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Modified numerals are expressions such as more than three, less/fewer than
three, at least three, at most three, up to ten, betwen three and ten, approximately
ten, about ten, exactly ten, etc. At first sight, their semantic contribution seems
pretty easy to describe. However, this impression is deceptive. Modified numer-
als do in fact raise very serious challenges for formal semantics and pragmatics,
many of which have yet to be addressed in a fully satisfactorily way. These
challenges relate to two broad questions: first, what is the linguistically en-
coded meaning of modified numerals? Second, how can we make sense of all the
inferences they give rise to, and how should we divide the work between com-
positional semantics and pragmatics in order to account for all these effects?
These are the two questions we will address in this chapter, focusing on a few
striking puzzles.

The difficulties in answering the first question can be illustrated with one
example among many others. It seems easy, at first sight, to propose semantic
entries for fewer than three and at most two which seem to correctly capture
their meaning contribution in simple sentences such as Fewer than three students
are here and At most three students are here. In standard generalized quantifier
theory (cf. Article 124, Quantifiers, Scope, and Pseudo-Scope, section 2), one
would typically suggest the following entries:

(1) a. [[fewer than three]] = λP.λQ. |P ∩Q| < 3
b. [[at most two]] = λP.λQ. |P ∩Q| ≤ 2

Whenever these modified numerals combine with count nouns, these entries
for fewer than three and at most two are equivalent, because the conditions ‘< 3’
and ‘ ≤ 2’ are equivalent when applied to natural numbers.1

However, any account where fewer than three and at most two are assigned
equivalent meanings encounters problems when more complex sentences are con-

1Within an ontology with plural individuals, the most straightforward treatment would be
the following:

(i) a. [[fewer than three]] = λP.λQ.¬∃X(|X| ≥ 3 ∧ P (X) ∧Q(X))
b. [[at most two]] = λP.λQ.¬∃X(|X| > 2 ∧ P (X) ∧ Q(X)) where |X| denotes the

number of atomic parts of X

The point we make here would apply as well if we used such entries.
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sidered. There are cases where replacing fewer than three with at most two in
a sentence changes its truth-conditions, as in (2).

(2) a. Fewer than three students managed to lift the piano together.
b. At most two students managed to lift the piano together.

The point is that (2a) and (2b) are not intuitively equivalent. In a situation
where the piano was lifted twice in a row, once by two students and once by
five students, (2a) is intuitively true, but (2b) is not. (2a) seems to just mean
that there is a group of fewer than three students who managed to lift the piano
together, but (2b), whose meaning is more elusive, rather seems to mean that
one cannot find a group of three students or more who managed to lift the piano
together. This is one among many different observations that illustrate that the
semantic contribution of modified numerals is more complex than it seems at
first sight.

The second question can be subdivided into two: 1) Why is it that some
modified numerals give rise to epistemic inferences in some syntactic environ-
ments but not in others? and 2) Why is it that intuitively synonymous modified
numerals differ with respect to the strength of the epistemic inferences they li-
cense?

We can illustrate the relevance of these two questions by means of two pairs
of examples:

(3) Context: speaker is assumed to know her age.

a. I am allowed to vote: I’m more than 18-years old.
b. #I am allowed to vote: I’m at least 18-years old.

(4) Context: speaker is assumed to know all of her children’s age.

a. All my children are allowed to vote. They are all more than 18-years
old.

b. All my children are allowed to vote. They are all at least 18-years
old.

The contrast in (3) reflects the fact that (3b), but not (3a), suggests that the
speaker does not know how old she is – an implausible state of affairs, and one
that the specified context excludes, hence the oddness of (3b). So it seems that
at least 18, in contrast with more than 18, gives rise to a so-called ‘ignorance
inference’, a type of epistemic inference whose content is that the speaker is not
knowledgeable about something.2

Now, in (4), neither sentence is odd, and, in particular, they do not suggest
that the speaker does not know her children’s age, so that they do not conflict
with the specified context. That is, even (4b), which features at least, does not
necessarily trigger a similar ignorance inference. A theory of modified numerals
should be able to explain both why more than and at least differ with respect
to ignorance inferences (cf. (3)), and why these ignorance inferences have the

2The claim that there is such a contrast has typically been made on the basis of informal
introspective judgments. Section 2.2 discusses some relevant experimental results.
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distribution they do (cf. the contrast between (3b) and (4b)).
In this paper, we will attempt to provide a survey of existing approaches

to the semantics of pragmatics and modified numerals. We will not cover all
the relevant empirical and theoretical landscape, but will focus on some salient
puzzles and select some of the proposals that have been offered to deal with
them. We start with a short typology of modified numerals (section 1). We then
discuss the pragmatics of modified numerals and their interactions with modals
(section 2). Finally, we discuss a specific puzzle that arises with monotone-
decreasing and non-monotonic comparative modified numerals such as fewer
than four and between 3 and 6 (section 3).

1 A typology of modified numerals

Modified numerals have different morphological makeups. In English, one can
distinguish at least four distinct types.

1. Modified numerals based on superlative morphosyntax: at least three, at
most three, . . .

2. Modified numerals based on comparative morphosyntax: more than three,
fewer than three, no more than three, . . .

3. Modified numerals based on locative, spatial prepositions: up to ten, over
one hundred, between three and seven, around ten, from n to m,. . .

4. Modified numerals in which a bare numeral is modified by a ‘slack-regulator’
adverbial:
exactly/precisely/approximately/about ten, . . .

In a seminal paper (Nouwen 2010), Nouwen argued that, in terms of their
semantic and pragmatic behavior, modified numerals can be divided into two
types, which he calls Class A and Class B numerals (Nouwen was building
on observations made in Geurts and Nouwen 2007). Class A modified numer-
als include those based on comparative morphology (henceforth ‘comparative
modified numerals’) and some based on locative prepositions (between n and
m), while Class B modified numerals include those based on superlative mor-
phology (henceforth ‘superlative modified numerals’) as well as a few others,
including some based on locative prepositions (minimally/maximally n, up to
n, from n to m, . . . ), and the classification is not always straightforward. We
will focus here on superlative and comparative numerals, which have clearly
different behaviors in various dimensions, and provide the main motivation for
the distinction between the two classes.3

One first observation is that superlative numerals, but not comparative nu-
merals, tend to trigger strong ignorance inferences – as illustrated in (3). Thus
Nouwen observed the following contrast:

3See Schwarz et al. (2012) for arguments that the Class A/Class B distinction needs to be
further refined.
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(5) a. A hexagon has fewer than 11 sides.
b. ?A hexagon has at most 10 sides.

(5b) sounds weird, as it suggests either that the speaker does not know how many
sides a hexagon has, or that the number of sides can vary from one hexagon to
the next. But (5a) is not odd in the same way. It expresses a true proposition,
if an underinformative one. A completely parallel contrast is obtained if one
uses positive instead of negative modified numerals:

(6) a. A hexagon has more than three sides.
b. ?A hexagon has at least four sides.

A second puzzling difference between comparative and superlative numerals that
was noted by Nouwen pertains to their interpretation in modal environments.
Thus consider:

(7) a. You may invite fewer than 10 people.
b. You may invite at most 9 people.

While (7a) can be understood as a very weak statement, which in itself does
not entail that any specific number of guests is forbidden, (7b) is most naturally
understood as forbidding the addressee to invite more than 9 guests - and is
thus equivalent to You must invite fewer than 10 people4. This contrast is
surprising, because in plain, simple environments, fewer than 10 and at most 9
appear to have the same truth-conditional content. For instance, the following
two sentences are truth-conditionally equivalent:

(8) a. I will invite fewer than 10 people.
b. I will invite at most 9 people.

Furthermore, there is no such dramatic contrast in meaning when the downward-
entailing modified numerals at most 9 and fewer than 10 are replaced with their
upward-entailing counterparts, at least 10, more than 9 :

(9) a. You may invite more than 9 people
b. You may invite at least 10 people

While these two sentences may not be felt to be exactly equivalent, they both
seem to convey that the upper-bound on the number of guests you are allowed
to invite, if there is one, is greater than 9.

4This reading is presumably available also for (7a) as well, under a certain intonation but
is certainly not the only reading, and probably isn’t the most salient one, in contrast with
(7b).
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2 The pragmatics of modified numerals: igno-
rance inferences, interactions with modals

In this section, we discuss two issues: the ignorance inference triggered by su-
perlative numerals, and some aspects of their interaction with modals. We will
also compare them to comparative numerals.

2.1 Ignorance inferences and lack thereof

Consider the following four sentences in (10) and (11):

(10) a. John solved at least three problems.
b. John solved at most three problems.

(11) a. Every student solved at least three problems.
b. Every student solved at most three problems.

Both sentences in (10) trigger the inference that the speaker does not know the
exact number of problems that John solved. Suppose I have just graded John’s
homework, and he turns out to have solved four problems, a fact that I have
in mind. Then I would not use either sentence in (10) as a reply to, say, How
did John do at the exam?. In contrast with this, the sentences in (11) could be
used by someone who knows exactly how many problems each student solved,
as an answer, to, say, How did the students do?. While the kind of judgments we
are mentioning here relate such sentences to specific questions, it is in general
quite hard to find a context where the sentences in (10) would not trigger an
ignorance inference, while this is not similarly hard for the sentences in (11).

An explanation for this pattern has been offered in Büring (2008), and elab-
orated upon in Schwarz (2016a).5 On this account, the ignorance inferences
triggered by the sentences in (10) are Gricean conversational implicatures based
on the maxims of quality and quantity, as formalized in Sauerland (2004). The
lack of obligatory ignorance inferences in the case of the sentences in (11) is
shown to follow from the fact that, in some contexts, the Gricean quantity im-
plicatures that are predicted are themselves compatible with the speaker being
knowledgeable. focusing on at least, let us assume that at least three evokes the
alternatives exactly three and at least four.6 Furthemore, let us assign at least
three a meaning that makes it equivalent to three or more than three. (10a) has
the following alternatives:

(12) Alternatives for (10a) (John solved at least three problems).

a. John solved exactly three problems.
b. John solved more than three problems.

5Büring’s paper was not concerned with sentences such as those in (11), but rather sen-
tences like (19), but his account carries over to the examples in (11).

6This is what Büring (2008) assumes. See Schwarz (2016a) for discussion, and Mayr (2013)
for a related but different proposal.

5



Now, both (12a) and (12b) asymmetrically entail (10a). By the maxim of quan-
tity, one concludes that the author of (10a) does not have the belief that either
is true. That is, the following inferences are derived about the speaker’s mental
state:

(13) Inferences about the beliefs of the speaker of (10a)

a. Speaker believes that John solved three or more than three prob-
lems. (by Quality)

b. Speaker does not have the belief that John solved exactly three.
(by Quantity)

c. Speaker does not have the belief that John solved more than three.
(by Quantity)

Importantly, none of these weak ‘epistemic’ implicature of the form The speaker
does not have the belief that S (which Sauerland 2004 calls primary implicatures)
can be turned into the stronger statement The speaker believes that not-S, on
pain of contradiction. For instance, if the speaker believed that John did not
solve exactly three, then, since she believes that John solved three or more, she
would have to also believe (if consistent) that John solved four or more . . . But
this contradicts the inference in (13c). Symmetrically, the speaker cannot believe
that John did not solve four or more, since if this were the case, given (13a),
she would have to believe that John solved exactly three, in contradiction with
(13a). In Fox’s (2007) terms, the sentence (10a) has symmetric alternatives, i.e.
alternatives that cannot be jointly negated consistently with the sentence itself.

In fact, the inferences in (13) are equivalent to the following, which corre-
sponds to the intuitive understanding of the sentence, and includes the ignorance
inferences we wanted to derive:

(14) The speaker believes that John solved three or more than three prob-
lems, and does not know whether John solved just three or more than
three problems.

An entirely parallel prediction can be made for (10b), on the assumption that
at most three competes with exactly three and at most two, and is synonymous
with three or less than three. The output of the kind of pragmatic reasoning
just sketched is that the speaker does not know whether John solved three or
fewer than three problems.7

Importantly, the very same pragmatic procedure produces a very different
result in cases such as (11). Consider (11a). By assumption, it has two alterna-
tives, given in (15):

(15) Alternatives for (11a)

7Things become significantly more complex if we consider all the alternatives of the form
at least/at most n and exactly n. In that case, one needs to adopt a more complex implicature
computation procedure, but one that is well motivated on independent grounds. See Schwarz
(2016a) for a detailed discussion of how different theories of quantity implicatures can deal
with such cases.
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a. Every student solved exactly three problems.
b. Every student solved more than three problems.

Both alternatives are, again, logically stronger than the sentence being consid-
ered, so we derive the following inferences about the speaker’s mental state:

(16) Inferences about the beliefs of the author of (11a)

a. Speaker believes that every student solved three or more than three
problems. (by Quality)

b. Speaker does not have the belief that every student solved exactly
three problems. (by Quantity)

c. Speaker does not have the belief that every student solved more
than three problems. (by Quantity)

The key difference with the previous case is that these three inferences are by
themselves fully compatible with the speaker knowing, for every student, how
many problems that student solved. Consider for instance a situation where
the speaker believes that half of the students solved exactly three problems,
that one forth of them solved exactly four, and all the others more than four.
It is easy to see that all three statements in (16) are true in such a situation.
This is sufficient to explain the lack of an obligatory ignorance inference for
(11a). But we can go even further. Suppose that we are in a context where it
is clear that the speaker is knowledgeable - for instance because the speaker is
the teacher who gave students problems and has just graded their homework.
In such a situation, it is natural to go from the fact that the speaker does not
believe a sentence S to the conclusion that she believes not-S (this move is what
Sauerland 2004 calls the epistemic step, and he called the strong inferences that
result from it secondary implicatures – cf. Article 109. Quantity Implicature).
In the case of (10a), we saw that such a move resulted into attributing to the
speaker contradictory beliefs, and was therefore ruled out. In the case of (11a),
making this move results in the following inferences:

(17) Inferences about the beliefs of the author (11a) in a context where she
is known to be knowledgeable.

a. Speaker believes that every student solved three or more than three
problems.

b. Speaker believes that not every student solved exactly three prob-
lems

c. Speaker believes that not every student solved four or more prob-
lems

To sum up, the prediction is that, in the specified context, the sentence is
intepreted as conveying a) that every student solved three or more problems,
b) that some solved just three (from the combination of (17a) and (17c)), and
c) that some solved more than three (from the combination of (17a) and (17b)).
Importantly, these three statements do not contradict the statements in (16).
They are, in fact, true in the scenario described above, where the speaker be-
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lieves that half of the students solved just three problems, and that the other
half solved four or more. So not only do we not derive ignorance implicatures,
we also derive stronger inferences when the context we are in allows it - and
these predictions seem correct.8

As stressed by Schwarz (2016b), what makes this account particularly plau-
sible is the fact that superlative numerals appear to function very similarly to
disjunctions, for which a similar pragmatic account is standard (see, e.g, Sauer-
land 2004 and Article 109. Quantity Implicature):

(18) a. John solved the first or the second problem.
; Ignorance inference: Speaker does not know whether John solved
the first or the second problem

b. Every student solved the first or the second problem
; Some students solved the first problem, others solved the second
problem.

Now, note that the logic of this explanation carries over to other cases which
have a similar ‘logical structure’, so to speak. In particular, given that necessity
modals can be viewed as universal quantifiers over possible words, it is expected
that a sentence such as (19) will not necessarily trigger an ignorance inference
and will be able to yield secondary implicatures.

(19) Mary is required to solve at least three problems

Consider its alternatives in (20):

(20) a. Mary is required to solve exactly three problems.
b. Mary is required to solve at least four problems.

By the maxims of quantity and quality, we know that the author of (19)
cannot believe either (20a) or (20b). This, however, does not automatically
trigger an ignorance inference, because a speaker who believes that Mary is
required to solve at least three problems, and believes that otherwise she can
solve any number of problems she wants provided it is more than three, is in
a situation to use (19) without violating either quantity and quality (in such a
situation, the speaker believes (19) and does not believe either proposition in
(20)). Furthermore, because the two alternatives can be negated consistently
with (19), if the speaker is taken to be knowledgeable, (19) licenses the secondary
implicatures according to which Mary is not required to solve exactly three, and
is likewise not required either to solve more than three, i.e. that she has a choice
between solving just three or more than three. These ‘minimal requirement’
readings (under which the sentence is understood to state that solving three

8Of course, in some contexts, a sentence such as (11a) can trigger an ignorance inference,
i.e. the hearer can learn from an utterance of (11a) that the speaker is partly ignorant
about how many problems each student solved. A possible way to address this issue to
assume that at least three in (11a) can take scope over every, which, together with some other
assumptions about degree semantics, would ensure that the exactly n alternatives and the at
least n alternatives would now be ‘symmetric’ in Fox’s (2007) sense.
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problems is Mary’s minimal requirement), much discussed in the literature, are
thus accounted for in a very principled manner, and predicted to arise when the
speaker is assumed to be authoritative, following Büring’s (2008) terminology.9

At this point, we still have two important issues to discuss: the contrast
between superlative numerals and comparative numerals, and the somewhat
puzzling behavior of some modified numerals under possibility modals.

2.2 Unsolved puzzle #1: why are comparative and su-
perlative numerals different?

If the ignorance inferences triggered by at least are quantity implicatures, as
their distribution suggests, then we would expect them to be modulated by
context. Consider the following dialogue, which features a comparative numeral:

(21) a. Are you allowed to vote?
b. Yes, I’m more than 18 years old.

The answer in (21b), in this context, does not trigger an inference that the
speaker is not knowledgeable about her age, and is not felt to be uncooperative.
This is fully expected, as in such a context, it is irrelevant how old the speaker
precisely is (I will call such contexts irrelevance contexts) In contrast with this,
if the question were How old are you?, an answer such as I’m more than 18 years
old would be perceived as quite strange, as it would suggest that the speaker
either does not know her age, or is being deliberately uncooperative. That is,
comparative numerals might trigger ignorance inferences in some contexts, but
only when it is expected that the speaker should provide a precise value (if she
has the relevant information).

Now, do we find a similar context-dependency with respect to ignorance
inferences in the case of superlative numerals? Most of the theoretical literature
assumes that a) ignorance inferences are stronger with superlative numerals
than with comparative numerals, b) and are so across contexts. Experimental
studies have overall confirmed that ignorance inferences are available with both
comparative numerals and superlative numerals, and that they are stronger
with superlative numerals (cf. Cummins and Katsos 2010). However, Westera
and Brasoveanu (2014) present results suggesting that the contrast between
comparative and superlative numerals is neutralized in irrelevance contexts. It
has to be noted, however, that the critical experimental condition in this study
involved a superlative modified numeral that was used in a question and then
repeated in an answer to the question, as in the following:

(22) a. Did at least ten students take Experimental Pragmatics?
b. At least ten students took Experimental Pragmatics.

9Alexandropoulou et al. (2016) present eye-tracking data suggesting that the ignorance
inferences triggered by at least come at a processing cost, which is consistent with a pragmatic
account of such inferences.
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It might be that the absence of an ignorance inference in such a case is tied to
the fact the answer is echöıc, as suggested by Ciardelli et al. (2016). Ciardelli
et al. (2016) claim that, apart from such echöıc uses, superlative modified nu-
merals trigger ignorance inferences even in irrelevance contexts. Furthermore,
in recent, so far unpublished work, Cremers et al. (2017) report further experi-
mental results suggesting that the contrast between comparative and superlative
numerals, though weakened, is preserved even in irrelevance contexts.

Given this, it is to be expected that the following dialogue, obtained from the
one in (21) by replacing the comparative modified numeral with a superlative
modified numeral, should trigger the inference that the speaker in (23b) does
not know her age - and should in fact sound weird given the default assumption
that people know how old they are.

(23) a. Are you allowed to vote?
b. Yes, I’m at least 18 years old

The contrast in the strength of ignorance inferences (in simple sentences
with no embedding) between comparative and superlative numerals is a puzzle
which, to my knowledge, has not received a satisfactory solution at this point.
One possibility would consist in ‘semanticizing’ at least some of these inferences
in the case of superlative numerals. This was the strategy initially pursued
in Geurts and Nouwen (2007) and Nouwen (2010), which offered two distinct
proposals that both incorporated the relevant ignorances inference in the literal
truth-conditions of the relevant sentences. These accounts, however, face some
other problems, some of which are discussed in section 2.5.

One may also consider a theory within the framework of the grammatical ap-
proach to scalar implicatures (cf. Chierchia et al. 2012 and Article 109. Quantity
Implicature), in which even ignorance implicatures are derived ‘within the gram-
mar’, as is argued on independent grounds by Meyer (2013). In Meyer’s (2013)
proposal, ignorance inferences arise when the exhaustivity operator scopes over
a silent matrix epistemic operator, whose meaning is similar to that of only.
Meyer’s proposal amounts to analyzing a sentence such as Mary solved at least
eight problems as having an LF of the form The speaker only believes that Mary
solved [eight or more than eight]F problems, which is equivalent to: ‘The speaker
believes Mary solved at least eight, and doesn’t believe she solved exactly eight
and doesn’t believe she solved more than eight’. Under such a perspective, one
could speculate that superlative numerals are constrained to occur under the
scope of an exhaustivity operator, which, together with some other assump-
tions, would predict that they always give rise to an ignorance inference unless
secondary implicatures are derived.10 Why they should obey such a constraint,
apparently crosslinguistically, would still remain to be explained.

Recently, Ciardelli et al. (2016); Cremers et al. (2017) offered an account
within the Inquisitive Semantics framework where ignorance inferences arise

10This might also partly explain why at least-numerals are positive polarity items (cf. Cohen
and Krifka 2014; Spector 2014), given the assumption that exhaustivity operators are not
licensed if they are vacuous and tend to be disfavored in a downward-entailing environment.
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through two distinct mechanisms in the case of superlative modified numerals,
while only one of these mechanisms (namely the one posited by Büring 2008
and Schwarz 2016a, which I discussed in the previous section) is operative in
the case of comparative numerals – so that ignorance inferences are stronger
with superlative modified numerals.

2.3 The alternatives of comparative modified numerals

In order to predict the distribution of ignorance inferences for superlative nu-
merals, one needs to make very specific assumptions about their alternatives.
But on what might appear to be the most natural assumption, namely, that
numerals form a scale, we would expect that the alternatives for at least two
would be all expressions of the form at least n, and those of more than two would
be all the expressions of the form more than three. On this assumption, as ini-
tially noted in Krifka (1999), we would expect sentence such as Mary has more
than two children and Mary has at least three children to trigger the implica-
ture that Mary has exactly three children (by negating the stronger alternatives
John has more than three children and Mary has at least four children, respec-
tively). That this is not so is, in a way, a puzzle to be explained, on the basis
of a general theory of alternatives. In this section, I would like to discuss two
lines of work that are related to this issue, in the case of comparative modified
numerals, namely Fox and Hackl’s (2006) universal density of measurement hy-
pothesis, and Cummins et al.’s (2012) work on the role of granularity in defining
alternatives.

Fox and Hackl (2006) proposes that for comparative modified numerals
(more than n), the alternatives consist of all expressions of the form more than
r, where r can be any real number (rather than just an integer). For a sen-
tence such as (24) below, negating all stronger alternatives would result in a
contradiction: if John is more than 12 years old, there exists a real number ε
such that John is more than 12 + ε-years old, and so one cannot negate all the
alternatives of the form ‘John is more than 12 + ε-years old’ without generating
a contradiction.

(24) John is more than 12 years old.

Fox and Hackl propose to extend this account of the lack of ‘exact’ inferences
with comparative numerals in unembedded contexts to cases that intuitively in-
volve only integers, as in John has more than two children. This is the universal
density of measurement scale hypothesis. The idea is that even in such case, as
far as implicature computation is concerned, the underlying measurement scale
is treated as continuous. So we consider all the alternatives of the form John
has more than x children, where x can be any real number. Because they cannot
be all negated without creating a logical contradiction, no implicature arises, as
in (24).

Under a universal modal, though, as in (25), no contradiction arises by negat-
ing all stronger alternatives. Specifically, (25) below is predicted to implicate
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that there is no ε such that you are required to be more than 12 + ε problems –
namely, provided you have passed your 12th birthday, you can access the theater
– a welcome result.

(25) You are required to be more than 12 years old in order to access this
theater.

In a case such as (26) below, which intuitively involves discrete quantities, given
the universal density of measurement scales, the reasoning proceeds in exactly
the same way, and leads to the implicature that there is no ε such that we are
required to talk to 2 + ε witnesses.

(26) We are required to talk to more than two witnesses.

Now, given the knowledge that if we talk to more than two witnesses, then we
talk to three or more, this inference might appear to be a contextual contradic-
tion: if I’m required to talk to more than two witnesses, I am required to talk
to at least three. On Fox & Hackl’s view, though, what is important is only
the fact that, at the purely logical (where such non-purely logical information is
ignored), no contradiction arises when stronger alternatives are negated. Given
this, an implicature is licensed, and, once contextual assumptions are factored
in, the resulting interpretation is that we are not required to talk to more than
three witnesses.

Note that this account cannot be extended to superlative modified numer-
als. For superlative numerals, we can stil adopt Büring’s (2008) and Schwarz’s
(2016a) proposal. Consider then the counterpart of (26) where the comparaitve
modified numeral is replaced with its superlative counterpart:

(27) We are required to talk to at least three witnesses.

For (27), as we saw, Büring’s (2008) and Schwarz’s (2016a) proposals predict
two implicatures: that we are not required to talk to more than three witnesses
(due to the alternative based on more than three), but also that we are not
required to talk to exactly three witnesses (due to the alternative based on
exactly three). In the case of (26), this second implicature is not predicted to
arise on on Fox & Hackl’s account. So a contrast is expected between (26) and
(27), in that the enriched interpretation of (26), but not that of (27), should
be interpreted as not excluding the possibility that we are required to talk to
exactly three witnesses (i.e. are not allowed to talk to more than three). This
subtle prediction is hard to test, given that such obligations typically come with
a minimal requirement, but no maximal requirement.

Another relevant approach to the alternatives of modified numerals consists
in assuming that the alternatives of a numeral depend on so-called granular-
ity levels. Cummins and Katsos (2010) provide experimental evidence that a
sentence such as (28) triggers the implicature that Mary didn’t invite 40 more
people.

(28) Mary invited more than 30 people
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To account for this, they assume that numerals are associated with different
granularity levels which determiner the alternatives they are compared with. For
instance, multiples of 10 compete with each other, but not with every numeral,
so that the relevant alternative for (28) is Mary invited more than 40 people. As
they note, the logic of this account is that non-round numerals should compete,
in some contexts at least, with all other numerals, so that Mary invited more
than 12 people should implicate Mary invited exactly 13 people – contrary to
fact. In recent work, Enguehard (2018) observes that the problem is solved if
one adopts both the idea of levels of granularity and Büring-types alternatives.
On this view, (28) would compete with both sentences in (29):

(29) a. Mary invited more than 40 people
b. Mary invited exactly 40 people

When we negate both, we get the inference that Mary invited less than 40
people. But with (30), assuming now that 12, a non-round number, is in the
same granularity level as all other numbers, we cannot negate both alternatives
without generating a contradiction, which explains the lack of scalar implicature
for (30):

(30) Mary invited more than 12 people.
Alternatives: Mary invited more than 13 people, Mary invited exactly
13 people.

Enguehard (2018) makes a new observation, related to a sentence such as (31),
where the underlying quantity being measured is continuous rather than dis-
crete:

(31) Mary walked more than 7 miles to come back home

(31) can easily trigger the implicature that Mary walked less than 8 miles. 7
being a non-round number, (31) competes with Mary walked more than 8 miles
and Mary walked exactly 8 miles. In this case, they can be both negated without
creating any contradiction, thanks to the fact that there is ‘space’ between 7
and 8 (one can walk a non-integer number of miles).

2.4 Unsolved puzzle #2: superlative numerals in the scope
of possibility modals

Consider now the following case:

(32) Peter is allowed to invite at most 8 people.

This sentence is most naturally understood as stating that Peter is not allowed
to invite more than 8 people, and does not necessarily trigger any ignorance
implicature. In fact, the speaker might well be the person who decides what
is allowed and what is not, and in such a case the sentence is understood as
stating that Peter can invite any number of people below 9, and is not allowed
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to invite 9 or more people. As we shall see, this very natural interpretation is
very hard to account for on the basis of the approaches we have discussed so
far. And, as importantly, all the known attempts to solve the problem either
make wrong predictions for other cases, or do not properly generalize to similar
cases.

On the basis of our assumptions so far, the sentence’s literal meaning is
that a state of the world where Peter invites fewer than 9 people is permissible.
This is a very weak statement, which does not entail in any way that Peter is
not allowed to invite 9 people. Let us look at what pragmatic inferences are
predicted if (32) is taken to evoke the following alternatives (paraphrasing ‘at
most n’ by ‘n people or less’, so that our reasoning is not polluted by the actual
meaning of the ‘at most’ sentences).

(33) a. Peter is allowed to invite exactly 8 people.
b. Peter is allowed to invite 7 people or less.

Both alternatives in (33) entail the literal reading of (32), so we get the following
inferences:

(34) a. The speaker believes that there is a permissible world where Peter
invites 8 people or less.

b. The speaker does not have the belief that there is a permissible
world where Peter invites exactly 8 people.

c. The speaker does not have the belief that there is a permissible
world where Peter invites 7 people or less.

Importantly, (34b) and (34c) cannot be negated without contradicting (34a).
In fact, taken together, these three inferences amount to:

(35) The speaker believes that there is a permissible world where Peter in-
vites 8 people or less, and is not sure whether there is a permissible world
where Peter invites exactly 8 people, and is not sure either whether there
is a permissible world where he invites fewer than 8 people.

Equivalently:

(36) The speaker believes that Peter is allowed to invite 8 people or less, is
not sure whether Peter is allowed to invite just 8 people, and is not sure
either whether Peter is allowed to invite fewer than 8 people.

So we only derive ignorance inferences. And the resulting reading still does not
entail that Peter is not allowed to invite 9 people. So, based on our assumptions
so far and an analysis where at most eight takes narrow scope, we cannot account
for the most natural reading of (32). This might motivate another approach
where the relevant inference (Peter is not allowed to invite more than 8 people)
is a semantic entailment. We discuss such an approach in the next section, and
show its shortcomings. Then we will move to another approach in which the
relevant reading is viewed as deriving from a so-called ‘free-choice’ inference,
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and we will see that it, too, encounters problem, before providing an assessment
of the current status of the puzzle.

2.5 A semantic approach

Nouwen (2010) proposes that the relevant reading of (32) is one where at most
8 takes wide scope, and combines with a lambda abstract which represents a
property of numbers (degrees), as in (37):

(37) [At most 8].λn.you are allowed to invite n people.

In Nouwen’s semantics, At most 8, when combining with a property of numbers,
returns true if 8 is the maximum number that has this property. Importantly,
Nouwen assumes that the numerical variable n above has an ‘exactly’ reading.
Informally speaking λn.you are allowed to invite n people denotes the set of
numbers n such that you are allowed to invite exactly n people. Then (37)
states that the maximum in this set is 8. This captures the fact that the sentence
entails that you are allowed to invite 8 people, and are not allowed to invite more
than 8 people. Furthermore, Nouwen introduces the very plausible constraint
that the property/set that at most 8 combines with should be true of more than
just one number – the non-singleton constraint. Given this constraint, the final
reading is that you are allowed to invite 8 people, you are also allowed to invite
fewer than 8 people, and you are not allowed to invite more than 8 people. This
seems close to what we want to derive.11

While this proposal seems appealing, in this simple form it runs into a num-
ber of problems. To begin with, without further assumptions, it predicts that a
simple sentence such as (10b), repeated below as (38), should always be infelic-
itous.

(38) John solved at most three problems.

Under the proposed analysis, (38) is parsed as in (39):

(39) [At most three].λn. John solved n problems

11On such an analysis, at most three covertly scopes out of the modal. There could be a
variant of this analysis where at most alone would scope out. What is not clear is whether
a structure in which the surface position at most is above the modal has the reading we are
after:

(i) You are at most allowed to invite 8 people

(i) clearly has a reading without an ignorance inference (‘I don’t know exactly how many
people you are allowed to invite, but it’s at most eight). An informal survey suggests that
the reading we are after (‘8 the maximal permitted number’) is accessible for such a sentence
for some speakers but not others. If this reading is accessible, it might suggest that the best
analysis of this reading involves an LF where at most scopes out without the numeral, but I
don’t know of any actual implementation of this idea. Penka (2014), which I briefly discuss
below, is an interesting proposal where the relevant readings arise through scoping out at most
eight.
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In words: 3 is the maximum number n such that John solved exactly n prob-
lems. But obviously, there is only one number such that John solved exactly
that number of problems. So the non-singleton constraint cannot be met. Even
ignoring this constraint, the prediction is that (38) should simply mean that
John solved exactly three problems, contrary to the observed intepretation.
Nouwen’s solution consists in assuming that the LF of sentences may contain a
covert epistemic possibility modal, and that this operator is necessarily intro-
duced when needed to satisfy the non-singleton constraint. Under this analysis,
the relevant parse is now as in (40), where 3 is an epistemic operator standing
for it is possible given the speaker’s beliefs that . . . .

(40) [At most three].λn.3(John solved n problems)

In words: 3 the maximal number n such that it is possible that John solved
exactly n problems. With the aid of the non-singleton constraint, the desired
reading is derived: it is possible that John solved exactly three problems, it is
not possible that John solved more than three, and there is at least some other
number m such that it is possible that John solved m problems, i.e. the speaker
is not sure about the exact number, though 3 is definitely a possibility.

Finally, to capture the ignorance inferences of a sentence such as (10a),
repeated in (41), Nouwen offers a completely parallel analysis for At least, except
that the notion of maximum is now replaced with that of minimum, giving rise
to the parse in (42), where 3 is again introduced to satisfy the non-singleton
constraint.

(41) John solved at least three problems.

(42) [At least three].λn.3(John solved n problems)

In words: 3 is the smallest number n such that it is possible (according to the
speaker) that John solved exactly n problems.

This analysis, which seems so far successful, runs however into very serious
problems. First, it cannot capture the readings we discussed for the sentences
in (11), repeated below in (43):

(43) a. Every student solved at least three problems.
b. Every student solved at most three problems.

Under a parse where at least three/at most three scopes over the universal quan-
tifier, we get a reading amounting to:

(44) 3 is the maximal/minimal number n such that every student solved
exactly n problems.

This entails that every student solved the same number of problems, and violates
the non-singleton constraint. So 3 needs to be introduced, but then ignorance
inferences are necessarily derived – contrary to the fact that, as we discussed,
ignorance inferences are not obligatory for such sentences. Under a parse where
at least three/at most three is interpreted under the scope of the universal quan-
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tifier, we again have a violation of the non-singleton constraint under the scope
of the universal quantifier, unless 3 is introduced in an embedded position,
resulting in a reading amounting to:

(45) For every student x, the minimal/maximal number n such that it is
possible x solved n problems is 3, and it is possible (according to what
the speaker believes), for each student, that she solved fewer than three.

These truth-conditions cannot be satisfied when the speaker is fully knowl-
edgeable about every student – we saw that there were situations with a fully
knowledgeable speaker where the sentence could be felicitously used.

Another, critical problem for this approach is that it makes completely wrong
predictions for cases where at least n is used in the scope of a possibility modal,
as in (46):

(46) John is allowed to borrow at least three books

Under the proposed analysis, (46) is parsed as in (47), resulting in the truth-
conditions in (48):

(47) [At least three]λn. John is allowed to borrow exactly n books.

(48) 3 is the smallest number n such that John is allowed borrow n books

This is actually equivalent to saying that John is required to borrow at least
three books (if he borrows some books), which is clearly an incorrect prediction.
In fact, this prediction is parallel to the one made for (32), which is correctly
predicted to mean that, if you invite people, you have to invite fewer than eight
people. But the problem is that in the case of at least, this is a wrong prediction.
In fact, the lack of parallelism between at least and at most when they interact
with possibility modals is a problem for a number of different approaches.

2.6 Does free-choice solve the puzzle?

Another strategy, suggested for instance in Coppock and Brochhagen (2013) and
pursued in Buccola and Haida (2017), is to interpret at most numerals in situ,
and to capitalize on the fact that possibility modals trigger so-called free-choice
inferences. Buccola and Haida’s (2017) proposal is fairly complex, and cannot
be presented here due to lack of space. What I will do is present the general
intuition behind the proposal, without keeping to the letter of their proposal -
this wil be sufficient to show the limitations of that sort of account (which are
fully discussed and acknowledged by Buccola and Haida 2017)

Very informally, the first step of the proposal is rooted in the observation
that, under a standard semantics for at most n, where it is synonymous (when
applied to discrete objects) with fewer than (n+1), the meaning of (32) can
be represented as follows (where the symbol 3 now represents any possibility
modal).

(49) 3(You invite exactly 8 people ∨ you will invite fewer than 8 people).
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As is well known, structures of this form generate a so called free-choice inference
whereby they end up being interpreted as in (50):

(50) 3(You invite exactly 8 people) ∧ 3(you invite fewer than 8 people)

So one part of the strategy consists in adapting a theory of free-choice infer-
ences such that, with adequate auxiliary assumptions, there is an LF for (32)
equivalent to (50).12 This, however, is not sufficient, since (50) does not by itself
entail in any way that you are not allowed to invite more than 8 people. The
second ingredient of the strategy consists in assuming that this second entail-
ment arises as a regular quantity implicature. For instance, one could assume
that (32), under the relevant LF, competes with all sentences of the form (51a),
for n > 8, under an LF that makes them equivalent to (51b) (this is actually
not the way Buccola and Haida’s (2017) proposal works, but again I care more
here about the general logic of the account than about its technical details):

(51) a. You are allowed to invite at most n people
b. 3(You invite exactly n people) ∧ 3(you invite fewer than n people)

Now, because all the LFs of the form of (51b) entail (50) (with n > 8), (32),
under the LF that makes it equivalent to (50), can be enriched with the negation
of all its stronger alternatives (which are infinitely many). The resulting reading
(which in Buccola and Haida 2017 is obtained by applying two exhaustivity
operators to the sentence, but not quite relative to the alternatives assumed
here) is then given by:

(52) 3(You invite exactly 8) ∧ 3(you invite fewer than 8)
∧¬(3(You invite exactly 9) ∧ 3(you invite fewer than 9))
∧¬(3(You invite exactly 10) ∧ 3(you invite fewer than 10))
∧ . . .

This is in turn equivalent to:

(53) 3(You invite exactly 8 people) ∧ 3(you invite fewer than 8 people)
∧¬3(you invite more than 8 people)

This is the desired reading.
While this seems a good result, this type of account suffers from the very

problem we noticed regarding Nouwen’s account at the end of section 2.5. As
noticed in Penka (2014) and discussed in Buccola and Haida (2017), a completely
similar reading is predicted for sentences involving a numeral modified by at
least in the scope of a possibility modal – assuming that parallel assumptions
are made regarding the alternatives of at least and at most. That is, just like
Nouwen (2010), this type of proposal predicts that a sentence such as (46) (‘John
is allowed to borrow at least three books’) should have a reading that entails
that if John borrows some books, he has to borrow at least three books – a

12Importantly, (50) itself is not, on this account, the LF of (32), but is equivalent to it once
free-choice is taken into consideration.
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reading which seems clearly unavailable.
Now, Buccola and Haida (2017) note very interesting facts suggesting that

this prediction might be less bad than one could think. For instance, even
though that kind of ‘minimal requirement’ reading does not seem available for
(46), such a reading becomes available when the at least-numeral is itself part
of a bigger disjunctive phrase, as in (54):

(54) In order to pass, students can either do a presentation or solve at least
4 problems.

Surprisingly, (54) has a reading amounting to something like ‘In order to pass,
students must do a presentation or solve at least 4 problems’. This reading is
derivable within Buccola and Haida’s (2017) system. Very informally, (54) can
be analyzed as students can do a presentation, or solve 4 problems, or solve
more than 4 problems. This gives rise to the following free-choice inference:
the three options are all possible ways of satisfying the requirements. And a
second inference is generated: these three options are the only way to satisfy
the requirements.

Another important remark made by Buccola and Haida is that even compar-
ative numerals sometimes give rise to similar readings (where, very informally,
a possibility modal can be paraphrased by a necessity modal!). Consider for
instance (55), used as an answer to What am I allowed to eat?. According to
Buccola and Haida, (55) suggests that you are not allowed to eat four cookies.

(55) You are allowed to eat one apple or fewer than than three cookies.

Finally, they observe that between-numerals give rise to a similar reading as
well (a combination of a free-choice inference and a prohibition regarding both
a lower bound and an upper bound):

(56) For this exam, you are allowed to write between 5 and 10 pages

(57) feels approximately equivalent to ‘You must write between 5 and 10 pages’,
and you have a choice as a to the exact number of pages.

In Buccola and Haida’s (2017) perspective, all modified numerals should be
able to give rise to such readings, which involve a combination of a free-choice
inference and a prohibition expressed as an upper-bound or a lower-bound (or
both, as we have just seen). They also note that similar readings arise with
other superlative expressions, as in (57):

(57) You are allowed to leave at 8pm at the latest/earliest

In both cases, one understands that you must leave no later/no earlier than
8pm - strikingly, the asymmetry noted for at least and at most is not observed
with at the earliest and at the latest.

From this perspective, what is problematic and mysterious is the fact that
a reading of this sort is not available with at least (and comparative numerals)
in more simple structures, e.g. in (46).
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2.7 Penka’s decompositional analysis

Penka 2014 takes the opposite view. Following most of the literature, on her
view it is at most-numerals which are exceptional. She rejects on this basis any
account that would generalize from at most to at least. Her solution involves
a specific analysis of at most-numerals, in which they are decomposed into a
negative element ANT and a part parsed as at least n. Crucially, the negative
element can take scope independently of at least, resulting into a so-called split
scope readings. On this analysis, the relevant parse for (32) is as follows:

(58) [ANT − 8][λn. Peter is allowed to invite at least n people]

The proposed semantics for ANT - 8 makes the whole sentence equivalent
to ‘for every n > 8, it is not the case that Peter is allowed to invite at least
n people’. On this analysis, the inference that Peter is not allowed to invite
more than eight people thus follows as an entailment, thanks to the split-scope
analysis. Penka then shows that under some specific assumptions about how
alternatives are computed, and a standard approach to quantity implicatures
(of the sort illustrated above), the sentence is not predicted to trigger ignorance
inferences, but rather to license the secondary implicature that Peter is allowed
to invite 8 people (via the negation fo the alternative where 8 is replaced with
7), resulting in the desired reading, according to which Peter is allowed to invite
8 people but is not allowed to invite more. Penka’s analysis explains the differ-
ence between at most and at least by assuming a decompositional analysis for
at most but not for at least, and by means of a number of auxiliary assumptions
about how alternatives are computed. It is the only proposal on the market that
is able to explain the asymmetry between at most and at least, but at the cost
of several stipulations. It also does not straightforwardly generalize to many of
the cases discussed in Buccola and Haida (2017).

To conclude this section, it turns out that since Geurts & Nouwen’s seminal
paper, no proposal has been able to provide a fully satisfactory account of
the interaction of superlative numerals and possibility modals - a failure which
is quite extraordinary, as it reveals a surprising amount of complexity behind
apparently simple constructions.

3 Comparative modified numerals, plural seman-
tics and van Benthem’s problem

In this section, we focus on a puzzle that concerns specifically monotone-decreasing
comparative numerals (e.g., fewer than three) and non-monotonic ones (e.g., be-
tween n and m), following the discussion in Buccola and Spector (2016) (but
see also Winter 2001; Ben-Avi and Winter 2003). Consider the three following
sentences:

(59) a. Fewer than three students have blue eyes.
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b. Fewer than three students lifted the piano together.
c. Fewer than five guests drank over twenty beers between them.

(59a) triggers the inference that the maximal number n such that it may be the
case that n students have blue eyes is 2 (we will call this inference a maximality
inference), and does not rule out the possibility that no student has blue eyes.
(59b), on the contrary, triggers an existential inference according to which there
are students who lifted the piano together, and does not exclude the possibility
that the relevant piano was lifted once by fewer than three students, and possi-
bly another time by five students. Finally, (59c), under the intended cumulative
interpretation (forced here by ‘between them’), also triggers an existential in-
ference (the sentence is false if no guest drank any beer), and does not either
trigger a maximality inference: (59c) does not exclude the possibility that five
or more guests drank over twenty beers together, and it even strongly suggests
that this might well be the case. Consider for instance a situation where four
guests each had six beers, and a fifth guest had two beers. Then it is both true
that fewer than five guests drank over twenty beers between then (the four first
guests drank 24 beers together) and that five guests drank over twenty beers
between then (since the five guests had 26 beers between them). The three
sentences in (59) illustrate the following generalization:

(60) A sentence of the form fewer than n NP VP means:

a. If VP is distributive, that no plurality consisting of n NPs or more
has the property denoted by VP

b. If VP is collective or cumulative13, that there exists a plurality
X consisting of fewer than n NPs such that P has the property
denoted by VP.

(60a) predicts the absence of an existential inference and the presence of a
maximality inference for (59a), and (60b) predicts the presence of an existential
inference and the absence of a maximality inference for (59b) and (59c).

Now, there is a straightforward way of analyzing modified numerals which
would correctly explain (60b). We start with the idea that fewer than n denotes
a predicate of pluralities - when applied to a plurality X, it returns true if X
has fewer than n atomic parts. When it combines with a noun, the resulting
meaning is obtained by predicate modification (i.e. intersection). So fewer than
five boys is a predicate which is true of any plurality X if X is the sum of
fewer than five atomic individuals that are boys. Then we add a mechanism
of existential closure to turn this predicate into an existential quantifier. For
concreteness, let us assume that there is a silent existential determiner, noted
∅, which can apply to a predicate to turn it into a generalized quantifier. All
this is cashed out in (61):

(61) a. [[fewer than three]] = λx.|x| < 3 [where |x| is the cardinality of the
set of atomic members of x]

13Cf. Article 21, “Distributivity, Collectivity, and Cumulativity”
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b. [[∅]] = λP.λQ.∃x(P (x) ∧Q(x))
c. [[Fewer than three boys]] = λx.|x| < 3 ∧ [[boys]] (x)
d. [[[∅[Fewer than three boys]]]] = λQ.∃x([[Fewer than three boys]] (x)∧

Q(x))
= λQ.∃x(|x| < 3 ∧ [[boys]] (x) ∧Q(x))

Now, while this approach fares well when the modified numeral combines with
a non-distributive predicate, it derives disastrous predictions when it combines
with a distributive predicate – a problem that was first discussed in van Benthem
(1986), and is now known as van Benthem’s problem. For a sentence such as
(59a), the resulting meaning is ‘there is a plurality S consisting of fewer than
three students such S has blue eyes’. Now, because the predicate has blue eyes
is distributive, this comes out equivalent to: ‘There is a plurality S consisting
of fewer than three students such that every member of S has blue eyes’. The
critical observation, here, is that this last statement is made true even if one
hundred students have blue eyes: if this were the case, there would indeed be a
plurality consisting of fewer than three students who have blue eyes, and so the
predicted meaning does not entail that there aren’t more than two students with
blue eyes - clearly a terrible result. In fact, this reading is just equivalent to ‘At
least one student has blue eyes’: in every situation where at least one student
has blue eyes, there is a plurality of students (maybe reduced to a ‘plurality’ of
just one student) containing fewer than three members such that every member
of this plurality has blue eyes.

A completely parallel issue arises with non-monotonic modified numerals,
such as between four and six. Thus consider:

(62) a. Between four and six students have blue eyes.
b. Between four and six students lifted the piano together.
c. Between four and six students drank over twenty beers between

them.

Both (62b) and (62c) can be analyzed as involving existential quantification over
pluralities whose cardinalities are between four and six: there exists a plurality S
consisting of four to six students such that P lifted the piano/drank over twenty
beers. But a similar construal for (62a), namely there exists a plurality S of
four to six students such that every member of S has blue eyes is true even if
100 students have blue eyes, and comes out equivalent to ‘at least four students
have blue eyes’.14 This is again van Benthem’s problem - namely, existential
quantification makes the upper-bound of a numerical quantifier irrelevant in
distributive contexts.

Buccola and Spector (2016) (henceforth B&S) discuss in details this puzzle
and several approaches to a solution. I will sketch here only one of the strate-
gies discussed in this paper, which consists in using a somewhat non-standard
semantics for modified numerals, based on a notion of maximal informativity.

14Interestingly, there is experimental evidence that some speakers can access this patholog-
ical reading with non-monotonic quantifiers, cf. Marty et al. (2015).
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3.1 Maximal informativity vs. standard maximality

The key idea consists in redefining the notion of maximality that underlies the
semantics of modified numerals. Let us start with a quite standard approach to
modified numerals (again, presented informally):

(63) [Fewer than five NPs] [VP] is true if the maximal number n such that
there is a plurality of n NPs in the extension of VP is smaller than five.

When the VP is distributive, the maximal number n such that n NPs VP is true
is simply the number of atomic individuals which are both in the denotation of
NP and VP. Suppose exactly 5 students have blue eyes. Then for any n in [1, 5],
there is a plurality consisting of n people who have blue eyes, and the maximal
such n is therefore 5. So in this situation, the sentence Fewer than five students
have blue eyes is false. And a sentence of the form Fewer than n students have
blue eyes is true for any n greater than 5, false for any n equal to or smaller
than 5, which is the desired result. Because we want such a sentence to be true
if no student has blue eyes, we need to stipulate that the maximal number in
question is 0 when the intersection of NP and VP is empty.

Let us now consider what happens when the VP is not distributive:

(64) Fewer than five students lifted the piano together.

The predicted interpretation for (64) is simply that no group of five students or
more lifted the piano together. This is not the reading we are after, as it has
an upper-bound implication and no existential entailment.

B&S argues that by modifying the underlying notion of maximality, it is
possible to obtain the same result as in the standard story for distributive pred-
icates, without the undesirable consequences noted for a case such as (64). The
key insight is to use a notion that we can term logical maximality, which I now
introduce.15 Consider first all the propositions of the form n students have
blue eyes. They are linearly ordered in terms of logical strength: in (65), each
proposition on the left entails the proposition to its right.16

(65) 5 students have blue eyes ⇒ 4 students have blue eyes ⇒ . . . ⇒ 1
student has blue eyes.

Consider a world where, say, exactly 4 students have blue eyes. In such a world,
there is exactly one proposition in the above sequence which is both true and
such that any strictly stronger proposition (i.e. any proposition to its left) is
false, namely the proposition expressed by 4 students have blue eyes. We will

15This idea has roots in von Fintel et al. (2014) (see also Dayal 1996; Beck and Rullmann
1999; Fox and Hackl 2006; Schlenker 2012 for related discussions).

16Actual sentences of the form n students have blue eyes are preferably interpreted under
an exact reading, in which case the entailments in (65) do not hold, but this is immaterial
to our discussion here: the actual meaning of bare numerals is not what matters, we just use
such sentences just for ease of exposition, as shortcuts for there is a plurality of n students
with blue eyes. Regarding the interpretation of bare numerals, see, a.o., Geurts 2006; Breheny
2008; Spector 2013; Kennedy 2015.
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say that in such a world, the number 4 is logically maximal relative to the
property of numbers λn.n students have blue eyes. In general, a number m is
logically maximal with respect to this property just in case it is the greatest
number which has this property. We will say that (64) is true if there is a
number m, smaller than 5, such that m is logically maximal with respect to the
property λn.n students have blue eyes, which boils down to saying that there is
a number smaller than 5 which is the maximal number m such that m students
have blue eyes is true. Another way to express the same idea consists in saying
this sentence is true just in case the following holds:

(66) There is a number m, smaller than 5, such that m students have blue
eyes is true, and no other true proposition of this form entails that m
students have blue eyes.

So we now can replace our rule in (63) with the following one:

(67) [Fewer than five NPs] [VP] is true in a world w if there is a number m,
smaller than 5, such that m is logically maximal, in w, relative to the
property λn.n n NPs VPs.

Equivalently:

(68) [Fewer than five NPs] [VP] is true in a world w if there is a number
m, smaller than 5, such that m NPs VP is true and no other true
proposition of this form entails m NPs VP

Now, the crucial observation is that with collective predicates, the linear
ordering in terms of logical strength given in (65) disappears. That is, the
following propositions are logically independent:

(69) A plurality of 5 students lifted the piano (together)
A plurality of 4 students lifted the piano (together)
. . .
A plurality of 2 students lifted the piano (together)
1 student lifted the piano.

Precisely because lifted the piano together is not a distributive predicate, there
is simply no entailment relation from (n+1) to n in the above sequence, nor the
other way around. For this reason, if a proposition of the form A plurality of m
students lifted the piano is true in a world w, it is necessarily the case that m is
logically maximal in w relative to the property λn.n students lifted the piano,
since there cannot be any proposition of the same form that entails it. In other
words, if the piano was lifted twice, once by 3 students and once by 6 students,
both 3 and 6 count as logically maximal. Let us now apply the rule in (68) to
(64):

(70) Fewer than five students lifted the piano together is true in w if:
There is a number m smaller than 5, such that m students lifted the
piano together is true
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and no other true proposition of the same form entails m students lifted the piano together

The underlined part is always vacuously true: as we have just seen, there is
simply no entailment relation between propositions of the form n students lifted
the piano. So (70) reduces to (71):

(71) Fewer than five students lifted the piano together is true in w if:
There is a number m smaller than 5, such that m students lifted the
piano together is true

And this is basically the reading we are after, which does not imply any upper
bound. It is, in particular, true in a situation where the piano was lifted twice,
once by 3 students and once by 6 students.

At this point, we should notice that there is a non-trivial complication in
the case where the VP in a structure of the form Fewer than n NP VP has
an empty extension. We might consider that the number 0 has the property
λn.n NP VP just in case the intersection of the denotations of NP and V P
is empty. This will make a sentence such as (59) true if no students have blue
eyes. This is a good result. But we also predict that the sentence (64) is true
if no group of students lifted the piano together. We would therefore fail to
predict that (64) has an existential entailment. Alternatively, if we don’t make
such a move, we will correctly predict the existential entailment of (64) but we
will also generate an unwanted existential entailment for (59a). One possible
way out is to modify our ontology and to add to our domain of pluralities a null
individual (which contains no atomic member) which would be in the extension
of all distributive predicates but not in that of non-distributive predicates, and
to adjust our semantics for quantifiers accordingly. See B&S, section 8.3, for a
discussion of such an approach.

3.2 At most vs. Fewer than in collective contexts

While, at first sight at least, At most 4 and Fewer than 3 yield the same truth-
conditions when they combine with distributive predicates, this is not clearly
the case when they combine with non-distributive predicates. Thus consider:

(72) a. Fewer than 3 students managed to lift the piano together
b. At most 4 students managed to lift the piano together

(72a), as we have discussed at length, has an existential entailment and does
not imply an upper bound. The reverse is true for (72b), which seems true if no
students managed to lift the piano together, and false if a group of 5 students
lifted the piano together. This reading would be the one that would result if At
most n were governed by the rule in (63), which we rejected in the case of fewer
than n. Such an approach is defended, for instance, in Kennedy (2015).17

17At most and at least are focus-sensitive adverbials that can associate not only with nu-
merals but with all sorts of scalar items, quantifiers, and even referring expression (e.g., At
most Peter and Sue came) – cf. Krifka (1999). I am not aware of any full-fledged semantics
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4 Conclusion

Despite its technical nature, the rich formal semantics literature on modified
numerals has important implications for our understanding of the human lan-
guage faculty, for at least two reasons. First, as I hope to have convinced the
reader, developing an explicit theory of the semantics and the pragmatics of
such expressions leads to extremely difficult problems, which are not yet fully
understood. This is a fascinating situation, suggesting that this domain can
teach us something deep about how humans compute the meaning of natu-
ral language sentences. Second, semantic and pragmatic accounts of modified
numerals appear to interact with quite fundamental issues in semantics and
pragmatics, such as which concept of maximality is relevant to the semantics of
natural language, scalar implicatures and related exhaustivity effects, and the
division of labor between semantics and pragmatics. It is thus a fertile testing
ground for theories that address these issues.
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