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ABSTRACT. We consider sender–receiver games, where the sender and the receiver are

two distant nodes in a communication network. We show that if the network has two

disjoint paths of communication between the sender and the receiver, then we can repli-

cate all equilibrium outcomes not only of the direct communication game (i.e., when the

sender and the receiver communicate directly with each other) but also of the mediated

game (i.e., when the sender and the receiver communicate with the help of a mediator).
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1. INTRODUCTION

We study sender–receiver games in communication networks, where the information

from the sender to the receiver may have to flow through self-interested intermediaries.

The following question is addressed: When is it possible to emulate direct or even me-

diated (i.e., with a mediator) communication between the sender and the receiver as

indirect but unmediated (i.e., without a mediator) communication?

More precisely, we consider a sender–receiver game and a communication equilibrium

of that game, that is, an equilibrium where the sender and the receiver can communi-

cate privately and securely with a trusted mediator (see Forges, 1986; Myerson, 1986).

Now, we assume that no trusted mediator exists but that there exists a communication

network, with the sender and the receiver as two distant nodes – the other nodes are

intermediaries. The communication network models the communication possibilities,

i.e., who can send a message to whom, and thus naturally induces a multistage commu-

nication game. The following question is addressed: When are we guaranteed to have a

perfect Bayesian equilibrium (henceforth, PBE) of the multistage game that replicates

the communication equilibrium? By “guaranteed,” we mean that the answer should be

independent of the preferences of the intermediaries, and of the selected communication

equilibrium.

We prove that we are guaranteed to replicate all communication equilibria as PBE of

multistage games on communication networks if, and only if, there exist (at least) two

disjoint paths of communication between the sender and the receiver. The central in-

sight of our analysis is the tight connection with the concept of strong reliability-a close

relative of the concept of reliability in computer science. To define the concept of strong

reliability, we consider the following problem: the sender wishes to transmit a message

to the receiver through the communication network. The problem is to construct a com-

munication protocol, with the property that the receiver correctly learns the message

sent at all histories consistent with at most k intermediaries deviating at every round

of the protocol. (Different intermediaries can deviate in different rounds.) We call this

property: k-strong reliability. It guarantees that the transmission of the message can

tolerate some mistakes, errors or even deliberate disruptions to communication.

We show that 1-strong reliability (for short, strong reliability) is possible on a network if,

and only if, there are two disjoint paths of communication between the sender and the

receiver. Thus, the PBE implementation of all communication equilibria on networks
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and the strong reliability of communication on networks are equivalent, that is, if the

former is guaranteed on the network N , so is the latter, and the reverse is also true.

We now provide some intuition for this tight connection between PBE implementation of

all communication equilibria and strong reliability. There is a sender and a receiver, two

states and two actions, and the sender and the receiver want to match the state. Clearly,

there exists an equilibrium of the direct communication game, where the sender truth-

fully reveals the state and the receiver matches the state. We assume now that the

communication between the sender and the receiver is intermediated, with all inter-

mediaries preferring the receiver to un-match the state. The equilibrium distribution

(of the direct communication game) is therefore the least preferred outcome for any

intermediary, while any other distribution is strictly preferred. Thus, if an intermedi-

ary deviates at any stage of the indirect multistage communication game, the deviation

must not change the distribution; otherwise, this would be a profitable deviation for the

intermediary. In any information set that follows the deviation, sequential rationality

dictates that no other intermediary has a profitable deviation either, i.e., no other in-

termediary must be able to change the distribution. Therefore, the correct distribution

must be implemented not only for all on-path histories but also for histories that are

reachable via sequences of unilateral deviations. (We stress that this is a consequence

of imposing sequential rationality, which is a novelty of this paper, see the review of the

literature.) This is what strong reliability achieves.

Two additional observations are worth noting. First, if we restrict attention to the (un-

mediated) equilibria of sender–receiver games (i.e., when the sender communicates with

the receiver), the same condition on the network is necessary and sufficient. Thus, the

connectivity requirement does not increase as we move from the (unmediated) equi-

libria to the communication equilibria. This is particularly important because some

communication equilibria can Pareto-improve over all (unmediated) equilibria. In these

instances, indirect communication dominates direct communication. In other words,

communicating through layers of intermediaries may actually benefit the sender and

the receiver (compared with direct communication). Second, the protocols we construct

require several rounds of communication and rich communication possibilities. In par-

ticular, players must be able to broadcast messages to any subset of their neighbors.

Broadcasting a message to a group ensures that group members have common knowl-

edge of the message. It is a very natural assumption: face-to-face meetings and online
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meetings via platforms such as Zoom, Microsoft Teams, and WhatsApp groups all make

it possible to broadcast to a group.

Our interpretation of the communication network is as follows. In modern organiza-

tions, most employees, from top executives to low-level managers, devote a significant

fraction of their time to internal communication: they draft and circulate memos, attend

and call meetings, write e-mails, etc. The network N captures these communication

possibilities, particularly who can call a meeting with whom. If there is a link between

players i and j and between players i and k, player i can communicate with players j

and k both privately (face-to-face meetings) and publicly (group meetings). In organi-

zations, meetings serve several functions, from communicating information to making

decisions and generating ideas. The former, i.e., meetings used as an information forum,

is the closest to the role that meetings play in our analysis. When player i broadcasts a

message to players j and k, player i informs players j and k.

We conclude with an insight of our analysis for organization theory. In large organiza-

tions, such as public administrations, governments, armed forces and multinational cor-

porations, information typically flows through the different layers of the organization,

from engineers, sale representatives, and accountants to top managers and executives.

Communication is indirect. While indirect communication is necessary in large orga-

nizations, it may harm the effective transmission of valuable information. Indeed, as

the objectives of the members of an organization are rarely perfectly aligned, distorting,

delaying or even suppressing the transmission of information are natural ways, among

others, for members of the organization to achieve their own objectives. Do organiza-

tional arrangements exist that mitigate these issues? An insight of this paper is that

matrix organization is one such arrangement.1

Matrix organization (or management) consists of organizing activities along more than

one dimension, e.g., function (marketing, accounting, engineering, R&D, etc.), geography

(US, Europe, Asia, etc.) or products. From the early 1960s to the present, large corpora-

tions such as NASA, IBM, Pearson, Siemens and Starbucks have adopted this mode of

management. A central feature of matrix organization is multiple reporting lines; that

is, low-level employees report to multiple independent managers. For example, an en-

gineer working on a project to be implemented in Europe will report to the manager of
1We do not claim that matrix organization was designed with this goal in mind; it is rather a consequence,
even if unintended, of its design.
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the engineering division, to the manager of the project and to the manager of the Euro-

pean division. In other words, the information can flow via independent channels. One

insight of our analysis is that this is the main reason why the matrix organization fa-

cilitates the effective communication of valuable information. (See Baron and Besanko,

1996, and Harriv and Raviv, 2002, for economic models of matrix organization and Gal-

braith, 2009, and Schrötter, 2014, for qualitative analysis.) However, this comes at a

cost: frequent meetings and emails. (In our model, this corresponds to the many rounds

of communication needed.) The tendency of matrix organization to generate countless

meetings was already noted in the late 1970s.

Top managers were spending more time than ever before in meetings or in

airplanes taking them to and from meetings. (McKinsey Quarterly Review,

“Beyond matrix organization.” September 1979.2)

In summary, this paper makes two novel contributions. We first show how to emulate a

mediator with indirect communication; i.e., we replicate the communication equilibria

of cheap-talk games through indirect communication. Second, we show how to do so

while ensuring sequential rationality. To our knowledge, we are the first to address this

challenging problem.

Related literature. This paper is related to several strands of literature. The com-

monality between these strands is the construction of protocols to securely transmit a

message from a sender to a receiver on a communication network. The secure transmis-

sion of a message requires that (i) the receiver correctly learns the sender’s message,

and (ii) intermediaries do not obtain additional information about the message while

executing the protocol. Reliability (or resiliency) refers to the first requirement, while

secrecy refers to the second.

First, there is a large body of literature in computer science that studies the problem

of secure transmission of messages on communication networks (see, among others,

Beimel and Franklin, 1999; Dolev and al.,1993; Linial, 1994; Franklin and Wright,

2004; Renault and Tomala, 2008; and Renault and al., 2014). This literature provides

conditions on the topology of communication networks to enable the secure transmis-

sion of a message from a sender to a receiver (see Renault and al., 2014, for a summary

of these results). An important assumption of all of these studies is that the adversary
2https://www.mckinsey.com/business-functions/organization/our-insights/beyond-the-matrix-
organization#
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controls a fixed set of nodes throughout the execution of the communication protocols.

The adversary we consider is stronger in that it can control different sets of nodes in

each round of communication (see Section 3.1 for more details). To our knowledge, such

an adversary has not been studied in the computer science literature. However, we re-

strict our attention to singletons, while the computer science literature considers larger

sets.

This paper is also linked to the literature on repeated games on networks, where the

network models the monitoring structure and/or the communication possibilities (see,

among others, Ben-Porath and Kahneman, 1996; Laclau, 2012, 2014; Renault and

Tomala, 1998; Tomala, 2011; and Wolitzky, 2015). This literature characterizes the

networks for which folk theorems exist. An essential step in obtaining a folk theorem

is the construction of protocols that guarantee that, upon observing a deviation, players

start a punishment phase. To do so, when a player observes a deviation, he must be able

to securely transmit the message “my neighbor has deviated” to all other players.

Except for Wolitzky (2015), none of these studies have imposed sequential rationality

while restricting communication on a network. Either the communication is restricted

on a network, in which case the solution concept is Nash equilibrium (Laclau, 2012; Re-

nault and Tomala, 1998; Tomala, 2011), or the communication is unrestricted, in which

case sequential rationality is imposed (Ben-Porath and Kahneman, 1996; Laclau, 2014).

(In the latter case, the network models the structure of observation and/or interaction,

but not the communication possibilities.) Wolitzky (2015) imposes sequential rationality

and restricts communication on a network. However, he assumes that either a mutual

minmax Nash equilibrium exists or that players have access to undifferentiated tokens,

which can be freely transferred among neighbors, in addition to cheap talk messages.

We make none of these assumptions. (In fact, the existence of a mutual minmax Nash

equilibrium imposes restrictions on the preferences of the intermediaries, which is at

odds with our analysis.)

This paper is also related to the literature on mediated and unmediated communica-

tion in games (regarding mediated communication, see, among others, Aumann, 1974;

Ben-Porath, 1998; Forges, 1986, 1990; Forges and Vida, 2013; Myerson, 1986; Renou

and Tomala, 2012; and Rivera, 2018). Like in the literature on unmediated communica-

tion in games, e.g., Barany (1992), Forges (1990), Forges and Vida (2013), and Gerardi
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(2004), we show that we can emulate mediated communication with unmediated com-

munication. The novelty is that communication is restricted to a network, albeit for a

particular class of games, i.e., sender–receiver games.

Renou and Tomala (2012) and Rivera (2018) consider mediated communication games,

where not all players can communicate directly with the mediator. The mediator is a

fixed node in a communication network. These authors characterize the conditions on

communication networks that make it possible to replicate all the equilibrium outcomes

of the direct communication game, i.e., when the players can communicate directly with

the mediator.3 There are three major differences in our work. First, we do not have a

mediator. In fact, we show how we can emulate the presence of the mediator on the net-

work. Second, these authors restrict the communication so that it is unicast, i.e., group

meetings are not allowed, while we consider rich communication possibilities. Third,

they do not impose strong reliability (in the sense that the transmission of messages

is reliable after all histories consistent with unilateral deviations). While none of their

constructions guarantee strong reliability, these authors are nonetheless able to impose

sequential rationality. Renou and Tomala (2012) achieve this by restricting attention to

games with either independent private values or with strict punishment. Rivera (2018)

needs three disjoint paths of communication.

Finally, this paper connects to the large body of literature on cheap talk games, pio-

neered by Crawford and Sobel (1984) and Aumann and Hart (2003) (see Forges, 2020,

for a recent survey). The closest papers to ours are Ivanov (2010) and Ambrus et al.

(2014). These papers consider simple communication networks (perfectly hierarchi-

cal networks) and restrict attention to a particular class of games. Their emphasis is

complementary to ours. We ask when it is possible to PBE implement all communica-

tion equilibrium outcomes of sender–receiver games on a communication network, while

they ask what the equilibrium outcomes of their fixed game are. Another related paper

is Migrow (2021). Building on the work of Ambrus et al. (2014), Migrow shows that

indirect communication can improve upon direct communication – suitably designed

hierarchies of intermediaries can simulate some of the outcomes that mediated com-

munication would achieve. Again, as in Ambrus et al., a particular class of games and
3Renou and Tomala (2012) study pure adverse selection problems, while Rivera (2018) extends the analy-
sis to both adverse selection and moral hazard. A common thread of these papers is the need to construct
secret and reliable protocols so that players (the mediator) can transmit their private information (private
recommendations) to the mediator (the players).
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communication networks is considered. In addition, detailed knowledge of the prefer-

ences of the intermediaries is needed.

2. THE SETUP

We start with mathematical preliminaries. Unless indicated otherwise, all sets X are

complete separable metric spaces, endowed with their Borel σ-algebra BX . We write

∆(X) for the set of probability measures on X. Let X and Y be two complete separable

metric spaces. A probability kernel is a function f : Y × BX → [0, 1] such that (i) for all

y ∈ Y , f(y, ·) : BX → [0, 1] is a probability measure, and (ii) for all B ∈ BX , f(·, B) : Y →

[0, 1] is measurable. Throughout, we abuse notation and write f : Y → ∆(X) for the

probability kernel f : Y × BX → [0, 1].

2.1. The problem. There is a sender and a receiver, labeled S and R, respectively.

The sender knows a payoff-relevant state ω ∈ Ω, with prior probability ν ∈ ∆(Ω). The

receiver takes action a ∈ A. For all i ∈ {S,R}, player i’s payoff function is ui : A×Ω → R,

which we assume to be measurable.

Direct communication. In the direct communication game, the sender directly com-

municates with the receiver; that is, the sender sends a message m ∈ M to the receiver

prior to the receiver choosing an action a ∈ A. A strategy for the sender is a map

σ : Ω → ∆(M), while a strategy for the receiver is a map τ : M → ∆(A). We denote

Ed ⊆ ∆(Ω×A) the set of (Bayes-Nash) equilibrium distributions over states and actions

of the direct communication game. Notably, we may have Ed = ∅.4

Mediated communication. In the mediated communication game, the sender first

sends a message m ∈M to a mediator. The mediator then sends a message r ∈ R, possi-

bly randomly, to the receiver, who then takes an action a ∈ A. A strategy for the sender

is a map σ : Ω → ∆(M), while a strategy for the receiver is a map τ : R → ∆(A). The

mediator follows a recommendation rule: φ : M → ∆(R). A communication equilibrium

is a communication device ⟨M,R,φ⟩, and an equilibrium (σ∗, τ ∗) of the mediated game.

Thanks to the revelation principle (Forges, 1986 and Myerson, 1986), we can restrict

our attention to canonical communication equilibria, where M = Ω, R = A, the sender

has an incentive to be truthful (to report the true state), and the receiver has an incen-

tive to be obedient (to follow the recommendation). We denote CEd ⊆ ∆(A × Ω) as the
4Indeed, the existence of a best reply is not guaranteed, as we do not assume that the payoff function is
continuous nor that the action space is compact.
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set of communication equilibrium distributions over actions and states of the mediated

communication game. It is well-known that Ed ⊆ CEd.

It is commonly acknowledged that the set of communication equilibrium payoffs might

be strictly larger than the set of Nash equilibrium payoffs. In particular, both the sender

and the receiver might benefit strictly from mediated communication (see Forges, 1985,

and Myerson, 1991). However, this requires the existence of a trusted mediator, which

is a rather strong assumption. A message of this paper is that there is a way to organize

the communication between the sender and the receiver to emulate the trusted media-

tor. The communication must be indirect and intermediated. (As we shall see later, the

possibility emulating the mediator through indirect communication will be independent

of the preferences of the intermediaries.) We now turn to a formal description of indirect

communication.

Communication game on a network (indirect communication). To model indirect

communication, we assume that the sender and the receiver are two distinct nodes on

an (undirected) network N . The set of nodes, other than S and R, is denoted I, which

we interpret as a set of n intermediaries. Communication between the sender and the

receiver transits through these intermediaries. We let Ni be the set of neighbors of

i ∈ I∗ := I ∪ {S,R} in the network. Throughout, we assume that the sender and the

receiver are not directly connected in the network N .

A communication game on the network N is a multistage game with T ≤ ∞ stages,

where at each stage players send costless messages to their neighbors and the receiver

decides either to take an action (and stop the game) or to continue communicating.

A communication mechanism, denoted M, specifies the sets of messages players can

send to their neighbors along with their dependence on past messages sent and received.

We allow for a rich set of communication possibilities. Communication can be private,

e.g., private emails or one-to-one meetings; public, e.g., emails sent to distribution lists

or group meetings; or a mix of both. We say that player i broadcasts a message to

a (nonempty) subset of his neighbors N ⊆ Ni if (i) all players in N receive the same

message and (ii) it is common belief among all players in N that they have received the

same message (in other words, the list of recipients of the message is certifiable among

them). An example of a communication mechanism is as follows: only public messages

to neighbors are allowed (broadcasting to all neighbors only), and each player has two

different messages that he can send.
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Communication unfolds as follows: at each stage t, players broadcast messages to all

possible (nonempty) subsets of neighbors. The set of messages player i can broadcast to

the subset of neighbors N ∈ 2Ni \{∅} is MiN . Let Mi =
∏

N∈2Ni\{∅}MiN be the set of mes-

sages available to player i and M =
∏

i∈I∗ Mi the set of messages available to all players.

A few remarks are worth noting here. First, private messages correspond to broadcasts

to singletons. Players can thus send private messages to their neighbors. Second, the

sets of messages available to a player are independent of both the time and past his-

tory of the messages sent and received. The latter has a loss of generality. However,

without such an assumption, the model has no bite. Indeed, if the only message player

i can transmit upon receiving the message m is the message m itself, an extreme form

of history dependence, then we trivially reproduce direct communication with indirect

communication.

Finally, two additional elements are needed to obtain the communication game from the

communication mechanism. First, we assume that at each stage, the receiver can either

take an action a ∈ A or continue communicating, in which case he sends a message

mR ∈ MR. If the receiver takes the action a, the game stops. Second, we need to as-

sociate payoffs with terminal histories (i.e. histories where the receiver takes an action

and histories where the receiver never does). The payoff to player i ∈ I∗ is ui(a, ω) when

the state is ω and the receiver takes action a, with ui : A × Ω → R being a measurable

function. (If the receiver never takes an action, the payoff to all players is −∞.) Thus,

communication is purely cheap talk. We denote Γ(M,N ) the communication game in-

duced by the mechanism M on the network N .

Strategies and equilibrium. A history of messages received and sent by player i up to

(but not including) period t is denoted hti, with H t
i the set of all such histories. A (pure)

strategy for player i ∈ I is a collection of maps σi = (σi,t)t≥1, where at each stage t, σi,t
maps H t

i to Mi. A (pure) strategy for the sender is a collection of maps σS = (σS,t)t≥1,

where at each stage t, σS,t maps Ω × H t
S to MS. A (pure) strategy for the receiver is

a collection of maps σR = (σR,t)t≥1, where at each stage t, σR,t maps H t
R to MR ∪ A.

With a slight abuse of notation, we use the same notation for behavioral strategies. Let

H t = ×i∈I∗H
t
i . We write Pσ(·|ht) for the distribution over terminal histories and states

induced by the strategy profile σ = (σS, σR, (σi)i∈I), conditional on the history ht ∈ H t.

We write Pσ for the distribution, conditional on the initial (empty) history. It is easy to

show that any equilibrium distribution over actions and states is an element of CEd.
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2.2. PBE implementation of direct (resp., mediated) communication on a net-

work. We are now ready to define the PBE implementation of direct communication

(resp., mediated communication) on a network. We first start with an informal descrip-

tion. We say that the PBE implementation of direct communication (resp., mediated

communication) is possible on a network if for every direct (resp., mediated) commu-

nication game, regardless of the preferences of the intermediaries, we can construct a

communication game on the network with the property that for any Bayes-Nash equi-

librium (resp., communication equilibrium) distribution over actions and states of the

direct communication game (resp., mediated communication game), there exists a PBE

of the communication game that replicates that distribution.

Definition 1. PBE implementation of direct communication (resp., mediated commu-

nication) is possible on the network N if there exists a communication mechanism M

on N such that for all utility profiles of the sender, receiver and intermediaries, for all

distributions µ ∈ Ed (resp., µ ∈ CEd) of all sender–receiver games, there exists a perfect

Bayesian equilibrium σ of Γ(M,N ) satisfying:

margA×ΩPσ = µ.

In other words, if PBE implementation of direct communication (resp. mediated com-

munication) is possible on a network, it means that it is possible to replicate any equilib-

rium outcome of the direct (resp., mediated) game via intermediated (not to be confused

with mediated) communication between the sender and the receiver, without the need

for a trusted mediator, and regardless of the preferences of the intermediaries.

The solution concept is PBE, i.e., whenever possible, beliefs are consistent with Bayes

rule.5 As we shall see later, none of our arguments relies on “crazy” off-equilibrium

path beliefs. Moreover, stronger solution concepts, such as sequential equilibria, are

generally not defined for arbitrary games as ours.

3. THE THEOREM

This section characterizes the networks, for which the PBE of direct and mediated com-

munication is possible. With the help of a simple example, we now illustrate some of the
5Recall that we only require the sets of states, actions, and messages to be Polish, so that conditioning
events often have a null measure. To deal with that issue, we consider a generalized version of PBE, where
beliefs are updated using Bayes’ rule whenever possible, with the use of regular conditional probabilities
(like the distributional strategies in Crawford and Sobel, 1982).
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difficulties that the requirement of sequential rationality introduces. (Recall that the

literature on unmediated communication on networks has not imposed the requirement

of sequential rationality thus far.6)

We suppose that there are two states and two actions. The sender and receiver want

to match the state, while the intermediaries want to unmatch the state. Clearly, there

exists an equilibrium in the direct communication game where the sender truthfully

reveals the state and the receiver matches the state. The equilibrium distribution is the

least preferred outcome of any intermediary-any other distribution is strictly preferred.

Thus, if an intermediary deviates at a stage in the indirect communication game, the de-

viation must not change the distribution to be nonprofitable. At any information set that

follows the deviation, sequential rationality dictates that no other intermediary must

have a profitable deviation either, i.e., no other intermediary must be able to change

the distribution. Therefore, the correct distribution must be implemented not only for

all on-path histories but also for histories that are reachable via sequences of unilateral

deviations.

This observation motivates the notion of strong reliability, which we introduce next. We

will prove that strong reliability on a network is in fact equivalent to the PBE imple-

mentation of direct, and mediated, communication in that network.

3.1. Strong reliability. We consider the following alternative problem: the sender

wishes to transmit the message m ∈ M , a realization of the random variable m with

distribution ν, to the receiver, through the network N . We want to construct a proto-

col, i.e., a communication mechanism and a profile of strategies, such that the receiver

correctly “learns” the message sent at all terminal histories consistent with unilateral

deviations.

Before formally introducing the concept of strong reliability, we define what we mean

by “consistent with unilateral deviations.” We fix a strategy profile σ. We define Σ(σ) as

the set of strategy profiles such that σ′ ∈ Σ(σ) if, and only if, there exists a sequence of

intermediaries (i1, . . . , it, . . . ) such that σ′
t = (σ′

it,t, σ−it,t) for all t. Thus, Σ(σ) consists of

all strategy profiles consistent with at most one intermediary deviating at each stage.

Note that the same intermediary may deviate at several, or even all, stages. We let
6Wolitzky (2015) is an exception, but he needs additional assumptions.
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H(σ) be the set of terminal histories consistent with Σ(σ); that is, h ∈ H(σ) if there

exists σ′ ∈ Σ(σ) such that h is in the support of Pσ′.

We are now ready to define the concept of strong reliability on a network.

Definition 2. The transmission of messages is strongly reliable on network N if there

exist a protocol σ and a decoding rule md : H
T+1
R →M such that

Pσ′

({
hT+1
R : md(h

T+1
R ) = m

}∣∣∣m = m
)
= 1,

for all σ′ ∈ Σ(σ), for all m.

The study of the reliable transmission of messages on networks is not new, see Dolev

et al (1993), for an early attempt in computer science. (See Renault et al., 2014, for a

summary of the literature.) Computer scientists assume that an adversary controls at

most k nodes and they provide conditions on the network for the reliable transmission

of messages. An important feature, however, is that the adversary controls the same k

nodes throughout the execution of the protocol. This is a natural assumption in com-

puter science, where communication is nearly instantaneous. An adversary would not

have the time or capacity to take control of different nodes during the execution of the

communication protocol.7 A distinctive feature of our analysis is that we consider a dy-

namic adversary, i.e., an adversary that controls a different set of nodes in each round

of the execution of the protocol. However, we limit our attention to singletons, i.e., k = 1.

To our knowledge, this approach is new.

The notion of strong reliability has a clear and strong motivation. We want the transmis-

sion of messages to be reliable not only in the case of errors and unintentional mistakes

but also in the case of intentional manipulations. For instance, without our notion of

strong reliability, if a single e-mail were to not reach its recipients, this would entirely

disrupt the communication. In addition, if the content of a single e-mail were to be mod-

ified, an entirely different message would be transmitted. Strong reliability guarantees

that communication is resilient to these events.

The network in Figure 1 illustrates some of the difficulties associated with the require-

ment of strong reliability. There are three disjoint paths from the sender to the receiver,

so it is tempting to use a majority argument. That is, to have the sender transmit his

7Formally, the reliable transmission of messages requires that P(σ′
i,σ−i)

(
{hT+1

R : md(h
T+1
R ) = m}

∣∣∣m =

m
)
= 1 for all σ′

i, for all i ∈ I. This is a weaker requirement that strong reliability.
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message to intermediaries 1, 2 and 3 and to have all intermediaries forward their mes-

sages. If the intermediaries are obedient, then the receiver obtains three identical copies

of the message sent and thus learns it. We suppose now that the sender wishes to trans-

mit the message m. If intermediary 1 reports m′ ̸= m in the first stage and intermediary

5 reports m′′ ̸= m in the second stage, the receiver then receives the profile of reports

(m′,m′′,m). Thus, we need the receiver to decode it as m. However, the receiver receives

the same profile of reports (m′,m′′,m) when the sender wishes to transmit the message

m′, intermediary 3 reports m and intermediary 5 reports m′′. Since the receiver would

still decode it as m, he would learn the wrong message. Such a simple strategy does not

work in general.8 We thus need a more sophisticated construction.

R

S

1 2 3

4 5 6

FIGURE 1. Strong reliability: Illustration of the difficulties

We note that there might be some PBE profiles that do not rely on strongly reliable

transmission of messages. Indeed, in the previous example, the majority rule is a PBE:

since no intermediary observes what others do on the other paths, no intermediary has

a profitable deviation, and sequential rationality is guaranteed. Such an argument does

not work if intermediaries, say 1 and 5 for instance, are linked, or if there are two paths;

most importantly, it does not make it possible to emulate the mediator (see next section

with our main result). Even if there are more PBE than the one we construct, we will

show that strong reliability implies sequential rationality (see the discussion just before

Section 3.4).

3.2. The main result. We can now state our main result.
8This simple strategy works if there are enough disjoint paths. In that example, we need two additional
disjoint paths.
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Theorem 1. The following statements are equivalent.

(1) PBE implementation of mediated communication is possible on the network N .

(2) PBE implementation of direct communication is possible on the network N .

(3) The transmission of messages is strongly reliable on the network N .

(4) The network N admits two disjoint paths between the sender and the receiver.

Theorem 1 states that if there are two disjoint paths between the sender and the re-

ceiver in the network, then PBE implementation of mediated communication is possi-

ble. In other words, we can replicate the mediator through unmediated communication.

This implies that the sender and the receiver may be better off communicating through

intermediaries, rather than directly (since both the sender and the receiver may be bet-

ter off with mediated communication than with direct communication). The theorem

also states that the connectivity requirement to implement the communication equilib-

ria is no stronger than the one required to implement the Bayes-Nash equilibrium of

the underlying sender–receiver game.

3.3. Proof: the main idea. The proof of Theorem 1 is constructive and relegated to

Appendix B. In what follows, we sketch the main idea.

(1) ⇒ (4), (2) ⇒ (4) and (3) ⇒ (4). It is easy to see that Statement (4) of Theorem 1

is necessary for all other statements to be satisfied. Indeed, if no two disjoint paths exist

between the sender and the receiver, there exists an intermediary that controls all the

information transmitted between the sender and the receiver. In graph-theoretic terms,

the intermediary is a cut of the graph. In games where the sender and the receiver

have perfectly aligned preferences, but the intermediaries have opposite preferences, the

“cut” can then simulate the histories of messages he would have received in a particular

state and behave accordingly. Thus, even in games with perfectly aligned preferences,

neither strongly reliable transmission nor PBE implementation of direct communication

holds if there is a “cut” (and, a fortiori, neither does PBE implementation of mediated

communication hold).

(4) ⇒ (3). We prove that if there are two disjoint paths between the sender and the

receiver in N , then strong reliability is possible. This is the most important part of the

proof, which we now explain in detail.
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We suppose that the sender wishes to send the message m to the receiver. We want

to find a protocol (a communication mechanism and a strategy profile) such that the

receiver correctly learns the message m not only at all on-path histories, but also at

all histories consistent with at most one intermediary deviating at each stage of the

protocol. We show that such a protocol exists when there are two disjoint paths between

the sender and the receiver. Moreover, the receiver learns the message after at most

1+(nC −3)(2nC −3) stages, where nC is the number of nodes on the two shortest disjoint

paths from the sender to the receiver (including the sender and the receiver). We now

illustrate our protocol with the help of the network in Figure 2, where nC = 4. (The

protocol we construct is slightly more complicated, but they share the same properties.)

R

2

S

1

FIGURE 2. Illustration of Theorem 1

A similar example of Nash implementation (not requiring any sequential rationality or

strong reliability) was independently studied by Franklin and Wright (2000) and Re-

nault and Tomala (2004, 2008). The basic idea of their protocol is for the sender to

broadcast m to intermediaries 1 and 2, who are then supposed to broadcast it, along

with authentication keys. Thus, if the receiver observes two identical messages from

intermediaries 1 and 2, he decodes it as the correct message. However, if intermediary

1 (resp., 2) broadcasts message m′ ̸= m (a deviation), the sender then broadcasts 1’s au-

thentication key to intermediaries 1 and 2, with intermediary 2 (resp., 1) broadcasting

it at the next stage. Thus, upon matching 1’s authentication key received from inter-

mediary 1 (at the second stage) and intermediary 2 (at the fourth stage), the receiver

correctly learns that intermediary 1 (resp., 2) is the deviator and decodes the message

as m. Although simpler than ours, this protocol is not strongly reliable. If intermedi-

ary 2 does not correctly broadcast the authentication key of intermediary 1, the receiver

does not learn the correct message. In addition, since intermediary 2 (resp., 1) learns

whether intermediary 1 (resp., 2) deviated, we cannot guarantee sequential rationality.
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In adversarial problems, intermediary 2 would also deviate after observing the devia-

tion of intermediary 1. To our knowledge, none of the previous contributions are able to

address that issue or, ultimately, emulate the mediator.

Our communication protocol circumvents this issue by adding repetition: new authen-

tication keys are drawn at each stage, and the receiver will only analyze messages that

he has received several times from an intermediary. This latter requirement ensures

that evidence supporting the existence of some deviation (via authentication keys) will

actually be transmitted by the other intermediary; indeed, at the stages where the first

intermediary keeps sending the same false message, then other players are not deviat-

ing at these stages, and his authentication key has time to be transmitted through the

other disjoint path of the network. Hence, the receiver cannot learn a false message

(see Lemma 1 in the Appendix). Moreover, this requirement of analyzing several mes-

sages cannot be too large so that the receiver can learn the message; in particular, a

deviator cannot distract the protocol with false alerts of deviation (see Lemma 2 in the

Appendix).

Formally, our protocol has six stages, which we now describe. First, the sender broad-

casts the message m to intermediaries 1 and 2 at stage t = 1. At all other stages

t = 2, . . . , 6, the protocol requires the intermediaries to broadcast the message m and

an authentication key xti, where xti is the authentication key of intermediary i at stage t,

a uniform draw from [0, 1], independent of all messages the intermediary has sent and

received. Finally, if the sender observes intermediary i broadcasting message m′ ̸= m at

stage t, the sender broadcasts the triplet (i, t, xti) at stage t + 1 (in addition to his other

messages). We interpret triplet (i, t, xti) as stating that intermediary i has deviated at

stage t and that his authentication key is xti. If an intermediary receives triplet (i, t, xti)

at stage t + 1, the protocol requires the intermediary to broadcast that triplet at all

subsequent stages.

The receiver does not send messages. At the end of the six stages, the receiver decodes

the message as follows. If at any stage, the receiver has received the same message from

both intermediaries, then he decodes it as the correct message. In all other instances,

if the receiver has received the same message mi from intermediary i at some stages
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t1, t2 and t3 (t1 < t2 < t3), and he has not received the triplet (i, t1, x
t1
i ) from the other

intermediary by stage t3, then he assumes that the correct message is mi.9

We now argue that the protocol guarantees the strong reliability of the transmission.

First, since at most one intermediary deviates at any stage, the protocol guarantees

that the receiver obtains at least one sequence of three identical messages from either

intermediary 1 or 2 (the stages in the sequence need not be consecutive). This statement

represents a simplest version of Lemma 2 (see Appendix A). Moreover, if at any stage,

the receiver obtains the same message from both intermediaries, it must be the correct

message (since at least one intermediary must be broadcasting the correct message).

Therefore, we assume that the receiver obtains message mi from intermediary i at some

stages t1, t2 and t3 (t1 < t2 < t3). If mi ̸= m (hence intermediary i deviates at stages

t1, t2 and t3), the protocol requires the sender to broadcast the triplet (i, t1, x
t1
i ) at stage

t1 + 1 ≤ t2. The protocol also requires intermediary j ̸= i to broadcast triplet (i, t1, x
t1
i )

at all stages after receiving it. Hence, the receiver obtains the triplet at stage t3 at the

latest. Indeed, since intermediary i deviates at the stages (t1, t2, t3), intermediary j ̸= i

cannot deviate at t2 and t3. Since the authentication key received from intermediary j

at either t2 or t3 matches the key received from intermediary i at t1, the receiver learns

that the message mi is not correct. The correct message must therefore be the one

broadcasted by intermediary j at stage t1, that is, m. Alternatively, if mi = m, the sender

does not broadcast the triplet (i, t1, x
t1
i ). Intermediary j may pretend that the sender

had sent the triplet (i, t1, yt1i ) at stage t1 + 1. However, the probability that the reported

authentication key yti matches the actual authentication key xti is zero; therefore, the

receiver correctly infers that the message is m.

We now preview some secondary aspects of the above construction. First, the protocol is

robust to deviations by the sender at all stages except the initial stage (when the sender

broadcasts m). Indeed, if the sender deviates at stage t ≥ 2, the two intermediaries

do not, and the receiver then correctly learns the message. Similarly, the protocol is

trivially robust to deviations by the receiver at all stages except for the last one. The

protocol we constructed shares these two properties, which are key in proving that (4) ⇒

(1), as we shall see. Second, the protocol starts with the two immediate successors of

the sender on the two disjoint paths to the receiver learning the message m. At the end

of the communication protocol, the receiver also learns the message. In general, the
9Equivalently, the receiver assumes that the correct message is mi when he has received mi from inter-
mediary i at stages t1, t2 and t3, and all triplets (i, t1, y

t1
i ) received from the intermediary 3− i by stage t3

are such that yt1i is different from xt1
i , the authentication key received from i at stage t1.
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receiver is not the immediate successor of these intermediaries; these intermediaries

have as successors other intermediaries. The key step in our construction is to show

that at least one of the immediate successors of these intermediaries correctly learns

the message at the end of the first block of communication. Therefore, as the protocol

goes through blocks, the receiver eventually learns the message. Moreover, each block

has 2nC −3 stages. (Recall that nC is the total number of nodes on the two disjoint paths

from the sender to the receiver, including them.) Thus, the receiver learns the message

in at most 1+(2nC −3)(nC −3) stages, where the two immediate successors of the sender

learn m immediately and then each of the remaining nC−3 players, who do not yet know

m learns the message progressively over time.

(4) ⇒ (1). The gist of the proof consists of repeatedly using the protocol constructed

above to simulate the mediator, with the help of jointly controlled lotteries. To get a

flavor of our construction, let us again consider the network in Figure 2. For simplicity,

we assume that Ω and A are finite sets. We fix a canonical communication equilibrium

φ : Ω → ∆(A). For all ω ∈ Ω, let Aω be a partition of [0, 1] into |A| subsets, with the subset

Aω(a) corresponding to a having Lebesgue measure φ(a|ω).10

The protocol has three distinct phases. In the first phase, the sender broadcasts the state

ω to the intermediaries 1 and 2. The second phase replicates the communication device.

To do so, the sender and intermediary 1 simultaneously choose a randomly generated

number in [0, 1]. Let x and y be the numbers generated by the sender and intermediary

1, respectively. Players then follow the strongly reliable communication protocol con-

structed above, which makes it possible for intermediary 1 to strongly reliably transmit

y to intermediary 2 since there are two disjoint paths between them on the same cir-

cle.11 Thus, at the end of the second phase, the sender and both intermediaries know

ω, x and y, while the receiver only knows y. The third phase starts once the sender

and both intermediaries have learned x and y.12 In the first stage of the third phase,

the sender and the intermediaries simultaneously compute x+ y (mod [0, 1]), output the

recommendation a if x+ y (mod [0, 1]) ∈ Aω(a), and each starts a copy of the communica-

tion protocol constructed above to strongly reliably transmit the recommendation to the

receiver. Thus in the third phase, the three communication protocols are synchronized
10For example, if there are three actions, a1, a2 and a3, a possible partition is [0, φ(a1|ω)), [φ(a1|ω), φ(a1|ω)+
φ(a2|ω)), [φ(a1|ω) + φ(a2|ω), 1].
11In this subprotocol, intermediary 1 plays the role of the sender, while intermediary 2 plays the role of
the receiver.
12Notice that even if they do not learn x and y at the same stage, x and y were generated simultaneously.
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and start at the very same stage. At the end of the third phase, the receiver learns

the recommendations sent by the sender and both intermediaries. Since at most one of

them can deviate in the stage where they broadcast their recommendation, the receiver

decodes at least two identical recommendations and plays it.

It is then straightforward, albeit tedious and cumbersome, to define belief systems to

guarantee the sequential rationality of the equilibria we construct. To see this, let σ be

a Nash equilibrium of the communication game we construct. There are four strongly

reliable protocols that are run independently of one another; therefore, we can con-

sider them separately. For each such protocol, consider any history hti consistent with

unilateral deviations, i.e., there exists σ′ ∈ Σ(σ) such that hti is in the support of Pσ′.

If intermediary i’s belief at hti is the “conditioning” of Pσ′ on hti, then strong reliability

implies sequential rationality. Indeed, for all σ′ ∈ Σ(σ), for all σ̃i, the concatenated

strategy profile ⟨σ′, (σ̃i, σ−i)⟩ = ((σ′
t′)t′<t, (σ̃i,t′ , σ−i,t′)t′≥t) is consistent with unilateral de-

viations, i.e., ⟨σ′, (σ̃i, σ−i)⟩ ∈ Σ(σ). Strong reliability thus implies that P⟨σ′,(σ̃i,σ−i)⟩ = µ,

that is, P(σ̃i,σ−i)(·|ht)Pσ′(ht) = µ for all σ̃i, for all σ′ ∈ Σ(σ). Intermediary i is therefore

indifferent between all his strategies at hti (since his belief about ht is Pσ′(ht|hti)). Since

the argument does not rely on the specific σ′ ∈ Σ(σ) we select, we have sequential ra-

tionality with respect to any belief system, which is fully supported on the histories

consistent with unilateral deviations at hti. In other words, as long as the intermediary

believes that at most one player deviated in each of all past stages, we have sequential

rationality at hti. Similarly, the equilibria we construct are also robust to deviations by

the sender and receiver at all stages except for the first one, where the sender sends

the message, and the last one, where the receiver chooses an action. Therefore, we also

have sequential rationality at all histories htS and htR since σ has, by construction, the

same distribution over actions and states as the communication equilibrium φ. Finally,

for all other histories, it is easy to construct beliefs and actions to guarantee sequential

rationality. (See Section A.2 for detail.)

(4) ⇒ (2). This follows immediately from the previous step since Ed ⊆ CEd (hence,

(1) ⇒ (2)). Notice, however that a simpler construction is possible since there is no

need to emulate the mediator. We can directly use the communication protocol we con-

struct to prove (4) ⇒ (3) to (strongly) reliably transmit the message m to the receiver,

where m is drawn with probability σ∗
S(m|ω), the equilibrium strategy of the direct com-

munication game. Finally, we bserve that if there are three disjoint paths from the

sender to the receiver as in Figure 1, a simpler majority argument works. It suffices for
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the sender to send the message m on each path. Since no intermediary observes what

others do on the other paths, no intermediary has a profitable deviation, and sequential

rationality is guaranteed. Such an argument does not work if there are only two paths

and, most importantly, does not make it possible to emulate the mediator, which is our

core contribution.

3.4. Remarks. We conclude this section with some observations about our analysis.

First, we allow for rich communication possibilities, most notably, that players are able

to broadcast messages to any subset of neighbors. This is necessary for our results to

hold. For instance, if players can only send private messages (unicast communication),

then reliable transmission of messages, let alone strong reliability, is impossible, on the

network in Figure 2 (see Dolev and al., 1993; or Beimel and Franklin, 1999). Similarly, if

players can only send public messages (broadcast communication), reliable transmission

of messages, let alone strong reliability, is impossible on the network shown in Figure 3.

See Franklin and Wright (2000) and Renault and Tomala (2008).

R
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FIGURE 3. Broadcasting to all: Reliable communication is impossible

While formal proofs of these two impossibilities are complicated, the intuition is that

the receiver is unable to distinguish between two types of histories: histories where

intermediary 1 pretends that the message is m′ and intermediary 2 is deviating, and

histories where intermediary 2 pretends that the message is m and intermediary 1 is

deviating. The key is that an intermediary can simulate fictitious histories, i.e., histories

of messages sent and received when the message is any m, and behave accordingly. As

is clear from the example, the protocol we construct makes it possible for the receiver

to distinguish these two types of histories. If intermediary 1 deviates and pretends that

the message is m′, the receiver correctly infers that intermediary 2 is not deviating. This

requires the sender to broadcast messages to selected subsets of neighbors.
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Second, our protocol does not restrict the messages that players can broadcast to any

subset of their neighbors. For example, in addition to the messages that our protocol

requires the intermediaries to broadcast, the intermediaries can also send private mes-

sages to the sender and the receiver. The equilibrium we construct simply treats these

additional messages as uninformative (babbling).

Third, detailed knowledge of the communication network is not needed. To execute our

protocol, a player on one of the paths from the sender to the receiver needs to know only

his two immediate neighbors on the path and the total number of players on the two

disjoint paths. Hence, only local information is needed to perform the protocol.

Fourth, we assumed that the sender and the receiver are not directly connected. We

now discuss how our results would change if the sender and the receiver can also com-

municate directly. The equivalence between statements (2) and (3) and a variation of

(4) of Theorem 1 extends immediately. More precisely, PBE implementation of direct

communication is possible (resp. the transmission of messages is strongly reliable) if,

and only if, either the sender and receiver are directly connected or if there are two

disjoint paths between the sender and the receiver. The extension of the equivalence

to Statement (1) in Theorem 1 is more delicate. First, notice that if the direct link is

the only link between the sender and the receiver, then there is no hope to replicate the

mediator, as all communication would be direct. We need to be able to use intermedi-

aries in communication. We claim that if there are at least two intermediaries, labeled

1 and 2, such that the sender, the receiver and the two intermediaries are on a “circle,”

then PBE implementation of mediated communication is possible.13 An informal proof

is given in Appendix B. We do not know whether the condition of having at least two

intermediaries such that the sender, the receiver and the two intermediaries are on a

“circle,” is necessary. We conjecture this is so.

4. CONCLUDING REMARKS

Our analysis extends to communication games with multiple senders. More precisely, we

consider a direct communication game, in which senders receive private signals about

a payoff-relevant state, send messages to the receiver, and the receiver takes an action.

If there exist two disjoint paths of communication from each sender to the receiver, we

can then replicate our analysis to implement any PBE distribution of the direct com-

munication game. The key is to have all senders broadcast their messages in the first
13A circle is a collection of nodes such that all pairs of nodes have two disjoint paths between them.



COMMUNICATION ON NETWORKS AND STRONG RELIABILITY 23

stage and then to run copies of our protocol in parallel. Learning from one protocol does

not have any impact on other protocols; hence, this guarantees that the receiver learns

the correct messages. We stress, however, that it is essential that all senders move si-

multaneously in the first stage; otherwise, their incentives might change from the direct

communication game if they have learned the messages of other senders before sending

theirs.

In contrast, extending our analysis to communication games with multiple receivers is

very challenging. A first approach would be to increase the connectivity of the network:

if there are two disjoint paths from the sender to each receiver, all these paths are dis-

joints one from another; then, our analysis easily extends to this case. However, this

condition requires much connectivity, as there is a need for 2R disjoint paths with R re-

ceivers. A second direction would be to have a strongly reliable communication protocol

with the additional property of secrecy in the sense that intermediaries do not learn the

messages sent by the sender while performing the protocol. Our protocol clearly does not

have that property. We conjecture that more disjoint paths are necessary to construct

such a protocol, but it may be that fewer are needed than in the first approach above.

This is a challenging question that is left for future research.

Finally, while we do not consider the possibility of k faults/deviations at each stage, we

conjecture that our main ideas apply to this situation. (Naturally, the sender and the

receiver cannot be faulty.) To see this, we consider the network in Figure 4, where there

are k + 1 reporting lines between the sender and the receiver.

R
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1 2 k

FIGURE 4. k + 1 reporting lines

We now explain how to adapt our construction. As in Section 3, we continue to assume

that the sender and the intermediaries broadcast the message to be transmitted and au-

thentication keys at each stage. In addition, if an intermediary receives triplet (i, t, xti)

at a stage, he broadcasts it at all subsequent stages. We also require the receiver to
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validate a sequence of three identical messages from intermediary i, received at stages

t1, t2 and t3, only if he has not received the authentication key xt1i at stage t3 or earlier

from intermediary j ̸= i. Unlike in our original construction, however, we require com-

munication to last 1 + [2(k + 1) + 1] stages. Intuitively, we need to extend the rounds

of communication to guarantee that at least one intermediary sends the same message

three times. Since at most k intermediaries deviate at a stage, at least one intermediary

is transmitting the correct message at each stage; therefore, after 2(k + 1) + 1 stages, at

least one intermediary has transmitted the correct message three times to the receiver.

Thus, as in our original construction, the receiver never validates an incorrect message

(since he will receive the correct authentication key from at least one intermediary)

and is guaranteed to validate the correct message (since he is guaranteed to receive the

correct message three times and not the authentication key). Future research should

explore whether we can extend our arguments to all sufficiently connected networks.

APPENDIX

APPENDIX A. PROOF OF THEOREM 1

Statement (1) clearly implies Statement (2) in Theorem 1, as the set of Bayes–Nash

equilibria is included in the set of communication equilibria in the direct communication

game. Additionally, we do not prove that Statement (2) implies Statement (4), as the

proofs follow well-trodden paths, see e.g., Renault and Tomala (2008) or Renault et al.

(2014).

A.1. Proof that Statement (4) implies Statement (3). We prove here that two dis-

joint paths between the sender and the receiver is a sufficient condition for the trans-

mission of messages to be strongly reliable. Assume that network N admits two dis-

joint paths between the sender and the receiver, and denote the two shortest paths by

S, i1, . . . , iK , R and S, j1, . . . , jK′ , R, respectively, for some K,K ′ ≥ 1. We let P be the set

of nodes on these two paths, including the sender and the receiver, and let nC be its

cardinality. Throughout, we refer to these two paths as the “circle,” with the nodes

{S, i1, · · · , iK , R} (resp.,{S, j1, . . . , jK′ , R}) as the “left side of the circle” (resp., “right side

of the circle”). For each player p ∈ P \ {S,R}, we call the successor of p, denoted p+,

his immediate successor on the path to the receiver. Similarly, we call the predecessor

of p, denoted p− his immediate predecessor on the path to the sender. For example, if

p = ik for some 1 ≤ k ≤ K, p+ = ik+1 and p− = ik−1, with the convention that i0 = S and
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iK+1 = R. The sender and the receiver have a special position since they participate in

communication on both paths; therefore, their neighbors need to play the roles of both

predecessors and successors. In particular, if p = R and p− = iK (resp, jK′), then p+ = jK′

(resp., p− = iK). The same reasoning applies for the sender. However, as will be clear

later, whenever i1 (resp., iK) plays the role of a predecessor, then j1 (resp., jK′) plays

the role of the successor and, vice versa. Thus, we mostly focus on messages flowing

from the sender to the receiver. However, messages will also need to flow in the other

direction.

A.1.1. The communication protocol (M, σ). Throughout, we write [1 : T ] for {1, . . . , T}.

The message space. Recall that M is the set of messages in the direct communication

game and let m0 /∈M be an arbitrary message, interpreted as null. The set of messages

that player i ∈ I∗ can broadcast to subset Ni ∈ 2Ni \ {∅} is as follows:

Mi,Ni
=

(
M ∪ {m0}

)
× [0, 1]

×(×
j∈Ni

{
{∅}

⋃(
{j} × [1 : T ]× [0, 1]

)})
×( ×

j∈I∗\Ni

{
{∅}

⋃(
{j} × [1 : T ]× [0, 1]

)}L)
,

with L = 1 + (nC − 3)(2nC − 3).

The set of messages that player i can send is×Ni∈2Ni\{∅}Mi,Ni
. In other words, each

player can broadcast to any subset of his neighbors a grand message composed of: (i)

a message m ∈ M or the null message m0, (ii) a number in [0, 1] and (iii) a tuple of

triplets, each of which is composed of the name of a player, a stage, and a number in

[0, 1]. Crucially, player i and his predecessors following the protocol, validate at most

a single triplet about each of their neighbors in each stage. However, player i can send

several triplets (at most L) about the other players. In other words, at each stage, player

i can send a list of triplets to his neighbors Ni, but no list includes more than one triplet

about j ∈ Ni.

The strategies of the players. For any player p /∈ P, the protocol requires them to

broadcast (uniformly) randomly drawn messages in Mi,Ni
at each stage t to each subset

of neighbors Ni ∈ 2Ni \ {∅}, independently of all the messages received and sent up to

stage t. In words, they are babbling.

We now define the strategy for player p ∈ P. We focus on the messages they broadcast

to their neighbors on the circle, i.e., to Np ∩ P. To all other subsets of neighbors, they
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send randomly generated messages, independent of the histories of the messages sent

and received, i.e., they babble. In what follows, when we say that player p broadcasts

a message, we mean that he broadcasts the message to the subset {p−, p+}. Remember

that for S (resp., R), {p−, p+} = {i1, j1} (resp., {iK , jK′}).

• Authentication keys: At each stage t ≥ 1 of the communication protocol, p

broadcasts a uniformly drawn message xtp in [0, 1] to his neighbors on the “circle,”

that is, to the two players in Np ∩ P: this message xtp is called the authentication

key of player p at stage t.

• First stage: At stage t = 1, the sender broadcasts the message m to his neigh-

bors on the circle, i.e., to i1 and j1, along with his authentication key. All the other

players broadcast m0 to their neighbors on the circle (along with their authenti-

cation keys).

• Subsequent stages: Starting from stage t = 2 onwards, the protocol proceeds in

blocks of 2nC − 3 stages. We denote these blocks by Bb, where b = 1, 2 . . . , B. (We

have at most nC − 3 blocks.) For instance, B1 represents the block that starts at

stage t = 2, and B2 represents the block that starts at stage t = 2 + 2nC − 3 =

2nC − 1, etc. For each b = 1, 2 . . . , let Bb := {tb, . . . , tb+2nC − 4} where tb is the first

stage of block Bb. In each block Bb, the strategy of p is the following:

– Transmission of the sender’s message:

∗ If p knows the message m at the beginning of the block, that is, if p

is in {S, i1, j1} or p has learned message m at the end of the previous

block (see below, where the decoding rule at the end of each block is

defined), then p broadcasts the message m to his neighbors p− and p+

at all stages tb, . . . , tb + 2nC − 4 of the current block (the neighbors of S

are i1 and j1).

∗ If p does not know the message m at the beginning of the block, then p

broadcasts m0 to his neighbors p− and p+ at all stages tb, . . . , tb+2nC − 4

of the current block.

(Remember that p also sends an authentication key.)

– Detection of deviations:

∗ If p detects his successor p+ making a false announcement about the

message m ∈M at some stage t ∈ {tb, . . . , tb + 2nC − 4}, that is,

· either p knows m ∈ M and p+ broadcasts at stage t the message

m̃ ∈ M \ {m}, interpreted as “player p+ is broadcasting the false

message m̃,”
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· or p does not know the message m and p+ broadcasts at stage t

the message m̃ ∈ M , interpreted as “player p+ is broadcasting the

message m̃ although he cannot know it,”

then p broadcasts the triplet (p+, t, xtp+) to player p− and to p+, where

xtp+ is the true authentication key broadcasted by p+ at t. Note that if

p = S (resp., R), then p+ is either i1 or j1 (resp., iK or jK′).

∗ If p does not detect his successor p+ making a false announcement

about the message m ∈M at some stage t ∈ {tb, . . . , tb+2nC − 4}, then p

broadcasts the triplet (p+, t, y) to p− and p+, where y is randomly drawn

from [0, 1].

The key observation is that only players p and p++ know the true authentica-

tion key of p+ at stage t. Therefore, p++ can authenticate whether p+ deviates

at some stage t by cross-checking the authentication key xtp+ received from

p+ at t with the key broadcasted by p (and having transited on the circle in

the opposite direction).

– Transmission of past deviations:

∗ If p ̸= i1 is on the left side of the circle and receives at some stage

t ∈ {tb, . . . , tb + 2nC − 4}

· from p+ a message containing the triplet (p′, d, xdp′), tb ≤ d < t with

p′ on the left side of the circle, then p broadcasts the message to p−

and p+ at stage t+ 1.

· from p− a message containing the triplet (p′, d, xdp′), tb ≤ d < t with

p′ on the right side of the circle, then p broadcasts the message to

p− and p+ at stage t+ 1.

∗ Similarly, if p ̸= j1 is on the right side of the circle and receives at some

stage t ∈ {tb, . . . , tb + 2nC − 4}

· from p+ a message containing the triplet (p′, d, xdp′), tb ≤ d < t with

p′ on the right side of the circle, then p broadcasts the message to

p− and p+ at stage t+ 1.

· from p− a message containing the triplet (p′, d, xdp′), tb ≤ d < t with

p′ on the left side of the circle, then p broadcasts the message to p−

and p+ at stage t+ 1.

∗ If p = i1 (respectively p = j1) receives from p+ a message containing the

triplet (p′, d, xdp′), tb ≤ d < t with p′ on the left (resp. right) side of the

circle, then p broadcasts the message to p− and p+ at stage t+ 1.



28 MARIE LACLAU, LUDOVIC RENOU, AND XAVIER VENEL

∗ If p = i1 (respectively p = j1) receives from p− = S at some stage t ∈

{tb, . . . , tb + 2nC − 4} a message containing the triplet (p′, d, xdp′), with

tb ≤ d < t and p′ on the right (resp. left) side of the circle, then three

cases are possible:

(i): If p′ ̸= j1 (resp., p′ ̸= i1), then p broadcasts it to both p− = S and

p+ = i2 (resp., p+ = j2) at stage t+ 1.

(ii): If p′ = j1 (resp., p′ = i1) and p = i1 (resp., p = j1) has not received

the triplet (p, d, xdp), then p = i1 (resp., p = j1) broadcasts the triplet

(j1, d, x
d
j1
) (resp., (i1, d, xdi1)) at stage t+ 1.

(iii): If p′ = j1 (resp., p′ = i1) and p = i1 (resp., p = j1) has received the

triplet (p, d, xdp), then p = i1 (resp., p = j1) broadcasts the triplet

(p′, d, y) at state t+ 1, with y a random draw from [0, 1].

The intuition is that if p receives from S a message, which reads “S

claims that both i1 and j1 deviated at the same stage d,”, then S must

be deviating (since under unilateral deviations, at most one player de-

viates at each stage); hence, the protocol changes in the fact that i1 and

j1 are not transmitted the message of the sender since they know the

sender is deviating at this stage.

∗ Autocorrecting past own deviations: if p has received the triplet

(p′, d, xdp′) at stage t ∈ {tb, . . . , tb + 2nC − 5} but did not forward it at

stages t + 1, . . . , t + ∆, for some ∆ ≥ 1, then he forwards it at stage

t+∆+1. In other words, the protocol requires a player to broadcast the

triplet (p′, d, xdp′) at stage t + 1 upon receiving it at stage t, to broadcast

it at t+ 2 if he fails to broadcast it at stage t+ 1, to broadcast it at t+ 3

if he fails to broadcast it at stage t+ 1 and t+ 2, etc., so that unless the

player deviates at all stages t′ ≥ t + 1, the triplet is broadcast at some

stage during the block.

The decoding rule. The decoding rule describes how messages are analyzed at the end

of each block. Players not in P do not analyze their messages. We consider the players

in P. First, we say that a player knows a message m in two cases: either he is a neighbor

of the sender and receives the sender’s message at stage 1 , or he decodes a message as

correct according to the protocol in some block.

At the beginning of block B1, the sender and his two neighbors i1 and j1 know the mes-

sage m broadcasted by the sender at stage t = 1. At the end of each block, only players
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who do not yet know m analyze the message received during the block. Thus, only the

players in P \ {S, i1, j1} analyze messages at the end of the block B1. (The purpose of our

arguments is to show that the set of players who know m at the end of a block is strictly

expanding over time and, ultimately, includes the receiver.) Thus, we consider player p,

who does not yet know m at the beginning of the block Bb. At the end of the block Bb, he

analyzes the messages as follows:

• If during the block, p has received (nC − 1) times a grand message containing

the same message m ∈ M from his predecessor p−, let say at stages d1, . . . , dnC−1,

where tb ≤ d1 < d2 < · · · < dn
C−1 ≤ tb + 2nC − 4,

• and if p has not received by stage dnC−1 at the latest from his successor p+ the

message (p−, d1, xd
1

p−) where xd1p− matches the value of the authentication key re-

ceived by p from p− at stage d1,

then, player p learns the messagem and starts the next blockBb+1 as a player who knows

m. Otherwise, player p does not learn the message. Moreover, once a player knows the

message m, he knows it for all the subsequent blocks.

For all other histories, the strategies are left unspecified.

A.1.2. Two key properties of the protocol. The protocol we constructed has two key prop-

erties. The first property states that no player p ∈ P learns incorrectly; that is, if player

p ∈ P learns a message, the message is indeed the one the sender has sent. Lemma 1 is

a formal statement of that property.

Lemma 1. Let m ∈ M be the message broadcast by the sender to i1 and j1 at stage t = 1.

If at most one player deviates from the protocol at each stage, then it is not possible for

player p ∈ P to learn m′ ∈ M \ {m}.

Proof of Lemma 1. By contradiction, we assume that player p ∈ P learns m′ ∈ M \ {m}

at the end of some block Bb, b ≥ 1. Without loss of generality, we assume that p is the

first player to learn m′ on the path from S to R, where p lies.

For player p to learn m′, during the block Bb, it must be that player p has received a

sequence of nC − 1 grand messages from his predecessor p−, say at stages d1, . . . , dnC−1

with tb ≤ d1 < d2 < · · · < dn
C−1 ≤ tb + 2nC − 4, such that (i) the first element of each

of the nC − 1 grand messages is m′ and (ii) player p did not receive from p+ the triplet

(p−, d1, xd
1

p−) on or before stage dnC−1, where xd1p− matches the value of the authentication

key received from p− at stage d1.
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Since we assume that m′ ̸= m, it must be that that p− deviates at all stages d1, . . . , dnC−1,

as we assume that p is the first player to learn m′. Therefore, since we consider at most

one deviation in each stage, all players in P \ {p−} are playing according to σ at all

stages d1, . . . , dnC−1. It follows that player p−−, the predecessor of p−, broadcasts triplet

(p−, d1, xd
1

p−) to p− and p−−− at stage d2 at the latest and that player p−−− broadcasts it at

stage d3 at the latest, etc.14

Since there are nC − 2 nodes other than p− and p on the circle, player p+ broadcasts the

triplet (p−, d1, xd1p−) to players p and p++ at stage dnC−1 at the latest. Thus, player p does

not validate m′ with that sequence of grand messages.

Since this is true for any such sequence, player p does not learn m′ at block Bb. □

Lemma 1 states that no player on the circle learns an incorrect message. The next

Lemma states that at least one new player learns the correct message at the end of each

block, which guarantees that the receiver learns the correct message at the latest after

1 + (nC − 3)(2nC − 3) stages.

Lemma 2. Let m ∈ M be the message broadcasted by the sender to i1 and j1 at stage

t = 1. Suppose that all intermediaries i1 to ik and j1 to jk′ know the message m at the

beginning of the block Bb. If at most one player deviates from the protocol at each stage,

then either intermediary ik+1 or intermediary jk′+1 learns m at the end of block Bb with

probability one.

To be more precise, Lemma 2 states that for all σ′ ∈ Σ(σ), the subset of histories for

which either intermediary ik+1 or intermediary jk′+1 is learning m at the end of block Bb

has a probability of one according to Pσ′.

Proof of Lemma 2. Given a finite set M , we denote its cardinality by |M |. For simplicity,

let i := ik and j := ik′. We want to prove that either i+ or j+ learns the message at the

end of the block Bb = {tb, . . . , tb + 2nC − 4}. The proof is by contradiction. Therefore, we

assume that neither i+ nor j+ learns the message at the end of the block.

We fix a strategy profile σ′ ∈ Σ(σ). Di denotes the stages where player i deviates from

σ, Di− denotes the stages where player i− deviates, Dj denotes the stages where player
14Notice that it is possible for p−− to broadcast the message (p−, d1, xd1

p−) before stage d2. For instance it
is possible to have a stage d1

′
, with d1 < d1

′
< d2, such that (i) p− is not deviating at stage d1

′
and sends

either m or m0 depending on whether he knows m and (ii) p−− is deviating at stage d1
′
by not transmitting

(p−, d1, xd1

p−) to p− and p−−.
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j deviates and Dj− denotes the stages where player j− deviates. According to the def-

inition of Σ(σ), the sets Di, Di−, Dj and Dj− are pairwise disjoints (by definition, we

consider histories with unilateral deviations in each stage only). In particular,

|Di|+ |Di−|+ |Dj|+ |Dj−| ≤ |Di ∪Di− ∪Dj ∪Dj−| ≤ 2nC − 3. (1)

Throughout, for any subset D of Bb, we write D for its complement in Bb. By defi-

nition, in all stages in Di, player i follows σi and deviates at all others. Let Di :=

{d1, . . . , dℓ, . . . , dℓ∗i }, with dℓ < dℓ+1 for all ℓ. Note that ℓ∗i = (2nC − 3)− |Di|.

We assume that ℓ∗i ≥ nC −1. Since player i follows the protocol at all stages in Di, player

i+ observes at least one sequence of messages such that m is broadcast nC − 1 times

by player i. Consider all sequences (dℓ1 , . . . , dℓnC−1
) of distinct elements of Di such that

all sequences have nC − 1 consecutive elements, that is, if dℓ and dℓ′ are elements of the

sequence, then all dℓ′′ satisfy dℓ < dℓ′′ < dℓ′. By construction, there are (ℓ∗i +1)−(nC−1) =

nC − |Di| − 1 such sequences. All these sequences have different starting stages and,

therefore, different ending stages. Recall that player i broadcasts m at all stages of

these sequences.

We fix the sequence (dℓ1 , . . . , dℓnC−1
). The protocol specifies that player i+ learns m if

and only if he has not received the correct authentication key x
dℓ1
i from player i++ by

the stage dℓ
nC−1

. Therefore, player i+ does not learn m only if player i− broadcasts the

correct authentication key in some stage d > dℓ1; the other players do not know the

authentication key and the probability of guessing it correctly is zero. Moreover, since

the protocol requires player i− to broadcast xdℓ1i only if player i broadcasts m′ ̸= m in

stage dℓ1, which he does not, player i− must be deviating. Therefore, d ∈ Di−.

Remember that player i− can broadcast at most one authentication key about player i

at each stage. Therefore, since there are nC − |Di| − 1 such sequences, player i− must

deviate at least nC − |Di| − 1 times for player i+ to not learn m; that is,

|Di− | ≥ nC − |Di| − 1. (2)

It follows that

|Di|+ |Di−| ≥ nC − 1. (3)
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Now, we assume that ℓ∗i < nC − 1. We have that |Di| = (2nC − 3)− ℓ∗i > 2nC − 3−nC +1 =

nC − 2, hence |Di| ≥ nC − 1. Inequality (3) is also satisfied.

A symmetric argument applies to the pair of players j and j−, hence,

|Dj|+ |Dj−| ≥ nC − 1, (4)

since player j+ does not learn m either. Summing Equations (3) and (4), we obtain

|Di|+ |Di−|+ |Dj|+ |Dj−| ≥ 2nC − 2, (5)

contrary to Equation (1). This completes the proof of Lemma 2. □

To conclude this proof, it is sufficient to invoke Lemmas 1 and 2, which guarantee that

the receiver learns almost surely the message broadcast by the sender provided there

are more than nC − 1 blocks.

A.2. Proof that Statement (4) implies Statement (1). The proof is constructive and

relies extensively on the use of the strongly reliable communication protocol (M, σ)

constructed above. The informal idea is to generate jointly controlled lotteries between

the sender and one of the two intermediaries i1 or j1 to generate a recommendation,

which is then (strongly) reliably transmitted to the receiver.

As explained in the main text, if A is finite, any distribution µ over A can be generated by

a jointly controlled lottery. The idea is to partition the interval [0, 1] into |A| subintervals,

where the length of the subinterval associated with a is µ(a). Let f : [0, 1] → A, where

f(r) = a if r is in the subinterval associated with a. Note that f−1(a) is a Borel set

and has measure µ(a). We consider two uniform random variables X and Y . Notably,

the sum X + Y mod [0, 1], x + Y mod [0, 1], and X + y mod [0, 1] are also uniformly

distributed on [0, 1], regardless of the values of x and y. Therefore, if we let ϕ(x, y) = a

if x + y mod [0, 1] ∈ f−1(a), then we indeed generate µ. If Ω is finite, one can repeat the

previous construction for each ω to obtain a way to generate any strategy as one that is

jointly controlled. We have two technical complications to address. First, the set A is

an arbitrary complete and separable metric space and not finite. Second, the set Ω is

an arbitrary complete and metric space, hence we need to ensure that this construction

can be completed in a measurable way. We first introduce a formal definition extending

the notion of a jointly controlled lottery to strategies and then prove its existence in our

framework.
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Definition 3. Let f : Ω × BA → [0, 1]. A jointly controlled kernel generating f is a triple

(X, Y, ϕ) such that

- X is a measurable function from a probability space (U,U ,P) to ([0, 1],B[0,1]),

- Y is a measurable function from a probability space (U,U ,P) to ([0, 1],B[0,1]),

- X and Y are independent,

- and ϕ is a probability kernel function on (Ω× [0, 1]× [0, 1])× BA

such that for every O ∈ BA

(i) E [ϕ(ω,X, Y,O)] = f(ω,O),

(ii) for every x ∈ [0, 1], E [ϕ(ω, x, Y,O)] = f(ω,O),

(ii) and for every y ∈ [0, 1], E [ϕ(ω, Y, y, O)] = f(ω,O),

When Ω is a singleton, µ is the formalization of what we informally described as a jointly

controlled lottery.

Proposition 1. For any probability kernel, f : Ω × BA → [0, 1], there exists a jointly

controlled kernel (X, Y, ϕ) generating f . Moreover, the kernel ϕ is degenerated in the

sense that for every (ω, x, y) ∈ Ω× [0, 1]× [0, 1], ϕ(ω, x, y, .) has only one atom.

Proof of Proposition 1. Let λ be the Lebesgue measure on [0, 1] and f : Ω×BA → [0, 1] be a

probability kernel. We assume that A is uncountable which is without loss of generality

up to an embedding.

Let us assume first that A = [0, 1]. We can define a quantile kernel: for every ω ∈ Ω, for

every x ∈ [0, 1] ,

θ(ω, x) = sup {t ∈ Q, f (ω, ]−∞, t[) < x} = sup
t∈Q

t1f(ω,]−∞,t[)<x.

By construction for every x ∈ [0, 1], θ(., x) is measurable on Ω. Moreover, let Z be a

uniform r.v over [0, 1]; then, for every ω ∈ Ω, the probability distribution of θ(ω, Z) is

f(ω, .).

We can now define

- X is a measurable function from a probability space (U,U ,P) to ([0, 1],B[0,1]),

- Y is a measurable function from a probability space (U,U ,P) to ([0, 1],B[0,1]), inde-

pendent of X
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- for every (ω, x, y) ∈ Ω× [0, 1]× [0, 1] and O ∈ BA,

ϕ(ω, x, y, O) =

1 if θ(ω, x+ y mod 1) ∈ O,

0 otherwise.

Informally, the strategy computes z as x + y modulo 1 and plays with probability one

θ(ω, z). The key observations are as follows. First, the sums X + Y mod [0, 1], x + Y

mod [0, 1], and X + y mod [0, 1] are all uniformly distributed on [0, 1]. By construction,

the distribution of ϕ(ω,X, Y ) over BA is the same as θ(ω, Z), with Z being a uniform r.v.

Hence, f(ω, .). This concludes the proof for the case where A = [0, 1].

Finally, we can show the result for any separable metric space. By assumption, (A,BA)

is Borel standard; therefore, there is a Borel isomorphism ψ from (A,BA) to ([0, 1],B[0,1])

such that the inverse is also measurable (Theorem 3.3.13, p. 99 in Srivastava, 2008).

Hence, we can define the kernel

f̃ : Ω× B[0,1] → [0, 1]

by

f̃(ω,O) = f(ω, ψ(O))

According to the previous section, we know that there exists a jointly controlled strat-

egy (X, Y, ϕ̃) replicating f̃ . It follows that (X, Y, ψ−1 ◦ ϕ̃) is a jointly controlled strategy

replicating f .

□

We now explain how to PBE implement mediated communication on the network N . Let

τ ∗ : Ω → ∆(A) be a canonical communication equilibrium of the direct communication

game. From Proposition 1, for each ω, there exists a jointly controlled lottery (Xω, Yω, ϕω),

which generates τ ∗(ω).

We let P be the players on the two disjoint paths from the sender to the receiver. We

now describe the strategies used in the communication game:

t = 1: The sender truthfully broadcasts the state ω to the intermediaries i1 and j1.

t = 2: The sender and intermediary i1 each draw a random number in [0,1]. Let x (resp.,

y) be the number drawn by the sender (resp., intermediary i1). The sender and

the intermediary i1 broadcast (simultaneously) their random numbers.

t = 3, . . . , 2 + (2nC − 3)(nC − 3): Players p ∈ P execute the protocol (M, σ) starting from

its second stage, with i1 in the role of the sender and j1 in the role of the receiver;
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the message to be transmitted is y. The first stage of the protocol (M, σ) is not

executed because the keys x and y were already broadcasted at t = 2. Accordingly,

unilateral deviations of i1 cannot affect the message learned by j1 at the end of

the protocol (M, σ)–j1 thus learns the random number y.

t = 3 + (2nC − 3)(nC − 3): The sender and the intermediaries i1 and j1 output a recom-

mendation a ∈ A according to the jointly controlled kernel (X, Y, ϕ); that is, the

recommendation is the unique action in the support of ϕ(ω, x, y) with ω the state

broadcasted at t = 1. The three of them truthfully broadcast the recommenda-

tion.

t = 4 + (2nC − 3)(nC − 3), . . . , 5 + 2(2nC − 3)(nC − 3): Players execute in parallel and in-

dependently three copies of the protocol (M, σ) with S, i1 and j1 in the role of the

sender, respectively, and the message to be transmitted is the recommendation

a. In the last stage, the receiver follows the recommendation made most often, if

any. (If there is no majority, then he chooses an arbitrary action.)

Since at stage t = 3 + (2nC − 2)(nC − 3), at most one of the three “senders” can deviate,

the correct recommendation is sent at least twice. It follows that if the receiver is obe-

dient, the receiver chooses the correct action in all histories consistent with unilateral

deviations. Moreover, since the receiver observes neither ω nor x, he has no additional

information about the state than in the direct communication game, hence he has an

incentive to be obedient.

Clearly, in each iteration of the protocol (M, σ), no intermediary has an incentive to

deviate since it would result in the same expected payoff: indeed, since the protocol is

strongly reliable, the “receiver” (of the protocol considered) learns the message sent by

the “sender” (of the protocol considered) for all histories consistent with unilateral de-

viations. Additionally, the sender and intermediary i1 have no incentive to deviate in

stage t = 2 since this would not change the outcome of the jointly controlled lottery. Ad-

ditionally, the sender and both intermediaries i1 and j1 have no incentive to deviate by

broadcasting another recommendation than the one obtained by a jointly controlled lot-

tery, as it would not be followed by the receiver who follows the recommendation made

the other two (majority rule). Moreover, the sender has no incentive to deviate in the

first stage when sending the state ω since the jointly controlled lottery generates the dis-

tribution of a canonical communication equilibrium of the direct game, and conditional

on broadcasting ω in the first stage, the receiver receives τ ∗(ω) in all histories consistent

with unilateral deviations, including deviations by the sender. Finally, the receiver has
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no incentive to deviate either. If he stops the game earlier, then his expected payoff

is weakly lower as a consequence of Blackwell’s theorem. Indeed, the only informative

message about ω is τ ∗(ω) and stopping earlier is a garbling of τ ∗(ω).

Sequential rationality. We now prove that the profile of strategies constructed above

satisfies sequential rationality. Notice first that no deviation can be observed at stages

t = 1 and t = 2 since all the messages are in the support of the players’ strategies.

Sequential rationality must then be proven starting from stage 3, where the remainder

of the communication game is composed of a first protocol where i1 is the sender and j1

the receiver, then three simultaneous protocols, in which respectively the sender, i1 and

j1 are the senders of these three protocols, and in all of them, the receiver remains the

receiver.

As already argued above, in each of these subprotocols, sequential rationality is guar-

anteed at all histories consistent with at most one intermediary deviating in each stage

of the communication game. We therefore focus our attention on all other histories, i.e.,

histories not in H(σ).

Each of these four subprotocols is run independently of one another; therefore, we con-

sider them separately. For each subprotocol, we first consider all the intermediaries of

this subprotocol (i1, . . . , iK) and (j1, . . . , jK′) (with an abuse of notation, as for instance

in the first protocol, when i1 is the sender, the intermediaries are in fact (i2, . . . , j1) and

(S)). We treat the sender and receiver of this subprotocol separately.

Rebooting strategies. We say that player i reboots his strategy at period t if, from any

history hti /∈ Hi(σ) onwards, he follows the protocol as if he knows that the message is

m0. That is, at history hti, he broadcasts the message m0, an authentication key xti, and

random triplets (j, tj, x
tj
j ), j ∈ Ni. At all subsequent histories consistent with at most

one intermediary deviating from the protocol at each stage, player i continues to follow

the protocol. That is, player i continues to broadcast m0, authentication keys and triplet

(j, tj, x
tj
j ), as specified by the protocol when a player knows a message (here, it is m0). At

all other histories, player i reboots yet again his strategy, that is, player i continues to

broadcast m0, authentication keys and triplets, as if the multilateral deviation had not

taken place.15

15Since our strongly reliable communication protocol is not defined after multilateral deviation, we can-
not simply say that we reboot the strategy only once after a multilateral deviation. Indeed, if a new
multilateral deviation occurs after some player has rebooted his strategy, his strategy is then not defined.
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Beliefs. In history hti /∈ Hi(σ), player i believes that all other players on the same

side of the circle reboot their strategies, while players on the other side of the circle

as well as the sender and the receiver, continue to follow the protocol. In other words,

player i believes that all other players on the same side of the circle have also observed

a multilateral deviation, while players on the other side, as well as the sender and the

receiver, have observed no deviations.

We now consider the sender. In all histories htS, the sender continues to follow the pro-

tocol as if the observed multilateral deviations had not happened. However, he believes

that all intermediaries reboot their strategies at period t, while the receiver continues

to follow the protocol.

We now consider the receiver. The receiver continues to validate messages as he does

in the protocol, i.e., he tests sequences of messages of length nC − 1 received by his two

predecessors and validates a message if he has received a sequence of nC − 1 identical

copies of the message and has not received the correct authentication on time (see the

construction of the protocol for details). To complete the construction of the strategies,

we assume that if the receiver validates m ∈M and m0 /∈M , then he plays τ ∗(m). Simi-

larly, if he validates two different messages (m,m′) ∈M ×M or (m0,m0) or no messages

at all, he plays a best reply to his prior. In all histories, the receiver continues to fol-

low the protocol as if the observed deviations Had not happened. He believes that all

intermediaries reboot their strategies, while the sender continues to follow the protocol.

Finally, we assume that beliefs are independent between the different subprotocols, in

that if an intermediary observes a multilateral deviation in one subprotocol only, he

believes that other players on the same side of the circle reboot their strategies in that

subprotocol only and not on the others.

Sequential rationality. In history hti /∈ Hi(σ), an intermediary expects the receiver to

validate a message m ∈ M from the other side and to validate the message m0 from his

side. Since the receiver takes the decision τ ∗(m) when validating the messages m ∈ M

and m0 /∈ M , the intermediary cannot deviate profitably (as, regardless of his play, the

receiver validates m from the other side). Therefore, rebooting the strategy is optimal.

Similarly, since the sender expects the intermediaries iK and jK′ to reboot their strate-

gies, he expects the receiver to play a∗ and, therefore, cannot profitably deviate. The

same applies to the receiver.
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APPENDIX B. THE CASE IN WHICH THE SENDER AND THE RECEIVER ARE DIRECTLY

CONNECTED.

We assume that the sender and the receiver can also communicate directly. We claim

that if there are at least two intermediaries, labeled 1 and 2, such that the sender,

the receiver and the two intermediaries are on a “circle,” then PBE implementation of

mediated communication is possible.16

We now present an informal proof. As a preliminary observation, we note that on the

circle, it must be that either the two intermediaries are on two disjoint paths from the

sender to the receiver or are on the same path. See the two networks in Figure 5 for an

illustration.

R

2

S

1

R 2

S 1

FIGURE 5. N (left) and N ∗ (right)

In the former case (network N ), Theorem 1 applies verbatim. In the latter case (net-

work N ∗), we need to modify the protocol of Theorem 1 to guarantee that intermediary 2

learns the state ω without the receiver learning it. Once the sender and the two interme-

diaries know ω, we can then use the second and third phases of the protocol constructed

in Section 3 to implement the communication equilibrium.

We modify the first phase as follows. We first let intermediary 1 broadcast an encryption

key k to the sender and intermediary 2. The sender then encrypts the state ω with the

encryption key k and transmits the encrypted message to intermediary 2. The transmis-

sion of the encrypted message is achieved via the strongly reliable protocol constructed

in Section 3.

It remains to be argued that at the end of the first phase, the sender and the two inter-

mediaries know ω. It is clear for the sender and intermediary 1. For intermediary 2, at

the end of the first phase, he knows the encryption key and the encrypted message and,

thus learns the state ω. This argument completes the informal “proof.”
16A circle is a collection of nodes such that all pairs of nodes have two disjoint paths between them.
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We note that either the sender or an intermediary may attempt to reveal the state to the

receiver. We cannot exclude this possibility. However, as already explained, the equilib-

ria we construct are such that the receiver does not expect the sender and intermediaries

to do so and thus consider their attempts to be gibberish.
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JOSAS, FRANCE

Email address: laclau(at)hec.fr

LUDOVIC RENOU, QUEEN MARY UNIVERSITY OF LONDON AND CEPR, MILES END, E1 4NS, LONDON,

UK

Email address: lrenou.econ(at)gmail.com

XAVIER VENEL, LUISS GUIDO CARLI UNIVERSITY, 32 VIALE ROMANIA, 00197 ROME, ITALY

Email address: xvenel(at)luiss.it


