )⟩ = µ, that is, P (σ i ,σ -i ) (•|h t )P σ ′ (h t ) = µ for all σi , for all σ ′ ∈ Σ(σ). Intermediary i is therefore indifferent between all his strategies at h t i (since his belief about h t is P σ ′ (h t |h t i )). Since the argument does not rely on the specific σ ′ ∈ Σ(σ) we select, we have sequential rationality with respect to any belief system, which is fully supported on the histories consistent with unilateral deviations at h t i . In other words, as long as the intermediary believes that at most one player deviated at each of all past stages, we have sequential rationality at h t i . Similarly, the equilibria we construct are also robust to deviations by the sender and receiver at all stages but the first one, where the sender sends the message, and the last one, where the receiver chooses an action. Therefore, we also have sequential rationality at all histories h t S and h t R . Finally, at all other histories, it is easy to construct beliefs and actions to guarantee sequential rationality. (See Section B.2 for detail.) (4) ⇒ (2). This follows immediately from the previous step since E d ⊆ CE d (hence, (1) ⇒ (2)). Notice, however, a simpler construction is possible since there is no need to emulate the mediator. We can directly use the communication protocol we construct to prove (4) ⇒ (3) in order to (strongly) reliably transmit the message m to the receiver, where m is drawn with probability σ * S (m|ω) the equilibrium strategy of the direct communication game. Finally, observe that if there are three disjoint paths from the sender to the receiver as in Figure 1, a simpler majority argument works. It suffices to have the sender sends the message m on each path. Since no intermediary observes what others do on the other paths, no intermediary has a profitable deviation, and sequential rationality is guaranteed. Naturally, such an argument does not work if there are only two paths and, most importantly, does not make it possible to emulate the mediator, which is our core contribution.

3.4.

Remarks. We conclude this section with some observations about our analysis.

First, we allow for rich communication possibilities, most notably, that players are able to broadcast messages to any subset of neighbors. This is necessary for our results to hold. For instance, if players can only send private messages (unicast communication), then reliable transmission of messages, let alone strong reliability, is impossible, on the network in Figure 2. See [START_REF] Dolev | Perfectly Secure Message Transmission[END_REF] or [START_REF] Beimel | Reliable Communication Over Partially Authenticated Networks[END_REF].

Similarly, if players can only send public messages (broadcast communication), reliable transmission of messages, let alone strong reliability, is impossible on the network in While the formal proofs of these two impossibilities are involved, the intuition is that the receiver is unable to distinguish between two types of histories: histories where intermediary 1 is pretending that the message is m ′ and intermediary 2 is deviating, and histories where intermediary 2 is pretending that the message is m and intermediary 1 is deviating. The key is that an intermediary can simulate fictitious histories, i.e., histories of messages sent and received when the message is any m, and behave accordingly.

As is clear from the example, the protocol we construct makes it possible for the receiver to distinguish these two types of histories. If intermediary 1 deviates and pretends that the message is m ′ , the receiver correctly infers that intermediary 2 is not deviating. This requires to broadcast messages to selected subsets of neighbors. Second, our protocol does not restrict the messages players can broadcast to any subset of their neighbors. E.g., in addition to the messages our protocol requires the intermediaries to broadcast, the intermediaries can also send private messages to the sender and the receiver. The equilibrium we construct simply treats these additional messages as uninformative (babbles).

Third, we use authentication keys. While their use is ubiquitous in online retailing, it is less so in the daily activities of most organizations. Their only purpose, however, is to insure that a group of individuals share a common information, which can only be known by individuals outside the group if it is told to them by one member of the group.

For instance, at a meeting, the common information can be the color of the tie of the meeting's chair or the identity of the second speaker.

Fourth, a detailed knowledge of the communication network is not needed. To execute our protocol, a player on one of the path from the sender to the receiver only needs to know his two immediate neighbors on the path and the total number of players on the two disjoint paths. Hence, only local information is needed to perform the protocol.

Fifth, we have assumed throughout that the sender and the receiver are not directly connected. We now discuss how our results would change if the sender and the receiver can also communicate directly. The equivalence between statements (2), (3) and a variation of (4) of Theorem 1 extends immediately. More precisely, we would have that PBE implementation of direct communication is possible (resp. transmission of messages is strongly reliable) if, and only if, either the sender and receiver are directly connected or there exist two disjoint paths between the sender and the receiver. The extension of the equivalence to Statement (1) in Theorem 1 is more delicate. To start with, notice that if the direct link is the only link between the sender and the receiver, then there is no hope to replicate the mediator, as all communication would be direct. We need to be able to intermediate the communication. We claim that if there are at least two intermediaries, labelled 1 and 2, such that the sender, the receiver and the two intermediaries are on a "circle," then PBE implementation of mediated communication is possible. 14 An informal proof is given in Appendix C. We don't know whether the condition of having at least two intermediaries such that the sender, the receiver and the two intermediaries are on a "circle," is necessary. We conjecture that it is.

CONCLUDING REMARKS

Our analysis extends to communication games with multiple senders. More precisely, consider a direct communication game, where senders receive private signals about a payoff-relevant state, send messages to the receiver, and the receiver takes an action. If there exist two disjoint paths of communication from each sender to the receiver, we can then replicate our analysis to PBE implement any equilibrium distribution of the direct communication game. The key is to have all senders broadcast their messages at the first stage and then to run copies of our protocol in parallel. Learning from one protocol does not have any impact on other protocols, hence this guarantees that the receiver learns the correct messages. We stress, however, that it is essential that all senders move simultaneously at the first stage, otherwise, their incentives might change if they have learnt messages of other senders before sending theirs, compared to the direct communication game.

By contrast, extending our analysis to communication games with multiple receivers is very challenging. A first approach would be to increase the connectivity of the network: if there are two disjoints paths from the sender to each receiver, all these paths being disjoints one from another, then our analysis extends to this case easily. However, this requires much connectivity, as there is a need of 2R disjoints paths with R the number of receivers. A second direction would be to have a strongly reliable communication protocol with the additional property of secrecy in the sense that intermediaries do not learn the messages sent by the sender while performing the protocol. Our protocol clearly does not have that property. We conjecture that more disjoint paths would be necessary to construct such a protocol, but maybe less than in the first approach above. This is a challenging question which is left for future research.

Finally, while we do not consider the possibility of k faults/deviations at each stage, we conjecture that our main ideas extend to this situation. (Naturally, the sender and the receiver cannot be faulty.) To see this, consider the network in Figure 4, where there are k + 1 reporting lines between the sender and the receiver.

R k + 1 S 1 2 k FIGURE 4. k + 1 reporting lines
We now explain how to adapt our construction. As in Section 3, we continue to assume that the sender and the intermediaries broadcast the message to be transmitted and authentication keys at each stage. In addition, if an intermediary receives the triplet (i, t, x t i ) at a stage, he broadcasts it at all subsequent stages. We also require the receiver to validate a sequence of three identical messages from intermediary i, received at stages t 1 , t 2 and t 3 , only if he has not received the authentication key x t 1 i at stage t 3 or earlier from intermediary j ̸ = i. Unlike our original construction, however, we require the communication to last 1 + [2(k + 1) + 1] stages. Intuitively, we need to extend the communication to guarantee that there is at least one intermediary sending the same message three times. Since at most k intermediaries deviate at a stage, at least one intermediary is transmitting the correct message at each stage and, therefore, after 2(k + 1) + 1 stages, at least one intermediary has transmitted the correct message three times to the receiver. Thus, as in our original construction, the receiver never validates an incorrect message (since he will receive the correct authentication key from at least one intermediary) and is guaranteed to validate the correct message (since he is guaranteed to receive three times the correct message and not the authentication key).

Whether we can extend our arguments to all sufficiently connected networks is left for future research.

APPENDIX APPENDIX A. MATHEMATICAL PRELIMINARIES

Unless indicated otherwise, all sets X are complete separable metric spaces, endowed with their Borel σ-algebra B X . We write ∆(X) for the set of probability measures on X.

Let X and Y be two complete separable metric spaces. A probability kernel is a function 

f : Y × B X → [0, 1] such that (i) for all y ∈ Y , f (y, •) : B X → [0, 1]

B.1. Proof that Statement (4) implies Statement (3).

We prove here that two disjoints paths between the sender and the receiver is a sufficient condition for the transmission of messages to be strongly reliable. Assume that the network N admits two disjoint paths between the sender and the receiver, and denote the two shortest paths by S, i 1 , . . . , i K , R and S, j 1 , . . . , j K ′ , R respectively, for some K, K ′ ≥ 1. We let P be the set of nodes on these two paths, including the sender and the receiver, and let n C be its cardinality. Throughout, we refer to these two paths as the "circle," with the nodes {S, i 1 , • • • , i K , R} (resp.,{S, j 1 , . . . , j K ′ , R}) as the "left side of the circle" (resp., "right side of the circle"). For each player p ∈ P \ {S, R}, we call the successor of p, denoted p + , his immediate successor on the path to the receiver. Similarly, we call the predecessor of p, denoted p -his immediate predecessor on the path to the sender. E.g., if p = i k for some 1 ≤ k ≤ K, p + = i k+1 and p -= i k-1 , with the convention that i 0 = S and i K+1 = R. The sender and the receiver have a special position since they participate to communication on both paths and therefore their neighbors need to play both the roles of predecessors and successors. In particular, if p = R and p -= i K (resp, j K ′ ), then p + = j K ′ (resp., p -= i K ). The same reasoning applies for the sender. However, as will be clear later, whenever i 1 (resp., i K ) plays the role of a predecessor, then j 1 (resp., j K ′ ) plays the role of the successor and, conversely. Thus, we mostly focus on messages flowing from the sender to the receiver. However, messages will also need to flow in the other direction. B.1.1. The communication protocol (M, σ). Throughout, we write [1 : T ] for {1, . . . , T }.

The message space. Remember that M is the set of messages in the direct communication game and let m 0 / ∈ M be an arbitrary message, interpreted as a null message. The set of messages player i ∈ I * can broadcast to the subset

N i ∈ 2 N i \ {∅} is: M i,N i = M ∪ {m 0 } × [0, 1] × × j∈N i {∅} {j} × [1 : T ] × [0, 1] × × j∈I * \N i {∅} {j} × [1 : T ] × [0, 1] L , with L = 1 + (n C -3)(2n C -3).
The set of messages player i can send is × N i ∈2 N i \{∅} M i,N i . In words, each player can broadcast to any subset of his neighbors a grand message composed of: (i) a message m ∈ M or the null message m 0 , (ii) a number in [0, 1] and (iii) a tuple of triplets, each of them being composed of the name of a player, a stage, and a number in [0, 1]. Crucially, player i can send a single triplet about each of his neighbors at each stage. However, player i can send several triplets (at most L) about the other players. In other words, at each stage, player i can send a list of triplets to his neighbors N i , but no list includes more than one triplet about j ∈ N i .

The strategies of the players. For any player p / ∈ P, the protocol requires them to broadcast (uniformly) randomly drawn messages in M i,N i at each stage t to each subset of neighbors N i ∈ 2 N i \ {∅}, independently of all messages received and sent up to stage t. In words, they are babbling.

We now define the strategy for player p ∈ P. We focus on the messages they broadcast to their neighbors on the circle, i.e., to N p ∩ P. To all other subsets of neighbors, they send randomly generated messages, independently of the histories of messages sent and received, i.e., they babble. In what follows, when we say that player p broadcasts a message, we mean that he broadcasts the message to the subset {p -, p + }. Remember that for S (resp., R), {p -, p + } = {i 1 , j 1 } (resp., {i K , j K ′ }).

• Authentication keys: At each stage t ≥ 1 of the communication protocol, p broadcasts a uniformly drawn message x t p in [0, 1] to his neighbors on the "circle," that is, to the two players in N p ∩ P: this message x t p is called the authentication key of player p at stage t.

• First stage: At stage t = 1, the sender broadcasts the message m to his neighbors on the circle, i.e., to i 1 and j 1 , along with his authentication key. All other players broadcast m 0 to their neighbors on the circle (along with their authentication keys).

• Subsequent stages: Starting from stage t = 2 onwards, the protocol proceeds in -Transmission of the sender's message: * if p knows the message m at the beginning of the block, that is, either p is in {S, i 1 , j 1 } or p has learnt the message m at the end of the previous block (see below, where the decoding rule at the end of each block is defined), then p broadcasts the message m to his neighbors p -and p + at all stages t b , . . . , t b + 2n C -4 of the current block (the neighbors of S are i 1 and j 1 ); * if p does not know the message m at the beginning of the block, then p broadcasts m 0 to his neighbors p -and p + at all stages t b , . . . , t b + 2n C -4 of the current block.

(Remember that p also sends an authentication key.) -Detection of deviations: * if p detects his successor p + making a false announcement about the message m ∈ M at some stage t ∈ {t b , . . . , t b + 2n C -4}, that is,

• either p knows m ∈ M and p + broadcasts at stage t the message m ∈ M \ {m}, interpreted as "player p + is broadcasting the false message m,"

• or p does not know the message m and p + broadcasts at stage t the message m ∈ M , interpreted as "player p + is broadcasting the message m although he cannot know it," then p broadcasts the triplet (p + , t, x t p + ) to player p -and to p + , where x t p + is the true authentication key broadcasted by p + at t. Note that if p = S (resp., R), then p + is either i 1 or j 1 (resp., i K or j K ′ ). * if p does not detect his successor p + making a false announcement about the message m ∈ M at some stage t ∈ {t b , . . . , t b + 2n C -4}, then p broadcasts the triplet (p + , t, y) to p -and p + , where y is randomly drawn

from [0, 1].
The key observation to make is that only players p and p ++ know the true authentication key of p + at stage t. Therefore, p ++ can authenticate whether p + deviated at some stage t by cross-checking the authentication key x t p + received from p + at t with the key broadcasted by p (and having transited on the circle in the opposite direction).

-Transmission of past deviations: * If p ̸ = i 1 is on the left side of the circle and receives at some stage t ∈ {t b , . . . , t b + 2n C -4}

• from p + a message containing the triplet (p ′ , d, x d p ′ ), t b ≤ d < t with p ′ on the left side of the circle, then p broadcasts the message to p - and p + at stage t + 1.

• from p -a message containing the triplet (p ′ , d, x d p ′ ), t b ≤ d < t with p ′ on the right side of the circle, then p broadcasts the message to p -and p + at stage t + 1. * Similarly, if p ̸ = j 1 is on the right side of the circle and receives at some stage t ∈ {t b , . . . , t b + 2n C -4}

• from p + a message containing the triplet (p ′ , d, x d p ′ ), t b ≤ d < t with p ′ on the right side of the circle, then p broadcasts the message to p -and p + at stage t + 1.

• from p -a message containing the triplet (p ′ , d, x d p ′ ), t b ≤ d < t with p ′ on the left side of the circle, then p broadcasts the message to p - and p + at stage t + 1. * If p = i 1 (respectively p = j 1 ) receives from p + a message containing the triplet (p ′ , d, x d p ′ ), t b ≤ d < t with p ′ on the left side of the circle (respectively with p ′ on the right side of the circle), then p broadcasts the message to p -and p + at stage t + 1. * If p = i 1 (respectively p = j 1 ) receives from p -= S at some stage t ∈ {t b , . . . , t b + 2n C -4} a message containing the triplet (p ′ , d, x d p ′ ), with t b ≤ d < t and p ′ on the right side of the circle (resp., on the left side of the circle), then three cases are possible:

(i): If p ′ ̸ = j 1 (resp., p ′ ̸ = i 1 )
, then p broadcasts it to both p -= S and p + = i 2 (resp., p + = j 2 ) at stage t + 1.

(ii): If p ′ = j 1 (resp., p ′ = i 1 ) and p = i 1 (resp., p = j 1 ) has not received the triplet (p, d, x d p ), then p = i 1 (resp., p = j 1 ) broadcasts the triplet

(j 1 , d, x d j 1 ) (resp., (i 1 , d, x d i 1 )) at stage t + 1. (iii): If p ′ = j 1 (resp., p ′ = i 1
) and p = i 1 (resp., p = j 1 ) has received the triplet (p, d, x d p ), then p = i 1 (resp., p = j 1 ) broadcasts the triplet (p ′ , d, y) at state t + 1, with y a random draw from [0, 1].

The intuition is that if p receives from S a message, which reads as "S claims that both i 1 and j 1 deviated at the same stage d," then S must be deviating (since under unilateral deviations, at most one player deviates at each stage), hence the protocol changes in the fact that i 1 and j 1 are not transmitted the message of the sender since they know this latter is deviating at this stage. * Auto-correcting past own deviations: if p has received the triplet d,x d p ′ ) at stage t ∈ {t b , . . . , t b + 2n C -5} but didn't forward it at stages t + 1, . . . , t + ∆, for some ∆ ≥ 1, then he forwards it at stage t + ∆ + 1. In words, the protocol requires a player to broadcast the triplet (p ′ , d, x d p ′ ) at stage t + 1 upon receiving it at stage t, to broadcast it at t + 2 if he fails to broadcast it at stage t + 1, to broadcast it at t + 3 if he fails to broadcast it at stage t + 1 and t + 2, etc, so that unless the player deviates at all stages t ′ ≥ t + 1, the triplet is broadcasted at some stage during the block.

(p ′ ,
The decoding rule. The decoding rule describes how messages are analyzed at the end of each block. Players not in P do not analyze their messages. Consider now the players in P. First of all, we say that a player knows a message m in two cases: either he is a neighbor of the sender and he receives the sender's message at stage 1 , or he decodes a message as correct according to the protocol in some block.

At the beginning of block B 1 , the sender and his two neighbors i 1 and j 1 know the message m broadcasted by the sender at stage t = 1. At the end of each block, only players who do not know yet m analyze the message received during the block. Thus, only the players in P \ {S, i 1 , j 1 } analyze messages at the end of the block B 1 . (The gist of our arguments is to show that the set of players who know m at the end of a block is strictly expanding over time and, ultimately, includes the receiver.) Thus, consider player p, who does not know yet m at the beginning of the block B b . At the end of the block B b , he analyzes messages as follows:

• If p has received during the block (n C -1) times a grand message containing the same message m ∈ M from his predecessor p -, let say at stages d 1 , . . . ,

d n C -1 , where t b ≤ d 1 < d 2 < • • • < d n C -1 ≤ t b + 2n C -4,
• and if p has not received by stage d n C -1 at the latest from his successor p + the message (p -, d 1 , x d 1 p -) where x d 1 p -matches the value of the authentication key received by p from p -at stage d1, then, player p learns the message m and starts the next block B b+1 as a player who knows m. Otherwise, player p does not learn the message. Moreover, once a player knows the message m, he knows it at all the subsequent blocks. At all other histories, the strategies are left unspecified. B.1.2. Two key properties of the protocol. The protocol we construct has two key properties. The first property states that no player p ∈ P learns incorrectly, that is, if player p ∈ P learns a message, the message is indeed the one the sender has sent. Lemma 1 is a formal statement of that property.

Lemma 1.

Let m ∈ M be the message broadcasted by the sender to i 1 and j 1 at stage t = 1. If at most one player deviates from the protocol at each stage, then it is not possible for player p ∈ P to learn m ′ ∈ M \ {m}.

Proof of Lemma 1. By contradiction, assume that player p ∈ P learns m ′ ∈ M \ {m} at the end of some block B b , b ≥ 1. Without loss of generality, assume that p is the first player to learn m ′ on the path from S to R where p lies.

Proof of Lemma 2. Given a finite set M , we denote by |M | its cardinality. To ease notation, let i := i k and j := i k ′ . We want to prove that either i + or j + learns the message at the end of the block B b = {t b , . . . , t b + 2n C -4}. The proof is by contradiction. So, assume neither i + nor j + learns the message at the end of the block. Fix a strategy profile σ ′ ∈ Σ(σ). Denote by D i the stages where player i is deviating from σ, by D i -the stages where player i -is deviating, by D j the stages where player j is deviating and by D j -the stages where player j -is deviating. From the definition of Σ(σ), the sets D i , D i -, D j and D j -are pairwise disjoints (by definition, we consider histories with unilateral deviations at each stage only). In particular, Remember that player i -can broadcast at most one authentication key about player i at each stage. Therefore, since there are n C -|D i | -1 such sequences, player i -must deviate at least n C -|D i | -1 times for player i + to not learn m, that is,

|D i | + |D i -| + |D j | + |D j -| ≤ |D i ∪ D i -∪ D j ∪ D j -| ≤ 2n C -3. (1 
|D i -| ≥ n C -|D i | -1. (2) 
It follows that

|D i | + |D i -| ≥ n C -1. (3) 
Assume now that ℓ * i < n C -1. We have that 3) is also satisfied.

|D i | = (2n C -3)-ℓ * i > 2n C -3-n C +1 = n C -2, hence |D i | ≥ n C -1. Inequality (
A symmetric argument applies to the pair of player j and player j -, hence

|D j | + |D j -| ≥ n C -1, (4) 
since player j + does not learn m either. Summing Equations (3) (4), we obtain that

|D i | + |D i -| + |D j | + |D j -| ≥ 2n C -2, (5) 
a contradiction with Equation ( 1). This completes the proof of Lemma 2. □

To conclude the proof, it is enough to invoke Lemmas 1 and 2, which guarantee that the receiver learns almost surely the message broadcasted by the sender provided there are more than n C -1 blocks.

B.2. Proof that Statement (4) implies Statement (1).

The proof is constructive and relies extensively on the use of the strongly reliable communication protocol (M, σ), constructed above. The informal idea is to generate jointly controlled lotteries between the sender and one of the two intermediaries i 1 or j 1 to generate a recommendation, which is then (strongly) reliably transmitted to the receiver.

As explained in the main text, when A is finite, any distribution µ over A can be generated by a jointly controlled lottery. The idea is to partition the interval [0, 1] into |A| sub-intervals, where the length of the sub-interval associated with a is µ(a). Let each ω to obtain a way to generate any strategy as a jointly controlled strategy. We have two technical complications to take care. First, the set A is an arbitrary complete and separable metric space and not finite. Second, the set Ω is an arbitrary complete and metric space, hence we need to ensure that this construction can be done in a measurable way. We first introduce a formal definition extending the notion of jointly controlled lottery to strategies and then prove its existence in our framework.

Definition 3. Let f : Ω × B A → [0, 1]. A jointly controlled kernel generating f is a triple (X, Y, ϕ) such that -X is a measurable function from a probability space (U, U, P) to ([0, 1], B [0,1] ),
-Y is a measurable function from a probability space (U, U, P) to

([0, 1], B [0,1] ),
-X and Y are independent, -and ϕ is a probability kernel function on

(Ω × [0, 1] × [0, 1]) × B A such that for every O ∈ B A (i) E [ϕ(ω, X, Y, O)] = f (ω, O), (ii) for every x ∈ [0, 1], E [ϕ(ω, x, Y, O)] = f (ω, O), (ii) 
and for every y ∈

[0, 1], E [ϕ(ω, Y, y, O)] = f (ω, O),
When Ω is a singleton, µ is the formalization of what we informally described as a jointly controlled lottery.

Proposition 1. For any probability kernel, f : Ω × B A → [0, 1], there exists a jointly controlled kernel (X, Y, ϕ) generating f . Moreover, the kernel ϕ is degenerated in the sense that for every (ω, x, y) ∈ Ω × [0, 1] × [0, 1], ϕ(ω, x, y, .) has only one atom.

Proof of Proposition 1. Let λ be the Lebesgue measure on [0, 1] and f : Ω×B A → [0, 1] be a probability kernel. We assume that A is uncountable which is without loss of generality up to an embedding.

Let us assume first that A = [0, 1]. We can define a quantile kernel: for every ω ∈ Ω, for every

x ∈ [0, 1] , θ(ω, x) = sup {t ∈ Q, f (ω, ] -∞, t[) < x} = sup t∈Q t1 f (ω,]-∞,t[)<x .
By construction for every x ∈ [0, 1], θ(., x) is measurable on Ω. Moreover, let Z be a uniform r.v over [0, 1], then for every ω ∈ Ω, the probability distribution of θ(ω, Z) is f (ω, .).

We can now define -X is a measurable function from a probability space (U, U, P) to

([0, 1], B [0,1] ),
-Y is a measurable function from a probability space (U, U, P) to Finally, we can show the result for any separable metric space. By assumption, (A, B A ) is Borel standard and therefore there is a Borel isomorphism ψ from (A,

([0, 1], B [0,1] ), inde- pendent of X -for every (ω, x, y) ∈ Ω × [0, 1] × [0, 1] and O ∈ B A , ϕ(ω, x, y, O) =      1 if θ(ω, x + y mod 1) ∈ O, 0 
B A ) to ([0, 1], B [0,1] )
such that the inverse is also measurable (Theorem 3.3.13, p. 99 in [START_REF] Srivastava | A course on Borel sets[END_REF].

Hence, we can define the kernel

f : Ω × B [0,1] → [0, 1] by f (ω, O) = f (ω, ψ(O))
By the previous part, we know that there exists a jointly controlled strategy (X, Y, ϕ) replicating f . It follows that (X, Y, ψ -1 • ϕ) is a jointly controlled strategy replicating f .

□

We now explain how to PBE implement mediated communication on the network N . Let τ * : Ω → ∆(A) be a canonical communication equilibrium of the direct communication game. From Proposition 1, for each ω, there exists a jointly controlled lottery (X ω , Y ω , ϕ ω ), which generates τ * (ω).

We let P be the players on the two disjoint path from the sender to the receiver. We now describe the strategies in the communication game: t = 1: The sender truthfully broadcasts the state ω to the intermediaries i 1 and j 1 .

t = 2:

The sender and intermediary i 1 draw a random number in [0,1] each. Let x (resp., y) the number drawn by the sender (resp., intermediary i 1 ). The sender and the intermediary i 1 broadcast (simultaneously) their random number.

t = 3, . . . , 2 + (2n C -3)(n C -3):
The players p ∈ P execute the protocol (M, σ) starting from its second stage, with i 1 in the role of the sender and j 1 in the role of the receiver and the message to be transmitted is y. The first stage of the protocol (M, σ) is not executed as the keys x and y were already broadcasted at t = 2.

Accordingly, unilateral deviations of i 1 cannot affect the message learnt by j 1 at the end of the protocol (M, σ)-j 1 learns the random number y.

t = 3 + (2n C -3)(n C -3):
The sender and the intermediaries i 1 and j 1 outputs a recommendation a ∈ A according to the jointly controlled kernel (X, Y, ϕ), that is, the recommendation is the unique action in the support of ϕ(ω, x, y) with ω the state broadcasted at t = 1. The three of them truthfully broadcast the recommendation.

t = 4 + (2n C -3)(n C -3), . . . , 5 + 2(2n C -3)(n C -3):
The players execute in parallel and independently three copies of the protocol (M, σ) with S, i 1 and j 1 in the role of the sender, respectively, and the message to be transmitted is the recommendation a. At the last stage, the receiver follows the recommendation made a majority of times, if any. (If there is no majority, then he chooses an arbitrary action.)

Since at stage t = 3 + (2n C -2)(n C -3), at most one of the three "senders" can deviate, the correct recommendation is sent at least twice. It follows that if the receiver is obedient, the receiver chooses the correct action at all histories consistent with unilateral deviations. Moreover, since the receiver observes neither ω nor x, he has no additional information about the state than in the direct communication game, hence he has an incentive to be obedient.

Clearly, in each iteration of the protocol (M, σ), no intermediary has an incentive to deviate since it would result in the same expected payoff: indeed, the protocol being strongly reliable, the "receiver" (of the protocol considered) learns the message sent by the "sender" (of the protocol considered) at all histories consistent with unilateral deviations. Also, the sender and intermediary i 1 have no incentive to deviate in stage t = 2 since it would not change the outcome of the jointly controlled lottery. Also, the sender and both intermediaries i 1 and j 1 have no incentive to deviate by broadcasting another recommendation than the one obtained by a jointly controlled lottery, as it would not be followed by the receiver who follows the recommendation made the other two (majority rule). Moreover, the sender has no incentives to deviate at the first stage when sending the state ω since the jointly controlled lottery generates the distribution of a canonical communication equilibrium of the direct game, and conditional on broadcasting ω at the first stage, the receiver receives τ * (ω) at all histories consistent with unilateral deviations, including deviations by the sender. Finally, the receiver has no incentive to deviate either. If he stops the game earlier, then his expected payoff is weakly lower as a consequence of Blackwell's theorem. Indeed, the only informative message about ω is τ * (ω) and stopping earlier is a garbling of τ * (ω).

Sequential rationality. We now prove that the profile of strategies constructed above satisfies sequential rationality. Notice first that no deviation can be observed at stages t = 1 and t = 2 since all messages are in the support of the players' strategies. Sequential rationality has then to be proven starting from stage 3, where the remaining of the communication game is composed of a first protocol where i 1 is the sender and j 1 the receiver, then three simultaneous protocols, where respectively the sender, i 1 and j 1 are the senders of these three protocols, and in all of them, the receiver remains the receiver.

As already argued in the text, in each of these subprotocols, sequential rationality is guaranteed at all histories consistent with at most one intermediary deviating at each stage of the communication game. We therefore focus our attention on all other histories, i.e., histories not in H(σ).

Each of these four subprotocols are run independently one from another, so we consider them separately. For each subprotocol, we first consider all intermediaries of this subprotocol (i 1 , . . . , i K ) and (j 1 , . . . , j K ′ ) (with an abuse of notation, as for instance in the first protocol, i 1 being the sender, the intermediaries are in fact (i 2 , . . . , j 1 ) and (S)). We treat the sender and receiver of this subprotocol separately.

Rebooting strategies. We say that player i reboots his strategy at period t if, from any history h t i / ∈ H i (σ) onwards, he follows the protocol as if he knows that the message is m 0 . That is, at history h t i , he broadcasts the message m 0 , an authentication key x t i , and random triplets (j, t j , x t j j ), j ∈ N i . At all subsequent histories consistent with at most one intermediary deviating from the protocol at each stage, player i continues to follow the protocol. That is, player i continues to broadcast m 0 , authentication keys and triplet (j, t j , x t j j ), as specified by the protocol when a player knows a message (here, it is m 0 ). At all other histories, player i reboots yet again his strategy, that is, player i continues to broadcast m 0 , authentication keys and triplets, as if the multilateral deviation hadn't taken place. 16 Beliefs. At history h t i / ∈ H i (σ), player i believes that all other players on the same side of the circle reboot their strategies, while players on the other side of the circle as well as the sender and the receiver, continue to follow the protocol. In other words, player i believes that all other players on the same side of the circle have also observed a multilateral deviation, while players on the other side, as well as the sender and the receiver, have observed no deviations.

We now consider the sender. At all histories h t S , the sender continues to follow the protocol as if the observed multilateral deviations hadn't happened. However, he believes that all intermediaries reboot their strategies at period t, while the receiver continues to follow the protocol.

We now consider the receiver. The receiver continues to validate messages as he does in the protocol, i.e., he tests sequences of messages of length n C -1 received by his two predecessors and validates a message if he has received a sequence of n C -1 identical copies of the message and has not received the correct authentication on time (see the construction of the protocol for details). To complete the construction of the strategies, we assume that if the receiver validates m ∈ M and m 0 / ∈ M , then he plays τ * (m).

Similarly, if he validates two different messages (m, m ′ ) ∈ M × M or (m 0 , m 0 ) or no messages at all, he plays a best reply to his prior. At all histories, the receiver continues to follow the protocol as if the observed deviations hadn't happened. He believes that all intermediaries reboot their strategies, while the sender continues to follow the protocol.

Finally, we assume beliefs independent between the different subprotocols, in that if an intermediary observes a multilateral deviation in one subprotocol only, he believes that other players on the same side of the circle reboot their strategies in that subprotocol only and not on the others.

Sequential rationality.

At history h t i / ∈ H i (σ), an intermediary expects the receiver to validate a message m ∈ M from the other side and to validate the message m 0 from his side. Since the receiver takes the decision τ * (m) when validating the messages m ∈ M and m 0 / ∈ M , the intermediary cannot deviate profitably (as, regardless of his play, the receiver validates m from the other side). Therefore, rebooting the strategy is optimal. 16 Since our strongly reliable communication protocol is not defined after multilateral deviation, we cannot simply say that we reboot the strategy only once after a multilateral deviations. Indeed, if a new multilateral deviation happens after some player has already rebooted his strategy, his strategy would then not be defined.

Similarly, since the sender expects the intermediaries i K and j K ′ to reboot their strategies, he expects the receiver to play a * and, therefore, cannot profitably deviate. The same applies to the receiver.

APPENDIX C. CASE WHERE THE SENDER AND THE RECEIVER ARE DIRECTLY

CONNECTED.

Assume that the sender and the receiver can also communicate directly. We claim that if there are at least two intermediaries, labelled 1 and 2, such that the sender, the receiver and the two intermediaries are on a "circle," then PBE implementation of mediated communication is possible. 17We now present an informal proof. As a preliminary observation, note that on the circle, it must be that either the two intermediaries are on two disjoint paths from the sender to the receiver or are on the same path. See the two networks in Figure 5 for an illustration. In the former case (network N ), Theorem 1 applies verbatim. In the latter case (network N * ), we need to modify the protocol of Theorem 1 to guarantee that intermediary 2 learns the state ω, without the receiver learning it. Once the sender and the two intermediaries know ω, we can then use the second and third phase of the protocol constructed in Section 3 to implement the communication equilibrium.

We modify the first phase as follows. We first let intermediary 1 broadcast an encryption key k to the sender and intermediary 2. The sender then encrypts the state ω with the encryption key k and transmits the encrypted message to intermediary 2. The transmission of the encrypted message is achieved via the strongly reliable protocol constructed in Section 3.

  and Ambrus et al. (2014). These papers consider simple communication networks (perfectly hierarchical networks) and restrict attention to a particular class of games. Their emphasis is complementary to ours. We ask when it is possible to wPBE implement all communication equilibrium outcomes of sender-receiver games on a communication network, while they ask what are the equilibrium outcomes of their fixed game. Another related paper is Migrow (2021). Building on the work of Ambrus et al. (2014), Migrow shows that indirect communication can improve upon direct communication -suitably designed hierarchies of intermediaries can simulate some of the outcomes mediated communication would achieve. Again, as in Ambrus et al., a particular class of games and communication networks is considered. In addition, a detailed knowledge of the preferences of the intermediaries is needed. 2. THE SETUP 2.1. The problem. There are a sender and a receiver, labelled S and R, respectively.

  et al(1993), for an early attempt in Computer Science. (See Renault et al., 2014, for a summary of the literature.) Computer scientists assume that an adversary controls at most k nodes and provide conditions on the network for the reliable transmission of

3. 3 .

 3 Proof: the main idea. The proof of Theorem 1 is constructive and relegated to Appendix B. In what follows, we sketch the main idea.
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 3213 Figure 3. See Franklin and Wright (2000) and Renault and Tomala (2008).

  is a probability measure, and (ii) for all B ∈ B X , f (•, B) : Y → [0, 1] is measurable. Throughout, we abuse notation and write f : Y → ∆(X) for the probability kernel f : Y × B X → [0, 1]. APPENDIX B. PROOF OF THEOREM 1 It is obvious that Statement (1) implies Statement (2) in Theorem 1 as the set of Bayes-Nash equilibria is included in the set of communication equilibria of the direct communication game. Also, we do not prove that Statement (2) implies Statement (4) as the proofs follow well-trodden paths, see e.g., Renault and Tomala (2008) or Renault et al. (2014).

  blocks of 2n C -3 stages. Denote these blocks by B b , with b = 1, 2 . . . , B. (We have at most n C -3 blocks.) For instance, B 1 stands for the block that starts at stage t = 2, B 2 stands for the block that starts at stage t = 2 + 2n C -3 = 2n C -1, etc. For each b = 1, 2 . . . , let B b := {t b , . . . , t b + 2n C -4} where t b is the first stage of block B b . In each block B b , the strategy of p is the following:

  )Throughout, for any subset D of B b , we write D for its complement in B b . By definition, at all stages in D i , player i follows σ i and deviates at all others. Let Di := {d 1 , . . . , d ℓ , . . . , d ℓ * i }, with d ℓ < d ℓ+1 for all ℓ. Notice that ℓ * i = (2n C -3) -|D i |.Assume that ℓ * i ≥ n C -1. Since player i follows the protocol at all stages in D i , player i + observes at least one sequence of messages such that m is broadcasted n C -1 times by player i. Consider all sequences (d ℓ 1 , . . . , d ℓ n C -1 ) of distinct elements of D i such that all sequences have n C -1 consecutive elements, that is, if d ℓ and d ℓ ′ are elements of the sequence, so are all d ℓ ′′ satisfying d ℓ < d ℓ ′′ < d ℓ ′ . By construction, there are (ℓ * i + 1) -(n C -1) = n C -|D i | -1 such sequences. All these sequences have different starting stages and, therefore, different ending stages. Recall that player i broadcasts m at all stages of these sequences. Fix the sequence (d ℓ 1 , . . . , d ℓ n C -1 ). The protocol specifies that player i + learns m if and only if he has not received the correct authentication key x d ℓ 1 i from player i ++ by the stage d ℓ n C -1 . Therefore, player i + does not learn m only if player i -broadcasts the correct authentication key at some stage d > d ℓ 1 ; the other players do not know the authentication key and the probability of guessing it correctly is zero. Moreover, since the protocol requires player i -to broadcast x d ℓ 1 i only if player i broadcasts m ′ ̸ = m at stage d ℓ 1 , which he does not, player i -must be deviating. Therefore, d ∈ D i -.

f : [0, 1 ]

 1 → A, where f (r) = a if r is in the sub-interval associated with a. Note that f -1 (a) is a Borel set and has measure µ(a). Consider then two uniform random variables X and Y . The key observation to make is that the sums X + Y mod [0, 1], x + Y mod [0, 1], and X + y mod [0, 1] are also uniformly distributed on [0, 1], regardless of the values of x and y. Therefore, if we let ϕ(x, y) = a if x + y mod [0, 1] ∈ f -1 (a), then we indeed generated µ. If in addition Ω is finite, one can repeat the previous construction for

  otherwise.Informally, the strategy computes z as x + y modulo 1 and play with probability one θ(ω, z). The key observations are the following. First, the sums X + Y mod [0, 1], x + Y mod [0, 1], and X + y mod [0, 1] are all uniformly distributed on [0, 1]. By construction, the distribution of ϕ(ω, X, Y ) over B A is the same as θ(ω, Z), with Z a uniform r.v. hence f (ω, .). This concludes the proof for the case where A = [0, 1].
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[START_REF] Wolitzky | Communication with Tokens in Repeated Games on Networks[END_REF] is an exception, but he needs additional assumptions.

E.g., if there are three actions, a 1 , a 2 and a 3 , a possible partition is [0, φ(a1 |ω)), [φ(a 1 |ω), φ(a 1 |ω) + φ(a 2 |ω)), [φ(a 1 |ω) + φ(a 2 |ω), 1].

In this subprotocol, intermediary 1 plays the role of the sender, while intermediary 2 plays the role of the receiver.

Notice that even if they do not learn x and y at the same stage, x and y were generated simultaneously.

A circle is a collection of nodes such that all pairs of nodes have two disjoint paths between them.

A circle is a collection of nodes such that all pairs of nodes have two disjoint paths between them.

It remains to argue that at the end of the first phase, the sender and the two intermediaries know ω. It is clear for the sender and intermediary 1. As for intermediary 2, at the end of the first phase, he knows the encryption key and the encrypted message and, thus learn the state ω. This completes the informal "proof."

Note that either the sender or an intermediary may attempt to reveal the state to the receiver. We do not preclude this possibility. However, as already explained, the equilibria we construct are such that the receiver does not expect the sender and intermediaries to do so and thus consider their attempts as gibberish.

gratefully thank Franc ¸oise Forges, as well as the associate editor and two anonymous referees at JET. The author also acknowledge the support of the Agence Nationale pour la Recherche under grant ANR CIGNE (ANR-15-CE38-0007-01) and through ORA Project "Ambiguity in Dynamic Environments" (ANR-18-ORAR-0005). Laclau gratefully acknowledges the support of the ANR through the program Investissements d'Avenir (ANR-11-IDEX-0003/Labex Ecodec/ANR-11-LABX-0047) and under grant ANR StratCom (ANR-19-CE26-0010-01). for organization theory.

For player p to learn m ′ , during the block B b , it must be that player p has received a sequence of n C -1 grand messages from his predecessor p -, say at stages d 1 , . . . , d n C -1

such that (i) the first element of each of the n C -1 grand messages is m ′ and (ii) player p did not receive from p + the triplet

, where x d 1 p -matches the value of the authentication key received from p -at stage d 1 .

Since we assume that m ′ ̸ = m, it must be that that p -is deviating at all stages d 1 , . . . , d n C -1 , as we assume that p is the first player to learn m ′ . Therefore, since we consider at most one deviation at each stage, all players in P \ {p -} are playing according to σ at all stages d 1 , . . . , d n C -1 . It follows that player p --, the predecessor of p -, broadcasts the triplet (p -, d 1 , x d 1 p -) to p -and p ---at stage d 2 at the latest, that player p ---broadcasts it at stage d 3 at the latest, etc. 15 Since there are n C -2 nodes other than p -and p on the circle, player p + broadcasts the triplet (p -, d 1 , x d 1 p -) to players p and p ++ at stage d n C -1 at the latest. Thus, player p does not validate m ′ with that sequence of grand messages.

Since this is true for any such sequences, player p does not learn m ′ at block B b . □ Lemma 1 states that no player on the circle learns an incorrect message. The next Lemma states that at least one new player learns the correct message at the end of each block, which guarantees that the receiver learns the correct message at the latest after

Lemma 2. Let m ∈ M be the message broadcasted by the sender to i 1 and j 1 at stage t = 1. Suppose that all intermediaries i 1 to i k and j 1 to j k ′ know the message m at the beginning of the block B b . If at most one player deviates from the protocol at each stage, then either intermediary i k+1 or intermediary j k ′ +1 is learning m at the end of the block B b with probability one.

To be more precise, Lemma 2 states that for all σ ′ ∈ Σ(σ), the subset of histories at which either intermediary i k+1 or intermediary j k ′ +1 is learning m at the end of the block B b has probability one according to P σ ′ . 15 Notice that it is possible for p --to broadcast the message (p -, d 1 , x d 1 p -) before stage d 2 . For instance it is possible to have a stage d 1 ′ , with d 1 < d 1 ′ < d 2 , such that (i) p -is not deviating at stage d 1 ′ and sends either m or m 0 depending on if he knows m or not, and (ii) p --is deviating at stage d 1 ′ by not transmitting (p -, d 1 , x d 1 p -) to p -and p --.