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SUMMARY

Ocean Bottom Node (OBN) acquisition is becoming popular in the
exploration of challenging marine environments. A major advantage
over conventional streamer acquisition is its ability of capturing con-
verted wave by recording both P- and S-wave on the solid seabed.
Thus, to study and process OBN data, modeling of seismic wave
propagation in fluid-solid coupled media needs to be taken into ac-
count. In this study, we apply a partitioned approach to fluid-solid
coupled media. Fluid and solid domains are divided explicitly and
handled with the acoustic-wave and (visco)elastic-wave equation, re-
spectively. The mutual interaction between these two wave-equations
is modeled by boundary conditions at the fluid-solid interface. This
leads to a coupled acoustic-(visco)elastic wave-equation system. Ac-
cording to the wavefield variables used in the acoustic-wave equation,
we compare 4 acoustic-(visco)elastic coupled formulations in terms
of pressure, velocity potential, displacement potential and displace-
ment, respectively. The spectral-element method (SEM) is used as a
numerical modeling tool to reveal their pros and cons from the as-
pects of complexity, accuracy and computational efficiency. Finally,
we present various fluid-solid coupled modeling examples including
isotropic elastic, anisotropic elastic (VTI and TTI) and anelastic me-
dia on the Cartesian-based hexahedral mesh. They are all implemented
with the displacement potential formulation which achieves the best
trade-off compared with the other three.

INTRODUCTION

As the marine seismic exploration moves to complex deep-water geo-
logic environments, Ocean Bottom Node (OBN) acquisition begins to
be used as an effective technology for imaging quality enhancement
and risk reduction. Compared with the conventional streamer acquisi-
tion, it has the advantages of decoupling the source from the receivers,
providing wide-azimuth illumination and capturing converted wave by
recording both P- and S-wave on the solid seabed (Maver;, 2011).

For the purpose of studying and processing OBN data, an accurate
modeling of seismic wave propagation would require to be imple-
mented in fluid-solid coupled media to produce elastic effects like P
to S conversions. Typically, there are two approaches to model the
seismic wave propagation in fluid-solid coupled media: monolithic
and partitioned approaches (Hou et al.l 2012} |De Basabe and Sen,
2015). The monolithic approach uses the same governing equation
in both fluid and solid domains, and the fluid-solid interface is tack-
led implicitly. However, this approach is not accurate enough due to
dispersion and discretization errors near the interface (De Basabe and
Senl 2015). In addition, as pointed out by Komatitsch et al.|(2000), the
monolithic approach based on the second-order displacement formu-
lation of the elastic-wave equation yields strong artifacts in the fluid
region when using a conventional spectral-element (SEM) method for
the discretization.

To avoid those shortcomings, we consider the partitioned approach
to perform simulations in fluid-solid coupled media. The medium is
divided into solid and fluid domains. The acoustic-wave equation is
used to describe the wave propagation in the fluid domain, while the
(visco)elastic-wave equation models elastic vibrations in the solid do-
main. To account for the mutual interaction between the two domains,
fluid-solid boundary conditions are used to connect the two wave-
equations, leading to a coupled acoustic-(visco)elastic wave-equation
system. In the solid domain, the (visco)elastic-wave equation is com-
monly formulated in terms of displacement. The fluid, however, can be
modeled in terms of pressure, velocity potential, displacement poten-

tial or displacement (Everstine,|1997), yielding 4 acoustic-(visco)elastic
coupled formulations (Feng| [2000; Komatitsch et al.l 2000} |Chaljub:
and Valette| 2004; Ross et al.||2009). During the implementation, the
SEM is used for the spatial discretization for its high accuracy in rel-
atively smooth media, interface conforming and high computational
efficiency through domain-decomposition parallelization (Komatitschl
1997; Peter et al., 2011).

In the following sections, we first conduct a comparison study be-
tween the 4 acoustic-(visco)elastic coupled formulations. We show
how these coupling formulations can be expressed within the SEM
framework. Then, for simplicity, several benchmark tests in 2D are
carried out to reveal their pros and cons in terms of accuracy and com-
putational efficiency. We conclude that the best trade-off is achieved
by the displacement potential formulation. Finally, we consider a 3D
parallel implementation of this formulation and present various mod-
eling examples including isotropic elastic, anisotropic elastic (VTT and
TTI) and anelastic media on the Cartesian-based hexahedral mesh, in
the perspective to extend its application to marine seismic imaging.

FORMULATE THE ACOUSTIC-(VISCO)ELASTIC COUPLED
PROBLEM

In the solid region, the complete form of the viscoelastic-wave equa-
tion can be written as
. 1
pil=V-G+f, G-Mne £-3 [Vuer (VuS)T] ()
where uy and f; are the displacement and force vectors, respectively,
O is the stress tensor, € is the strain tensor, py is the solid density, and
the attenuation effect is described by the relaxation rate M and time
convolution *;. For the pure elastic-wave equation, the relaxation rate
is
M=CS$ (1), )
where C is the elastic stiffness coefficient and & (r) is the Dirac delta
function.

Assuming an irrotational and inviscid fluid, its wavefield is governed

by the following conservation and dynamic equations:
pyiiy+VP =1y, P+ kV-u; =0, 3)

where uy and f; are the displacement and force vectors in the fluid
domain, respectively, P is the pressure, py is the fluid density, and k is
the bulk modulus of the fluid. By substitution and elimination, Eq. @
can be rewritten in terms of fluid pressure (P), displacement potential
(), velocity potential (¢) or displacement (uy), respectively:

. 1 1
P+xV- (7—VP) =Py, ¢—KV- (—Vgo) = // —Pydtdt,
Pr Pr
. K 1
(bf—V-V(p:/f—Pdt, prip—V (xkV-ur) =1fr. (4)
o o iy =V (kV-up) =fy
Here, Py is the pressure source related to the force vector (ff), and the

velocity potential (¢) and displacement potential (¢) are defined by

1

uy:=Ve, uy = EV(p. (5)

Their relationships with pressure (P) follow

P=—p¢,

Accordingly, the coupling conditions for the connection of the acoustic-
wave and (visco)elastic-wave equation can be written in 4 different

P=-0. 6
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(b)
Cartesian-based hexahedral mesh for fluid-solid coupled
modeling (a) and partitions on 8 cores (b). Here the blue parts indicate
the fluid domain.

Figure 1:

ways at the fluid-solid interface:
1) P —u, formulation

1
i, -ng = —VP-ny, o5 -ng = Pny, 7
Py
2) ¢ —u, formulation
1 "
us'nx:fivw'nf: O N, = —¢ny, (8)
pr
3) ¢ —u, formulation
ﬁs‘ns:_v¢‘nf7 o-s‘ns:_pfénﬂ &)
4) uy — u, formulation
Ug Ny = —Uy-ny, 0'5~ns:—K(V‘uf)nf. (10)

Note that the continuity of normal component of displacement (u - n)
is not strictly satisfied in cases 1) P —u, and 3) ¢ —ug, where only the
normal component of acceleration ii and velocity u are enforced to be
continuous, respectively. We show how this affects the SEM results in
the numerical tests.

DISCRETIZATION USING SEM

When using the SEM, we need to rewrite the (visco)elastic-wave and
acoustic-wave equations (Egs. @) and @)) in the weak form by dotting
with arbitrary test functions, and the above coupling conditions need
to be met in weak forms. Consequently, we obtain 4 semi-discretized
equation systems for representing the fluid-solid coupled modeling.
For brevity, we write these systems in matrix form and categorize them
according to their symmetry. The following is the case of the acoustic-
elastic coupled system:

1) P —uy system (non-symmetric)

(V) (@) 2) @)+ (&) E)-(7)

an

2) @ —ug system (non-symmetric)

(R ) @) ) @)V ) @)-(%)

12)

3) ¢ —ug system (symmetric)

(% ) (@) Qo) () (v %)) (2)
)

13)

4) uy —ug system (symmetric)
Mf 0 iy 4 Df 0 ur L Kf A ur) ff
0 M,/ i 0 D,/ \u AT K,/ \u )\ £
14

Here, A is the coupling matrix obtained by the integration along the
fluid-solid interfaces, and the remaining matrices correspond to con-
ventional notations in SEM, namely, M, and My are the mass matri-
ces, Dy and Dy are the matrices for implementing absorbing boundary
condition, and K; and K are the stiffness matrices. The wavefields for

Media Property rho (kg/m3) V, (m/s) Vg (m/s) Elastic
Fluid Acoustic 1000 1500 0 Parameters
E-ISO N/A
E-VTI e=0.1,6=04,y=02
Solid 2500 3400 1963 £=0.1,6=04,y=0.2
E-TTI 0 =45° ¢ =15°
E-VISCO 0, =40, 0, =30
Table 1: Physical parameters of the bilayered model for numerical
tests.

both fluid and solid domains are represented locally by the piecewise-
polynomial approximation within the reference element (€,1,§)

N N N

=22 > Puyan(€)y (M

i=0 j=0 k=0
N N N

D DD )y (Mu

i=0 j=0 k=0

N N
ETIC :Z ;@Mh

i=0 j

(©, (15)

P(e,n,¢)

(97 (16)

¢(e,n,8) =

Mz

(Mu (&), a7

Il
<)

and
N N N

e, O =>> > wijkule)
i=0 j=0 k=0
respectively, where € € [—1,1],n € [-1,1],{ € [-1,1]. 1;(g), 1;(n)
and . (§) are 1D Lagrange interpolants in the €-, n- and {-directions,
respectively.

mu(&), (18)

Note that when considering the attenuation contribution in the solid
domain, an extra term [0,—F (y,)]” needs to be added on the left
hand side of each system, where ¥,, is the memory variables satisfying
a specific first-order ordinary differential equation [2076).

NUMERICAL TESTS

As shown above, the uf — ug system uses a vector-valued wave equa-
tion in the fluid domain. Therefore, it is less efficient than the other
three using a scalar-valued equation in the fluid domain for seismic
modeling. For this reason, we focus on the three systems where a
scalar-valued equation is considered in the fluid domain. The compu-
tational mesh is a Cartesian-based hexahedral mesh (Fig. |I|a), which
combines the flexibility of interface conforming and the convenience
of partition in the domain-decomposition based parallelization (Fig.

M-

Validation of numerical solutions

For simplicity, the validation tests are carried out in 2D. SEM re-
sults are benchmarked against the 2D semi-analytical solution of a bi-
layered model [2008). The physical parameters of
this model are listed in Tablem The upper part is acoustic, while the
lower part is isotropic pure elastic. The Lagrange polynomial degree
we use is N = 5. A total number of 520 x 200 = 104000 elements
is used. An explosive pressure-source with a 10 Hz Ricker wavelet
is applied 0.5 km above the interface. A combination of sponge lay-
ers and radiative boundary condition
is used on all the edges of the model to attenuate
outgoing waves.

Figure@ shows the spectra of source-time functions for systems of
P —u;, ¢ —u; and ¢ — u,, where wavelets of ¢ and ¢ are obtained
by single and double time-integration of the pressure wavelet, respec-
tively (Eq. @). The dominant frequencies for ¢ and ¢ wavelet both
shift towards low frequency. This means an increase of low-frequency
component for both source-time functions, and Figure@) displays that
the attenuation effectiveness of absorbing boundaries for wavefield en-
ergy decreases in these two systems. However, the physical variable
of interest in the fluid domain is pressure. As Eq. (EI) shows, it can
be obtained through first- or second-order derivation of potential vari-
ables, respectively, and we observe a similar attenuation effectiveness
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Elapsed time (s) Memory (MB)

P —u, system 316.78 235.62
¢ —uy system 445.77 235.67
@ —u, system 319.77 235.62

Table 2: Comparison of elapsed-time and memory consumption for
P —u,,0 —u, and ¢ —u; systems.

for the pressure using the different systems (Fig@:). Analogously, an
attenuation comparison of wavefield energy in the solid domain is per-
formed in Figure@ to further demonstrate the absorbing consistency
of the different systems. Thus, a similar numerical accuracy for these
three coupling systems is achieved, when comparing the seismograms
recorded on the seabed with an offset of 12.6 km (Fig. Eh).

However, if a continuity check of displacement components is con-
ducted at the fluid-solid interface (Fig. Eb), we find that only the ¢ —uy
system produces the same vertical displacement component from both
fluid and solid sides. This is because the other two systems enforce
the normal component of acceleration and velocity to be continuous,
respectively. Therefore, from the aspect of accuracy, ¢ —uy system is
a better choice for fluid-solid coupled modeling.

In addition, the comparison in terms of elapsed time and memory con-
sumption in Table|Z|reveals a higher computational efficiency of P —uy
and @ —u; systems. The reason is that with non-symmetric coupling
formulations (P —u, and ¢ —uy), the acoustic- and (visco)elastic-wave
equations can be solved separately by explicit time-stepping schemes.
However, the symmetric system ¢ — u; is implicit and needs to solve

equations governing the fluid and solid domain simultaneously (Monkold,

2011). Here we use a staggered prediction/multicorrection iterative
scheme (Antonietti et al.| |2019; |[Komatitsch et al., [2000) to solve the
¢ —u, system, and it requires at least two iterations at each time step.

3D parallel implementation and load balancing

In this section, we discuss the 3D parallel implementation of fluid-
solid coupled modeling based on the domain-decomposition strategy.
We use the ¢ —u, formulation, which achieves the best trade-off in
terms of accuracy and computational efficiency following the above
2D tests. This implementation is developed in the framework of the
SEISCOPE SEM46 code (Brossier and Trinhl/2017; Trinh et al.,[2019),
which is a time-domain (visco)elastic wave-equation modeling and
full waveform inversion package. For the implementation, the fluid
free-surface boundary condition and the fluid-solid boundary condi-
tion are both taken into consideration. Figure [] shows modeling re-
sults of seismograms (FigEb) and snapshots (FigE}:) in the isotropic,
viscous-isotropic, VTT and TTI cases, respectively, using the physical
parameters listed in Tablem The source is located in the middle of
x —y plane at 1 km depth below the sea level, and the receiver line is
located on the seabed along the x-direction with a constant y-offset of
0.1km. As a validation, we choose a single trace whose x-offset is
2.8 km, and compare its 4-component OBN data with results produced
by SPECFEM3D (Peter et al.| 2011) in the isotropic case. A good
agreement can be observed in Figure .

For the parallel high performance computing (HPC) aspect of the SEM46
code, the 3D Cartesian-based hexahedral mesh of SEM46 is split into
regular cubic sub-domains using a conventional domain-decomposition
strategy. Its parallel load balancing in elastic modeling is achieved by
approaching the same number of elements (same size of sub-mesh)
for each domain in the decomposition, reaching usually a parallel ef-
ficiency close to 90-95%. When considering fluid-solid coupled mod-
eling, however, the different wave-equations involved in each part of
the mesh lead to load imbalance if the same decomposition strategy
is used. Figure [Bh shows an example of parallel efficiency for the
full acoustic modeling, the full elastic modeling and newly developed
fluid-solid coupled version of SEM46 without any load-balancing op-
timization (without LB). In such a case, the acoustic domains have less
computation to perform, leading to the waiting for elastic computation
to be finished, and the overall “time-to-solution” is driven by the elas-
tic domains. Evaluating theoretically and practically, the computation
amount for elastic and acoustic elements shows a ratio of 3 between
both. Using this ratio, we optimized the domain-decomposition strat-

* T

Wavelet for P| |
Wavelet for ¢
Wavelet for ¢
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Figure 2: Evaluation of absorbing effectiveness for artificial bound-
ary in P —u,,¢0 —u,; and @ — uy systems. (a) Spectra of source-time
function, (b) absorbing effectiveness of wavefield variables (P, ¢ and
@) used in the acoustic-wave equation, (c) absorbing effectiveness of
pressure in the fluid domain, (d) absorbing effectiveness of displace-
ment in the solid domain. NSP: number of sponge elements.

2o6] NsP=5 NSP=10{ NSP=20

NSP = 10

N
°

egy by weighting each element in the decomposition, proportionally
to the amount of expected computation. This leads to an optimized
domain decomposition with more acoustic elements in sub-domains,
allowing to improve the parallel load-balancing significantly, as shown
in Figure Eh with the “with LB” curves. In addition, our implemen-
tation considers an additional constraint for the mesh partitioning in
order to avoid the fluid-solid boundary to match a domain frontier:
considering this constraint makes possible to avoid any additional MPI
communication for the coupling problem.

For completeness, we present the efficiency comparison of fluid-solid
coupled modeling in the isotropic, viscous-isotropic, VTI and TTI
cases in Figure E} It also shows a good scalability in each case.

CONCLUSION

We have investigated 4 acoustic-(visco)elastic coupled formulations
for modeling seismic wave propagation in fluid-solid coupled media
using the spectral element method. Their corresponding semi-discretized
equation systems are established and compared. Numerical tests in
2D indicate that the ¢ —u, system has a better performance in terms
of accuracy and computational efficiency than the other three, and the
double integration of source-time function for the displacement po-
tential (¢) does not decrease the attenuation effectiveness of artificial
boundary in modeling the physical wavefields of interest. In the 3D
parallel implementation, we present various fluid-solid coupled mod-
eling examples including isotropic elastic, anisotropic elastic (VTI and
TTTI) and anelastic media on the Cartesian-based hexahedral mesh and
use a cost-dependent mesh partitioning to achieve the load balancing.
It brings an computational efficiency improvement for the domain-
decomposition based parallelization.
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Figure 3: Validation for the modeling results of 2D isotropic bilayered model. (a) Benchmark against the semi-analytical solution (Garémore2D

), (b) continuity check at the interface. Receiver is located on the seabed with an offset of 12.6 km.
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Figure 4: Modeling results of 3D bilayered models
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Figure 5: Scaling tests on two Intel-based clusters with p* elements: DAHU at Univ. Grenoble Alpes and SWAN plateform from CRAY. Panel (a)
illustrates the parallel efficiency for full acoustic, full elastic, fluid-solid coupled without and with load-balance optimization, for square 256> and
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