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Abstract 

Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the 

mammalian brain, mediating a modulatory role that is critical for higher order brain functions such as learning 

and memory. Since cloning the first mGlu receptor in 1992, eight subtypes have been identified along with 

many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to 

the class C G protein-coupled receptor family and represent attractive targets for a multitude of CNS disorders. 

Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools 

including subtype selective agents that competitively block or mimic the actions of glutamate, or act 

allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiological and 

pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular 

signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo 

pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as 

well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging 

areas of research that hold promise to facilitate rational design of highly selective mGlu receptor targeting 

therapeutics in the future.  

Significance Statement. 

The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and 

neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse 

pharmacological tools acting either competitively or allosterically, which have enabled dissection of 

fundamental biological process modulated by metabotropic glutamate receptors and established proof-of-

concept for many therapeutic indications. We review metabotropic glutamate receptor molecular 

pharmacology and highlight emerging areas that are offering new avenues to selectively modulate 

neurotransmission.  
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Introduction 

Glutamate is the major excitatory neurotransmitter in the human brain mediating its effects via two distinct 

receptor classes. Ionotropic glutamate receptors are ligand-gated ion channels that rapidly cause membrane 

depolarization in response to glutamate. On the other hand, metabotropic glutamate (mGlu) receptors have a 

modulatory role exerted over a longer time scale including influencing neuronal excitability and synaptic 

plasticity as well as activity of non-neuronal cells.  

The mGlu receptors are a family of eight class C G protein-coupled receptors (Acher et al., 2019; Alexander 

et al., 2019). They comprise a large extracellular N-terminal domain where glutamate binds, termed the Venus 

Flytrap (VFT) domain, linked to seven transmembrane alpha-helical domains (7TM) via a cysteine-rich 

domain (CRD) (Figure 1). The mGlu receptors are obligate dimers mediated by an inter-protomer disulfide 

bond at the top of the VFT domains. Structural studies indicate that the bilobed VFT domains adopt a closed 

conformation upon agonist binding (Koehl et al., 2019; Kunishima et al., 2000; Monn et al., 2015a; Monn et 

al., 2015b; Muto et al., 2007; Tsuchiya et al., 2002). The CRD transmits the active VFT conformation to the 

7TM via interactions with the second extracellular loop of the 7TM (Koehl et al., 2019). When activated the 

7TM domains come into closer proximity, with transmembrane domain 6 mediating dimerization between the 

7TM domains of the two protomers (Doumazane et al., 2013; El Moustaine et al., 2012; Koehl et al., 2019; 

Xue et al., 2015)(reviewed in (Pin and Bettler, 2016)). Ultimately, the active 7TM domains couple to 

intracellular transducers to elicit a cellular response.  

The eight mGlu receptor subtypes are commonly divided into three groups based on sequence identity, G 

protein coupling preferences and pharmacology. In addition to forming constitutive homodimers, heteromers 

have been observed among group I members and between group II and III subtypes (Doumazane et al., 2011b). 

The various mGlu receptor subtypes are ubiquitously expressed throughout the brain in neurons and glia, with 

the exception of mGlu6 receptor, for which expression is restricted to the retina (reviewed in (Ferraguti and 

Shigemoto, 2006)). Peripheral mGlu receptors (reviewed in detail by (Julio-Pieper et al., 2011)) are found in 
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tissues that receive glutamatergic innervation (e.g. heart, gastrointestinal tract, pain circuitry (Pereira and 

Goudet, 2018)) but are also in non-excitatory tissues and organs (e.g. immune cells, liver, kidney). Herein we 

provide a brief overview of the fundamental biology of the different mGlu subtypes and intracellular signaling, 

followed by an in-depth discussion of pharmacological agents and therapeutic indications with a focus on 

CNS disorders. 

 

Group I: metabotropic glutamate receptors 1 and 5  

Receptor subtypes and splice variants 

The group I mGlu receptors include mGlu1 and mGlu5. The mGlu1 receptor gene (GRM1) and its first three 

splice variants were cloned in rat in 1992 (Pin et al., 1992; Tanabe et al., 1992). In humans, there are seven 

mGlu1 splice variants (a, b, d, f, g, h) that differ in the length of the C terminus (DiRaddo et al., 2013; Laurie 

et al., 1996; Makoff et al., 1997; Soloviev et al., 1999; Sugiyama et al., 1987; Tanabe et al., 1992)[Ensembl 

gene ID: ENSG00000152822]. In addition, 12 single nucleotide polymorphisms within the GRM1 coding 

region have been identified in patients with schizophrenia (Ayoub et al., 2012; Frank et al., 2011), suggesting 

mGlu1 may be a viable therapeutic target for psychosis (Cho et al., 2014b). Spontaneous mutations in GRM1 

are also associated with ataxia (Watson et al., 2017). The mGlu5 receptor is encoded by the GRM5 gene 

[ENSG00000168959], localized in human chromosome 11, and was first cloned in rat in 1992 (Abe et al., 

1992) and in human in 1994 (Minakami et al., 1994). Alternative splicing of GRM5 in humans gives rise to 

two major isoforms that also differ in C terminus length; the longer of the two, human mGlu5a (equivalent to 

rat mGlu5b) has a 32 amino acid insertion after residue 876, but is otherwise identical to human mGlu5b 

(equivalent to rat mGlu5a)(Minakami et al., 1995; Minakami et al., 1993). Variations in C terminus length due 

to alternative splicing of group I receptors influences surface expression, subcellular localization, 

dimerization, interactions with intracellular proteins and ultimately cellular responses (Francesconi and 
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Duvoisin, 2002; Francesconi et al., 2009a; Joly et al., 1995; Kumpost et al., 2008; Mion et al., 2001; Tateyama 

and Kubo, 2008; Techlovska et al., 2014).  

Localization and signal transduction 

The group I mGlu receptors are predominantly found in postsynaptic neurons within the CNS (Figure 2), 

increasing neuronal excitability and membrane depolarization when activated. In certain circuits, group I 

mGlu receptors can be found on pre-synaptic terminals, acting as autoreceptors to modulate neurotransmitter 

release (reviewed in (Pittaluga, 2016)). Further, group I mGlu receptors are also expressed in glial cells 

(reviewed in (Spampinato et al., 2018)). The cellular responses resulting from group I mGlu receptor 

activation are highly complex and context-dependent. 

Group I mGlu receptors preferentially couple to the Gq/11 family of G proteins, which activate phospholipase 

C (PLC) β, which hydrolyses phosphatidylinositol 4,5-bisphosphate in the membrane to yield the second 

messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), mobilizing intracellular Ca2+ (iCa2+) 

stores (Sugiyama et al., 1987) (Figure 3). Potentiation of mGlu5 receptors increases phosphoinositide 

hydrolysis in vivo in different mouse brain areas, such as prefrontal cortex, cerebellum, hypothalamus, 

hippocampus, and striatum (Zuena et al., 2018). Interestingly, endogenous activation of mGlu5 receptors 

largely accounts for basal phosphoinositide hydrolysis particularly in the prefrontal cortex.  Downstream of 

these second messengers, activation of protein kinase C (PKC) and calmodulin triggers signaling cascades 

that ultimately phosphorylate and activate extracellular-signal regulated kinases 1 and 2 (ERK1/2), which 

regulate gene transcription associated with synaptic plasticity (long-term depression or long-term potentiation) 

(Hong et al., 2016; Jin et al., 2013a; Kanumilli et al., 2002; Page et al., 2006; Servitja et al., 2003; Servitja et 

al., 1999). DAG can be further broken-down by DGL (diacylglycerol lipase) to yield endogenous cannabinoid, 

2-AG (2-arachidonoylglycerol) (Gregg et al., 2012; Jung et al., 2005). Beyond Gαq/11 mediated signaling, βγ 

subunits can enhance or inhibit Ca2+ and K+ channels, including ionotropic glutamate receptors, to modulate 

neuronal excitability and membrane potential (reviewed in (Valenti et al., 2002), through physical interactions 
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mediated by scaffolding proteins (Tu et al., 1999) or indirect mechanisms driven by intracellular effectors 

(Figure 3). The βγ subunits can also activate PI3K (phosphoinositide-3-kinase), which in turn activates Akt 

dependent signaling cascades implicated in protein synthesis dependent long-term depression and cell survival 

(Hou and Klann, 2004; Hullinger et al., 2015; Page et al., 2006; Zhu et al., 2018). In recombinant systems 

mGlu1 and mGlu5 receptors also couple to Gαs stimulating adenylate cyclases (AC) and increasing cAMP 

production (Aramori and Nakanishi, 1992; Francesconi and Duvoisin, 1998; 2000; Joly et al., 1995; Nasrallah 

et al., 2018). In addition, group I receptors signal via G protein independent mechanisms (e.g. Homer, src 

kinases, arrestins, transactivation of tyrosine kinases) to activate different kinase cascades that contribute to 

synaptic plasticity (Emery et al., 2010; Eng et al., 2016; Iacovelli et al., 2003; Kubota et al., 2014; Yang et al., 

2006). Downstream of group I receptor activation diverse transcription factors are activated including CREB 

(Mao and Wang, 2003b), Elk-1 (Jong et al., 2005; Jong et al., 2009; Mao and Wang, 2003a), c-Jun (Jong et 

al., 2009), and SRF (Kumar et al., 2012).  

The mechanisms that regulate group I mGlu receptor activity are equally complex (Figure 3). The C termini 

of group I receptors contain binding sites for diverse scaffolding proteins that regulate receptor localization 

and recycling in addition to directly linking group I mGlu receptors to other receptors and channels within the 

post-synaptic density (Eng et al., 2016; Gulia et al., 2017; Hu et al., 2012; Kitano et al., 2002; Lee et al., 2008; 

Roche et al., 1999; Wagner et al., 2015; Wang et al., 2009). Second messenger-activated kinases also provide 

negative feedback regulating cellular responses (iCa2+ oscillations or receptor desensitization) through 

phosphorylation of intracellular loops and/or the C terminus (Bhattacharya et al., 2004; Bradley and Challiss, 

2011; Gereau and Heinemann, 1998; Jin et al., 2013a; Jin et al., 2013b; Jin et al., 2018; Kawabata et al., 1996; 

Kim et al., 2005; Ko et al., 2012; Marks et al., 2018; Mundell et al., 2004; Raka et al., 2015; Uematsu et al., 

2015; Vergouts et al., 2017; Yang et al., 2017). However, not all functional responses are equally influenced. 

For example, PKC phosphorylation of mGlu1 receptors desensitizes signaling to accumulation of inositol 

phosphate but not cAMP (Francesconi and Duvoisin, 2000). Select kinases bind the C terminus and/or 

phosphorylate the receptor altering effector coupling, ability to bind other proteins or receptor endocytosis 
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(Dale et al., 2000; Iacovelli et al., 2003; Jin et al., 2017; Nicodemo et al., 2010; Pula et al., 2004; Sallese et 

al., 2000). By example, Preso1 enhances CDK5 and ERK1/2 phosphorylation of the Homer binding site within 

the C terminus (Hu et al., 2012). Whereas, calmodulin and SIAH-1a recognize overlapping sites in the C tail 

(Ishikawa et al., 1999), with PKC phosphorylation of this site enhancing SIAH-1a but inhibiting calmodulin 

binding (Ko et al., 2012). Second messenger-dependent kinases are critical for group I mGlu receptor 

dependent long-term depression and potentiation by modulating the activity or promoting endocytosis of 

ionotropic glutamate receptors including NMDA and AMPA receptor subtypes (Benquet et al., 2002; Jia et 

al., 1998; Jin et al., 2013b; Jin et al., 2015; Moult et al., 2006; Snyder et al., 2001; Xu et al., 2013). Although, 

PKC-independent mechanisms for NMDA receptor potentiation by group I mGlu receptors have also been 

reported (Harvey and Collingridge, 1993; Kinney and Slater, 1993; Rahman and Neuman, 1996). In a 

reciprocal fashion, NMDA receptor-mediated stimulation of PP2A/CaN (protein phosphatase 2A/calcineurin) 

acts to regulate recycling of group I mGlu receptors (Alagarsamy et al., 2005; Pandey et al., 2014); with PP2B 

(protein phosphatase 2B) playing a similar role (Mahato et al., 2015). It is clear that activation of group I mGlu 

receptors can trigger a complex network of intracellular effectors that encode the cellular responses that give 

rise to complex physiological effects from synaptic plasticity to cell survival. 

When co-expressed within the same cell population, activation of mGlu1 versus mGlu5 receptors can lead to 

distinct cellular outcomes (Valenti et al., 2002). Moreover, post-synaptic group I mGlu receptor activation can 

result in modulation of neurotransmitter release from presynaptic cells via retrograde signaling, e.g. 

endocannabinoids or nitric oxide (Figure 3) (Aubrey et al., 2017; Gregg et al., 2012; Maejima et al., 2001; 

Robbe et al., 2002; Sergeeva et al., 2007; Xiang et al., 2019). As a further layer of complexity, both group I 

mGlu receptors form heteromers and/or larger order oligomers with other GPCRs (discussed in further detail 

later), which alters intracellular signaling profiles.  
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Pathophysiology and therapeutic potential  

A number of reviews provide in depth coverage of the distribution, physiology and pathophysiological roles 

of group I mGlu receptors (Crupi et al., 2019; Ferraguti and Shigemoto, 2006; Golubeva et al., 2016; 

Niswender and Conn, 2010). Inhibitors and activators of the individual subtypes are being pursued for a 

myriad of different psychiatric and neurological disorders. Briefly, and of relevance to the pharmacological 

agents reviewed in depth below, distribution of mGlu1 receptors in regions associated with pain perception as 

well as mGlu1 knockout animal phenotypes suggests mGlu1 inhibitors are potential therapeutic agents for 

neuropathic pain (Neugebauer, 2002; Schkeryantz et al., 2007). Preclinical studies also indicate mGlu1 

receptor inhibitors may have therapeutic benefit in treating seizures, addiction, anxiety, and certain cancers 

(Dravolina et al., 2017; Namkoong et al., 2006). mGlu5-/- mice have deficits in pre-pulse inhibition (Brody et 

al., 2004), impaired learning and memory (Xu et al., 2009; Zeleznikow-Johnston et al., 2018), reduced 

propensity for addiction/abuse (Chiamulera et al., 2001) and reverse the majority of fragile X syndrome 

phenotypes in preclinical models (Dolen and Bear, 2008). As such, selective mGlu5 receptor inhibitors are 

desired in the setting of depression (Chaki and Fukumoto, 2018), anxiety (Ferraguti, 2018) as well as 

neurodevelopmental disorders such as Fragile X syndrome (Yamasue et al., 2019). In this respect multiple 

mGlu5 receptor inhibitors have entered phase 2 clinical trials as discussed in detail later; however, to date none 

have reached market. Potentiation or activation of both group I receptors offers the promise for treating the 

positive and cognitive symptoms associated with schizophrenia (Nicoletti et al., 2019; Walker and Conn, 

2015).  

Beyond neurological and psychiatric disorders, inhibition of mGlu1 receptors is neuroprotective (in vitro and 

in vivo) following oxygen-glucose deprivation or ischemic insult (Henrich-Noack et al., 1998; Pellegrini-

Giampietro et al., 1999) and may therefore offer a novel intervention for stroke. For multiple preclinical 

models of neurodegenerative diseases, genetic ablation or pharmacological inhibition of mGlu5 receptors is 

neuroprotective and treats associated symptoms, e.g. pro-cognitive in Alzheimer’s disease or Huntington’s 
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disease (reviewed in (Ribeiro et al., 2017)) or improves motor deficits in Amyotrophic Lateral Sclerosis 

(reviewed in (Battaglia and Bruno, 2018)) or Parkinson’s disease (Ambrosi et al., 2010; Armentero et al., 

2006; Battaglia et al., 2004; Black et al., 2010; Fuzzati-Armentero et al., 2015; Masilamoni et al., 2011; Mazur, 

1995). Although, mGlu5 receptor activators/potentiators may also treat cognitive symptoms associated with 

Huntington’s disease (Doria et al., 2015; Doria et al., 2018; Doria et al., 2013). Inhibition of mGlu5 receptors 

is also indicated for treating neurodegeneration associated with drugs of abuse (Battaglia et al., 2002). 

Group II: metabotropic glutamate receptors 2 and 3 

Receptor subtypes and splice variants 

The group II members, mGlu2 and mGlu3 receptors, were first cloned in rat in 1992 (Tanabe et al., 1992) and 

few years later in human (Emile et al., 1996; Flor et al., 1995a). Encoded by the GRM2 gene 

[ENSG00000164082] and localized in human chromosome 3 and rat chromosome 8, no splice variants have 

been described for mGlu2 receptor subtype (Sartorius et al., 2006). In human, the GRM3 gene 

[ENSG00000198822] encodes the mGlu3 receptor, for which three splice variants are known (Sartorius et al., 

2006). The most abundant GRM3 variant lacks exon 4 (GRM3Delta4), encoding a truncated membrane-

associated protein that retains the extracellular VFT but lacks the 7TM, which is replaced with a unique 96-

amino acid C-terminus. mGlu3delta4 can bind orthosteric ligands and interact with the full-length protein, and 

may thus have a dominant negative effect (Garcia-Bea et al., 2017). Spontaneous mutations in mGlu3 are 

associated with melanoma (Neto and Ceol, 2018; Prickett et al., 2011). Whereas, single nucleotide 

polymorphisms in GRM3 are linked to cognitive performance in individuals with schizophrenia and 

postulated to influence pharmacotherapy (reviewed in (Maj et al., 2016; Saini et al., 2017) 

). 
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Localization and signal transduction 

The group II mGlu receptors are located both pre- and post-synaptically, with mGlu3 receptors also found in 

glial cells throughout the brain (Fotuhi et al., 1994; Testa et al., 1994) (Figure 2). Using a radiolabeled 

orthosteric agonist selective for group II receptors, [3H]LY459477, in conjunction with knockout mice for 

either subtype, mGlu3 receptor levels were found to be generally higher than mGlu2 receptors in forebrain 

regions, but similar within the striatum (Wright et al., 2012). In the thalamus and hippocampus, the two 

subtypes exhibit distinct and for some nuclei/circuits segregated expression patterns (Wright et al., 2012). 

Dissecting the relative contribution of mGlu2 versus mGlu3 receptor subtypes has presented a major challenge 

due to the lack of subtype selective pharmacological tools (discussed in further detail below). 

Group II mGlu receptors preferentially couple to Gi/o proteins, inhibiting AC and cAMP production as well as 

inhibiting guanylate cyclase (GC) and cGMP production (Wroblewska et al., 2006)(Figure 4). On presynaptic 

terminals, βγ subunits modulate ion channel function (inhibiting N-type Ca2+ channels (McCool et al., 1996) 

and activating G protein-coupled inwardly rectifying potassium channel (GIRK) channels (Knoflach and 

Kemp, 1998; Sharon et al., 1997)) thereby decreasing exocytosis of vesicles containing glutamate (Flavin et 

al., 2000; Macek et al., 1998; Olivero et al., 2017), GABA (Gereau and Conn, 1995; Hayashi et al., 1993; Salt 

and Eaton, 1995; Schaffhauser et al., 1998) and dopamine (Feenstra et al., 1998; Johnson et al., 2017; Verma 

and Moghaddam, 1998). The βγ subunits can also activate PI3K dependent activation of Akt with downstream 

effectors regulating protein synthesis and gene transcription involved in cytoprotection and synaptic plasticity 

(Aronica et al., 2003; Ciccarelli et al., 2007; Durand et al., 2011; Li et al., 2015; Ritter-Makinson et al., 2017; 

Xing et al., 2018). Further, group II receptor activation can trigger transactivation of insulin growth factor-1 

receptors (IGF-1R) via βγ subunit activation of PLC and focal adhesion kinase (FAK), leading to ERK1/2 

phosphorylation (Hu et al., 2019), a key integrator of multiple convergent pathways that shapes the overall 

cellular response (Aronica et al., 2003; Ciccarelli et al., 2007). In post-synaptic membranes, group II receptor 
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activation regulates trafficking of NMDA or AMPA receptors with different mechanisms implicated: PKC, 

SNARE complexes, Akt/GSK-3β (Cheng et al., 2013; Tyszkiewicz et al., 2004; Xi et al., 2011). Further, 

mGlu3 receptor-dependent long-term depression (LTD) in the prefrontal cortex is mediated by functional 

cross-talk between mGlu3 and mGlu5 receptors on post-synaptic neurons (Figure 2). Activation of mGlu3 

receptors releases βγ subunits to enhance mGlu5 receptor coupling to Gq (Di Menna et al., 2018). Cross-talk 

between mGlu3 and mGlu5 receptors is postulated to account for the reported dependence on PLC and PKC 

for mGlu3 receptor-dependent LTD (Huang et al., 2007; Otani et al., 2002). Recently however, mGlu3 

receptor-dependent LTD was shown to be modulated by mGlu5 receptor interactions with homer and signaling 

via PI3K, Akt and GSK3βto result in AMPA receptor internalization, a mechanism disrupted by acute stress 

(Joffe et al., 2019). Indeed, the cellular context is an important contributor to shaping the cellular responses 

instigated by group II receptor activation. For example, in astrocytes, mGlu3 receptor activation results in both 

decreases and increases in cAMP, whereas in neurons the effect on cAMP levels is purely inhibitory (Moldrich 

et al., 2002). Astrocytic mGlu3-mediated increases in cAMP levels are dependent on iCa2+ levels (mobilization 

of stores and extracellular influx) and local release of adenosine, which acts at co-located Gs-coupled 

adenosine A2A receptors (Moldrich et al., 2002).  

With respect to regulation of group II mGlu receptor activity, the cellular context is also a major contributor. 

Phosphorylation of intracellular loops and/or the C terminus tail by PKA, PKC and GRKs have a central role 

in receptor regulation (Cai et al., 2001; Kamiya and Yamamoto, 1997; Macek et al., 1998; Schaffhauser et al., 

2000); uncoupling receptors from G proteins, and promoting interactions with scaffolding proteins such as 

arrestins, which mediate receptor endocytosis (Iacovelli et al., 2009). The C terminus tail of group II mGlu 

receptors binds to multiple scaffolding proteins including PICK1, GRIP, tamalin, NHERF1/2, RanBPM 

(Hirbec et al., 2002; Kitano et al., 2002; Ritter-Makinson et al., 2017; Seebahn et al., 2008), as well as PP2C, 

which dephosphorylates mGlu3 receptors (Flajolet et al., 2003). Interactions between group II mGlu receptors 
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with diverse intracellular scaffolding proteins regulates receptor localization and functional responses, which 

likely governs differences observed between cell types or for neurons from different brain regions. 

Interestingly, mGlu2, but not mGlu3, receptors are reportedly resistant to homologous desensitization by GRKs 

with respect to cAMP signaling (Iacovelli et al., 2009). Although heterologous mechanisms, e.g. due to PKC 

activation by co-located adenosine A3 receptors, affect both subtypes (Lennon et al., 2010; Macek et al., 1998). 

Functional cross-talk between mGlu2 receptors and co-located 5HT2A receptors can also modulate cellular 

responses to activation of either receptor (Marek et al., 2000; Molinaro et al., 2009; Murat et al., 2018). The 

interplay of intracellular effectors stimulated by group II mGlu receptors, coupled with regulatory proteins as 

well as co-expression of other cell surface receptors gives rise to cell type specific roles for group II mGlu 

receptors.  

 

Pathophysiology and therapeutic potential  

The expression patterns of group II mGlu receptors (reviewed in (Ferraguti and Shigemoto, 2006)) coupled 

with phenotypes of knockout animals suggest that group II receptors are attractive therapeutic targets for 

psychosis, cognition, anxiety, pain and addiction (Cross et al., 2018; Mazzitelli et al., 2018). Although for 

many indications establishing whether mGlu2 or mGlu3 receptors are the best target in preclinical models of 

disease has been challenging due to a lack of subtype selective agents. Despite this shortcoming, both agonists 

and potentiators of group II receptors have been actively pursued, with multiple agents entering phase 2 or 3 

for treating schizophrenia and addiction disorders (Nicoletti et al., 2019). Conversely, group II receptors 

inhibitors are promising interventions for depression, anxiety and as neuroprotective agents in the setting of 

ischemia (Celanire et al., 2015; Motolese et al., 2015). However, activation of group II receptors is 

neuroprotective following excitotoxic insults (Battaglia et al., 2003). In particular, activation of astrocytic 

mGlu3 receptors confers neuroprotection to various insults (in vitro and in vivo) via paracrine mechanisms 
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(Bruno et al., 1997; Caraci et al., 2011; Cippitelli et al., 2010; Corti et al., 2007), offering a potential 

therapeutic target for neurodegenerative diseases and psychiatric conditions associated with neuronal death. 

Group III: metabotropic glutamate receptors 4, 6, 7 and 8 

Receptor subtypes and splice variants 

Before molecular cloning, group III mGlu receptors were termed L-AP4 receptors due to high sensitivity to 

this ligand, which depresses synaptic transmission in the brain and in retina (Thomsen, 1997). In the 1990’s, 

molecular cloning revealed that four different receptor subtypes mediated the biological effects of L-AP4: 

mGlu4, mGlu6, mGlu7 and mGlu8 receptors. The mGlu4 receptor is encoded by the GRM4 gene 

[ENSG00000124493], which is localized in human chromosome 6, rat chromosome 20 and mouse 

chromosome 17 (Flor et al., 1995b; Tanabe et al., 1992). Two main splice variants were predicted, termed 

mGlu4a and 4b, (Thomsen et al., 1997), but further studies failed to detect mGlu4b in different rat brain areas 

and no splice site consensus sequences that could support its existence were found in human genomic sequence 

containing the whole GRM4 gene, suggesting mGlu4b corresponds to a recombination artefact (Corti et al., 

2002). Another variant lacking the first 128 base pairs, termed taste mGlu4, is found in rat taste buds. The 

corresponding protein is predicted to lack approximately half the extracellular domain, including a large 

portion of the glutamate-binding domain (Chaudhari et al., 2000). First cloned in 1993, the mGlu6 receptor is 

encoded by GRM6 gene [ENSG00000113262] localized in human chromosome 5 (Nakajima et al., 1993). 

Two splice variants, termed mGlu6b and mGlu6c, are found in both human and rats, which correspond to 

truncated mGlu6 receptors lacking the transmembrane domain and intracellular portions of the receptor 

(Valerio et al., 2001a; Valerio et al., 2001b). The mGlu7 receptor is encoded by the GRM7 gene, localized in 

rat chromosome 4 and in human chromosome 3 (Makoff et al., 1996; Okamoto et al., 1994; Saugstad et al., 

1994). Two main variants, mGlu7a and mGlu7b, in rats and humans have different C terminal tails. The last 

16 residues of mGlu7a are substituted by 23 different residues in mGlu7b due to the insertion of an out-of-
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frame 92 base pairs exon (Corti et al., 1998; Flor et al., 1997). Three other isoforms have been described, 

named v3, v4 and v5 (Schulz et al., 2002). While mGlu7a and mGlu7b receptor variants are primarily expressed 

in the CNS, the expression of v3 and v4 isoforms appears to be restricted in non-neuronal tissues (Schulz et 

al., 2002). The mGlu8 receptor, encoded by the GRM8 gene [ENSG00000179603] found in human 

chromosome 7, was originally cloned in mouse in 1995 (Duvoisin et al., 1995) followed by human (Scherer 

et al., 1997; Wu et al., 1998) and rat (Saugstad et al., 1997). Three splice variants have been described: mGlu8a, 

mGlu8b and mGlu8c (Corti et al., 1998; Malherbe et al., 1999). The last 16 residues of the C terminus tails of 

the mGlu8a and mGlu8b receptors are different, while the mGlu8c variant is a truncated receptor lacking the 

transmembrane domains and intracellular C tail. For each of the group III mGlu receptors the different splice 

variants show distinct tissue distribution and/or changes in intracellular portions of the receptor, which have 

the potential to alter signal transduction pathways triggered in response to receptor activation. 

 

Localization and signal transduction 

Most group III mGlu receptors are widely expressed throughout the CNS, with the exception of mGlu6 which 

is mostly restricted to the retina (reviewed in (Ferraguti and Shigemoto, 2006)). Group III mGlu receptors are 

also expressed in glial cell types in the brain, with the exception of mGlu7 (reviewed in (Spampinato et al., 

2018)). Outside the CNS, group III mGlu receptor expression has been reported in kidney, pancreas, liver, 

cells from the immune system and bones for example (see (Julio-Pieper et al., 2011) for review).  

In the CNS, mGlu4, mGlu7 and mGlu8 receptors are mainly expressed in the active zone of presynaptic 

glutamatergic and GABAergic neurons (Corti et al., 2002; Ferraguti et al., 2005; Ferraguti and Shigemoto, 

2006; Kinoshita et al., 1996a; Shigemoto et al., 1997; Wada et al., 1998) (Figure 2). Group III receptors can 

act as autoreceptors reducing glutamate release in the synaptic cleft and as heteroreceptors reducing the release 

of GABA (Schoepp, 2001). mGlu4, mGlu7 and mGlu8 receptors are preferentially coupled to heterotrimeric 

Gi/o proteins, leading to the inhibition adenylyl cyclase production of cAMP via the Gα subunit (Figure 5). 
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On presynaptic terminals, mGlu4, mGlu7 or mGlu8 receptors are well documented to inhibit neurotransmitter 

release through a direct βγ subunit-mediated inhibition of N or P/Q type of voltage-gated Ca2+ channels 

(Anwyl, 1999; Capogna, 2004; Martin et al., 2007; Millan et al., 2002a; b; Perroy et al., 2000). In addition, 

mGlu4 and mGlu7 receptors also inhibit voltage-gated Ca2+ channels via a PKC-dependent mechanism 

(Abitbol et al., 2012; Perroy et al., 2000), involving interactions between calmodulin and the scaffolding 

protein PICK1 for mGlu7 receptors (Perroy et al., 2002; Suh et al., 2013). Activation of mGlu4, mGlu7 or 

mGlu8 receptors can also decrease neuronal excitability by the released βγ subunits acting on GIRK channels 

(Dutar et al., 1999; Saugstad et al., 1996). Other studies suggest that group III mGlu receptors may activate 

background K+ channels such as TREK1 and TREK2, thereby further decreasing neuronal activity (Cain et 

al., 2008; Lesage et al., 2000). Group III mGlu receptors are also proposed to inhibit neurotransmitter vesicle 

exocytosis through direct interactions with the release machinery (Chavis et al., 1998; Erdmann et al., 2012). 

Coupling of group III receptors to PI3K, probably through Gβγ subunits, and MAPK is implicated in 

neuroprotection mechanisms (Iacovelli et al., 2002). 

Among group III mGlu receptors, the mGlu6 receptor is distinct as its expression is mostly restricted to 

postsynaptic bipolar ON neurons in the retina (Nomura et al., 1994; Vardi et al., 2000), with no strong 

expression detected in the brain (Nakajima et al., 1993). The mGlu6 receptor is critical for glutamate-induced 

signaling in ON-bipolar cells in the retina during darkness (Nomura et al., 1994; Vardi et al., 2000). Glutamate 

released from rod photoreceptors in the dark, activates postsynaptic mGlu6 receptors in bipolar ON cells that 

lead to the closure of a non-selective ion channel, TRPM1-L (a long form transcript of TRPM1 expressed 

solely in the dendritic tip of bipolar ON neurons) (Koike et al., 2010). TRPM1 inhibition results in 

hyperpolarization of bipolar ON neurons, thus inhibiting the ON pathway into darkness. The signaling cascade 

involves Goα (Koike et al., 2010), Gβγ (Shen et al., 2012) and other proteins such as the orphan GPCR 

GPR179 or the interacting protein Nyctalopin (Zeitz et al., 2015)(Figure 5). Collectively, the intracellular 
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signal transduction and regulatory pathways engaged by group III receptor subtypes have not been as well 

elucidated as group I and group II counterparts. 

Pathophysiology and therapeutic potential 

The phenotypes of mice lacking the group III mGlu receptors have revealed physiological roles and potential 

as therapeutic targets in several neurological disorders. Mice lacking the mGlu4 receptor present deficits in 

motor performance, spatial memory and learning of complex motor tasks (Gerlai et al., 1998; Pekhletski et 

al., 1996), in accordance with its particularly high expression in the cerebellum (Corti et al., 2002; Kinoshita 

et al., 1996b). The mGlu4-/- mice also have enhanced seizure-associated vulnerability (Pitsch et al., 2007) and 

lack the motor stimulant effect of ethanol (Blednov et al., 2004). The sensitivity to strong noxious stimuli of 

mGlu4-/- mice is altered, and nociceptive behavior in the inflammatory phase of the formalin test is accelerated 

(Vilar et al., 2013). Knockout phenotypes together with preclinical studies highlight mGlu4 receptor as a 

potential therapeutic target in anxiety and depression (Kalinichev et al., 2014), schizophrenia (Wieronska et 

al., 2012a), epilepsy (Ngomba et al., 2008; Pitsch et al., 2007), neuroinflammation (Fallarino et al., 2010), 

autism spectrum disorder (Becker et al., 2014) and chronic pain (reviewed in (Pereira and Goudet, 2018)). In 

particular, targeting mGlu4 receptor for the treatment of PD has attracted much attention (Amalric et al., 2013; 

Celanire and Campo, 2012; Charvin, 2018; Volpi et al., 2018). Preclinical studies showed that mGlu4 receptor 

activation corrects the imbalance of neurotransmission among the basal ganglia circuitry that is associated 

with PD (Charvin et al., 2018b), as shown primarily with mGlu4 potentiation (Marino et al., 2003b) or later 

with selective agonists (Beurrier et al., 2009; Marino et al., 2003b). Activation or potentiation of mGlu4 

receptors also has neuroprotective effects (Battaglia et al., 2006; Copani et al., 1995). Unfortunately, despite 

promising preclinical results (Charvin et al., 2018a; Charvin et al., 2017), the mGlu4 receptor potentiator, 

foliglurax, recently failed to show sufficient efficacy in a phase II clinical trial for PD.  

Comparing the phenotypes of mGlu4, mGlu7 and mGlu8 knockout mice indicates the mGlu4 receptor is most 

clearly involved in startle and motivational processes, whereas mGlu7 receptor is involved in hippocampus-
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dependent spatial learning and fear-related behaviors, while mGlu8 receptor deletion yield to more subtle 

behavioral changes and influence body weight (Goddyn et al., 2015). The role of mGlu7 receptors in learning 

and memory is confirmed by behavioral pharmacology studies (Hikichi et al., 2010a; Klakotskaia et al., 2013). 

Also, mGlu7-/- mice and mice lacking functional mGlu7 receptors present an increased susceptibility to seizures 

(Bertaso et al., 2008; Sansig et al., 2001). Accordingly, absence seizures can be induced by the 

pharmacological blockade of the mGlu7 receptor (Tassin et al., 2016) whereas mGlu7 receptor activation 

protects against epileptogenesis and epileptic seizures (Girard et al., 2019). Widely expressed in the CNS 

(Corti et al., 1998; Kinoshita et al., 1998; Kinzie et al., 1997; Shigemoto et al., 1997), the mGlu7 receptor is 

also considered as a potential therapeutic target for anxiety and depression (Cryan et al., 2003), and 

neurodevelopmental disorders (Fisher et al., 2018; O'Connor et al., 2010; Palazzo et al., 2016). Genetic 

disruptions in GRM7 are evident in patients with autism spectrum disorders (Liu et al., 2012; Sanders et al., 

2012). Furthermore, the potentiation of mGlu7 receptor activity improves cognitive and social deficits, as well 

as respiratory impairments in a mouse model of Rett syndrome (Gogliotti et al., 2017). 

Interestingly, depending on the brain structure, mGlu7 and mGlu8 receptors play opposing roles in pain 

(Boccella et al., 2019). For example, mGlu7 receptor activation in periaqueductal gray and amygdala is 

pronociceptive whereas mGlu8 receptor activation is antinociceptive (Marabese et al., 2007; Palazzo et al., 

2008). Indeed, for mGlu7 receptors, proalgic or analgesic activity depends on the brain structure and circuits 

in which the receptor is expressed (see (Pereira and Goudet, 2018) for review). For example, activation of 

mGlu7 receptors in the nucleus accumbens has an antinociceptive effect (Kahl and Fendt, 2016), opposite to 

the pronociceptive effect when periaqueductal gray mGlu7 receptors are activated (Palazzo et al., 2016). 

Interestingly, mGlu7 receptor activation also prevents the development of morphine tolerance (Gawel et al., 

2018). Additional studies confirmed mGlu8 receptor modulates sensory symptoms associated to neuropathic 

pain (Rossi et al., 2014). Further, mGlu8 receptor activation in the nucleus tractus solitarius enhances cardiac 

nociception (Liu et al., 2012). Distinguishing the different physiological and pathophysiological roles for 

mGlu7 and mGlu8 receptors has been hampered by a lack of selective pharmacological tools, however, 
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discovery of new pharmacological tools (discussed in further detail later) have aided dissection of different 

roles and therapeutic indications. 

The mGlu8 receptor is one of the least studied mGlu receptor family members, due notably to the lack of 

selective pharmacological tools. Investigations on the phenotype of genetically modified mice lacking the 

mGlu8 receptor are thus particularly informative. In various studies, mGlu8-/- mice exhibit anxiety-related 

phenotypes. However, some studies report an anxiogenic-like phenotype (Duvoisin et al., 2011; Duvoisin et 

al., 2005; Linden et al., 2003), while others find an anxiolytic-like one (Fendt et al., 2010; Fendt et al., 2013; 

Gerlai et al., 2002). Also, mGlu8-/- mice present robust deficits in contextual fear conditioning, novel object 

recognition, extinction of operant conditioning and acoustic startle response (Fendt et al., 2010; Fendt et al., 

2013). mGlu8-/- mice also show enhanced social interaction; however, enhancing mGlu8 receptor activity does 

not affect social interaction in WT mice (Duvoisin et al., 2011). Further studies are required to better 

understand the role for mGlu8 and to clarify its therapeutic potential. 

Outside of the CNS, the mGlu6 receptor plays an important role in visual discrimination in low light conditions 

(Nomura et al., 1994; Vardi et al., 2000); supported by the mGlu6-/- phenotype (Masu et al., 1995). Mutations 

in proteins involved in the transmission of the signal between rod photoreceptors and bipolar ON cells have 

been found in patients suffering from congenital stationary night blindness; these include more than 20 loss-

of-function mutations in GRM6 (Dryja et al., 2005; O'Connor et al., 2006; Zeitz et al., 2007; Zeitz et al., 2015). 

These mutations affect the normal mGlu6 receptor response to the glutamate released from the photoreceptors 

thus impairing signal transmission. The use of an optogenetic tool consisting in a chimera between mGlu6 

receptor and melanopsin receptor has been suggested as a potential approach to restore light sensitivity (van 

Wyk et al., 2015). 
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Orthosteric ligands 

Definitions and mode of action 

By definition, orthosteric ligands act in the same binding pocket as the endogenous ligand, competing to either 

activate or inhibit mGlu receptor activity. Glutamate and surrogate orthosteric agonists bind in the cleft 

between the two VFT lobes (Figure 1). Upon binding, orthosteric agonists stabilize the closed state of the 

VFT, leading to a change in the relative orientation such that the extracellular domain dimer changes from a 

“resting” (R) to an active (A) state (Bessis et al., 2002). On the contrary, orthosteric antagonists prevent the 

full closure of the VFT (Bessis et al., 2000; Bessis et al., 2002; Kunishima et al., 2000; Tsuchiya et al., 2002). 

Based on crystal structures, the main conformations that define the inactive and active states of mGlu receptors 

are the resting state Roo where both VFTs are open, and the active states Aco or Acc where one or both VFTs 

are closed, respectively. The two lobes are distant in the resting state and become closer in the active state 

(Kunishima et al., 2000; Tsuchiya et al., 2002). The closure of one VFT (Aco) is sufficient to induce a 

functional response from the receptor but the closure of both VFTs (Acc) is necessary to achieve full activation 

(Kniazeff et al., 2004). 

Selectivity 

The L-glutamate binding site is highly conserved among the mGlu receptor family, resulting in difficulties to 

identify compounds with subtype selectivity. Indeed, glutamate binds to all mGlu receptors under a similar 

conformation, where the residues participating in direct interactions with its amino acid moiety are fully 

conserved as well as two residues that interact with the carboxylate moiety (Acher and Bertrand, 2005; 

Bertrand et al., 2002; Wellendorph and Brauner-Osborne, 2009). Within the orthosteric pocket, several 

residues that do not directly interact with glutamate are different between the three groups of mGlu receptors, 

enabling identification of group-I, group-II and group-III selective ligands (Table 1).  
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The most commonly used agonists of group I mGlu receptors are 3,5-DHPG and quisqualic acid, which are 

somewhat selective for group I over group II and III receptors (Table 1). Concerning group II mGlu receptors, 

the classical agonists are DCG-IV (Brabet et al., 1998) and LY354740 (Monn et al., 1997), while L-AP4 and 

ACPT-I (Acher et al., 1997a) are most commonly used agonists for group III mGlu receptors (Figure 6). 

LY341495 is the most used competitive antagonist, which antagonizes all the subtypes, with higher potency 

at mGlu2/3 receptors over other subtypes (Kingston et al., 1998)(Figure 6).  

For subtype selective orthosteric ligands, drug designers have to circumvent the highly conserved binding 

pocket. One way is to design compounds able to interact with proximal residues to the glutamate binding 

pocket that differ between subtypes. By example, newly discovered orthosteric ligands can discriminate 

between mGlu2 and mGlu3 receptors, e.g. LY541850 and LY2812223 are two mGlu2 receptor selective 

agonists (Monn et al., 2015a; Monn et al., 2015b) and LY2794193, an mGlu3 receptor selective agonist (Monn 

et al., 2018). Co-crystalization of the VFT with each of these ligands, coupled with mutagenesis and molecular 

modeling revealed that selectivity is due to interactions with amino acids residing at the periphery of the 

glutamate binding site (Monn et al., 2018; Monn et al., 2015a; Monn et al., 2015b). In a similar fashion, LSP4-

2022, an mGlu4 receptor selective orthosteric agonist, binds both to the glutamate binding site and to an 

adjacent pocket (Goudet et al., 2012)(Figure 6). This adjacent pocket is thought to be one of the sites of action 

of Cl- ions, which are potent positive allosteric modulators of mGlu receptors (Acher et al., 2011; Tora et al., 

2015). Therefore, LSP4-2022 and related derivatives constitute bitopic ligands that simultaneously target an 

orthosteric and an allosteric binding site (Selvam et al., 2018). Targeting these two sites in tandem provides 

the means to overcome the difficulty of designing selective orthosteric drugs.  

Biased agonism 

Across the GPCR superfamily, it is becoming increasingly appreciated that the cellular response to receptor 

activation can differ depending on the ligand used, a phenomenon referred to as biased agonism. Biased 

agonism is thought to originate from the stabilization of different active conformations by distinct ligands, the 
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balance of which is sampled by measuring different downstream measures of receptor activity. For any 

definition of biased GPCR agonism it is critical that biased agonism is quantified relative to both a reference 

agonist and a reference pathway; this is because the relative efficacy of GPCR agonists is influenced by the 

stimulus-response coupling of the system. The most commonly applied method to quantify GPCR biased 

agonism is based on the operational model of agonism (Black and Leff, 1983) and subsequent derivation of 

transduction ratios (Kenakin et al., 2012). For metabotropic glutamate receptor orthosteric agonists, to date 

observations of biased agonism are limited to group I receptors. For example, relative to glutamate activation 

of mGlu1-mediated cytoprotective signaling, quisqualate is biased toward IP1 accumulation in recombinant 

and native cells (Emery et al., 2012; Hathaway et al., 2015). At mGlu5 receptors, biased agonism for DHPG 

relative to glutamate arises due to “location bias” as DHPG is impermeable and not actively transported across 

cell membranes, DHPG is therefore unable to stimulate mGlu5 receptors located on intracellular membranes 

(Jong et al., 2005). Within different subcellular compartments mGlu5 receptors interact with a different 

complement of transducers, giving rise to different forms of synaptic plasticity (Kumar et al., 2012). It remains 

to be determined whether or not other mGlu receptors and associated selective ligands also exhibit location 

bias that contributes to pharmacological differences. 

Tolerance 

Another layer of complexity with regard to orthosteric agonist drug development is the potential for tolerance 

development. Under normal conditions glutamate is released transiently into the synapse, briefly activating 

mGlu receptors before active uptake mechanisms, for e.g. into astrocytes, reduce synaptic glutamate 

concentrations. However, these clearance mechanisms are not operative for surrogate orthosteric agonists, 

resulting in sustained receptor activation, which can lead to tolerance development. The potential for tolerance 

can be exacerbated for neurological targets given the need for repeated chronic dosing to achieve a therapeutic 

effect. Tolerance has been noted for group II orthosteric agonists, where LY354740 efficacy for modulating 

REM sleep wanes with repeated dosing (Ahnaou et al., 2015). Similarly, repeated daily dosing of LY379268 
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results in loss of efficacy as an analgesic (Jones et al., 2005) and anti-psychotic-like activity to inhibit PCP or 

amphetamine-induced hyperlocomotion (Galici et al., 2005). However, tolerance is not consistently observed 

with chronic LY379268 dosing and can differ between behavioral paradigms (Anderson et al., 2014; Battaglia 

et al., 2015; Cartmell et al., 2000; Halberstadt et al., 2019). Whether or not tolerance development will prove 

to limit therapeutic efficacy of mGlu receptor orthosteric agonists remains to be seen. 

 

Orthosteric ligands in the clinic: success and failure 

 

The most successful mGlu receptor discovery campaigns focused on orthosteric ligands targeting group II 

receptors. Multiple group II orthosteric agonists have reached phase II or phase III trials for psychiatric 

indications. LY354740/eglumegad was well-tolerated and showed anxiolytic efficacy in humans (Grillon et 

al., 2003; Schoepp et al., 2003), with further development focused on a prodrug formulation (LY544344) to 

improve bioavailability (Rorick-Kehn et al., 2006). However, trials for generalized anxiety disorder were 

discontinued due to concerns regarding convulsions in animals (Dunayevich et al., 2008). Another group II 

mGlu receptor selective agonist, LY2140023/pomaglumetad (pro-drug for LY404039) improved both 

negative and positive symptoms in patients with schizophrenia in a randomized phase II clinical trial (Patil et 

al., 2007). Subsequent phase III trials failed to report significant antipsychotic efficacy for all the patients 

involved, terminating further development (Adams et al., 2013; Adams et al., 2014; Downing et al., 2014; 

Kinon et al., 2011). However, exploratory analyses of multiple phase II and III revealed that some subgroups 

of patients exhibited improvement after treatment with pomaglumetad, particularly early-in-disease patients, 

or individuals previously treated with D2 dopamine receptor targeting drugs but not 5HT2 receptor antagonists, 

(Kinon et al., 2015). Findings consistent with preclinical studies showing that mGlu2 and 5HT2a receptors 

form functional complexes in cortex and that atypical antipsychotic treatment down-regulates mGlu2 receptor 

expression (Gonzalez-Maeso et al., 2008; Kurita et al., 2012)(reviewed in (Shah and Gonzalez-Maeso, 2019)). 
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Trials are ongoing for pomaglumetad for methamphetamine abuse [NCT03106571] and psychosis 

[NCT03321617]. Fasoracetam (also known as NS-105 or NFC-1), which is structurally unrelated to 

eglumegad or pomaglumegad, has agonist activity at group II and III receptors and showed efficacy for 

attention deficit hyperactivity disorder in a small cohort of adolescents (Elia et al., 2018), but failed to 

distinguish from placebo in a subsequent trial [NCT02777931]. In addition to orthosteric agonists, the group 

II selective orthosteric antagonist BCI-838 (also known as MGS0210), a pro-drug of BCI-632 (also known as 

MGS0039)(Nakamura et al., 2006), completed phase I in healthy volunteers [NCT01546051], although plans 

for subsequent phase II trial in treatment resistant depression have not eventuated. This same agent has shown 

preclinical efficacy in models for Alzheimer’s disease (Kim et al., 2014) and post-traumatic stress disorder 

related to traumatic brain injury (Perez-Garcia et al., 2018). Despite successful discovery efforts for subtype 

selective and drug-like orthosteric ligands for the group II mGlu receptors in particular, the majority of mGlu 

receptor discovery programs are pursuing allosteric modulators as reviewed below. 

 

Allosteric modulators 

Definitions, quantification and identification  

 

Since glutamate is recognized by two different receptor families (ionotropic and metabotropic receptors) as 

well as transporters, there remains a concern that orthosteric compounds will suffer from lack of selectivity 

due to high conservation of glutamate binding sites across different proteins. As such, many discovery 

programs have focused efforts on identification and development of allosteric modulators. Allosteric 

modulators interact with sites that are topographically distinct from the orthosteric site, such that a receptor 

may be simultaneously bound by both an orthosteric and an allosteric ligand (Figure 1a). For the most part, 

allosteric sites are located in region of receptors that show greater sequence divergence across subtypes and 
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therefore offer greater selectivity. An allosteric modulator may enhance or inhibit the binding and/or efficacy 

of an orthosteric ligand, with the magnitude and direction described as “cooperativity”. An allosteric 

modulator that enhances orthosteric ligand affinity or efficacy is referred to as a positive allosteric modulator 

(PAM), while an inhibitor is a negative allosteric modulator (NAM). In addition, allosteric ligands may also 

bind to a receptor but have no net effect on either affinity or efficacy of an orthosteric ligand; referred to as 

neutral allosteric ligands (NAL). Further, allosteric ligands may also possess intrinsic efficacy as either 

positive or inverse agonists in addition to, or exclusive of, cooperativity with an orthosteric ligand. By 

example, a PAM with intrinsic agonist activity is referred to as a PAM-agonist or ago-PAM. 

In addition to potential for increased subtype selectivity, allosteric modulators offer a number of advantages 

over their orthosteric counterparts. Cooperativity between two ligands is saturable, offering the potential for 

greater safety in an overdose. Allosteric modulators that have no intrinsic efficacy and are quiescent in the 

absence of endogenous ligand also provide scope to fine-tune receptor activity in a spatio-temporal fashion, 

exerting potentiation or inhibition only where, and when, the endogenous ligand is present. For these reasons, 

discovery programs in industry and academia alike have sought allosteric modulators of mGlu receptors as 

potential novel therapeutics for a wide array of CNS disorders. However, discovery of allosteric modulators 

can be associated with considerable challenges with respect to quantification and validation. 

Allosteric modulator binding is defined by the law of mass action, where the equilibrium dissociation constant, 

commonly defined as KB, describes the affinity of an allosteric modulator for its site. However, the 

simultaneous binding of an allosteric modulator and orthosteric ligand gives rise to different receptor 

conformations than can be achieved by the binding of each ligand individually, altering ligand affinity as 

defined by cooperativity. In order to quantify cooperativity, the simplest scheme is the allosteric ternary 

complex model (ATCM, Figure 1b (Gregory et al., 2010b)), which describes the reciprocal change in ligand 

affinity when a receptor is simultaneously bound by both an allosteric and orthosteric ligand, defined by the 

cooperativity factor α. The ATCM is limited to describing allosteric interactions at the level of receptor 
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binding, and for many mGlu allosteric modulators it is apparent these ligands have effects on receptor activity 

in addition to, or independent of, affinity. 

In order to quantify the full scope of effects an allosteric ligand may have on receptor activity, multiple 

alternative pharmacological models have been proposed that can accommodate: allosteric ligand intrinsic 

efficacy and efficacy modulation (Gregory et al., 2019b; Hall, 2013; Hall and Giraldo, 2018; Roche et al., 

2014; Slack and Hall, 2012). A challenge in applying these models is the inclusion of many parameters, which 

can prohibit fitting to experimental data. In this respect, the most widely adopted framework for quantification 

of pharmacological activity is an operational model of allosterism (Figure 1c), which combines the Black & 

Leff operational model of agonism with the ATCM (Gregory et al., 2012; Leach et al., 2007). Within this 

framework, the influence of an allosteric modulator on orthosteric agonist efficacy is accounted for by β, an 

experimentally derived scaling factor. Application of this model therefore allows for delineation of the 

influence of an allosteric modulator on affinity independently of efficacy. This provides an important 

distinction given that allosteric modulators can have differential effects, which may be in opposing directions, 

on affinity versus efficacy. The operational model of allosterism also allows for intrinsic allosteric agonism, 

defined by τ, but cannot account for inverse agonism. 

Accurate quantification of allosteric ligand pharmacology requires appropriately designed experimental 

paradigms. The definitive experiment to unambiguously demonstrate an allosteric mechanism of action is a 

kinetic binding paradigm. The simultaneous binding of an allosteric ligand may enhance or slow the 

dissociation rate (Koff) of the orthosteric radioligand from the receptor, or vice versa. Interaction studies using 

radiolabeled orthosteric ligands can be used to quantify modulation of affinity (α) as well as ligand affinity 

for the free receptor (Gregory et al., 2010b). However, it is important to note that the magnitude and direction 

of cooperativity between two ligands depends on the chemotypes present, a phenomenon known as “probe 

dependence”. This is an important consideration when extrapolating pharmacological profiles of allosteric 

ligands based on interactions with a radiolabeled orthosteric antagonist or from a surrogate orthosteric agonist, 
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which is often required in native cells/tissues. Radiolabeled allosteric ligands have been described for multiple 

subtypes, which can also be used to quantify affinity for the receptor for unlabeled ligands at a common 

allosteric site (Cosford et al., 2003; Lavreysen et al., 2003; O'Brien et al., 2018), or provide evidence for 

additional allosteric sites that are conformationally linked such that there is cooperativity between the two 

allosteric sites.  

The vast majority of allosteric ligands for mGlu receptors have been identified and validated using functional 

assays. The most commonly used approach involves generating modulator titration curves in the presence of 

either an ~EC20 agonist concentration for PAM identification, or an EC80 to identify NAMs. The potencies 

and relative maximum response (for PAMs) or inhibitory effect (for NAMs) from these titration curves are 

routinely used to drive discovery programs (Lindsley et al., 2016). However, these parameters represent 

composite values encompassing α, β, KB and τ, and are also influenced by the concentrations of orthosteric 

agonist used, orthosteric agonist intrinsic efficacy and the stimulus-response coupling of the system under 

investigation (Lindsley et al., 2016). Modulator potencies curves can be analyzed in parallel with an agonist 

concentration-response curve to estimate KB and a composite αβ value where the maximum degree of 

potentiation or inhibition does not reach the limit of the system (Gregory et al., 2019a; Gregory et al., 2012). 

However, to quantify the interaction between a modulator and orthosteric agonist, the most robust approach 

is to perform full agonist concentration-response curves in the absence and presence of increasing 

concentrations of modulator. Despite the limitations in the most commonly applied screening approaches, 

drug discovery programs for small molecule synthetic allosteric ligands of mGlu receptors have been largely 

successful. In addition, there is increasing evidence for endogenous allosteric modulators for mGlu receptor 

family members. 

Endogenous allosteric modulators  
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The greater class C GPCR family also includes the calcium-sensing receptor and GPRC6A, two receptors that 

are known to respond to multiple endogenous ligands including amino acids and cations (Leach and Gregory, 

2017). It is perhaps therefore not surprising that divalent and trivalent cations, including Ca2+, can directly 

activate mGlu1, mGlu3 and mGlu5 receptors (Jiang et al., 2014; Kubo et al., 1998; Miyashita and Kubo, 2000a; 

b). Further, extracellular Ca2+ potentiates binding/function of orthosteric ligands at mGlu1 (Jiang et al., 2014; 

Saunders et al., 1998). In addition, negatively charged chloride ions activate mGlu3, mGlu4, mGlu6 and mGlu8 

receptors and potentiate glutamate efficacy at mGlu1, mGlu2, mGlu4, mGlu5 and mGlu6 receptors (DiRaddo 

et al., 2015; Tora et al., 2018; Tora et al., 2015). Both cations and anions are thought to mediate activation 

and/or modulation via interactions with the VFT domain. The extracellular membrane associated cellular prion 

protein interacts with the mGlu5 receptor acting as a co-receptor for amyloid β oligomers, although the precise 

binding interactions within mGlu5 receptors are unknown (Um et al., 2013). Beyond the extracellular domains, 

molecular dynamics studies have proposed that lipids can interact with mGlu5 7TM (Dalton et al., 2017). 

Further, cholesterol membrane content enhances mGlu1 signaling to ERK1/2 phosphorylation mediated via a 

cholesterol recognition/interaction amino acid consensus motif in TM5 (Kumari et al., 2013). The existence 

of endogenous allosteric modulators for the mGlu receptors is often overlooked during discovery and 

validation of synthetic small molecule allosteric modulators. 

Small molecule allosteric modulators 

 

Concerted discovery efforts from both industrial and academic researchers have yielded a wealth of 

chemically and pharmacologically diverse small molecule allosteric modulators for the mGlu receptor family 

(Tables 2-5). The majority of small molecule mGlu receptor allosteric modulators identified to date interact 

with a common pocket within the 7TM domains. This binding pocket is in a location analogous to the biogenic 

amine orthosteric site of class A GPCRs, largely lined by residues in TMs 3, 5, 6 and 7. To date, six x-ray 

crystal structures of the mGlu1 or mGlu5 receptor 7TM domains have been solved with NAMs occupying this 
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common allosteric site (Christopher et al., 2015; Christopher et al., 2019; Dore et al., 2014; Wu et al., 2014). 

A wealth of previous mutagenesis data indicate that this pocket is shared across the mGlu receptor family, and 

indeed for all class C GPCRs, and can be engaged by both NAMs and PAMs (see (Leach and Gregory, 2017) 

for review). Here we focus on the pharmacological profiles of prototypical and well-validated commercially 

available allosteric modulators for mGlu receptors. 

Group I PAMs, NAMs, NALs 

 

The first disclosed mGlu receptor allosteric modulator was CPCCOEt (Annoura et al., 1996; Litschig et al., 

1999), a negative allosteric modulator of mGlu1 receptor. CPCCOEt has low micromolar affinity for mGlu1 

receptors (Lavreysen et al., 2003), and negatively modulates glutamate efficacy but has neutral cooperativity 

with respect to [3H]glutamate affinity (Litschig et al., 1999). Moreover, CPCCOEt has poor selectivity 

between group I mGlu receptors (Table 2), negatively modulating mGlu5 receptor activation with a similar 

apparent KB (Hellyer et al., 2018). The discovery of CPCCOEt was followed by EM-TBPC and BAY-36-

7620, which showed species differences in mGlu1 receptor NAM activity with considerably higher affinity 

for the rat versus human receptor (Cho et al., 2014a; Malherbe et al., 2003). Similar to CPCCOEt, BAY-36-

7620 has neutral cooperativity with respect to [3H]quisqualate affinity, but inhibits orthosteric agonist efficacy 

(Carroll et al., 2001; Lavreysen et al., 2003). Since the discovery of these early tool compounds, a wealth of 

structurally diverse mGlu1 receptor NAMs have been disclosed that have therapeutic efficacy in preclinical 

models for analgesia, anti-psychotic-like activity, anxiety, addiction, cancer and as anti-convulsants (Table 

2). For diverse scaffolds (Figure 7, e.g. A-841720 and R214127), the higher affinity for rat over human (>10-

fold) persisted (Cho et al., 2014a). Breakthrough chemotypes represented by FTIDC and JNJ16259685 have 

similar nanomolar affinities for the rat and human receptors, and >100 fold selectivity as NAMs for mGlu1 

over mGlu5 receptors (Lavreysen et al., 2003; Lavreysen et al., 2004; Suzuki et al., 2007a). Despite ultimate 

identification of high affinity, in vivo efficacious mGlu1 receptor NAMs, further development has stalled due 
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to on-target mediated adverse effects such as cognitive impairments from multiple scaffolds (Schroder et al., 

2008; Steckler et al., 2005b).  

On the other hand, mGlu1 receptor PAMs have been relatively unexplored, although may be a promising 

therapeutic strategy for schizophrenia by restoring function of naturally occurring mutations (Garcia-

Barrantes et al., 2015b). The first mGlu1 receptor PAMs included diverse chemotypes, for e.g. RO 67-7476 

and RO 01-2168, identified from high-throughput screening, which enhanced orthosteric agonist affinity and 

functional responses at rat mGlu1 receptor without intrinsic agonist activity (Knoflach et al., 2001), but were 

not suitable for in vivo studies. Similar to multiple mGlu1 receptor NAM scaffolds, RO 67-7476 lacks the 

ability to potentiate glutamate at human mGlu1 receptors (Knoflach et al., 2001). A subsequent study suggested 

these mGlu1 receptor PAMs may have intrinsic efficacy for ERK1/2 and cAMP accumulation; however, this 

agonist activity could be blocked by both orthosteric and allosteric antagonists raising the possibility that the 

apparent intrinsic agonism may be attributable to potentiation of ambient glutamate (Sheffler and Conn, 2008). 

Of note, both RO 67-7476 and RO 01-2168 were unable to completely displace binding of the radiolabeled 

mGlu1 receptor NAM [3H]R214127 (Hemstapat et al., 2006), suggesting these compounds recognize a 

different site within the 7TM domain. Subsequent discovery efforts identified VU0483605 based on a scaffold 

hop from an mGlu4 PAM/mGlu1 NAM chemotype (Cho et al., 2014b); however, the selectivity of VU0483605 

as an mGlu1 PAM is based on cooperativity, as it has similar affinity for mGlu5 receptors, albeit with neutral 

cooperativity with mGlu5 receptor orthosteric agonist efficacy (Hellyer et al., 2018). Recent medicinal 

chemistry efforts have yielded the first CNS penetrant mGlu1 receptor PAMs (Garcia-Barrantes et al., 2015a; 

2016a; Garcia-Barrantes et al., 2016b; Yohn et al., 2018), paving the way forward to establish therapeutic 

potential for schizophrenia and beyond.  

 

While CPCCOEt was the first mGlu receptor NAM disclosed, the mGlu5 receptor NAM fenobam was 

discovered earlier (Itil et al., 1978), but its mechanism of action was not elucidated until over 20 years later 

(Porter, 2005). Indeed, of all the subtypes, allosteric ligand discovery against mGlu5 receptors has proven to 
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be the most fruitful with a wealth of pharmacologically and structurally diverse ligands identified including 

NAMs, PAMs and NALs (Table 3). Prototypical mGlu5 receptor NAMs based on an acetylene core, MPEP 

and MTEP, as well as fenobam have demonstrated the therapeutic potential for mGlu5 receptor inhibition for 

addiction, depression, anxiety, neurodegenerative disorders and autism spectrum disorders (Table 3). Often 

referred to as “full NAMs”, these ligands have high negative cooperativity with respect to orthosteric agonist 

efficacy, completely abolishing agonist responses at saturating concentrations, but are neutral with respect to 

glutamate affinity (Gregory et al., 2012; Sengmany et al., 2019). The relatively high affinity of MPEP and 

fenobam presented the opportunity to generate radiolabeled versions (Cosford et al., 2003; Porter et al., 2005), 

which facilitated discovery and validation of novel mGlu5 receptor NAMs. Of note, many full NAMs have 

inverse agonist activity (Porter et al., 2005; Sengmany et al., 2019). It has been postulated that the combination 

of high negative cooperativity and inverse agonism contributes to on-target adverse effect liability of mGlu5 

receptor NAMs, including cognitive impairments and psychotomimetic-like properties (Abou Farha et al., 

2014; Dekundy et al., 2011; Hughes et al., 2012; Swedberg et al., 2014; Swedberg and Raboisson, 2014). 

Repeated exposure to both MTEP and fenobam is associated with tolerance development for reward behaviors 

(Cleva et al., 2012), but not for fenobam analgesic efficacy (Montana et al., 2011). The limitations associated 

with mGlu5 receptor full NAMs stimulated discovery efforts for NAMs with lower negative cooperativity, 

also referred to as “partial NAMs”, which have limited ability to inhibit glutamate efficacy. Two recent proof-

of-concept studies demonstrated that partial NAMs, e.g M-5MPEP and VU0477573, which have limited 

negative cooperativity with glutamate, elicited anxiolytic, anti-depressant and reduced cocaine self-

administration with comparable efficacy to MTEP (Gould et al., 2016; Nickols et al., 2016). Importantly, 

unlike MTEP, M-5MPEP did not show psychotomimetic-like effects (Gould et al., 2016); therefore mGlu5 

receptor NAMs with limited cooperativity may offer improved therapeutic windows.  

An inherent challenge for mGlu5 receptor allosteric ligand discovery has been the prevalence of “molecular 

switches” where minor substitutions give rise to ligands with reduced or opposing cooperativity (Wood et al., 

2011). Whilst a challenge with respect to SAR interpretation, these molecular switches have also offered 
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invaluable tools to dissect mGlu5 receptor biology, with the MPEP scaffold giving rise to NALs and PAMs. 

By example 5MPEP is a neutral mGlu5 receptor allosteric ligand, which occupies the allosteric site in a 

competitive manner with MPEP but does not influence orthosteric agonist activity (Rodriguez et al., 2005). 

Subsequent efforts have identified high affinity mGlu5 receptor NALs (e.g. VU0478006, BMS-984923) with 

suitable properties for in vivo studies (Gregory et al., 2010a; Haas et al., 2017). 

Molecular switches within mGlu5 receptor NAM scaffolds (Figure 7) have also yielded PAMs and PAM-

agonists, with advanced compounds from the biaryl acetylene scaffold, such as VU0360172 and LSN2463359, 

showing high affinity and selectivity for mGlu5 (Table 3). However, early mGlu5 receptor PAMs (DFB, 

ADX47273, CDPPB, CPPHA) were identified from high-throughput screening using functional assays 

(Lindsley et al., 2004; Liu et al., 2008; O'Brien et al., 2003; O'Brien et al., 2004). Structurally diverse mGlu5 

receptor PAM scaffolds compete for the common allosteric site within the 7TM used by MPEP (Gregory et 

al., 2014; Gregory et al., 2013b); however, select PAMs (e.g. CPPHA and VU0357121) are thought to interact 

with distinct, but as yet unknown site/s, within the 7TM (Chen et al., 2008; Hammond et al., 2010; Noetzel et 

al., 2013; O'Brien et al., 2004). Mechanistically, mGlu5 receptor PAMs are largely considered to potentiate 

mGlu5 receptor activity in response to glutamate via efficacy modulation (Gregory et al., 2012); however, 

probe dependence can dictate the nature of these allosteric interactions with multiple PAMs reported to 

enhance [3H]quisqualate binding (Bradley et al., 2011; Koehl et al., 2019) as well as show different 

magnitudes of cooperativity depending on the orthosteric agonist used (Sengmany et al., 2017). In this respect 

the largest magnitude of potentiation observed in mGlu5 receptor functional assays is ~20-fold shift in 

glutamate potency for DPFE and 5PAM523 (Gregory et al., 2013a; Parmentier-Batteur et al., 2014). Indeed, 

the magnitude of cooperativity was the best predictor of in vivo efficacy of an mGlu5 receptor PAM series 

using the amphetamine-induced hyperlocomotion assay, when total and free brain and plasma concentrations 

were determined from the same rats (Gregory et al., 2019). Select mGlu5 receptor PAMs have intrinsic agonist 

efficacy, however, in some cases this is linked to high receptor reserve in recombinant systems (Noetzel et al., 

2012). Although this is not always the case, with some compounds, e.g. DPFE, showing intrinsic efficacy in 
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low expression and native cell systems (Gregory et al., 2013a; Sengmany et al., 2017) and may also be 

dependent on measure of receptor activation, where mGlu5 receptor PAMs often activate mGlu5-ERK1/2 

phosphorylation at concentrations that do not elicit iCa2+ mobilization responses (Gregory et al., 2012; Rook 

et al., 2013). Despite the complexity in pharmacology, successful discovery efforts for multiple centrally 

active mGlu5 receptor PAMs have established proof-of-concept for pro-cognitive and anti-psychotic efficacy 

of mGlu5 potentiators (Table 3). However, on-target adverse effect liability has been associated with multiple 

scaffolds, which has been attributed in part to intrinsic agonist activity and/or magnitude of cooperativity 

(Parmentier-Batteur et al., 2014; Rook et al., 2013). Recent studies have challenged these conclusions (Rook 

et al., 2015b; Sengmany et al., 2017), suggesting that biased pharmacology of mGlu5 receptor PAMs may be 

linked to adverse versus therapeutic effects (discussed in detail below). 

Group II PAMs and NAMs 

 

Discovery and validation of group II mGlu receptor allosteric ligands has benefited from the availability of 

radiolabeled orthosteric agonists and antagonists, owing to the generally higher affinity of orthosteric ligands 

for group II mGlu receptors (Table 1). Indeed, multiple different mGlu2 receptor-selective PAMs have been 

disclosed and established proof-of-concept for mGlu2 receptor potentiation as a viable therapeutic intervention 

for anxiety, psychosis and addiction (Table 4). The first mGlu2 receptor selective PAM was LY487379 (also 

referred to as 4-MPPTS) (Johnson et al., 2003), which enhances radiolabeled orthosteric agonist 

([3H]LY354740 and [3H]DCG-IV) binding (Lundstrom et al., 2016; Schaffhauser et al., 2003), orthosteric 

agonist affinity (Johnson et al., 2005) and functional activity. Although LY487379 shows probe dependence 

as it is neutral with respect to affinity of LY379268 (a high affinity orthosteric agonist) (Johnson et al., 2005). 

Further, LY487379 has neutral cooperativity with respect to orthosteric antagonist binding (Johnson et al., 

2005; Schaffhauser et al., 2003), suggesting LY487379 preferentially interacts with the active receptor state. 

A similar pharmacological profile has been noted for mGlu2 receptor-selective PAMs from different 
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chemotypes (including BINA, AZD8418, JNJ-42491293), which also potentiate glutamate binding and 

efficacy, but are neutral with respect to orthosteric antagonist binding (O'Brien et al., 2018). Although the 

recently disclosed mGlu2 receptor modulator, SAR218645, has even more pronounced probe dependence, 

potentiating glutamate affinity but inhibiting [3H]LY341495 binding (Griebel et al., 2016). Further insights 

into the mechanism of action of mGlu2 receptor PAMs have been elucidated using radiolabeled mGlu2 receptor 

PAMs (2,2,2,TEMPS, JNJ-46281222 and AZ12559322). Compared to orthosteric radioligands, radiolabeled 

mGlu2 receptor PAMs recognize fewer binding sites, which is thought to indicate occupation of a single 7TM 

domain within the dimeric receptor as well as preferential binding to active receptor conformations since 

orthosteric agonists can increase the number of mGlu2 receptor PAM binding sites (Doornbos et al., 2016; 

Lavreysen et al., 2013; Lundstrom et al., 2016; Lundstrom et al., 2011; Lundstrom et al., 2009; O'Brien et al., 

2018). Most mGlu2 receptor PAMs have intrinsic agonist efficacy (Table 4) with the maximal degree of 

potentiation observed for glutamate potency of between 10-30 fold (Galici et al., 2006; Johnson et al., 2005; 

Lavreysen et al., 2015; O'Brien et al., 2018). In addition to increased selectivity over mGlu3 relative to 

orthosteric agents, mGlu2 receptor PAMs may also provide improved therapeutic efficacy owing to reduced 

capacity for induction of tolerance compared to group II receptor orthosteric agonists (Ahnaou et al., 2015). 

In contrast to successful mGlu2 receptor PAM discovery campaigns, to date, mGlu3 receptor selective PAMs 

have remained elusive. 

Discovery efforts for group II mGlu receptor NAMs have yielded both mGlu2 and mGlu3 receptor subtype 

selective ligands, although there is less structural diversity available when compared with mGlu2 receptor 

PAMs (Figure 8, Table 4). Negative allosteric modulators of group II mGlu receptors have demonstrated 

efficacy for improving cognitive deficits and reversing behaviors in preclinical models for depression and 

anxiety (Campo et al., 2011; Engers et al., 2017; Engers et al., 2015; Goeldner et al., 2013; Woltering et al., 

2010) and are neuroprotective under ischemic insult (Motolese et al., 2015). Mechanistically, group II receptor 

NAMs (including MNI-137, RO4491533, decoglurant and related compounds) are neutral with respect to 

glutamate affinity, primarily acting as negative modulators of glutamate efficacy (Campo et al., 2011; 
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Hemstapat et al., 2007; O'Brien et al., 2018). Akin to observations with group II receptor PAMs, select NAMs 

have demonstrated probe dependence with respect to modulation of orthosteric agonist affinity, where ligands 

related to RO4491533 or decoglurant are NAMs with respect to [3H]LY354740 binding (Lundstrom et al., 

2011; Woltering et al., 2008). For the majority of pan group II mGlu receptor NAMs including ML337, MNI-

137 and decoglurant, are full NAMs, completely abolishing the functional response to orthosteric agonists at 

both mGlu2 and mGlu3 receptors (Caraci et al., 2011; O'Brien et al., 2018; Wenthur et al., 2014). However, 

MNI-137 has differing degrees of negative cooperativity in functional assays of mGlu2 receptor activity, in 

some instances showing full blockade but limited negative cooperativity in others (Hemstapat et al., 2007; 

O'Brien et al., 2018; Yin et al., 2014). Further, both the reported selectivity and inhibitory activity of mGlu2/3 

receptor NAM LY2389575 differs depending on the response measured (Caraci et al., 2011; Sheffler et al., 

2012). In this respect, it is worth noting that for many ligands and series there has been limited 

pharmacological profiling to fully discern mechanism of action. Subtype selective mGlu2 receptor (e.g. 

VU6001192, MRK-8-29, Ro64-5229) or mGlu3 receptor (ML289, VU6010572) NAMs have been reported 

(Engers et al., 2017; Felts et al., 2015; Kolczewski et al., 1999; Sheffler et al., 2012; Walker et al., 2015). 

However, the group II receptor selectivity of ML337 was recently demonstrated to be in part attributable to 

cooperativity, as this ligand is a NAL at mGlu5 (Hellyer et al., 2018). Whether or not other reportedly subtype 

selective NAMs are also due to cooperativity rather than affinity remains to be elucidated. 

Both selective and pan-group II receptor NAMs from diverse scaffolds interact with a common or overlapping 

site with that used by mGlu2 receptor PAMs within the 7TM domain (Lundstrom et al., 2016; Lundstrom et 

al., 2011; O'Brien et al., 2018; Rowe et al., 2008; Schaffhauser et al., 2003). Select amino acid residues within 

this common site can differentially influence group II receptor NAM versus PAM activity (Hemstapat et al., 

2007; Lundstrom et al., 2011; Perez-Benito et al., 2017). These differential effects may be attributable to 

differential effects on cooperativity or affinity whereby distinct ligand-receptor interactions may contribute to 

active versus inactive receptor conformations. However, for some scaffolds (e.g. JNJ-42491293, decoglurant, 

VU6001192, MRK-8-29) allosteric interactions have been observed with a mGlu2 receptor PAM radioligand, 
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indicative of multiple allosteric sites within the 7TM (O'Brien et al., 2018), or possibly more complex 

interactions due to the dimeric nature of mGlu receptors as has been noted for other class C GPCR allosteric 

modulators (Gregory et al., 2018). 

 

Group III PAMs and NAMs 

A list of the some of the commercially available allosteric modulators of group III mGlu receptors is provided 

in Table 5. The first identified group III mGlu receptor selective allosteric modulator was PHCCC (Maj et 

al., 2003; Marino et al., 2003b) (Figure 8). PHCCC acts as an mGlu4 receptor PAM, increasing potency and 

efficacy of glutamate or L-AP4 in cell-based assays. PHCCC is closely related to the mGlu1 receptor selective 

NAM CPCCOEt (Annoura et al., 1996)(Figure 7). Although it has weak potency and poor solubility, PHCCC 

provided a very useful tool to demonstrate the therapeutic potential of targeting mGlu4 receptors in Parkinson’s 

disease and paving the way to drug candidates (Charvin, 2018). Indeed, PHCCC potentiated the inhibitory 

effect of L-AP4 on transmission at the striatopallidal synapse and reversed akinesia in rats (Marino et al., 

2003a; Marino et al., 2003b). PHCCC also reduces hyperalgesia in rat models of chronic pain (Goudet et al., 

2008). Subsequently, a new mGlu4 receptor PAM named VU0155041 was discovered (Christov et al., 2011), 

which is more potent and more soluble than PHCCC. Interestingly, VU0155041 is an mGlu4 receptor allosteric 

agonist (PAM-agonist), contrary to the pure PAM profile of PHCCC. PHCCC and VU0155041 do not 

compete for the same site (Niswender et al., 2008a). Accordingly, two partially overlapping 7TM binding 

pockets have been identified in mGlu4 receptors, a shallow and a deep pocket (Rovira et al., 2015). Analysis 

of the pharmacological properties and binding modes of several mGlu4 receptor PAMs, revealed the intrinsic 

efficacy and cooperativity of mGlu4 PAMs (both affinity and efficacy modulation of L-AP4 and glutamate) 

correlate with the binding mode (Rovira et al., 2015). PAMs with intrinsic allosteric agonism bind in the 

shallow pocket, analogous to the pocket of natural agonists of class A GPCRs, whereas PAMs exhibiting the 

highest cooperativity with orthosteric agonists bind into a deeper pocket, corresponding to that of mavoglurant 
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in the mGlu5 receptor 7TM crystal structure (Dore et al., 2014) and pointing toward a site topographically 

homologous to the Na+ binding pocket of class A GPCRs. In preclinical studies, VU0155041 improves 

symptoms of Parkinson’s disease (Christov et al., 2011), chronic pain (Wang et al., 2011) and autistic–like 

syndromes (Becker et al., 2014). Foliglurax (PXT002331) is a derivative of PHCCC with good water solubility 

and high brain exposure after oral administration (Charvin et al., 2017). It is a potent and selective mGlu4 

receptor PAM displaying strong antiparkinsonian activity in rodent preclinical models of Parkinson’s disease 

(Charvin et al., 2017) as well as in primates (Charvin et al., 2018a); however, recently failed to show efficacy 

in a phase II clinical trial. Several mGlu4 receptor PAMs also exhibit PAM activity on mGlu6 receptors; as yet 

no selective mGlu6 receptor allosteric modulators have been described.  

The first allosteric modulator acting at the mGlu7 receptor to be described was AMN082 (Mitsukawa et al., 

2005). Since there was a lack of pharmacological tools to study mGlu7 receptor, this mGlu7 PAM-agonist 

attracted much interest. However, AMN082 presents off-target effects, as it retains activity in mGlu7 receptor 

KO mice (Ahnaou et al., 2016b). Indeed, AMN082 is rapidly metabolized in vivo, with the major metabolite 

being a potent monoamine transporter inhibitor (Sukoff Rizzo et al., 2011). Thus, preclinical results obtained 

with AMN082 have to be carefully interpreted, since its actions may not be driven solely by mGlu7 receptors. 

Selective mGlu7 receptor NAMs have been described and may be more adequate for investigating the role of 

mGlu7 receptor in vivo: MMPIP (Suzuki et al., 2007b), ADX71743 (Kalinichev et al., 2013a) and XAP044 

(Gee et al., 2014). Interestingly, the inhibitory activity of MMPIP is context dependent, where MMPIP may 

not antagonize mGlu7 receptor activity in all cellular contexts. Indeed, MMPIP is unable to block agonist-

mediated responses at the Schaffer collateral-CA1 synapse, where mGlu7 receptor is known to modulate 

neurotransmission (Niswender et al., 2010). ADX71743 is a bioavailable and brain penetrant mGlu7 NAM 

which induces a robust anxiolytic effect in rodents (Kalinichev et al., 2013a). Most small allosteric modulators 

described so far act via a binding pocket located within the transmembrane domain; however, XAP044 

mediates its action through an interaction with the extracellular domain of mGlu7 receptor (Gee et al., 2014). 

The exact binding pocket of XAP044 is not known at the moment, with chimeric mGlu7/mGlu6 receptors used 
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to map its action to the extracellular domains (Gee et al., 2014). Recent efforts aiming to identify novel mGlu7 

receptor PAM scaffolds have turned to cheminformatics-based approaches; however, to date these have 

yielded low potency potentiators (Tresadern et al., 2017). 

Only few mGlu8 receptor allosteric modulators have been identified. AZ12216052 is an mGlu8 receptor PAM-

agonist of glutamate at mGlu8 receptors (Duvoisin et al., 2010). In vivo, AZ12216052 is anxiolytic in 

apolipoprotein E deficient mice, which show increased levels of anxiety-like behaviors (Duvoisin et al., 2010). 

AZ12216052 also displays analgesic activity following injection into the dorsal striatum of neuropathic rats 

(Rossi et al., 2014). However, AZ12216052 possesses some off-target effects since it retains anxiolytic 

activity in mGlu8-/- mice (Duvoisin et al., 2011). Another useful pharmacological tool for mGlu8 receptor is 

VU6005649, a brain penetrant PAM of mGlu7 and mGlu8 receptors that displays in vivo efficacy in a mouse 

contextual fear conditioning model (Abe et al., 2017). The pan-group III receptor PAM, VU0422288, which 

has similar affinity for mGlu4, mGlu7 and mGlu8 receptors (Jalan-Sakrikar et al., 2014), rescues deficits 

(synaptic plasticity and behavioral phenotypes) in a mouse model of Rett syndrome (Gogliotti et al., 2017). 

VU0422288 also shows probe dependence with respect to both its apparent affinity and magnitude of positive 

cooperativity (Jalan-Sakrikar et al., 2014). Whether or not targeting one or multiple of the group III receptor 

subtypes will best treat this neurological disorder remains to be explored with subtype selective 

pharmacological agents. 

 

Allosteric modulators progressing to clinical trials 

With respect to clinical translation of promising preclinical efficacy for mGlu receptor allosteric modulators, 

mGlu5 NAMs have demonstrated the most progress with multiple agents reaching phase II trials for a variety 

of indications. Prior to elucidation of its mechanism of action, fenobam was assessed in a small double blind 

placebo controlled study as a single agent for treatment of anxiety compared to diazepam and was reported to 

have fewer adverse effects (Pecknold et al., 1982). Subsequently, fenobam was trialed in an open-label pilot 
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study for treatment of Fragile X syndrome behavioral deficits, where it was well-tolerated but lacked efficacy 

(Berry-Kravis et al., 2009). Multiple phase II trials of mGlu5 receptor NAMs in Fragile X syndrome patients 

(both adolescents and adults) have now been completed, with basimglurant (RO4917523) and mavoglurant 

(AFQ056) being well-tolerated, improving behavioral symptoms, but failing to meet primary outcomes 

(Bailey et al., 2016; Berry-Kravis et al., 2016; Jacquemont et al., 2011; Youssef et al., 2018). These failures 

may in part be attributable to the difficulties associated with study design for indications lacking rigorous 

criteria for assessment of behavioral symptoms, or a need to stratify patient populations. Basimglurant also 

failed to show efficacy in primary clinician assessed measures for major-depressive disorder, although patient 

reported outcomes suggested an anti-depressive effect (Quiroz et al., 2016). Mavoglurant entered phase II 

trials for obsessive-compulsive disorder, but was terminated early due to lack of efficacy and a higher 

incidence of adverse effects (Rutrick et al., 2017). Beyond psychiatric indications, mavoglurant lacked 

efficacy in treating levodopa-induced dyskinesias in PD patients (PD-LID) or chorea in Huntington’s disease 

patients (Reilmann et al., 2015; Trenkwalder et al., 2016). In contrast, dipraglurant (ADX48621) was also 

assessed in a phase IIa trial for PD-LID, showing promising indications of anti-dyskinetic efficacy (Tison et 

al., 2016). Raseglurant (ADX10059) showed anti-reflux efficacy for gastroesophageal reflux disease 

(Keywood et al., 2009; Zerbib et al., 2011; Zerbib et al., 2010), but further development was ultimately 

discontinued due to liver toxicity concerns. 

With respect to modulators of other mGlu receptor subtypes, building on preclinical efficacy in addiction 

models for nicotine and methamphetamine (Caprioli et al., 2015; Justinova et al., 2015; Li et al., 2016), 

AZD8529, an mGlu2 receptor PAM, is currently in phase II trials for smoking cessation, but failed to 

demonstrate efficacy as an antipsychotic or for negative symptoms in patients with schizophrenia (Litman et 

al., 2016). Another mGlu2 receptor PAM, ADX71149/JNJ-40411813, was also trialed for smoking cessation 

and found to improve attention and memory as well as reverse effects of ketamine (Salih et al., 2015). In a 

phase II trial of major depressive disorder patients with significant anxiety, JNJ-40411813 as an adjunct 

therapy to standard of care failed to relieve anxiety (Kent et al., 2016). A group II receptor NAM, decoglurant, 
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also commenced trials for major depressive disorder, results are yet to be posted, but development was 

discontinued. The efficacy and safety of an mGlu4 PAM, foliglurax, was recently evaluated in a phase II 

clinical trials in PD patients treated with levodopa, experiencing end-of-dose wearing off and levodopa-

induced dyskinesia (Charvin et al., 2018a; Charvin et al., 2017) but the program was discontinued due to 

insufficient efficacy. The varying degrees of success and failures with clinical translation for mGlu receptor 

allosteric modulators are in keeping with high attrition rates for neuroscience targets. Moreover, these results 

speak to a need to better understand the pharmacological properties of allosteric modulators and harness novel 

modes of action and activity. 

 

Secondary allosteric sites within the VFT and 7TM domains 

 

The vast majority of allosteric modulators for mGlu receptors are believed to interact with a common allosteric 

site within the 7TM domain, analogous to the biogenic amine orthosteric binding pocket of class A GPCRs. 

However, allosteric modulators interacting at alternate allosteric sites may offer the means to engender unique 

pharmacological profiles and increased subtype selectivity. Within the context of a full-length dimeric mGlu 

receptor, there are multiple possible sites to exploit for allosteric ligands. Multiple subtype selective single 

domain antibodies, also referred to as nanobodies, have now been described that recognize epitopes within 

the VFT. For mGlu2, three nanobodies that recognize overlapping epitopes but have different pharmacological 

properties have been described (Scholler et al., 2017). DN1 recognizes both active and inactive mGlu2 

receptors, whereas DN10 and DN13 require active homodimeric mGlu2 receptor states to bind and potentiate 

orthosteric agonist activity (Scholler et al., 2017). Similarly, a nanobody that recognizes a loop region with 

lobe 1 of the mGlu5 receptor VFT potentiates agonist binding and function, but can also recognize both active 

and inactive receptor states (Koehl et al., 2019). To date, nanobodies have been used to facilitate structural 

studies, or as biosensors for active receptor conformations. For mGlu7 receptors, a monoclonal antibody, 
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MB1/28, binds to the dimeric VFT, inhibiting receptor activation but is able to induce receptor internalization 

(Ullmer et al., 2012). Beyond antibodies, the naturally sourced sweet protein monellin was recently revealed 

as an mGlu5 receptor allosteric agonist that is also thought to interact with the N terminus, and interacts 

allosterically with small molecule allosteric modulators (Chen et al., 2019). 

Multiple allosteric sites have been postulated for the mGlu5 receptor 7TM domain, however, the precise 

location of these secondary allosteric sites has proven elusive (Chen et al., 2008; Hammond et al., 2010; 

Noetzel et al., 2013). With the recent publication of a full-length cryo-electron microscopy structure of mGlu5 

receptors, we now appreciate that the cysteine-rich domain is a stalk that holds the VFT above the 7TM 

domains, and interacts with the second extracellular loop to transmit conformational changes (Koehl et al., 

2019). It is tempting to speculate that the inability to identify these secondary pockets may have been due to 

a monomeric view of the 7TM domain. However, biophysical studies as well as the new structures 

demonstrate that the 7TM domains themselves dimerize when activated (Doumazane et al., 2013; El 

Moustaine et al., 2012; Koehl et al., 2019; Xue et al., 2015). Appreciation of the full-length dimeric structure 

offers the possibility to identify new allosteric sites to exploit through targeting these newly appreciated 

interfaces.  

 

Evolving concepts:  

Biased modulators 

 

Allosteric modulators elicit potentiation or inhibition through stabilizing different receptor conformations than 

can be achieved with an orthosteric ligand alone. Therefore, there is the potential that these conformations can 

give rise to biased pharmacology. Where intrinsic efficacy differs between pathways relative to a reference 

agonist this is referred to as biased agonism and can be quantified as discussed previously for biased 
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orthosteric agonists. For mGlu5 receptors, PAM-agonists from diverse scaffolds are biased agonists relative to 

DHPG in both recombinant and native cells; however, the bias profile differs between scaffolds, with 

VU0424465, DPFE, VU0409551 each exhibiting different bias profiles for mGlu5 receptor signaling and 

receptor desensitization (Hellyer et al., 2019; Sengmany et al., 2017). However, biased modulation is also 

possible, where the direction or magnitude of modulation of the same agonist differs between pathways, and 

may manifest either as differential apparent affinity or cooperativity (Sengmany et al., 2019). For structurally 

diverse mGlu5 receptor PAMs (VU0360172, DPFE, VU0409551), the magnitude of cooperativity with DHPG 

was lower when measured in IP1 accumulation compared to iCa2+ mobilization (Sengmany et al., 2017). 

Moreover, DPFE and CDPPB inhibit mGlu5 receptor orthosteric agonist stimulated ERK1/2 phosphorylation 

in primary cultures (Sengmany et al., 2017; Zhang et al., 2005). Importantly, biased allosteric agonism and 

potentiation of mGlu5 receptors as well as probe dependence is mediated via dynamic interactions within the 

common allosteric pocket (Sengmany et al., 2020; Hellyer et al., 2020b). Allosteric interactions with distinct 

binding sites would be expected to offer further diversity in these biased pharmacological fingerprints. 

Furthermore, differential cooperativity has also been noted for mGlu5 receptor NAMs, where VU0366248 

inhibits iCa2+ mobilization but is a NAL with respect to IP1 accumulation (Sengmany et al., 2019). Recent 

studies indicate biased agonism and modulation of mGlu5 receptor NAMs and PAMs extends to receptor 

regulatory processes such as internalization and desensitization (Arsova et al., 2020; Hellyer et al., 2019). 

Another contributing factor to biased modulator pharmacology at mGlu5 receptors may be ligand binding 

kinetics as suggested by two recent studies on structurally diverse NAMs (Arsova et al., 2020; Sengmany et 

al., 2019). 

Biased pharmacology of mGlu5 receptor PAMs extends beyond second messenger signaling in cultures to 

intact circuitry. VU0409551 potentiates mGlu5-dependent long-term depression in the hippocampus (Rook et 

al., 2015b), prefrontal cortex (Ghoshal et al., 2017) and nucleus accumbens (Turner et al., 2018), but unlike 

other PAMs is unable to potentiate DHPG stimulation of mGlu5 receptor-mediated modulation of NMDA 

receptor currents (Rook et al., 2015b). Differential potentiation of mGlu5 receptor dependent synaptic 
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plasticity and modulation of NMDA receptor activity in the hippocampus has also been noted for mGlu5 

receptor PAMs structurally unrelated to VU0409551. VU29 potentiates hippocampal long-term potentiation, 

but not NMDA receptor currents (Xiang et al., 2019). Within these brain slice electrophysiology experiments, 

mGlu5 receptor PAM effects are mediated via enhancement of endogenous glutamate tone, or exogenously 

applied DHPG, suggesting that similar to VU0409551, VU29 has biased cooperativity between these two 

measures of mGlu5 activity. Another structurally unrelated mGlu5 receptor PAM, NCFP, failed to potentiate 

DHPG-mGlu5 receptor long-term potentiation and long-term depression in brain slice electrophysiology 

experiments (Noetzel et al., 2013). For mGlu5 receptor allosteric ligands, biased pharmacology may offer the 

means to selectively modulate therapeutically beneficial effects while avoiding those linked to adverse effects. 

In order to realize this potential, there remains a need to better understand how different mGlu5 receptor 

signaling and cellular responses are linked to behavioral effects in the whole animal and the translation of 

these effects to the clinic. By example, it was recently demonstrated for a series of mGlu5 receptor PAMs 

closely related to VU0409551, that cooperativity with glutamate (for iCa2+ mobilization) rather than ligand 

affinity was predictive of relative efficacy in rats for reversing amphetamine-induced hyperlocomotion 

(Gregory et al., 2019a). However, whether mGlu5 receptor PAM affinity, cooperativity, bias or agonism 

proves to be the best predictor for therapeutic efficacy and safety across multiple in vivo measures for different 

scaffolds remains to be rigorously tested. 

Beyond mGlu5 receptors, the mGlu7 receptor-targeting monoclonal antibody, MB1/28, is a NAM for 

orthosteric agonist inhibition of cAMP accumulation but has intrinsic efficacy for inducing receptor 

internalization (Ullmer et al., 2012). At mGlu2 receptors, the PAM-agonist BINA was found to be a biased 

agonist relative to LY354740, favoring ERK1/2 phosphorylation over coupling to Gα15 (Hellyer et al., 2020). 

Furthermore, biased pharmacology can contribute to apparent selectivity of allosteric ligands. Reportedly, 

selective allosteric ligands across the class C GPCR family were recently shown to have either neutral 

cooperativity for mGlu5 receptors or have biased pharmacology (Hellyer et al., 2018). Collectively, the 
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potential for biased allosteric ligand pharmacology highlights the importance of considering the 

assay/system/approach used to define mechanism of action, classify pharmacological effects and selectivity.  

Location and context dependent pharmacology 

Related to the phenomenon of biased allosteric agonism and modulation is the concept of context-dependent 

pharmacology including the contribution of “location bias”. Quite simply put, the observed pharmacological 

effect is influenced by the cellular context within which it is studied. The first report for context-dependent 

pharmacology was for the mGlu7 receptor NAM, MMPIP, which shows different magnitudes of inhibition of 

mGlu7 receptor activity for the same agonist between different recombinant cell lines (Niswender et al., 2010). 

For mGlu5 receptor modulators, both PAMs and NAMs have context-dependent pharmacology, manifested 

as distinct biased agonism profiles (Hellyer et al., 2019; Sengmany et al., 2017), or differential apparent 

affinities (Sengmany et al., 2019) or potencies (Jong et al., 2019) of NAMs between recombinant and native 

cells from different brain regions. Quantitative pharmacological differences between cell types may be a 

consequence of different stimulus-response coupling efficiencies, the presence or absence of receptor 

interacting proteins (other GPCRs, transducers or scaffolding partners) or differences in receptor subcellular 

compartmentalization and relative accessibility by different ligands.  

Group I mGlu receptors associate with different lipid microdomains (Burgueno et al., 2003; Francesconi et 

al., 2009b), the balance of which can be altered by receptor activation or membrane cholesterol content, which 

in turn can modulate signaling to ERK1/2 phosphorylation (Kumar et al., 2008; Kumari et al., 2013). Further, 

mGlu5 is also found on intracellular membranes (e.g. nucleus (Jong et al., 2005)), with signaling arising from 

these intracellular sites differing from that elicited by plasma membrane receptors (Jong et al., 2009; Kumar 

et al., 2012; Purgert et al., 2014). Subcellular compartmentalization of mGlu receptors can shape the 

physiological responses to orthosteric agonists, particularly for surrogate agonists that cannot access 

intracellular receptors. Such effects may contribute to observations of probe dependence by allosteric ligands. 

To date, the influence of allosteric ligands on GPCR subcellular localization (and vice versa) has been 
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relatively unexplored. However, Ca-sensing receptor allosteric ligands can act as “pharmacochaperones” to 

increase Ca-sensing receptor cell surface expression (White et al., 2009), suggesting that mGlu receptor 

allosteric ligands may also have the potential to alter receptor location.  

In addition to physiological context differences, the disease state can also impact mGlu receptor signaling and 

subsequently ligand pharmacology. In the setting of melanoma, mGlu1 loses the capacity to signal via classical 

G protein pathways; however, glutamate retains the ability to stimulate mGlu1 internalization, which promotes 

melanoma cell survival (Gelb et al., 2015b). In a preclinical model of Huntington’s disease, the balance of 

mGlu5 receptor signaling pathways are perturbed, where IP1 accumulation is reduced, but iCa2+ mobilization, 

Akt and ERK1/2 phosphorylation is increased (Ribeiro et al., 2010). Brain region specific changes in group I 

mGlu receptor signaling have also been noted following chronic cocaine administration, such that the mGlu5 

receptor NAM MPEP becomes an agonist for inducing CREB phosphorylation in the nucleus accumbens but 

not striatum (Hoffmann et al., 2017). Changes in the balance of intracellular signaling responses specific to 

the disease setting could be exploited by the development of biased ligands; however, also offer another layer 

of complexity with respect to designing appropriate discovery pipelines for the translation of biased ligands. 

Indeed, VU0409551, which does not potentiate mGlu5 receptor modulation of NMDA receptor currents in 

wild type animals, does potentiate these responses in a genetic model of schizophrenia (Balu et al., 2016). 

These data highlight the paucity in our understanding of how different diseases and pathological processes re-

shape the intracellular responses to mGlu receptors. Parsing out these differences will offer the prospect for 

rational discovery efforts to tailor therapeutic efficacy to the pathway level to restore neurotransmission to the 

healthy setting. 

 

Heteromerization of mGlu receptors 

Historically, mGlu receptors were believed to form strict homodimers, unlike other class C GPCRs such as 

the obligatory heterodimeric GABAB or sweet or umami taste receptors. The first evidence of mGlu receptor 
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heteromers came from the demonstration that group I receptors can assemble and function together when co-

transfected in HEK293 cells, but cannot assemble with either group II or group III receptors (Doumazane et 

al., 2011a). This same study demonstrated heteromers are also formed among group II and group III receptors, 

prompting investigations into the existence and function of native mGlu receptors heteromers in vivo.  

One anticipates that the formation of heterocomplexes by mGlu receptors where natively expressed in the 

same cells, should result in specific pharmacological signatures that differ from homomeric receptors. 

Intriguing pharmacological responses aroused suspicion on the existence of mGlu2-mGlu4 receptor heteromers 

in rat dorsal striatum where the well-established mGlu4 receptor PAM PHCCC failed to potentiate mGlu4 

receptor activity at corticostriatal-synapses in rat dorsal striatum whereas VU0155041 retained its expected 

mGlu4 receptor PAM activity (Yin et al., 2014). In vitro studies confirmed that mGlu2-mGlu4 receptor 

heteromers are differentially potentiated by mGlu4 receptor PAMs from different scaffolds (Kammermeier, 

2012; Niswender et al., 2016; Yin et al., 2014). At the mechanistic level, these pharmacological differences 

arise from complex asymmetric functioning of mGlu2-mGlu4 receptor heteromers. Indeed, following 

orthosteric agonist activation, the signaling of mGlu2-mGlu4 receptor heteromer only occurs through the 

transmembrane domain of mGlu4 receptor (Liu et al., 2017); however, the mGlu2 receptor subunit can signal 

if potentiated by an mGlu2 receptor PAM. This is reminiscent of previous studies showing that only one 

subunit is active at a time in an mGlu receptor homodimer (Goudet et al., 2005; Hlavackova et al., 2005). 

Evidence of the presence of mGlu2-mGlu4 receptor heteromers at this cortico-striatal synapses were reinforced 

by immunoprecipitation studies showing the presence of protein complexes containing mGlu2 and mGlu4 

receptors in striatum (Yin et al., 2014). Pharmacological evidence of mGlu2-mGlu4 receptor heteromers have 

also been detected in lateral perforant path terminals in rat hippocampus (Moreno Delgado et al., 2017).  

Recently, mGlu2-mGlu7 receptor heteromers were reported in the hippocampus and mGlu3-mGlu7 receptor 

heteromers in the cortex (Habrian et al., 2019). Interestingly, further in vitro investigations using a single 

molecular FRET approach revealed that the glutamate affinity and efficacy at mGlu7 receptors is greatly 

enhanced when associated to an mGlu2 receptor subunit, as compared to the mGlu7 receptor homodimer. Also, 
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association with mGlu2 receptors confers to the mGlu7 receptor subunit the ability to be fully activated by the 

selective group III agonist LSP4-2022. Of note, previous neuroanatomical study revealed that mGlu7 and 

mGlu8 receptors may be expressed in the same boutons in the hippocampus (Ferraguti et al., 2005), raising 

the possibility the mGlu7-mGlu8 receptor heteromers may also be of relevance in the hippocampus. 

Heterodimerization of mGlu7 receptors with other mGlu receptor subtypes may provide a means to enhance 

the range of glutamate concentrations sensed by the mGlu7 receptor, which is otherwise insensitive to low 

glutamate levels. 

There are also evidence of mGlu1 and mGlu5 receptors forming complexes in mouse hippocampus and cortex 

as shown by a knockout-controlled interaction proteomics strategy and further confirmed by 

immunoprecipitation and super-resolution microscopy imaging of hippocampal primary neurons revealing 

mGlu1-mGlu5 receptor co-expression at synaptic level (Pandya et al., 2016). Indeed, these data are keeping 

with evidence that blockade of both group I receptor subtypes is required to ablate DHPG-induced long-term 

depression in the hippocampus (Volk et al., 2006). More recently, a single-cell RNA sequencing study 

revealed the co-expression of different mGlu subtypes within the same cell in the adult mouse cortex (Lee et 

al., 2020). Notably, most pyramidal cells contained at least four receptor subtypes. Probing the propensity of 

different mGlu receptors to co-assemble by fluorescent-based complementation assays, the authors concluded 

that mGlu2 and mGlu3 receptors are particularly prone to form heteromers when co-expressed in heterologous 

cells (Lee et al., 2020). Other prominent mGlu receptor pairs included mGlu2/4, mGlu1/5, mGlu3/4, and mGlu3/7.  

The co-expression of native mGlu2 and mGlu3 receptors in mouse frontal cortex was confirmed by in situ 

hybridization and co-immunoprecipitation (Lee et al., 2020). The prevalence of heteromerization between 

mGlu receptors adds considerable complexity to understanding and interpreting molecular pharmacological 

properties of ligands and particularly the notion of selectivity. 

Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors 

form heteromers and larger order complexes with class A GPCRs including mGlu2-5-HT2A receptors (Delille 

et al., 2013; Felsing et al., 2018; Fribourg et al., 2011; Gonzalez-Maeso et al., 2008; Moreno et al., 2013; 
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Moreno et al., 2016), group I receptors with multiple adenosine receptor subtypes (Ciruela et al., 2001; 

Domenici et al., 2004; Ferre et al., 2002; Nishi et al., 2003; Rodrigues et al., 2005), mGlu5-dopamine D1 

receptors (Sebastianutto et al., 2020), mGlu5-dopamine D2 receptors (Ferre et al., 1999; Popoli et al., 2001), 

mGlu5-dopamine D2-adenosine A2A receptors (Cabello et al., 2009; Diaz-Cabiale et al., 2002). For each 

pairing with a class A GPCR, the functional responses arising when receptors are co-activated or 

coincidentally inhibited changes the pharmacological profile to when mGlu receptor is activated in isolation. 

By example, heteromerization with dopamine D1 receptors enhances the proportion of mGlu5 receptors in 

active states, elevating basal Gq coupling and signaling toward iCa2+ mobilization over cAMP pathways 

(Sebastianutto et al., 2020). Heteromerization is often observed in a cell type or brain region specific fashion. 

In this respect, selectively targeting mGlu receptor heteromers offers the intriguing prospect of achieving 

tissue level selectivity of drug action. The study of mGlu receptors heteromers is still in its infancy and it is 

clear that further investigations will be needed in order to better understand its functional consequences in 

brain function and therapeutic potential.  

 

Optical tools to probe and control mGlu receptors 

Irreversible ligands or photoaffinity probes have been widely used to study ligand-receptor interactions and 

aid structural determinations across diverse protein targets. Such tools have not been available for mGlu 

receptors; however, recent efforts exploiting selective allosteric chemotypes have proven successful. The first-

in-class were bifunctional mGlu5 receptor NAMs that included a photoactivatable moiety to irreversibly bind 

receptors and a click chemistry handle to allow secondary attachment of clickable reporter (e.g. fluorophore) 

for identification (Gregory et al., 2016). Installation of a covalent or photoreactive moiety has been 

successfully achieved within three distinct mGlu2 receptor PAM scaffolds (Doornbos et al., 2019; Hellyer et 

al., 2020). The development of covalent or photoactivatable ligands is not without its challenges. Covalent 

ligands require proximity to an appropriate amino acid for reactivity. Further, the bifunctional clickable 
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photoprobes for mGlu2 and mGlu5 receptors revealed substantial non-specific interactions, which may limit 

how these tools can be applied. There has been considerable interest in alternative approaches to optically 

control mGlu receptor function. Two main strategies exist to control mGlu receptors by light: an optogenetic 

pharmacology approach based on attached photoswitchable ligands (Figure 9) and a photopharmacology 

approach based on freely diffusible light-operated ligands (Figure 10) (Goudet et al., 2018). The aim of both 

strategies is to use light to achieve precise spatiotemporal control over receptor activity.  

 

Optogenetic pharmacology 

Optogenetic pharmacology consists of covalently attaching a photoswitchable tethered ligand to a genetically 

modified protein (Kramer et al., 2013), which will then enable the photoactivation or photoantagonism of the 

receptor. In most cases, the receptor itself is modified to allow anchoring of the photoswitchable ligand but 

several variants of this technique have been developed: 1) using a transmembrane protein at the proximity of 

the receptor or 2) an antibody targeting the receptor (Figure 9). Optogenetic pharmacology consists of 

covalently attaching a photoswitchable tethered ligand to a genetically modified protein (Kramer et al., 2013) 

which will then enable the photoactivation or photoantagonism of the receptor.  

Optogenetic pharmacological approaches allows for greater selectivity for studying the functional roles of a 

target receptor. The attached photoswitchable ligand can rapidly oscillate between activating and inactivating 

a receptor, thus being useful optogenetic tools to understand mGlu receptor activation mechanisms (Levitz et 

al., 2016) or to study synaptic activity of neural circuits with high spatiotemporal resolution and 

pharmacological specificity. The drawbacks being the requirements for genetic manipulation, which can limit 

in vivo application, but this can be circumvented by using a viral infection approach (Acosta-Ruiz et al., 2019). 

The first generation of light-controled mGlu receptors (LimGluRs) was based on photoswitchable tethered 

ligands (PTLs), which contain glutamate linked via a photoisomerizable azobenzene linker to a maleimide 

that reacts with a free cysteine within the receptor. These molecules called MAGs bind covalently to 
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genetically engineered mGlu receptors that possess geometrically appropriate cysteine-attachment points 

(Figure 9a). Light-controlled mGlu2, mGlu3 and mGlu6 receptors were designed using this strategy. Precise 

optical control can be achieved in cells, in mouse brain slices and in living zebrafish (Levitz et al., 2013). An 

improved spatiotemporal resolution can also be achieved via two-photon activation of LimGluRs (Carroll et 

al., 2015). 

A second generation of light-controlled mGlu receptors has been developed based on photoswitchable 

orthogonal remotely tethered ligands (PORTL) and the SNAP-tag technology (Keppler et al., 2003)(Figure 

9b). The photoswitchable ligands are composed of a glutamate moiety, followed by a long flexible linker 

containing an azobenzene and a benzylguanine that will anchor the PORTL to a SNAP tag. The receptor is 

genetically modified to contain a SNAP-tag at the N-terminus. Interestingly, the same principle can be applied 

to CLIP-tagged receptors (Gautier et al., 2008). Since SNAP-tag and CLIP-tag possess orthogonal substrate 

specificities, SNAP and CLIP tagged proteins can be labeled simultaneously and specifically with different 

molecular probes in living cells. This has proven to be a very useful approach to analyze cell surface protein 

complexes and notably led to the discovery of specific heterodimeric mGlu receptors (Doumazane et al., 

2011a). By combining SNAP and CLIP tagged receptors and specific PORTL, Levitz and colleagues have 

created a family of light-gated group II/III mGlu receptors (Levitz et al., 2017), allowing the multiplexed 

orthogonal optical control within homo or heterodimers. Optimized branched photoswitchable ligands have 

recently been developed permitting photo-agonism of mGlu receptors with near-complete efficiency (Acosta-

Ruiz et al., 2019). The PORTL strategy has been applied to mGlu2 receptor permitting light control of mGlu2 

receptor-induced excitability in heterologous cells or transfected neurons (Broichhagen et al., 2015) and, more 

recently, to control working memory in mice (Acosta-Ruiz et al., 2019).  

Alternative optogenetic pharmacology approaches have been developed. For example, tethered ligands have 

been designed to target a genetically modified plasma membrane protein bearing a SNAP tag, rather than 

directly targeting the receptor. This new approach is named membrane anchored photoswitchable orthogonal 

remotely tethered ligands (maPORTL) (Donthamsetti et al., 2019). These ligands anchor to the SNAP tagged 
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protein at the plasma membrane and come into close proximity to their target receptor via lateral diffusion to 

enable interaction (Figure 9c). An alternative strategy consists in using ligands tethered to a SNAP-tagged 

antibody or nanobody targeting the receptor of interest (Figure 9d). Proof-of-concept has been established 

using a nanobody recognizing a green fluorescent protein fused to the N-terminus of mGlu2 receptors, allowing 

the photocontrol of the receptor (Farrants et al., 2018). 

Photopharmacology 

 

Photopharmacology is based on the use of small diffusible, drug-like, photo-regulated ligands to control the 

function of a given target through light. Two types of freely diffusible photo-regulated drugs have been 

developed for mGlu receptors photopharmacology: photocaged-ligands and photoswitchable ligands (Figure 

10). Photopharmacological agents constitute powerful tools to manipulate and explore the function and 

therapeutic potential of endogenous receptors in living animals. Indeed, one of the main interests of 

photopharmacology resides in the ability to target endogenous receptors in native environments. Indeed, this 

technique does not require exogenous expression of light-controlled proteins or genetically modified receptor 

as with optogenetics or optogenetic pharmacology. Compared to tethered photoswitchable ligands, the 

pharmacological response kinetics can be slower. As with classical drugs, selectivity, pharmacokinetic and 

ADME properties are also key considerations consideration (Berizzi and Goudet, 2020). Another limitation is 

the local delivery of drug and light in vivo; however, this can be achieved using optic fibers coupled to a light 

source, as recently exemplified (Font et al., 2017; Zussy et al., 2018). 

Photocaged ligands, also named photoactivatable ligands, possess a protecting group that can be removed 

following illumination, enabling the uncaged ligand to bind to its receptor (Figure 10a). Therefore, these 

ligands are inactive photo-caged ligands that are turned ON by light, enabling a precise spatiotemporal control 

of the onset of drug activity. Caged glutamate was developed in the 1990’s, and was most notably used for 

mapping neuronal circuits (Callaway and Katz, 1993) or for studying mGlu receptor function (Crawford et 



58 

 

al., 1997). However, the use of caged glutamate is somehow limited due to the lack of subtype selectivity, 

leading to the development of iGlu and mGlu receptor selective compounds. The first mGlu subtype selective 

caged compound is JF-NP-26, an inactive photo-caged derivative of the mGlu5 receptor NAM raseglurant 

(Font et al., 2017)(Figure 10b). The release of raseglurant is induced by a violet illumination, effectively 

blocking mGlu5 receptor activity in cells or in living mice. Interestingly, the caged compound can be injected 

systemically in preclinical murine models of chronic pain and uncaged locally by illumination, revealing the 

analgesic potential of mGlu5 blockade in peripheral tissues or in the thalamus (Font et al., 2017). 

Photoswitchable ligands are designed to be rapidly and reversibly switched ON and OFF (Figure 10c). 

Typical ligand design comprises incorporating a photoswitchable core into an active moiety that is selectively 

recognized by the target receptor. The photoswitchable core reversibly photoisomerizes at specific 

wavelengths, modifying the overall structure of the ligand and thus its ability to interact with the target, 

resulting in the reversible control of a receptor in timed manner driven by light. The most common 

photoswitchable core used is azobenzene. Azobenzene changes geometry during photo-isomerization. In the 

dark or under white light, the azobenzene moiety is in a trans configuration converting to a cis configuration 

upon illumination with an appropriate wavelength (usually in the ultraviolet range). Relaxation to the 

thermodynamically more stable trans-isomer can be induced by irradiation or by thermal relaxation. 

The first allosteric photoswitchable ligand targeting a GPCR is Alloswitch-1, an mGlu5 receptor NAM (Pittolo 

et al., 2014). An azobenzene was inserted in the core of VU0415374, an mGlu4 receptor allosteric ligand 

having high chemical and structural homology with the scaffold present in azobenzene (Engers et al., 2011), 

in order to minimally modify the steric occupancy, binding determinants and physico-chemical properties of 

the parent compounds. Illumination by green or violet light stabilizes either the trans or the cis configuration 

of the ligand that corresponds to high and low pharmacological activity, respectively, on heterologous or 

native cells expressing the mGlu5 receptor. In vivo, Alloswitch-1 allows light-dependent control of the motility 

of Xenopus laevi tadpoles (Pittolo et al., 2014). More recently, a series of photoswitchable mGlu5 receptor 

NAMs based on the phenylazopyridine scaffold was generated (Gomez-Santacana et al., 2017). Most of the 
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trans-isomers of this series are active both in vitro, inhibiting mGlu5 receptor function in heterologous cells, 

and in vivo, photo-controlling zebrafish motility. Optogluram is a derivative of Alloswitch-1, which acts as a 

photoswitchable mGlu4 receptor PAM, enabling for selective, reversible and repeated optical manipulation of 

mGlu4 receptor activity (Zussy et al., 2018)(Figure 10d). Optogluram allows the photocontrol of endogenous 

mGlu4 receptor activity in specific brain of freely behaving mice, revealing the dynamic control of pain-related 

sensory and anxiodepressive symptoms by amygdala mGlu4 receptors (Zussy et al., 2018). Since ultraviolet 

light could be potentially damaging to irradiated tissues, designing red-shifted photoswitchable ligands has 

been of considerable interest. Recently, OptoGluNAM4.1, a blue light-sensitive mGlu4 receptor 

photoswitchable NAM was described that is active both in vitro and in vivo, photo-controlling zebrafish larvae 

mobility or blocking the analgesic activity of an mGlu4 receptor agonist in a mouse model of chronic pain 

(Rovira et al., 2016). Manipulating mGlu receptor with high spatial and temporal precision holds great promise 

for exploring physiological and pathological functions. As the field is rapidly evolving, the number of optical 

tools available will likely increase and provide new means to probe the biological function of mGlu receptors.   

 

Conclusion 

From the initial identification of mGlu receptors in the early 1990’s, the past thirty years has seen rapid 

progress, with the discovery of novel pharmacological agents and application of chemical, genetic and optical 

biology tools to dissect the molecular properties of the eight subtypes. Each of the individual subtypes offers 

promise as a potential therapeutic target. Excitingly, the intensive drug discovery efforts have led to multiple 

candidates reaching clinical trials with varied mechanisms of action. Both orthosteric and allosteric ligands 

offer considerable complexity in their biological effects, with biased agonism/modulation, context and probe 

dependence; coupled with additional complexity presented by mGlu receptor heteromers. While a challenge 

for discovery, harnessing this pharmacological and biological complexity presents new opportunities to 
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precisely tailor the activity of mGlu receptors to maximize therapeutic efficacy and avoid adverse effect 

liability. 
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Tables 

Table 1: Pharmacology of orthosteric metabotropic glutamate receptor agonists and antagonists.  

Commercially available agents. For a complete list refer to guidetopharmacology.org 

Compound IUPAC name MoA Selectivity (pKi)b In vivo activity Ref 

L-Glutamate  Endogenous 

agonist 

rR1: 6.5; 6.4; hR2: 

5.1; hR7: 3.2 

Major excitatory neurotransmitter 1  

Non selective 

(1S, 3R)-ACPD (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic 

acid 

Group I and 

II agonist 

rR1: 5.5; rR5: 5.7 Neurotoxicity; Antiparkinsonian; Memory 2  

 

ACPT-II (1R,3R,4S)-1-aminocyclopentane-1,3,4-

tricarboxylic acid 

Pan mGlu 

antagonist  

rR1a: 3.9; rR2: 4.1; 

rR4a: 4.1  

 3  

 

CPPG (RS)-α-cyclopropyl-4-phosphonophenylglycine group II/III 

antagonist 

rR2: 8.7; rR3: 7.3; 

rR4: 4.9; rR6: 5.4, 

rR7: 4.8; rR8: 4.9  

 4  

 

 



170 

 

(S)-MCPG (S)-α-methyl-4-carboxyphenylglycine Non selective 

mGlu 

antagonist 

rR1: 3.8; rR5: 3.7 Spatial learning; Anti-psychotic-like 5  

LY341495 (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-

yl]-3-(xanth-9-yl) propanoic acid 

Group II 

antagonist 

but blocks all 

subtypes  

hR1: 5.2; hR2: 8.6-

7.6; hR3: 8.4; hR4: 

4.7; hR5: 5.1; hR7: 

6.7-6.5; rR7: 6.3; 

hR8:7.2 

Antidepressant; Memory; Hypnosis; 

Withdrawal 

6  

 

Group I mGlu receptors 

AIDA (RS)-1-aminoindan-1,5-dicarboxylic acid Group I 

antagonist 

rR1: 4.4-4.0; rR5: 

4.3 

Epilepsy; Spatial memory; Pain; 

Neuroprotection 

7  

(R,S)-CHPG (RS)-2-chloro-5-hydroxyphenylglycine mGlu5 

agonist 

rR1: 3.8; rR5: 3.4 Neuroprotection; Pain; Epilepsy 8  

(S)-3,5-DHPG (S)-3,5-dihydroxyphenylglycine Group I 

agonist 

rR1: 6.0, rR5a: 5.4 Anxiety; Memory; Pain; Epilepsy 9  

LY367385 (S)-(+)- α -amino-4-carboxy-2-

methylbenzeneacetic acid 

mGlu1 

antagonist 

rR1: 5.1; rR5: <4 Neuroprotection; Antidepressant 

 

10  
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L-Quisqualic 

acid 

(L)-(+)- α -amino-3,5-dioxo-1,2,4-oxadiazolidine-

2-propanoic acid 

Group I and 

AMPA 

agonist 

rR1: 7.5 Epilepsy; Neurotoxicity 11  

Group II mGlu receptors 

DCG-IV (2S,2'R,3'R)-2-(2',3'-

dicarboxycyclopropyl)glycine 

group II 

agonist 

hR2: 7.2-6.4; hR3: 

7.9 

Antipsychotic; Neuroprotection; 

Anticonvulsant 

12  

LY2812223 

(MP-101, 

prodrug: 

LY2979165) 

ammonium (1R,2S,4R,5R,6R)-4-((4H-1,2,4-

triazol-3-yl)thio)-2-((S)-2-aminopropanamido)-2-

carboxybicyclo[3.1.0]hexane-6-carboxylate 

hydrate 

mGlu2 

agonist  

hR2: 8.1 Antipsychotic; Clinical trials for Bipolar 

disorder (phase 1) and Dementia-Related 

Psychosis and/or Agitation and Aggression 

(phase 2) 

13  

 

LY354470 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-

dicarboxylic acid 

mGlu2/3 

agonist 

rR2 8.3 rR3: 7.6 Anxiolytic; Withdrawal; Antiparkinsonian; 

Antipsychotic; Anxiolytic 

14  

LY379268 (1R,4R,5S,6R)-4-amino-2-

oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid 

mGlu2/3 

agonist 

hR2: 9.1-8.6; hR3: 

8.9-8.2 

Anxiolytic; Antidepressant; Antipsychotic; 

Neuroprotection 

15  

 

LY541850 (1S,2S,4R,5R,6S)-2-amino-4-

methylbicyclo[3.1.0]hexane2,6-dicarboxylic acid 

mGlu2 

agonist, 

mGlu3 

antagonist 

hR2: 7.0; hR3: <5 antipsychotic effects 16  
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Pomaglumetad 

(LY404039,) 

4-amino-2-thiabicyclo[3.1.0]hexane-4,6-

dicarboxylic acid 2,2-dioxide  

 

mGlu2/3 

agonist 

rR2: 7.6 rR3: 7.3 

 

Alcohol-seeking; Antipsychotic; Anxiolytic; 

Clinical trials for prodrug: LY2140023 for 

psychosis (phase II) and post-traumatic stress 

disorder (III) 

17  

 

Group III mGlu receptors 

ACPT-I (1S, 3R,4S)-1-aminocyclopentane-1,2,4-

tricarboxylic acid 

Group III 

agonist 

rR4: 5.5; rR6: 5; 

rR7: 3.6; rR8: 5.3 

Neuroprotective; Anxiolytic; Antidepressant; 

Analgesic 

18  

Cinnabarinic 

acid 

2-amino-3-oxo-3H-phenoxazine-1,9-dicarboxylic 

acid 

mGlu4 partial 

agonist  

rR4a < 4 Neuroprotection, (Off target effects in mGlu4 

KO mice 

19  

L-AP4 L-(+)-2-amino-4-phosphonobutyric acid Group III 

agonist 

R4: 6.7; R6: 6.1; 

rR7: 3.7; r8: 6.1  

Neuroprotection, Analgesic, 

Antiparkinsonian 

20  

 

L-thioAP4 l-(+)-2-amino-4-thiophosphonobutyric Acid Group III 

agonist 

rR4: 7.4; rR6: 6.1; 

rR7: 3.7; rR8: 7.3 

 21  

L-SOP O-phospho-L-serine Endogenous 

Group III 

agonist; 

Group II 

antagonist 

rR4: 7.4; rR6: 6.1; 

rR7: 3.7; rR8: 7.3 

Neuroprotection; Antiparkinsonian; 

Anxiolytic; Antiepileptic 

 

22  
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LSP1-2111 (2S)-2-amino-4-{hydroxy[hydroxy(4-hydroxy-3-

methoxy-5-

nitrophenyl)methyl]phosphoryl}butanoic acid 

Group III 

agonist 

rR4: 6; rR6 5.5; 

rR7: 4; rR8: 4.7  

Antiparkinsonian; antipsychotic; Anxiolytic 

 

23  

LSP2-9166 (2S)-2-amino-4-(((4-(carboxymethoxy)phenyl) 

(hydroxy)methyl)(hydroxy)phosphoryl)butanoic 

acid 

mGlu4/7 

agonist 

rR4: 7.2; rR7: 5.7; 

rR8: 4.3 

 

Epilepsy; Ethanol consumption and relapse; 

Morphine rewarding effect 

24  

LSP4-2022 (2S)-2-amino-4-({[4-

(carboxymethoxy)phenyl](hydroxy)methyl}(hydr

oxy)phosphoryl)butanoic acid 

mGlu4 

agonist 

rR4: 7; rR6: 5.4; 

rR7: 4.9 ; rR8 : 4.5 

Analgesic; antidepressant; antipsychotic-like 25  

(RS)-PPG 

  

(RS)-4-phosphonophenylglycine group III 

agonist 

hR4a: 5.3; hR6: 

5.3; hR7b: 3.7; 

hR8a: 6.7  

Anticonvulsant; neuroprotective 26  

MSOP 

  

(RS)-α-methylserine-O-phosphate Group III 

antagonist 

 Anxiolytic 27  

a MoA: Mechanism of Action 

b Where affinity estimates were unavailable pIC50 (antagonists) or pEC50 (agonists) values are reported indicated by italics. 

References: 

1 (Meldrum, 2000; Pin et al., 1999); Mutel et al., 2000) 
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2 (Conti et al., 2002; Henrich-Noack and Reymann, 1999; Zalewska and Wisniewski, 1997); Mutel et al., 2000) 

3 (Acher et al., 1997a) 

4 (Naples and Hampson, 2001; Toms et al., 1996) 

5 (Bordi et al., 1996; Kim and Vezina, 1998; Watkins and Collingridge, 1994); Mutel et al., 2000) 

6 (Kingston et al., 1998; Liechti and Markou, 2007; Moreno et al., 2013; Ornstein et al., 1998; Pitsikas et al., 2012; Podkowa et al., 2016; Witkin 

et al., 2016) 

7 (Christoffersen et al., 1999; Moroni et al., 1997; Neugebauer et al., 1999; Pellicciari et al., 1995; Rao et al., 2000; Thomsen and Dalby, 1998); 

Mutel et al., 2000) 

8 (Bao et al., 2001; Chapman et al., 2000; Doherty et al., 1997; Young et al., 1997; Young et al., 1995); Mutel et al., 2000) 

9 (Barton and Shannon, 2005; Gabra et al., 2008; Nadlewska et al., 2002; Schoepp et al., 1994; Sekiyama et al., 1996; Zalewska-Winska and 

Wisniewski, 2000); Mutel et al., 2000; also see (Wisniewski and Car, 2002) for a review) 

10 (Bruno et al., 1999; Car and Wisniewska, 2006; Clark et al., 1997) 

11 (Fukuda et al., 1985; Hinoi et al., 2000; Holmes et al., 1993; Littman et al., 1995; Shinozaki and Shibuya, 1974; Silverstein et al., 1986); Mutel 

et al., 2000) 

12 (Attwell et al., 1998; Brabet et al., 1998; Bruno et al., 1994; Cartmell et al., 1998; Miyamoto et al., 1997; Tomita et al., 2000; Yoshioka et al., 

2009) 
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13 (Felder et al., 2017; McColm et al., 2017; Monn et al., 2015a); https://clinicaltrials.gov/ct2/show/NCT01383967; 

https://clinicaltrials.gov/ct2/show/NCT03044249   

14 (Bond et al., 1997; Cartmell et al., 1999; Grillon et al., 2003; Helton et al., 1997; 1998; Konieczny et al., 1998; Marek et al., 2006; Monn et al., 

1997; Schoepp et al., 1997; Schoepp et al., 2003; Schreiber et al., 2000; Tizzano et al., 2002) 

15 (Bond et al., 2000; Bond et al., 1999; Cartmell et al., 1999; 2000; Clark et al., 2002; Greco et al., 2005; Kingston et al., 1999; Matrisciano et al., 

2008; Woolley et al., 2008); Cippitelli et al., 2010; Di Liberto et al., 2010; Monn et al., 1999) 

16 (Hanna et al., 2013) 

17 (Annes et al., 2015; Fell et al., 2008; Lebois, 2008; Rodd et al., 2006; Rorick-Kehn et al., 2007a; Rorick-Kehn et al., 2007b; Seeman, 2013); 

https://clinicaltrials.gov/ct2/show/NCT01487083; https://clinicaltrials.gov/ct2/show/NCT02234687  

18 (Acher et al., 1997b; Domin et al., 2014; Domin et al., 2016; Domin et al., 2018; Goudet et al., 2008; Klak et al., 2007; Lopez et al., 2007; 

Palucha-Poniewiera et al., 2008; Palucha et al., 2004; Tatarczynska et al., 2002) 

19 (Fazio et al., 2017; Fazio et al., 2012; Fazio et al., 2014) 

20 (Chen and Pan, 2005; Faden et al., 1997; Lopez et al., 2007; Naples and Hampson, 2001; Park et al., 2019; Pizzi et al., 2000; Thomsen, 1997; 

Thomsen et al., 1992; Trombley and Westbrook, 1992; Vernon et al., 2007; Zhou et al., 2006) 

21 (Selvam et al., 2007) 

22 (Antflick et al., 2009; Faden et al., 1997; MacInnes et al., 2004; Nicoletti et al., 1986; Tatarczynska et al., 2001; Thomsen and Suzdak, 1993; 

Tizzano et al., 1995) 
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23 (Beurrier et al., 2009; Commare et al., 2015; Cuomo et al., 2009; Selvam et al., 2018; Wieronska et al., 2012a; Wieronska et al., 2010) 

24 (Girard et al., 2019; Hajasova et al., 2018; Lebourgeois et al., 2018) 

25 (Goudet et al., 2012; Podkowa et al., 2015; Vilar et al., 2013; Wozniak et al., 2017; Zussy et al., 2018) 

26 (Bigge et al., 1989; Gasparini et al., 1999a) 

27 (Chojnacka-Wojcik et al., 1996; 1997; Thomas et al., 1996) 
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Table 2: Pharmacology of commercially available mGlu1 allosteric ligands. 

For a complete list refer to guidetopharmacology.org 

compound IUPAC name MoAa Selectivity b  

(pKB  or pE/IC50) 

In vivo activity Ref 

A-841720 3-(azepan-1-yl)-9-(dimethylamino)pyrido[1,2] 

thieno[3,4-d]pyrimidin-4-one 

NAM rR1: 9.0; hR1: 8.0; rR5: 6.7 Analgesic; disrupts locomotion & 

cognition 

1  

BAY-36-

7620 

[(3aS,6aS)- 6a-naphtalen-2-ylmethyl-5-

methyliden-hexahydro-cyclopental[c]furan-1-on] 

NAM rR1: 8.0; hR1: <5  Anti-convulsive, cognitive impairments 2 

CFMTI 2-cyclopropyl-5-[1-(2-fluoropyridin-3-yl)-5-

methyltriazol-4-yl]-3H-isoindol-1-one 

NAM hR1: 8.6; rR1: 8.6; hR5: 5.3 antipsychotic-like; no motor effects 3  

CPCCOEt ethyl (7Z)-7-hydroxyimino-1,7a-

dihydrocyclopropa[b]chromene-1a-carboxylate 

NAM rR1: 5.3-4.9; hR1: 4.8; rR5: 

4.9; hR5: 4.4; R4: <4 

Anti-tumorigenic (melanoma), analgesia, 

memory impairment, reverses morphine 

tolerance; neuroprotective (trauma) 

4 
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DFMTI  

(MK-5435) 

5-(1-(2,4-difluorophenyl)-5-methyl-1H-1,2,3-

triazol-4-yl)-2-isopropylisoindolin-1-one 

NAM rR1: 8.4-8.1; hR1: 8.4-7.5; 

hR5: 5.8 

 5 

DM-PPP 4-O-[(2S)-3,3-dimethylbutan-2-yl] 2-O-propyl 

3,5-dimethyl-1H-pyrrole-2,4-dicarboxylate 

NAM rR1: 7.8  Analgesic 6 

EM-TBPC 1-ethyl-2-methyl-6-oxo-4-(1,2,4,5-tetrahydro-3-

benzazepin-3-yl)pyrimidine-5-carbonitrile 

NAM rR1: 8.2; hR1: low Not suitable for in vivo dosing 7 

FITM, 

[18F]FITM 

4-fluoro-N-methyl-N-[4-[6-(propan-2-

ylamino)pyrimidin-4-yl]-1,3-thiazol-2-

yl]benzamide 

NAM hR1: 6.6; rR1: 8.7; R5: 5.2  8 

FPTQ 6-(1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-

triazol-4-yl)quinoline  

NAM hR1: 7.9  9 

FTIDC 4-[1-(2-fluoropyridin-3-yl)-5-methyltriazol-4-yl]-

N-methyl-N-propan-2-yl-3,6-dihydro-2H-

pyridine-1-carboxamide 

NAM 

inverse 

agonist 

hR1: 8.2-8; mR1: 8.5; hR5: 

5.2; rR5: 5 

 10 
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JNJ16259685 3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl-(4-

methoxycyclohexyl)methanone 

 

NAM 

inverse 

agonist 

hR1: 7.7-8.9; rR1: 8.3; hR5: 

5.8-4.5 

antipsychotic-like, anti-abuse/addiction, 

anxiolytic, cognitive impairment, no 

tolerance with repeat dosing, protective 

in retinal neurodegeneration 

11 

LY456066 2-[[4-(2,3-dihydro-1H-inden-2-ylamino)-5,6,7,8-

tetrahydroquinazolin-2-yl]sulfanyl]ethanol 

NAM hR1: 7.7; hR5: <5  12 

LY456236 6-methoxy-N-(4-methoxyphenyl)quinazolin-4-

amine hydrochloride 

NAM rR1: 5.9; hR1: 6.9-5.5 Analgesic, anti-convulsant 13 

R214127, 

[3H]R214127 

1-(3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-

2-phenylethanone 

NAM rR1:8.9-8.6; hR1: 7.5   14 

RO 67-7476 2-(4-fluorophenyl)-1-(4-

methylphenyl)sulfonylpyrrolidine 

PAM rR1: 6.8-6.7; hR1: <5  15 

RO 01-6128 ethyl N-[2,2-di(phenyl)acetyl]carbamate PAM rR1: 6.7-6.6; hR1: <5  15 
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VU0483605 

 

3-chloro-N-[3-chloro-4-(4-chloro-1,3-dihydro-

1,3-dioxo-2H-isoindol-2-yl)phenyl]-2-

pyridinecarboxamide 

PAM hR1: 6.4; rR1: 6.0; hR4: <5; 

rR5(NAL): 6.5 

 16 

YM298198 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[ 

3,2-a]benzimidazole-2-carboxamide 

NAM hR1: 6.9; rR1: 7.7; hR5: <5.2 antipsychotic-like; analgesic, no motor 

impairments 

17 

a MoA: Mechanism of Action 

b Where affinity estimates were unavailable pIC50 (NAMs) or pEC50 (PAMs) values are reported indicated by italics. 

1 (El-Kouhen et al., 2006; More et al., 2007; Zheng et al., 2005; Zhu et al., 2008) 

2 (Carroll et al., 2001; Cho et al., 2014a; De Vry et al., 2001; Lavreysen et al., 2003; Schroder et al., 2008) 

3 (Hikichi et al., 2010a; Satow et al., 2009; Suzuki et al., 2007a; Suzuki et al., 2010) 

4 (Annoura et al., 1996; Ansah et al., 2009; Bhave et al., 2001; Faden et al., 2001; Fukunaga et al., 2007; Gelb et al., 2015a; Haas et al., 2007; Hellyer et al., 2018; 

Hermans et al., 1998; Kim et al., 2007; Kohara et al., 2005; Kumar et al., 2010; Lavreysen et al., 2003; Litschig et al., 1999; Marino et al., 2003b; Smith et al., 

2004; Song et al., 2012) 

5 (Cho et al., 2014a; Ito et al., 2009) 

6 (Micheli et al., 2003) 

7 (Malherbe et al., 2003) 
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8 (Wu et al., 2014; Yamasaki et al., 2012) (Cho et al., 2014a) 

9 (Fujinaga et al., 2011; Suzuki et al., 2009) 

10 (Fukuda et al., 2009; Satow et al., 2009; Suzuki et al., 2007a) 

11 (Achat-Mendes et al., 2012; Cho et al., 2014a; Fukuda et al., 2009; Fukunaga et al., 2007; Hikichi et al., 2010b; Lavreysen et al., 2004; Scandroglio et al., 

2010; Steckler et al., 2005a; Steckler et al., 2005b); Liberatore et al., 2017)  

12 (Fukuda et al., 2009; Suzuki et al., 2009) 

13 (Barton et al., 2003; Cho et al., 2014a; Shannon et al., 2005; Varty et al., 2005) 

14 (Chen et al., 2008; Lavreysen et al., 2003; Sheffler and Conn, 2008; Suzuki et al., 2009) 

15 (Knoflach et al., 2001; Sheffler and Conn, 2008) 

16 (Cho et al., 2014b; Hellyer et al., 2018) 

17 (Fukuda et al., 2009; Hikichi et al., 2010b; Kohara et al., 2005; Scandroglio et al., 2010; Suzuki et al., 2009) 
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Table 3: Pharmacology of commercially available mGlu5 allosteric ligands. 

For a complete list refer to guidetopharmacology.org 

compound 
IUPAC name MoA a Selectivity b 

(pKB  or pE/IC50) 

In vivo activity (clinical data) Ref 

ADX47273 (S)-(4-fluorophenyl)-(3-[3-(4-fluoro-phenyl)-

[1,2,4]-oxadiazol-5-yl]piperidin-1-yl)methanone 

PAM rR5: 5.5-5.2; 

hR5: 7.1 

Cognition enhancement, antipsychotic-like 
1 

CDPPB 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-

yl)benzamide 

PAM rR5: 7.4-5.9; 

hR5: 7.1 

antipsychotic-like, neuroprotective in AD and 

HD models, cognition enhancement, promote 

addiction recovery, tolerance development 

2 

CPPHA 
N-[4-chloro-2-

(phthalimidomethyl)phenyl]salicylamide 

 

PAM rR1: 5.5; rR5: 

6.9-5.5; hR5: 6.5-

6.3; NAM at hR4: 

4.9; and rR8: 5.1 

Not suitable for in vivo use 
3 
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CTEP 2-chloro-4-((2,5-dimethyl-1-(4-

(trifluoromethoxy)phenyl)-1H-imidazol-4-

yl)ethynyl)pyridine  

 

NAM 

inverse 

agonist 

hR5: 7.8; rR5: 

8.0; mR5: 7.9; 

A3AR: 5.6; L-

type Ca channel: 

5.6 

HD, chronic stress, AD, deficits in FMR1-/-; 

anxiolytic 
4 

DFB 
3,3'-difluorobenzaldazine 

 

PAM hR5: 5.6; rR5: 

5.5-5.3 

Cognition enhancement 
5 

Dipraglurant 

(ADX48621) 

6-fluoro-2-[4-(2-pyridinyl)-3-butyn-1-

yl]imidazo[1,2-a]pyridine 

NAM R5: 7.5 Anti-dyskinesia; PD-LID 
6 

Fenobam 

[3H]fenobam 

[N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-

oxo-1H-imidazole-2-yl)urea] 

 

NAM 

inverse 

agonist 

hR5: 7.4-7.3; 

rR5: 7.5-7.2; 

A3AR; MAO-B 

Analgesia, anti-abuse/addiction (cocaine, 

methamphetamine) but appetite/sucrose effects, 

anxiolytic; ASD behaviors (FMR1-/-); cognitive 

deficits in WT mice; psychoactive/stimulant 

7 

LSN2463359 
N-(1-methylethyl)-5-(pyridin-4-ylethynyl)pyridine-

2-carboxamide 

PAM rR5: 6.4; hR5: 

7.5 

antipsychotic-like, wake- promoting, cognition 

enhancement 
8 
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Mavoglurant 

(AFQ056) 

methyl (3aR,4S,7aR)-4-hydroxy-4-[2-(3-

methylphenyl)ethynyl]-3,3a,5,6,7,7a-hexahydro-

2H-indole-1-carboxylate 

NAM hR5: 8.3-7.6; 

rR5: 7.2 

ASD behaviors (FMR1-/-), sleep-wake 

modulation, GERD, PD-LID, chorea in HD 

(Reilmann) 

9 

5-MPEP 
5-methyl-2-(Phenylethynyl)Pyridine NAL rR5: 6.7-6.0 Not suitable for in vivo use 10 

M-5MPEP 
2-[2-(3-methoxyphenyl)ethynyl]-5-methylpyridine 

 

NAM rR5: 7.0-6.2  Anti-addiction/abuse (cocaine), anxiolytic, anti-

depressive, no psychotomimetic-like effects 

11 

MPEP/ 

[3H]MPEP 

2-methyl-6-(phenylethynyl)-pyridine 

 

NAM 

inverse 

agonist 

hR5: 8.8-8.2; 

rR5: 8.8-8.0  

ASD behaviors (VPA, BTBR, ENU2 mouse 

models); cognitive impairment; 

psychostimulant, analgesia, enhances alcohol 

sedation/hypnosis; anti-parkinsonian; anti-

addiction (alcohol, cocaine), reverse morphine 

tolerance, PD-LID, anti-epileptic (as an 

adjunct), sleep modulation 

12 
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MTEP 3-((2-methyl-4-thiazolyl)ethynyl)pyridine 

 

NAM 

inverse 

agonist 

hR5: 8.3-7.9; 

rR5: 8.3-7.6 

Anti-OCD (Sapap3-/-), anti-parkinsonian and 

neuroprotective; psychostimulant; anti-

addiction (methamphetamine, alcohol, cocaine) 

13 

Raseglurant 

(ADX10059) 

2-[(3-fluorophenyl)ethynyl]-4,6-dimethyl-3-

pyridinamine 

NAM R5: ~8.0 GERD, migraine 14 

VU29 
N-(1,3-diphenyl-1H-pyrazolo-5-yl)-4-

nitrobenzamide 

PAM rR5: 7.6-6.2 Cognition enhancement 15 

VU0357121 
4-butoxy-N-(2,4-difluorophenyl)benzamide PAM rR5: 5.7 Not suitable for in vivo dosing 16 

VU0360172 
N-cyclobutyl-6-[2-(3-fluorophenyl)ethynyl]-3-

pyridinecarboxamide hydrochloride 

PAM rR5: 7.0-6.6 Anti-epileptic; neuroprotective; antipsychotic-

like 

17 

VU0409551 

(JNJ-

46778212) 

[6,7-dihydro-2-(phenoxymethyl)oxazolo[5,4-

c]pyridin-5(4H)-yl](fluorophenyl)methanone 

PAM hR5: 6.6-5.4; 

rR5: 7.1; MAO-

B: 5.2  

Cognition in HD context; reverse deficits in 

serine racemase -/-; antipsychotic-like; 

cognition enhancement 

18 
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VU0409106 
3-fluoro-N-(4-methyl-2-thiazolyl)-5-(5-

pyrimidinyloxy)benzamide 

NAM 

inverse 

agonist 

R5: 7.6-6.9 anxiolytic 19 

a MoA: Mechanism of Action 

b Where affinity estimates were unavailable pIC50 (NAMs) or pEC50 (PAMs) values are reported indicated by italics. 

1 (Ahnaou et al., 2015; Bradley et al., 2011; Clifton et al., 2013; Gilmour et al., 2013; Liu et al., 2008; Marszalek-Grabska et al., 2018; Xu et al., 2004) 

2 (Bellozi et al., 2019; Bradley et al., 2011; Chen et al., 2007; Cleva et al., 2011; de Paulis et al., 2006; Doria et al., 2015; Gass et al., 2017; Gilmour et al., 2013; 

Gregory et al., 2012; Horio et al., 2013; Kinney et al., 2005; Kufahl et al., 2012; Lindsley et al., 2004; Parmentier-Batteur et al., 2012; Perry et al., 2016) 

3 (Bradley et al., 2011; Chen et al., 2008; Gregory et al., 2012; Noetzel et al., 2013; O'Brien et al., 2004) 

4 (Abd-Elrahman et al., 2017; Hamilton et al., 2016; Lindemann et al., 2011; Michalon et al., 2014; Michalon et al., 2012; Peterlik et al., 2017; Wagner et al., 

2015) 

5 (Balschun et al., 2006; Bradley et al., 2011; O'Brien et al., 2003; O'Brien et al., 2004) 

6 (Bezard et al., 2014; Chae et al., 2013; Dore et al., 2014; Tison et al., 2016) 

7 (Dore et al., 2014; Jacob et al., 2009; Keck et al., 2013; Lax et al., 2014; Montana et al., 2009; Patel et al., 1982; Pecknold et al., 1982; Porter et al., 2005; 

Varnas et al., 2020; Vinueza Veloz et al., 2012; Watterson et al., 2013) 

8 (Gastambide et al., 2012; Gastambide et al., 2013; Gilmour et al., 2013) 
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9 (de Esch et al., 2015; Dore et al., 2014; Gantois et al., 2013; Harvey et al., 2013; Kubas et al., 2013; Kumar et al., 2016; Reilmann et al., 2015; Rouzade-

Dominguez et al., 2017; Stocchi et al., 2013; Vranesic et al., 2014; Westmark et al., 2018) 

10 (Bradley et al., 2011; Hammond et al., 2010; Rodriguez et al., 2005) 

11 (Bradley et al., 2011; Gould et al., 2015; Gregory et al., 2012; Rodriguez et al., 2005) 

12 (Ahnaou et al., 2015; Ansah et al., 2009; Besheer et al., 2010; Bhave et al., 2001; Bradley et al., 2011; Dore et al., 2014; Gandhi et al., 2014; Gasparini et al., 

1999b; Gregory et al., 2012; Hodge et al., 2006; Huang et al., 2018; Kinney et al., 2003; Lee et al., 2016; Li et al., 2018; Mehta et al., 2011; Nardecchia et al., 

2018; Ossowska et al., 2007; Pietraszek et al., 2004; Platt et al., 2008; Porter et al., 2005; Schroeder et al., 2005; Sharko and Hodge, 2008; Silverman et al., 2010; 

Smith et al., 2004; Steckler et al., 2005b; Swedberg et al., 2014; Zolkowska et al., 2016) 

13 (Ade et al., 2016; Christopher et al., 2019; Gass and Olive, 2009; Gass et al., 2009; Gould et al., 2015; Ossowska et al., 2007; Porter et al., 2005; Swedberg et 

al., 2014); Hsieh et al., 2012)  

14 (Font et al., 2017; Keywood et al., 2009; Zerbib et al., 2011; Zerbib et al., 2010) 

15 (Chen et al., 2007; Gregory et al., 2012; Marszalek-Grabska et al., 2018) 

16 (Hammond et al., 2010) 

17 (D'Amore et al., 2016; D'Amore et al., 2014; D'Amore et al., 2013; D'Amore et al., 2015; Gregory et al., 2012; Hanak et al., 2019; Loane et al., 2014; Rodriguez 

et al., 2010; Sengmany et al., 2017; Zhang et al., 2015) 

18 (Balu et al., 2016; Conde-Ceide et al., 2015; Doria et al., 2018; Rook et al., 2015b) 
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19 (Felts et al., 2013; Rook et al., 2015a) 

 

  



189 

 

Table 4: Pharmacology of commercially available group II mGlu allosteric ligands.  

For a complete list refer to guidetopharmacology.org 

compound 
IUPAC name MoA a Selectivity b  

(pKB  or pE/IC50) 

In vivo activity Ref 

AZD8529 
7-methyl-5-[3-(piperazin-1-ylmethyl)-1,2,4-oxadiazol-5-

yl]-2-[[4-(trifluoromethoxy)phenyl]methyl]-3H-isoindol-

1-one 

R2 PAM hR2: 6.4 Addiction (alcohol, nicotine, 

methamphetamine) 
1 

BINA 
4-[3-[(2-cyclopentyl-6,7-dimethyl-1-oxo-2,3-

dihydroinden-5-yl)oxymethyl]phenyl]benzoic acid 

R2 

PAM-

agonist 

hR2: 8.4-6.2; rR2: 

7; rR5(NAL): 4.7 

Anxiolytic, anti-psychotic-like, sleep-

wake modulation, addiction (cocaine), 

cognition, Sz negative symptoms, 

mania 

2 

CBiPES 
N-[4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-

ethanesulfonamide hydrochloride) 

R2 PAM hR2: 7.0 anti-psychotic-like, locomotor effects, 

anti-panic 
3 
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JNJ-46281222/ 

[3H] 

3-(cyclopropylmethyl)-7-[(4-phenylpiperidin-1-

yl)methyl]-8-(trifluoromethyl)-[1,2,4]triazolo[4,3-

a]pyridine 

R2 PAM hR2: 8.8-8.3  no reported in vivo activity 
4 

LY2389575 
(3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl) 

pyrrolidin-3-amine methanesulfonate hydrate 

R3 

NAM 

hR3: 6.7-5.4; hR2: 

4.8 

no reported in vivo activity 
5 

JNJ-42153605 

 

3-cyclopropylmethyl-7-(4-phenylpiperidin-1-yl)-8-

trifluoromethyl[1,2,4]triazolo[4,3-a]pyridine 

R2 

PAM-

ago 

hR2: 7.8-6.6 

 

Sleep/wake modulation, anti-

psychotic-like, locomotor effects, anti-

convulsant 

6 

JNJ-40411813 

(ADX71149) 

 

1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-2(1H)-

pyridinone 

R2 PAM hR2: 7.2-6.8; 5HT2A 

(antag): 6 

*metabolite 5HT2A 

(antag): 7 

Anti-psychotic-like, locomotor effects, 

anti-convulsant, sleep modulation 
7 

LY487379 (4-

MPPTS) 

2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-

pyridinylmethyl)-ethanesulfonamide 

R2 PAM hR2: 7-6.3 Anxiolytic, anti-psychotic-like, 

cognition 
8 
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ML289 

(VU0463597) 

[(3R)-3-(hydroxymethyl)-1-pipridinyl][4-[2-(4-

methoxyphenyl)ethynyl]phenyl]methanone 

R3 

NAM 

hR3: 6.2-5.8 Centrally active, no reported in vivo 

efficacy 
9 

ML337 
[2-fluoro-4-[2-(4-methoxyphenyl)ethynyl]phenyl][(3R)-3-

hydroxy-1-piperidinyl]methanone 
R3 

NAM 

hR3: 7.1; 

rR5(NAL): 5.7 

no reported in vivo activity 10 

MNI-137 
4-(8-bromo-5-oxo-3,4,5,6-tetrahydro-1,6-benzodiazocin-

2-yl)pyridine-2-carbonitrile 

R2/3 

NAM 

rR2: 7.5-6.2; hR2: 

8.1-7.1; rR3: 7.7 

no reported in vivo activity 11 

Ro64-5229 
(Z)-1-[2-cycloheptyloxy-2-(2,6-dichlorophenyl)ethenyl]-

1H-1,2,4-triazole 

R2 

NAM 

inverse 

agonist 

rR2: 7.0 no reported in vivo activity 12 

TASP0433864 
(2S)-2-[[4-(1,1-dimethylethyl)phenoxy]methyl]-2,3-

dihydro-5-methylimidazo[2,1-b]oxazole-6-carboxamide 

 

R2 PAM rR2: 7.1-6.7; hR2: 

6.6; hR3: <5; 

5HT2B: 5.4; MAO-

B: 6.2 

Anti-psychotic-like 13 

a MoA: Mechanism of Action 
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b Where affinity estimates were unavailable pIC50 (NAMs) or pEC50 (PAMs) values are reported indicated by italics. 

1 (Augier et al., 2016; Caprioli et al., 2015; Doornbos et al., 2017; Justinova et al., 2015; Li et al., 2016) 

2 (Ahnaou et al., 2009; Benneyworth et al., 2007; Doornbos et al., 2016; Doornbos et al., 2017; Farinha et al., 2015; Galici et al., 2006; Hackler et al., 2010; 

Hellyer et al., 2018; Hikichi et al., 2013; Jin et al., 2010; Kawaura et al., 2016; O'Brien et al., 2018; Panaccione et al., 2017; Perez-Benito et al., 2017) 

3 (Benvenga et al., 2018; Fell et al., 2010; Johnson et al., 2005; Johnson et al., 2013) 

4 (Doornbos et al., 2016; Farinha et al., 2015; Perez-Benito et al., 2017) 

5 (Caraci et al., 2011; Sheffler et al., 2012) 

6 (Ahnaou et al., 2015; Cid et al., 2012; Megens et al., 2014; Metcalf et al., 2017) 

7 (Ahnaou et al., 2016a; Cid et al., 2014; Lavreysen et al., 2015; Metcalf et al., 2017) 

8 (Farinha et al., 2015; Galici et al., 2005; Harich et al., 2007; Johnson et al., 2003; Lundstrom et al., 2016; Nikiforuk et al., 2010; Wieronska et al., 2012b) 

9 (Sheffler et al., 2012) 

10 (Hellyer et al., 2018; Wenthur et al., 2014) 

11 (Hemstapat et al., 2007; O'Brien et al., 2018; Yin et al., 2014) 

12 (Gutzeit et al., 2019; Kolczewski et al., 1999) 

13 (Hiyoshi et al., 2014) 
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Table 5: Pharmacology of commercially available group III mGlu allosteric ligands.  

For a complete list refer to guidetopharmacology.org 

compound 
IUPAC name MoA a Selectivity b 

(pKB  or pE/IC50) 

In vivo activity Ref 

ADX71743 

 

6-(2,4-dimethylphenyl)-2-ethyl-4,5,6,7-

tetrahydro-1,3-benzoxazol-4-one 

R7 NAM 

inverse 

agonist 

hR7: 7.2-6.4; rR7: 7.1 anti-psychotic-like; anxiolytic, pro-

cognitive; analgesic 
1 

ADX88178 
5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-

pyrazol-4-yl)thiazol-2-amine 

 

R4 PAM hR4: 7.4; rR4: 8.0-7.9; R8 

(PAM): 5.7; hA3AR: 5.7 

Anti-inflammatory, anxiolytic; anti-

depressant; anti-psychotic-like; 

anti-parkinsonian 

2 

AMN-082 
N,N'-dibenzhydrylethane-1,2-diamine 

dihydrochloride 

 

R7 

agonist 

hR7: 7.2-7.1; NET: 5.9; 

*metabolite SERT/NET/DAT: 

6.5-5.5 

Antidepressant, motor effects, anti-

addiction (alcohol, cocaine, opiates) 
3  

AZ12216052 

 

2-[[(4-bromophenyl)methyl]sulfanyl]-N-[4-

(butan-2-yl)phenyl]acetamide 

R8 PAM hR8: 6; rR8:5.4; rR5 (NAL 

agonist): 5.4 

Anxiolytic, analgesia in neuropathic 

pain 
4 
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Lu AF21934 
(1S,2R)-2-[(aminooxy)methyl]-N-(3,4-

dichlorophenyl)cyclohexane-1-carboxamide 

R4 PAM rR4: 5.9 Anti-psychotic-like 
5 

MMPIP 
6-(4-methoxyphenyl)-5-methyl-3-(4-pyridinyl)-

isoxazolo[4,5-c]pyridin-4(5H)-one 

 

R7 NAM 

inverse 

agonist 

rR7: 7.6-6.7; hR7: 6.5-6.2 Analgesia; symptomatic relief in 

neuropathic pain model (anti-

depressive, anxiolytic, cognition); 

impaired cognition & social 

interaction 

6 

PHCCC 
N-phenyl-7-

(hydroxyimino)cyclopropa[b]chromen-1a-

carboxamide 

 

R4 PAM  NAM at rR1: 5.5; hR1: 6.5; hR2: 

4.8; hR5: 3.9; rR5: 5.6; hR8: 4.8; 

PAM at rR4: 5.5; hR4: 5.6-5.4; 

rR6 (agonist): <5 

Anxiolytic; antidepressant; 

medulloblastoma; analgesia 

(neuropathic pain); seizurogenic; 

neuroprotective (ischemia, PD) 

7 

TCN238 
(E)-4-(2-phenylethenyl)-2-pyrimidinamine R4 PAM-

agonist  

hR4: 6-5.8; rR4: 6; hR5: <5; rR5: 

<5 

Anti-parkinsonian; impulsivity 
8 
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VU0155041 
(1R,2S)-2-[(3,5-

dichlorophenyl)carbamoyl]cyclohexane-1-

carboxylic acid 

R4 PAM-

agonist 

rR4: 5.3; hR4: 6.1 
Anti-parkinsonian; neuropathic 

pain; anxiolytic; ASD symptoms 

(OPRM1-/-); bladder cancer 

9 

VU0361737, 

ML128 

N-(4-chloro-3-methoxyphenyl)-2-

pyridinecarboxamide 

R4 PAM rR4: 7; hR4: 6.6 Anti-parkinsonian 10 

VU0364439 
N-[3-chloro-4-[[(2-chlorophenyl)amino] 

sulfonyl]phenyl]-2-pyridinecarboxamide 

R4 PAM hR4: 7.7 Not suitable for in vivo dosing 11 

VU0364770 
N-(3-chlorophenyl)picolinamide 

 

R4 PAM hR4: 6; rR4: 6.5; MAO-A:  5.1; 

MAO-B: 6.1; rR5(NAM): 4.7; 

hR6(PAM): 5.2 

Anti-parkinsonian 12 

VU0418506 
N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-

b]pyridin-3-amine 

R4 PAM rR4: 7.3; hR4: 7.3-7.2 Anti-parkinsonian  13 
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VU0422288 

(ML396) 

N-[3-chloro-4-[(5-chloro-2-

pyridinyl)oxy]phenyl]-2-pyridinecarboxamide 

Pan III 

PAM 

R4: 7.1-6.5; R7: 7.0-6.3; R8: 6.8-

6.2 

Rescues deficits in Rett models 14 

VU6005649 
3-(2,3-difluoro-4-methoxyphenyl)-2,5-dimethyl-

7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine 

R7 PAM-

agonist 

R7: 6.2; R8(PAM): 5.6; NK1 

(antag): 6.2 

Pro-cognitive 15 

XAP044 
7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-

one 

R7 NAM hR7a: 5.6; hR7b: 5.5; R5: <4.7; 

R8: <4.5 
symptomatic relief in neuropathic 

pain model (anti-depressive, 

anxiolytic) 

16 

a MoA: Mechanism of Action 

b Where affinity estimates were unavailable pIC50 (NAMs) or pEC50 (PAMs) values are reported indicated by italics. 

1 (Cieslik et al., 2018; Kalinichev et al., 2013b; Moloney et al., 2015) 

2 (Kalinichev et al., 2014; Le Poul et al., 2012; Ponnazhagan et al., 2016; Volpi et al., 2016; Yin et al., 2012) 

3 (Li et al., 2009; Mitsukawa et al., 2005; Palucha et al., 2007; Salling et al., 2008) 

(Bahi et al., 2012; Jenda et al., 2015; Li et al., 2010; O'Connor and Cryan, 2013; Palucha-Poniewiera and Pilc, 2013; Podkowa et al., 2018; Sukoff Rizzo et al., 

2011) 

4 (Duvoisin et al., 2010; Duvoisin et al., 2011; Hellyer et al., 2018; Rossi et al., 2014) 
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5 (Slawinska et al., 2013; Yin et al., 2014) 

6 (Cieslik et al., 2018; Hikichi et al., 2010a; Palazzo et al., 2015; Suzuki et al., 2007a) 

7 (Annoura et al., 1996; Hellyer et al., 2018; Iacovelli et al., 2006; Klak et al., 2007; Maj et al., 2003; Marino et al., 2003b; Stachowicz et al., 2006; Stachowicz 

et al., 2004; Yin et al., 2014; Yin et al., 2012); (Beqollari and Kammermeier, 2008; Goudet et al., 2008; Moyanova et al., 2011; Ngomba et al., 2008; Szczurowska 

and Mares, 2012); (Poutiainen et al., 2015) 

8 (East and Gerlach, 2010; Isherwood et al., 2017) 

9 (Becker et al., 2014; Betts et al., 2012; Duvoisin et al., 2011; Niswender et al., 2008b; Wang et al., 2011; Yin et al., 2014; Yin et al., 2012); (Zhang et al., 2019) 

10 (Engers et al., 2009) 

11 (Engers et al., 2010) 

12 (Iderberg et al., 2015; Jones et al., 2012) 

13 (Engers et al., 2016; Niswender et al., 2016) 

14 (Gogliotti et al., 2017; Jalan-Sakrikar et al., 2014) 
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Figure legends 

Figure 1. Dimeric structure of full-length mGlu receptors and the relationships between 

different binding pockets.  

a) Metabotropic glutamate receptors are constitutive dimers mediated by extensive interactions 

between the venus flytrap domains (VFT) including an interprotomer disulfide bond at the top 

of the VFTs. In this surface representation of full-length mGlu5 structure (PDB ID:6N51 (Koehl 

et al., 2019)), the two protomers are colored blue and purple, with the three major domains in 

different shades. The orthosteric agonist (A), glutamate, binds in the cleft between the two lobes 

of the VFT. When the VFT is bound to agonist, the cysteine-rich domain (CRD) and 7 

transmembrane spanning domain (7TM) become closer in proximity. The majority of small 

molecule allosteric modulators (B) are thought to interact with the 7TM. b) The simultaneous 

binding of an allosteric modulator and orthosteric agonist to the receptor can alter the affinity 

of the receptor for each ligand in a reciprocal fashion. The simplest model to describe this 

interaction and quantify the cooperativity (α) between these sites is the allosteric ternary 

complex model (ATCM). c) Allosteric ligands can modulate receptor activity in response to 

orthosteric agonist (β) or act as agonists (positive or inverse). To account for functional effects, 

the most commonly applied framework is the operational model of allosterism (Gregory et al., 

2012; Leach et al., 2007), where the ATCM has been incorporated into an operational model of 

agonism (Black and Leff, 1983). 

 

Figure 2. Synaptic and non-neuronal localization of mGlu receptor subtypes. 

General overview of metabotropic glutamate receptor neuronal and glial cell localization within 

glutamatergic and GABAergic synapses. Relationships with other key receptors and 
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transporters that recognize glutamate and γ-aminobutyric acid (GABA) as well as ion channels 

involved in neurotransmission are also shown. Glu transporters represent multiple types, 

namely excitatory amino acid transporters: (EAAT) EAAT1 (also referred to as glutamate 

aspartate transporter or GLAST) and EAAT2 (also known as glutamate transporter 1, GLT-1 

or solute carrier family 1 member 2, SLC1A2). The following abbreviations are used: 

ionotropic glutamate receptors (iGluRs), G protein-gated inward rectifying K+ channel (GIRK), 

two-pore domain K+ channel (K2P), Voltage-gated Ca2+ channel (CaV). 

 

Figure 3. Signal transduction and regulation of group I mGlu receptors.  

Overview of group I mGlu receptor scaffolding partners, transducers, downstream effectors and 

regulatory proteins refer to main text for associated primary references. Blue bolded text 

indicates physiological consequences linked to specific intracellular responses. The following 

abbreviations are used: phospholipase C (PLC); phospholipase D (PLD); diacylglycerol 

(DAG); inositol 1,4,5-trisphosphate (IP3); protein kinase C (PKC); extracellular-signal 

regulated kinases 1 and 2 (ERK1/2); diacylglycerol lipase (DGL); 2-arachidonoylglycerol (2-

AG); phosphoinositide-3-kinase (PI3K); adenylate cyclase (AC); protein phosphatase 2B 

(PP2B); protein phosphatase 2A/calcineurin (PP2A/CaN); mammalian target of rapamycin 

(mTOR); glycogen synthase kinase (GSK); ribosomal protein S6 kinase β -1 (S6K1); 

Ca2+/calmodulin-dependent protein kinase (CaMK); mitogen-activated protein kinase kinases 

1 and 2 (MEK1/2); protein kinase A (PKA); G protein-coupled receptor kinase (GRK). 

 

Figure 4. Signal transduction and regulation of group II mGlu receptors.  

Overview of group II mGlu receptor scaffolding partners, transducers, downstream effectors 

and regulatory proteins refer to main text for associated primary references. Blue bolded text 
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indicates physiological consequences linked to specific intracellular responses. The following 

abbreviations are used: guanylate cyclase (GC); phosphoinositide-3-kinase (PI3K); insulin 

growth factor-1 receptor (IGF-1R); focal adhesion kinase (FAK); extracellular-signal regulated 

kinases 1 and 2 (ERK1/2); protein kinase C (PKC); glycogen synthase kinase (GSK); protein 

kinase A (PKA); G protein-coupled receptor kinase (GRK); protein interacting with C kinase 

(PICK1); Na+/H+ exchange regulatory cofactors 1 and 2 (NHERF1/2); Ran-binding protein 

microtubule-organizing center (RanBPM); protein phosphatase 2C (PP2C); mammalian target 

of rapamycin (mTOR). 

 

Figure 5. Signal transduction and regulation of group III mGlu receptors. 

Overview of group III mGlu receptor scaffolding partners, transducers, downstream effectors 

and regulatory proteins refer to main text for associated primary references. Blue bolded text 

indicates physiological consequences linked to specific intracellular responses. The following 

abbreviations are used: adenylyl cyclase (AC); RAC-alpha serine/threonine-protein kinase 

(Akt); diacylglycerol (DAG); phosphoinositide-3-kinase (PI3K); extracellular-signal regulated 

kinases 1 and 2 (ERK1/2); protein kinase C (PKC); protein kinase A (PKA); protein interacting 

with C kinase (PICK1); p38 MAP kinase (p38); c-Jun N-terminal kinases (JNK). 

 

Figure 6. Structures of select orthosteric ligands of mGlu receptors 

Representative orthosteric ligands for mGlu receptors. Antagonists are labeled with black text 

and agonists are in blue. Detailed in vitro and in vivo pharmacological profiles are listed in 

Table 1. 



201 

 

Figure 7. Structures of select allosteric modulators of group I mGlu receptors 

Representative allosteric modulators for mGlu1 (A) and mGlu5 (B) demonstrating the structural 

diversity for compounds that recognize the common allosteric site within the 7TM. In both 

panels NAMs are labeled with black text and PAMs are in blue. Detailed in vitro and in vivo 

pharmacological profiles for each compound including subtype selectivity are listed in Tables 

2 and 3. 

 

Figure 8. Structures of select allosteric modulators of group II and III mGlu receptors 

Structurally diverse chemotypes allosterically modulate group II (A) and group III (B) mGlu 

receptors. NAMs are labeled with black text and PAMs are in blue. Detailed in vitro and in vivo 

pharmacological profiles for each compound including subtype selectivity are listed in Tables 

4 and 5. 

Figure 9. Optogenetic pharmacology of mGlu receptors 

Optogenetic pharmacology consist in covalently attaching a photoswitchable tethered ligand to 

a genetically modified protein, enabling the photoactivation or photoantagonism of the receptor. 

Several strategies have been applied to mGlu receptors: a) PTL b) PORTL c) maPORTL d) 

Antibody-based photocontrol. 

Figure 10. Photopharmacology of mGlu receptors 

Photopharmacology is based on the use of small diffusible, drug-like, photo-regulated, enabling 

the photoactivation or photoantagonism of the receptor. a, b) Photocaged ligands (also named 

photoactivable ligands) possess a protecting group that can be removed following illumination, 

enabling the onset of drug activity on the receptor. Example: An inactive photo-caged derivative 

of the mGlu5 NAM raseglurant. Uncaging is provoked by violet illumination, allowing 

raseglurant to effectively block mGlu5 activity in cells or in living mice. c, d) Photoswitchable 
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ligands are rapidly and reversibly photoisomerizing at specific wavelenghts, modifying their 

overall structure and thus their ability to interact with their target. Azobenzene is the most 

common photoisomerizable core used to design photoswitchable ligands. In the dark or under 

white light, the azobenzene moiety is in a trans configuration converting to a cis configuration 

upon illumination with an appropriate wavelength (usually in the ultraviolet range). Example: 

Optogluram, a photoswitchable mGlu4 PAM. 
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Structure of various allosteric modulators of Group II and III mGluRs
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