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Abstract

In this paper, we study the asymptotic behavior of an e-periodic 3D stable structure made of beams of
circular cross-section of radius » when the periodicity parameter € and the ratio r/e simultaneously tend to 0.
The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition
of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a
warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities.
We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another
for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order
PDE.

Keywords: linear elasticity, homogenization, stable structure, periodic beam structure, periodic unfolding
method, dimension reduction, Korn inequalities.
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1 Introduction

The aim of this work is to study the asymptotic behavior of an e-periodic 3D stable structure made of ”thin”
beams of circular cross-section of radius r when the periodicity parameter € tends to 0, in the framework of the
linear elasticity. By ”thin”, we mean that the radius r of the beams is much smaller than the periodicity parameter
¢ and that we deal with the case where ¢ and r/e simultaneously tend to 0.

It is well known to engineers that for wire trusses, lattices made of very thin beams, bending dominates the
stretching-compression. A contrario, if the same structures are made of thick beams the stretching-compression
dominates. This is what several mathematical studies of recent decades have obtained for periodic structures made
of beams. For such structures, from the mathematical point of view, this means that the processes of homogenization
and dimension reduction do not commute (see the pioneer works [5, [IT], 2] and also [T}, [6] 8 24, 25, 27], 28, [31]).
Our aim is to investigate between these extreme cases. More precisely, we consider the case for which the ratios
diam(Q2)/e and e/r are of the same order (€2 is the 3D domain covered by the beam structure). In Sections
and following, we show that the ratio r/e? and its limit x € [0, +0o] play an important role in the estimates and
the asymptotic behaviors. It worth to notice that in our analysis, kK = 0 also corresponds to the case where first
the dimension reduction is done and then the homogenization, while K = 400 is for the vice-versa case. In the
convergences of Theorem we show that the rescaled global displacement depends on k. If k € (0, +00),
its limit is a combination of a global displacement (a pure stretching-compression) and a local bending; if k = +o0
it is just a global displacement and if x = 0 it is a local bending.

Our analysis relies on a displacement decomposition for a single beam introduced in [13] 14, [15]. According
to those studies, a beam displacement is the sum of an elementary displacement and a warping. The elementary
displacement has two components. The first one is the displacement of the beam centerline while the second
stands for the small rotation of the beam cross-sections (see [13, [I5]). This decomposition has been extended for
structures made of a large number of beams in [I4] (see [4] for the structures made of beams in the nonlinear
elasticity framework). Here, similar displacement decompositions are obtained, these decompositions are used for
stable beam structures (see Lemma and then for periodic 3D stable structures made of beams. It is important



to note that estimate 1 is the key point of this paper. It characterizes the stable structures. In a forthcoming
paper, we will investigate the unstable and auxetic 3D periodic structures made of beams and we will see that all
the estimates of Lemmawill remain except 1. These decompositions allow to obtain Korn type inequalities
as well as relevant estimates of the centerline displacements.

To study the asymptotic behavior of periodic stable structures and derive limit problem we use the periodic
unfolding method introduced in [9] and then developed in [I0]. This method has been applied to a large number of
different types of problems. We mention only a few of them which deal with periodic structures in the framework
of the linear elasticity (see [3] [16] 17} I8, 19, 20} 21, 26]). As general references on the theory of beams or structures
made of beams, we refer to [2] [7, 22] 23] (29, [30].

The paper is organized as follows. Section [2| introduces structures made of segments and remind properties
of Sobolev spaces defined on these structures. Furthermore, in this section we give a simple definition of stable
and unstable structures and present several examples. In Section [3] we remind known results concerning the
decomposition of a beam displacement into an elementary displacement and a warping. This section also gives
estimates with respect to the L2-norm of the strain tensor of the terms appearing in the decomposition. In Section
we extend the results of the previous section to structures made of beams. Complete estimates of our decomposition
terms and Korn-type inequalities are obtained for stable structures.

In Section [5| we deal with an e-periodic stable 3D structure made of r-thin beams, S; . For this structure we
introduce a linearized elasticity problem and specify the assumptions on the applied forces. Using results from the
previous section we decompose every displacement of S, as the sum of an elementary displacement and a warping
and provide estimates of the terms of this decomposition. The scaling of the applied forces are given with respect
to € and r. That leads to an upper bound for the L2-norm of the strain tensor of the solution of the elasticity
problem of order 1.

In Section [6] we introduce different types of unfolding operators, mainly one for the centerline beams and another
for the cross-sections. This last operator concerns the dimension reduction. Several results on these operators are
given in this section and Appendix C.

Section [7] deals with the asymptotic behavior of a sequence of displacements and their strain tensors. Then, in
Section |8 in order to obtain the limit unfolded problem we split it into three problems: the first involving the
limit warpings (these fields are concentrated in the cross-sections, this step corresponds mainly to the process of
dimension reduction), the second involving the local extensional and inextensional limit displacements posed on the
skeleton structure and the third involving the macroscopic limit displacement posed in the homogeneous domain
Q.

In Section |§| we complete this analysis by giving the homogenized limit problem (Theorem . We obtain a linear
elasticity problem with constant coefficients calculated using the correctors.

In Section [10] we apply the previously obtained results in the case where the periodic 3D beam structure is made
of isotropic and homogeneous material. We present an approximation to the solution of the linearized elasticity
problem which can be explicitly computed using the solution of the homogenized problem.

In the Appendix we give the most technical results.

2 Geometric setting

2.1 Structures made of segments

In this paper we consider structures made up of a large number of segments.

m
Definition 2.1. Let § = U Yo, e = [AY,BY, be a set of segments and K the set of the extremities of these

(=1
segments.

S is a structure if

e S is nonincluded in a plane,

e S is connected,

e a common point to two segments is a common extremity of these segments,

o if an element of K belongs to only two segments then the directions of these segments are noncollinear,
e for every segment vy we denote t‘i a unit vector in the direction of v¢, £ € {1,...,m}.

We denote t; the field belonging to L>°(S)? defined by

ty =tf aec in v, £e€{l,...,m}.



The segment v, C S of length [, is parameterized by Sy € [0,1,], £ € {1,...,m}
7= [ALB] = {A + 51t e R | Sy €[0,0]}, (AL BY ek

The running point of S is denoted S. For all S € v, one has S = A + Sit{, S; € [0,1], £ € {1,...,m}.

2.2 Some reminders on the Sobolev spaces L?(S) and H'(S)

A measurable function ® defined on S belongs to LP(S), p € [1,+0o¢], if for every segment 7, C S, one has
(I)|W S Lp(’yg), {e {1, R ,m}.
For every ® € L'(S) define

m le
/ P(S)dS = Z/ D(AL + 51t4)dsS;.
S =170

Observe that the right-hand side of the above equality does not depend on the choice of a unit vector in the
directions of the segments. The space L?(S) is endowed with the norm

[l =) [ (E)as, v e 1)
Set
H'(S) = {4 € O(S) |y, € H' (). L€ {1,0..m}].

where C(S) is the set of continuous functions on S.
For every ¢ € H'(S) denote

d d
%(5) = d—;i(Ae + S51th)  forae S=A’+5:t5, S €(0,l), £€{l,...,m}. (2.1)

We endow H'(S) with the norm

V€ HY(S).

2
L2(S)’

191l (s) = \/”1/’%2(8) + H%‘

2.3 Stable structures
The space of all rigid displacements is denoted by R

R = {r € CY(R%) |r(z) =a+bAz, VzeR3 (ab)eR?x R3}.
We define the space Ug as follows:
Us = {U € C(S)* | for every segment v, C S, U}y, is an affine function, £ € {1,... ,m}}.
Definition 2.2. A structure S is a stable structure if

dU
VU € Ug, %-tlzo = U e€R.

If the above condition is not satisfied, S is an unstable structure.
Remark 2.1.

1. The structure made of the edges of a tetrahedron is stable (see Fig.a). If we remove one edge then the
structure becomes unstable (see Fig[ilb).

2. The structure made of 12 edges and 6 diagonals of the faces of a cube is stable (see Fig.c). If we remove
one diagonal then the structure becomes unstable (see Fig.d).
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Figure 1: Stable and unstable structures

We equip Ug with the following bilinear form:

0P ov
DU > = — -t — -t1dS V(®,¥)e U U 2.2
< 9 >1 Sasl 1881 1 ) ( 9 )e s X S ( )

and the associated semi-norm
. dU
[Ulls = /< U,U > = HTS ~t1’

Lemma 2.1. Let S be a stable structure. There exists a constant C, which depends on S, such that for every U
in Ug there exists r € R such that

ey YUEUs (2.3)

1U = tllms) < CJU]s. (2.4)

Proof. Let R+ be the orthonormal of R in Ug for the scalar product
<<I>7\I/>:/<I>-\I/dS7 V(®,T) € Us x Us.
s

If U belongs to R and satisfies ||U||s = 0 then, since S is a stable structure, U belongs to R. Therefore U is

equal to 0. The semi-norm || - ||s is a norm on the space R*. Since R is a finite dimensional vector space, all the
norms are equivalent. Thus (2.4) is proved. O

3 Decomposition of beam displacements

In this section, we remind some results concerning the decomposition of a beam displacement. These results
will be used later and can be found in [15]. For the sake of simplicity these results are formulated for the beam
By« = (0,1) x D, whose cross-sections are disc of radius v (v <[). The beam is referred to the orthonormal frame
(O;e1,eq,e3) (e is the direction of the centerline). In this frame the running point is denoted z = (21, x2, x3).

Any displacement u € H'(B;,)? of the beam By is uniquely decomposed as follows

u=U"+7 (3.1)

where U* is called elementary displacement and it stands for the displacement of the centerline of the beam and
the small rotation of the cross-section at every point of the centerline

U(z) =U(z1) + R(z1) A (202 + x3€3), for ae. = (z1,22,23) € By . (3.2)

U = (Uy,Uz,Us) and R = (R1,R2,R3) belong to H(0,1)3. The residual displacement uw € H' (B ,)? is the warping
(the deformation of the cross-sections), it satisfies (for more details see [I5])

/ u(x) deodrs = / u(x) A (22 + z3e3) dradrs =0 for ae. zq1 € (0,1). (3.3)

4 4



Taking into account the decomposition (3.1)) and the representation for the elementary displacement given by (3.2])
the strain tensor e(u) has the following form:

e(u) = e(U®) + e(u)
pr de + 3 d7§12 %[(& _RS) _x?’gzzll] %Kdug + R ) +332de}

dzq dzq dxq

B (3.4)
= % ZZ;{I R3 — X3 (5511 0 0 + e(u)
3| (@ +R2) + 22 0 0

Below is a lemma proven in [13| [15]. It gives estimates for the warping and the terms from U¢ in the above strain

tensor ((3.4)).
Lemma 3.1. Let u be in H'(By)? decomposed as (3.1))-(3.2)-(3.3). The following estimates hold:

[allz2m, ) < Crlle(u)lzzs,.), IVl < Clle(u)l|rz Bl )
¢ (3.5)
: “RA ‘ << .
Hdml L2(0,1) 2 || ( )||L2 (Bi,x) Hda7 £2(0,0) || ( )HLz(BLJ)

The constants are independent of | and v <.

The function U, defined in (3.1), is decomposed into the sum of two functions U™ and U, where U" coincides
with ¢/ in the extremities of the centerline and is affine between them, U = U — U" is the residual part, i.e.

(l — 1‘1)
l

U©) + ZLu).

U (1) = i

In the same way the function R, defined in (3.1)), is decomposed into the sum of two functions R”" and R. It is
obvious, but important to note that

H(0)=Ul) =0, R(0)=R() =0.

Lemma 3.2. The following estimates hold:

— Cl
ez, IR0 < Fle(wlirais.

H dxy L2 (0,0 t2 ”

| e, < Cewy | &) 0% le(w)]
dz, L2(0,) ~ t LB gz 2o = t2 L2(Bue)s (3.6)
_ 2
24 - e1||L2(0 n < C;He(U)HL?(BL,r)a (U200 < C—5 2 le(u)llz2(B,..)s
Cl dR" au™ C
<= = : - .
H dr, 1‘ L2(0,0) — t2 le(w)llz2(5..0), H dx ‘ LZ(o,l) H dx, ‘ L2(0,0) — t2 lle(@)llz2(5..0
The constants do not depend on | and .
dR" au 1/
Proof. Since . and i (R—m(R))ANe1 (m(R) = 7 R(t) dt) are constant on (0,1), one gets
1 1 0
dRM |2 2 2 c )
= < =
H d:cl L2(0,1) del L2(0,1) Hdm1 L2(0,1) r4||e(u)HL2(B"‘)’
2 » - 2 » 2 C )
—_— = /\ — N = —RA < — .
H dxq m(R) Aer ’L2(0 I Hdml ( m(R)) el‘ L2(0,1) Hdml el‘ L2(0,l) — t2 He(u)HLQ(BZ")

Then, the Poincaré and the Poincaré-Wirtinger inequalities together with the above estimates yield

IR = R"|z2(0.) = IRl z200y < C 2|| e(ullzzs,,) and R =m(R)|L20p < C 2|| e(ullz2(s,.);

from which we derive the other estimates in (3.6). O



4 Decomposition of the displacements of a beam structure

From now on, S is a stable structure.

The beam structure S . is defined as follows:
Si. = {z € R? | dist(z,S) < t}.

For £ € {1,...,m}, denote Py, the straight beam with centerline v, = [A¢, B¢] and reference cross-section the disk
D, = D(O,t) of radius v, 0 < v < [, (the disk D; for simplicity will be denoted D). The straight beam Py is
referred to the orthonormal frame (A’ t{,t5,t5)

'Pgﬂ. = {x eR3 | z=A"f + Sltf + Sgté + S3t§, (51752,53) S (O,Zg) X Dt}. (41)

By definition, the whole structure &7 contains the straight beams Py, ¢ € {1,...,m} and the balls of radius ¢
centered in the points of I, more precisely one has

sie= (U Ban)u(Ure).
Aek =1

The set of junction domains is denoted by J.. There exists ¢y which only depends on S such that

I € | B(A,cov).

AeK

The set J; is defined in such a way that S; . \ J. only consists of disjoint straight beams.

Definition 4.1. An elementary beam-structure displacement is a displacement U° belonging to H*(S1 )® whose
restriction to each beam is an elementary displacement and whose restriction to each junction is a rigid displacement

U(z) = U(A" + S1t]) + R(A" + Sit]) A (Sath + Sstf),
for a.e. = A" 4 S1t{ + Soth + Ssth € Prr, (S1,S2,83) € (0,1¢) x D, £ € {1,...,m},
U(x) =U(A)+ R(A) A (xz — A), forae x€B(Ar), foralAeck
with U and R in H'(S)3.
In [I4] it is shown that every displacement u € H'(S; ;)* can be decomposed as
u=U°®+7u,

where U° is an elementary beam-structure displacement and where u € H'(S; )? is the warping. Here, the pair
(U¢,u) is not uniquely determined. Furthermore, the warping satisfies the conditions ([3.3]) ”outside” the domain
Je (see [14], [15]), more precisely, one has (¢ € {1,...,m})

/ U(Sh So, 53) dSsdSs3 =0,

Dr for a.e. Sy € (2¢ot, 1 — 2¢ot). (4.2)

/ H(Sh S, 33) A (5262 + 5383) dSsdSs =0,
D,

The following lemma is proved in [14, Lemma 3.4]:

Lemma 4.1. Let u be in H*(S1,.)3. There exists a decomposition of u, w = U® +7u for which U® is an elementary
beam-structure displacement. The terms of this decomposition satisfy

[Tl recs,.) < Celle(w)llzz(s,s  [IVEllL2s,.) < Clle(u)lz2s, .

dR c dau C (4.3)
|5 s, < he@llizso |58 R A8 < Tl o

The constants do not depend on t.



Here, again we split the field ¢/ into the sum of two fields U™ and U, where U" coincides with U in the nodes of
S and is affine between two contiguous nodes and U = U — U" is the residual part.
In the same way the fields R and R are introduced. The field U h describes the displacement of the nodes, i.e. the
global behavior of the structure, whereas U stands for the local displacement of the beams.
By construction the fields " and R" belong to Ugs. Furthermore one has

Lemma 4.2. For every u € H'(S1,.)? the following estimates hold:

i o+ Rl < G let@lzags. o

0] gy # 1 il sy < Sle@lzncs, "
s, * Wl < Slet@lzas. o

dc% - R /\tl‘ s T H% s T %Hd;/gl 'tl‘ L2(5) = t%”e(u)nws“)'

Moreover, since S is a stable structure, there exists a rigid displacement r € R, (r(xz) = a+ b A x), such that

C C
U = xllins) < Cle@llzxs,gs IR =bllias) < Sllellzes, . (4.5)

The constants do not depend on t.

Proof. Estimates (4.4)) are the immediate consequences of the Lemmas [3.2] and Since S is a stable structure,
Lemma and again (4.4]) yield a rigid displacement r € R (r(z) = a+ b A z) such that (4.5); holds.
Besides, from the Poincaré-Wirtinger inequality and (4.4))4, there exists b € R? such that

IR" ~Bllzas) < Slle(@l s, .
The constant does not depend on t. Then, 1 and the above estimate give
(b —B) A tall o) < g llelw)llzzcs,
Since the structure has more than two segments with non-collinear directions, this yields
b =Bl < Slletw)l2s, -

Hence, (4.5)2 is proved. O

Let S be a stable structure such that S U (S + e1) is a stable structure. For every displacement v € H*(S; . U
(S1.c +e1))?, Lemma gives two rigid displacements rq, ry such that

Po(l‘):ao-i-bo/\(x—G), rl(m)=a1+b1/\(x—G—el) V$€R3,
C C (4.6)
" = rollier< el 16" = ralissens le@lizssen,

where G is the center of mass of S.

Lemma 4.3. Let S be a stable structure such that S U (S + e1) is also a stable structure. The following estimate
holds:

C
r1 — rolla (su(ster)) < ?He(u)||L2(51,ru(51‘r+e1))o (4.7)

The constant does not depend on t.



Proof. From Lemma there exists a rigid displacement r such that
r(z)=a+bA(zr—G—e1/2) Va e R3,
C
U™ = x| g (su(ster) < ?||e(u)HLZ(Sl,:U(Sl,rJ"el))'

The constant does not depend on t. Hence

C C
e =rollms) < Tlle(lrzsicusicrens  IF=Tillmisien < Clle(llzz(s, cusieten-
The above estimates yield (4.7) since in R the norms |- || z1(sy, | | 71 (s+er) a0d ||| 71 (sU(S+er)) are equivalent. [

5 A periodic beam structure as 3D-like domain

From now on, in all the estimates, we denote by C' a strictly positive constant which does not depend on € and r.

5.1 Notations and statement of the problem

Below we consider periodic structures S included in a closed parallelotope.

Definition 5.1. A structure S is a 3D-periodic structure if for every i € {1,2,3} the set S U (S + ei) s a
structure in the sense of Definition [2.1]

Definition 5.2. A 3D-periodic structure S is a 3D-periodic stable structure (briefly 3-PSS) if S and
SuU (S + ei), i € {1,2,3}, are stable structures in the sense of Definition .

Remark 5.1.

1. The structure made of 12 edges and 6 diagonals of the faces of a cube is a 3D-periodic stable structure
(Fig.[4.a).
2. The structure made of 12 edges of a cube is not a 3D-periodic stable structure (Fig. . b).

Let Q be a bounded domain in R? with a Lipschitz boundary and I" be a subset of Q) with nonnull measure.
We assume that there exists an open set €’ with a Lipschitz boundary such that Q@ € " and Q' NoQ =T.

Denote
o O = {a e RV [dist(z,Q) < 1}, Q" = {& € Q| dist(z, Q) > 2v/3e},
o Y =(0,1)3,
o G=(1/2,1/2,1/2) the center of mass of Y,

e S a 3-periodic structure included in Y,

N
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\

\
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\
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\
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Figure 2: 3D-periodic stable and unstable structures



o . =6 | (e€+eY)NQ#AD}, Ze = {6 | (e€+eY) C Q)
o St = {73 | (e£+eY)CQinty,

o SL={E€Z’ | (e£+eY)NQ # 0},

o =. = {¢ € = | all the vertices of € + Y belong to Z.},

o Z., ={{€E. | {+e €}, i€{1,2,3},

o (. = interior( U (e + 5?)), 0. 1nter10r( U (e€ + €Y)> L= mterlor( U (& + 5?))

b€ geE. ez,

. th 1nter10r( Ugemm (e + EY)), Q. = interior( U (e€ + 5?)).
geE.

One has
3 3
et c B ﬂ: U: ==

The open sets €., L, ﬁs, @2’” and Q" are connected. Moreover, the following inclusions hold

Ot c Q" cQc Q. c Q" c o c Q. C Q..
Set

Se= | (€+eS),  Sep={weR®|dist(z,5.) <7},
§E€E.

S = U (e€ +&S), S, ={z R’ |dist(z,S]) <r},
§€EL

K. = U (e€ +€K).
€=,

The running point of S is denoted s.

Let S;» be a beam structure consisting of balls of radius 7 centered on the points of K. and beams, whose cross-
sections are discs of radius 7 and their centerlines are the segments of S.

Psfr_€£+gpf,t7 ‘ge{l m}’ t:T/E,

So= (U san)o (U U7)

Aek. £eEc (=1
The parametrization of the beam P¢ 20 (L€ {1,...,m}) is given by (see (4.1))
x = el 4+ Al + s1th + soth + s3th,  (s1,82,83) € (0,elp) X D,

The junction domains (the common parts of the beams) is denoted J; ,. One has

U BAr) cT.c |J B4 ). (5.1)

AeK. Aek.

The structure S, ;. is included in €2..

The space of all admissible displacements is denoted V.,
Ve, ={uecH (S.,)" | Iu' € H'(S.,)? such that Uls,, =uandu’ =0in S, \Ser}-
It means that the displacements belonging to V., "vanish” on a part I'c , included in 05, , N O€.

We assume that S, , is made of isotropic and homogeneous material.

10



For a displacement u € V. ,., we denote by e the strain tensor (or symmetric gradient)

1 1/0u; Ou,
= S (Vut (Vo)) el = 5 (G0 + 52). 5.2
elu) = 3 (Vu+ (V") eiglu) = 5 (5 + 5 (5:2)
We have two coordinate systems. The first one is the global Cartesian system (x1,z2,z3) and is related to the
frame (O; ey, ez, e3). The second one is the local coordinate system (s1, s2, s3) defined for every beam and related
to the frame (e€ +eA%;t4,t5,t5), £ € {1,...,m}. The orthonormal transformation matrix from the basis (t{,t5,t%)
to the basis (er, e, e3) is T* = (t{ | t5 | t5), this matrix belongs to SO(3).

Hence, for every displacement v € H 1(7’; ,) a straightforward calculation gives

1 1 1
(v) =3 (va n (VQCU)T) = 5T’ (st + (VSU)T>(T£)T = 3T e,(v) (T
v l 1/( Ov l v l 1( 0v ¢ v l
75, b1 5(@';1+?T1’t2) g(@'tfr@'t?) (5.3)
es(v) = * 5, B2 3 (5e b5+ 5 - t5)
* * g—” ~t§
83

Let afj’-zl € L>(S:r), (4,7,k,1) € {1,2,3}*, be the components of the elasticity tensor. These functions satisfy the
usual symmetry and positivity conditions

er __ _&gr __  _&T . .
® Qg = gigy = Qglyy A 0 Seps

e for any 7 € M2, where M2 is the space of 3 x 3 symmetric matrices, there exists Cy > 0 (independent of &
and r) such that
aZ’.;lTikal > CotijTij a.e. in Sc,. (5.4)

The coefficients a5, are given via the functions a;j, € L>(S x D)

51 S2 83
a; (@) = agi(e€+ eAL + s1t] + soth + s3th) = aijm (Ae + — 7)

(5.5)
for a.e. & = e€ + A’ + s51t% + soth + szt in Pf,r, tef{l,....m}, E€E..

The constitutive law for the material occupying the domain S, , is given by the relation between the linearized
strain tensor and the stress tensor
oij(u) = agiy esp(u), VYu€ Ve, (5.6)

The unknown displacement ugE|: S..» — R? is the solution to the linearized elasticity system:
V-o(us)=—f in S,

U, =0 on I'.,.NdS.,, (5.7)
o(ue)  ve =0 on 0S.,\Ter,

where v, is the outward normal vector to 0S5, \ I', f. is the density of volume forces.

The variational formulation of problem (5.7)) is

Find u. € V., such that,

/ o(ue) : e(v)dx = / fe - vdz, Vv e Ve,. (58)
Sa,r Sa,v-

5.2 Final decomposition of the displacements of a periodic beam stable structure as
a 3D-like domain

Let u be a displacement belonging to V. ,.. As proved in [I4], we can decompose u as the sum of an elementary
displacement and a warping.
The decompositions introduced in Section @] the estimates of Lemma [4.2] lead to the following estimates:

1Of course, the solution to this problem depends on € and 7, but for simplicity, we omit the index r. The same holds for the applied
forces f- and for every function which in fact depends on both indexes.
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Lemma 5.1. For every u € V., the following estimates hold:

[ll s, ) < Crle@llzs.ys IVl s,y < Clle@lzes. .,
C au (5.9)
H L2( o ﬁ||e(u)||L2(SE’T)’ HE _R/\tl‘ L2(S.) < *” (u )||L2(sm).
Moreover, one has
dR C _
B sy < ale@lzz., IRl < Oglle@lzae. .
dzj 77 g
“ .tl‘ sy S —II ez 1]l 2,y < Cllel) 2. 0y
(5.10)
d . i E
= sy < Cralle@®llzzis. [0 ags.) < Coglet)lizs.,.
duh £ dRh
~ R At <o | L | |
ds 6 asy S Crzle@lzsens (175 |l e, Tl e e, 7n2|| e(w)|| 12(s. )

Proof. We apply Lemma to the structure (£ + S1,¢). Replacing t by " and then summing over all £ € Z, give
€

the estimates (5.9)) and (5.10)). O

Let u be in H'(S. ,)3. In Lemmareplace Sic by e(§+S,/.), with £ € 2., and let r.¢ be a rigid displacement
given by this lemma
ree(z) = a(e€) + b(e&) A (z — G — ), Vz e R

One has
" = reellL2e(ersy < %He(U)HLz(E(&Sr/E)),
(5.11)
|22 v nta], o) S lelieers,
and .
IR™ = b(e€) |12 (e (ers)) < O le(lzeers, .- (5.12)

Recall that if £ belongs to = ;, the domains (£ + S,/.) and £(§ + e; + S,/c), i € {1,2,3}, are included in S ;.
Then, applying estimates (4.7 in Lemma to the structure (¢ + S,/.) we obtain

3 &2
D> Ib(et +cei) — b(e€)Pe® < opn zlle(u WlZas..,):
1=1 €5, ;
3 54 (5.13)
D0 la(sg +ee) —a(et) — eb(ct + ce;) A ey’ < Cﬁ”‘f(u)niz(sg,r)'
i=1¢eE.
Set
UL = alef), R(g£) =b(ef), forevery € € E..
Now, define

e U (resp. R)inthecelle(£+Y), € € EE, as the @, interpolate of its values on the vertices of this parallelotope.
U, R e WH=(Q.)3,

e a (resp. b) as a piecewise constant function, equals to a(e) (resp. b(g€)) in the cell (€ +Y), € € E..

a, bec L™(Q.)>. (5.14)

We remind the following classical results ([L0, Lemmas 5.22 and 5.35] and [I6, Lemmas 5.2 and 5.3]):

12



Lemma 5.2. Let Q2 be a bounded domain in RN with Lipschitz boundary. There exists 5o > 0 such that for all
6 € (0,80] the sets Q" = {z € Q| dist(x,09) > &} are uniformly Lipschitz.

Lemma 5.3. Let ¥ be a function defined on =c and extended using the classical Q1 interpolation procedure in a
function denoted U and belonging to W1>°(Q.) then we have

3 ORI Baamey, D EOPC( D ORI Y WEte) - OF).  (5.15)

gegint £€E, gegint 1=1£€E. ;

Proposition 5.1. Let S be a 3-PSS. For every displacement u € Hl(Ssm)‘g, one has

C
VR L2 (qint) < ?||€(U)||L2(SE,,,),

|5 - < O llew) e, ) i € {1,238}, (5.16)

L2 inny
[|e(td) ||L2(ant) < C;||6(U)||L2(sa,r)-
Moreover, there exists a rigid displacement r such that
6 =¥l ey < CZlle()l2gs. .- (5.17)
Proof. The estimates 1,2 and Lemma yield

[VRI|L2imey < IVRl 2, < C ez,

—RANe;

—’R,/\ei .
L2(Q

€ )
) < C;|\e(u)\|L2(35)T), i€ {1,2,3}.

H ox; L2(Qint) H ox;

And (5.16))1 2 are proved. From which we get

< H -e; + 671/{ e;
L2(Qint) 0x; ox;

IS ..
S O;HB(U)H[P(SEJ«% V(Za]) € {17273}27

H@xz axj e,’ L2(6.)

which also read (5.16))3. Lemma allows to apply the 3D-Korn inequality in the domain Q" using estimate
(5.16)3. That gives ((5.17). O

Proposition 5.2. Let S be a 3-PSS. For every u in V.., the following estimates of the elementary displacement
holds:

C €
lsesy < S (14 ) le@lixes.. CSlle(l s, .-

%]

Lx(s.) ~ o r?
1Rl +<| || o < OS5l p2s. . (5.18)
0 sy < O (1 4+ S ) le@lags. . 190 l22s...) < C=lle(@lzz ...
Moreover, one has the Korn type inequalities
ullises. oy € C(1+ S lelissn 1Vulias. o < O leliscs, (5.19)
Proof. This proposition is a consequence of Proposition [5.1] and two lemmas postponed in Appendix [A] O

5.3 Assumptions on the applied forces

We distinguish two types of applied forces. The first ones are applied in the beams (between the junctions) and
the second ones are applied in the junctions.

* The applied forces f. in the set of beams U U 778@ ,
ceE, =1

13



For simplicity, we choose these applied forces constant in the cross-sections and equal to

m
13 . I3
f. = P f|35 a.e. in U U ’Pd,r
€EE, t=1
* The applied forces Fy k. in the junctions.
These forces are defined in the balls centered in the nodes with radius r

g? €
Fig.= > ﬁF(A)lB(Am) + > ﬁG(A) A(x—A) gy,
Aek. Aek.

Lemma 5.4. Taking the applied forces as

g2 €
=Y [ﬁF(A) + SGA) A (@ - A)} g +
A,

3

) fis. 1u5656 e PE, (5.20)

el,r
where (f, F, G) € (C(§)3)3 and where 1o is the characteristic function of the set O, we obtain
| /S f- - uda| < C(IEl @) + Pl + Gl @) lle@)l2s..)s Vu € Ve (5.21)

Proof. The proof is postponed in Appendix [B] O
As a consequence of the above lemma one obtains

Proposition 5.3. The solution u. to the problem satisfies
lle(ue)llz2(s..,) < O(HfHLOO(Q) + 1Fl| o) + ||GHL<>°(Q))~ (5.22)
Proof. In order to obtain apriori estimate of u., we test (5.8) with v = u.. From , we obtain
le(u)llizis. .y < C(IEllLee (@) + IF Iz ) + Gl @) lle(ue)lz2(s...)»
which leads to . O

6 The unfolding operators

The classical unfolding operator 7. is developed in [9, [10]. Here, we will use similar operators 767, T.5, T2»*
in the context of the domains 2., S; and S, ;.

Definition 6.1 (Classical unfolding-operator). For a measurable function ¢ on Q, the unfolding operator T is
defined as follows:

Te(9)(z,y) = ¢(E[g —i—Ey) for a.e. (z,y) € Qe x Y,
Te(¢)(x,y) =0 for a.e. (x,y) € (Q\i) x Y.

Definition 6.2 (Unfolding-operator). For a measurable function ¢ on ., the unfolding operator T is defined
as follows:

T (o) (2, y) = ¢(€{g —I—ey) for a.e. (x,y) € Q. xXY.

Lemma 6.1. Let ¢ be in LP(§2.), p € [1,+00). One has

[ T5 () = To ()| Lo (axy) < 91l Lo et (6.1)
where
bl = {z € Q.| dist(z,00) < 5\/5}
Proof. Inequality (6.1]) is an immediate consequence of the definitions of these operators. O
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As a consequence of the above lemma, the properties of the operator 7! are similar to those of the classical
unfolding operator 7;. For the main properties of the unfolding operator 7, we refer the reader to [I0, Chapter 1].

Below, we introduce two new unfolding operators. The first one is used for the centerlines of beams and the second
one is used for the small beams (it concerns the reduction of dimension).
x
In the definitions below, € [f} represents a macroscopic coordinate (the same coordinate for all the points in the
€
x x
cell 8{*:| +¢eY') while S is the coordinate of a point belonging to S. Hence, 5{7} + €8S represents the coordinate of
€ €

x
a point belonging to Se. In order to get a map (x,S) — 6{*:| + &S almost one to one, we have to restrict the set

S. This is why from now on, to introduce the unfolding operator, in lieu of S we consider the set
SN[o,1)3.

For simplicity we still refer to it as S. The set of new nodes is always denoted K and the number of beams of S is
still denoted m.

Definition 6.3 (Centerlines unfolding). For a measurable function ¢ on S., the unfolding operator T.° is defined
as follows:

TS(0)(@,8) = (2] +28) forace. (x,8) € 2 xS,

Definition 6.4 (Beams unfolding). For a measurable function u on Se ., the unfolding operator T>** is defined as
follows (€ € {1,...,m}):

T2 () (2, §) = u(s [g} +eAl + St + rSoth + r53t§) for a.e. (x,8) € Q. x (0,1;) x D,

where S = (S1,59,93), At is an extremity of the segment vy C S and D = D; is the disc of radius 1.

Let ¢ be measurable on S;, one has
S z o ¢ ‘ b,¢ & 0
TS(6)(x,S) = qs(sH +8) = qs(sH Al +eSit]) = TH(0)(w, (51,0,0) for ae. (w,51) € Q. x (0,1).

Lemma 6.2 (Properties of the operators 7° and 7).
For every ¢ € L'(S.)

/ T5(6)(2,8) dS d = / 6(x) da. (6.2)
QxS Se
For every ¢ € L?(S.)
IT2 ()| 22 (2. xs5) = €l Dl 2(s.)- (6.3)
For every ¢ in H*(S.)
975(9) _ _rs(4¢
T(m,S) =7, (g)(l’, S) for a.e. (x,S) € Q. xS. (6.4)
For every ¢ in L*(S:,)
5
||7;b’£(1/’)“L2(anwxD) < C;W’”L?(Sm) forall L € {1,...,m}. (6.5)
For every ¢ in L'(S: )
m 2 N N
S ST @S ddS - [ v ] <Clelu,. (6.6)
=17 Qe XvexXD € Se,r

The constant only depends on S.
For every w in H'(S.,) (j € {2,3} and £ € {1,...,m})

N b0
(v, 8) - = =W )
aTWl for a.e. (z,5) € Q. x (0,1;) x D. (6.7)
T (Vu)(a, 8) - ] = =5 S(“) («,5),
J
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Proof. We prove (6.2) and (6.3). Let ¢ be in L'(S.)

7;S(¢)(a:,S)dex=Z/ T5(¢)(x, AL + S1t%) de dS; = Z > |5§+5Y|/ P(c& + Al + et)dt
=1V Qe XV

(=1 ge€E.

- e 14 2
ZZ:: /O p(e€ + A +st)dt_5/sa¢(z)do:

{=1¢

Qe xS

We prove (6.6). For u € L*(S.,,) we have

/ T (u)(x, §) dzdS = / u(s {q +eAl 4 eSth + rSoth + TS3tg) da dS
Qe Xyex D (e€4eY)Xyex D €

tex=
=Y / u(€§ + eAl + Sttt + rSoth + rsgtg) dx dS
ce= (e€+eY)Xvex D
— Z |e€ + Y| / 55 +eAl + 5Slte + TSQtZ rSp,tg) ds
EEHE g><D
=g Z / u(€§ +eAl + ESltf + r52t§ + rsgtg) ds.
YeX D

§E€E.

Now, replacing €& + e A’ + eS1t{ + rSath + 7S3t4 by  and taking into account that the matrix (t{[t5[t5) belongs
to SO(3), we obtain

y R 5 &2 e
/anwxD T2 (u)(x, S)dxdS = 2 E;E /(55+5PM/5) u(x) de = 7”2525 /735“ u(zx) dx
and follows.
Properties — are direct consequences of the definitions of the unfolding operators. O
Corollary 6.1. For every ¢ in L*(S.), £ € {1,...,m}
T2 (D) L2(@xryex D) < Celldll(s.)- (6.8)

From now on, every function belonging to LP(Q) (p € [1,+00]) will be extended by 0 in Q. \ Q.
Denote Q1(Y) the subspace of W' *°(Y) containing the functions which are the Q; interpolations of their values
at the vertices of the parallelotope Y.

Lemma 6.3. For every ® in W (Q.) satisfying
TE (@) € L2 Q1Y) (6.9)

Then ®|s. belongs to W>°(S.) and it satisfies

C
s = ZI1®lz2ce.),

6.10)
d®|s ‘ o s e (
C=VO. ot ae inS. and | Z|ve
s \% 1 a.e inS. an ds s, ) 5 IV 120
Let {®.}. be a sequence of functions belonging to WH*°(Q.) satisfying and
[®cllz2(0.) < C (6.11)

then, up to a subsequence of {e}, there exists ® € L*(Q2) such that

b, —~ &  weakly in L*(Q),
TN D) = @ weakly in L2(Q;Q1(Y)), (6.12)
TN (@) joxs = TO () = @ weakly in L*(Q; H(S)).
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Moreover, if one also has

then ® belongs to H'(Q) and

VO, |20y <C

O, —~ &  weakly in H*(Q),
T (VPe) = VO weakly in L*(Q x V)2,

TS ( dj;s

) =TV, - t1)joxs — VO - t1 weakly in L*(Q x S).

Proof. The proof is given in Appendix [C]

First convergence results for sequences in H*(S.).

Lemma 6.4. Let {¢.}. be a sequence of functions belonging to H(S.) satisfying

doe
ds

)
c
B

IN

|fell2(s.) +€H

L*(S:)

Then, up to a subsequence, there exists ¢ € L2(Q; HL,(S)) such that

If we only have

per

7;5(¢5) — q/ﬁ\ weakly in LZ(Q;Hl(S)).

doe

C
I6elss.naumn +¢| 52 <=

L2(S.nQint)y — g’

then, up to a subsequence, there exists ¢ € L?(Q; H.,,.(S)) such that

p

TS (¢ )lgine, s — & weakly in L2(Q; HY(S)).

Proof. The proof is postponed in Appendix [C]

Definition 6.5. The local average operator M is defined from L?(S.) to L*(Q.) as

1
ME(P)(x) = |8|/.s 7'68(¢)(9:, S)dS, for a.e. x € Q..

By convention the value of M*(¢) on the cell e(§+Y) is simply denoted M?*(p)(e€).

A second lemma for sequences in H(S.).

Lemma 6.5. Let {¢.}. be a sequence of functions belonging to H*(S.) satisfying

C
Pl 1 (s.) < =

Then, up to a subsequence, there exists (P, ;é\) € HY(Q) x L?(Q; HL,,.(S)) such that

p

75 (6e)1gini, g — ©  strongly in L*(Q; H'(S)),

75(

dope
ds

)1§gntx8 -~ V-t + g—z weakly in L*(Q x S).

Proof. The proof is postponed in Appendix [C]

Denote

HL(Q)={¢pe H' () |p=00nT}.
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Corollary 6.2. Let {¢.}c be a sequence of functions belonging to H'(S:)* N V., and satisfying the following

Q

|ellm(s.y < =
Then, up to a subsequence, there exists (@,(35) € HE(Q)? x L*(Q; HL,,.(S))? such that

per

7;5 (¢8)1§’i"t><s — ® strongly in L*(Q; H'(S))?,

do ¢ .

S RN _ 2 3

T2 ( dse)lﬁ’;'"fxs Vo -t + 7S weakly in L*(Q x 8)°.

Proof. Since {¢.} belongs to V. ., these functions equal to 0 in S, \ S.. Applying Lemma with S! instead S.
and with ' instead 2 give the result. O

7 Asymptotic behaviors

7.1 Asymptotic behavior of a sequence of displacements

From now on, we assume that v is a function of € satisfying the following conditions:
.. r . r
lim - =0, lim — =k € [0, +-o0]. (7.1)

e—~0¢ e—=0¢
In addition, every field appearing in the decomposition introduced in the previous sections will be denoted with only
the indez €.

In this section we consider a sequence {uc}e of displacements belonging to V., and satisfying

le(ue)l[z2s..,) < C-

Theorem 7.1. For a subsequence of {€}, still denoted {}, one has
(i) there exist U € H%(Q)g, U e L*(O; H;M,(S))3 such that S — U(-, S) Aty is an affine function on every segment
of § and the following convergences hold:

il/lelmm — U weakly in LQ(Q)?),
8 €

r

gvuslgém — VU weakly in LQ(Q)Q,

ST+ e t)t) ~ U weakly in L2(Q3 H'(S))°,

L (L v @, - au o 3
oT; (ds Wl + (T t)t1) ) = VUt + o weaklyin L@ xS)"
Trs(Hey L, M R

57—5 ( ds) ti — (e(U)t1) - t1 + 7S t1  weakly in L°(Q x S),

where e(U) is the symmetric gradient of the displacement U
(ii) there exists U € L*(Q;H},.(S))? such that ﬁlw € L2(; H (7o) N H? ()3, Z:i\w t4=0,0€{1,...,m} and

2 A~
%ﬁs(ﬂa—(ﬂs-tl)tl)—\u weakly in  L2(Q; HY(S))”, (7.3)

(iii) there exists Z € L*(2 x 8)3 such that

—Re A tl) -~ VUt + g—[g +Z  weakly in  L*(9 x 8)37 (7.4)

(%

(iv) there exists R € L2(€; H}..(S))? such that

2 ~
%7;8(735) — R weakly in LQ(Q;Hl(S))S’

18



and

RAt =g, (7.6)

(v) there exists w € L?>(Q2 x S; HY(D))? such that

1
,Tb’z(ﬂa) —u  weakly in L*(Q x ’Ye;Hl(D))Sa

.9 (7.7)
205, —T24T.) = 0 weakly in  L*(Q x v, x D)
Proof. Below, every convergence is up to a subsequence of {e} still denoted {e}.
(i) From Lemma and Proposition [5.3[ we have the following estimates:
r
CIUellz oy < € (7.8)

Lemma 5.1 in [16] gives a field & € HE(Q)? such that (7.2)); 2 hold.
From the estimates (5.10) and (A.2) one obtains

— C
Ul + Ue - t1)b1 ]| s,y < -

Hence, the convergences (7.2))3 4 are the consequences of Corollary

Since Ju p
= — (Ul + t1) -t
ds d ( 1) 1
the convergence ([7.2)5 holds (observe that (VU t1) - t1 = (e(U) t1) - t1).

(ii) From (5.10), (5.22)), (6.1) and the fact that by construction U, (0) =Ue ., (elg) = 0, we obtain

EigH’Te (ua - (us 'tl)t

<C.

1)HL2(Q;H(§W) =

Thus, up to a subsequence, there exists U € L2(Q; HY(S))® such that Z/AIW € L%(Q; Hi(v))3, Zj\w “tf =0,
te{l,... 7m} and convergence (7-3), holds.

(iii) Estimates (5.9)4-(5.10) and . 6.2]) yield
( (Z/{ —(L{ tl)tl) —RE/\t1)’

< cf (7.9)
L2(QxS)

Then, there exists a field Z € L?(Q x S)? such that

gﬁs(dis(ljs —(U. -tl)tl) —R. /\tl) — Z weakly in L*(Q x S)3

and by (7.2)4 we have

P (e mon) = DT (L (U @ tyn)) ¢ LT (L (e~ @)~ R A )
o

= VUt + 50+ 2 weakly in  L?*(Q x S)®.

(iv) Estimate (5.18))2 gives

d €
R H— £
Rellzz(s.) + e ds llL2s) =  r2

Thus, up to a subsequence, there exists a function R € L2(€; H}.(S))? (see Lemma such that (7.5 holds.
On the one hand, from ([7.9) we have

2
Z—QTES(%(HE - (U- -tl)tl) —R: A t1) — 0 strongly in L*(Q x S)®.
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On the other hand from convergences ([7.3))1, (7.5) we obtain
r2 d —  — U .
5—27;5(£(u€ — (U t)ty) — Re A tl) — 99 ~RAt weaklyin L3(Qx S)™
Hence, we obtain ([7.6)) and
R U :
—/\tlzﬁ a.e. in QxS. (7.10)
Then Uy, € L*(: Hy (ve) 0 H2(y))".
(v) Taking into account 172, 2 and (6.5) for j =2,3, ¢ € {1,...,m}, we have

< Ce.
L2(Qx~vyex D)

0
1T @) | L2 (xyex D) + || 5 T2 (W)
(2x~ex D) H 85]'

Hence, up to a subsequence, there exists 7 € L?(Q x S; HI(D))3 such that 1 holds.
In order to show convergence (|7.7))2, note that from ([5.9))2, 1 and (6.5]) it follows

T O e ‘
I | B o2 <C.
g2 H 8517; (e) L2(Qx~yexD)
Therefore, convergence ([7.7), is proved, since
r — . 3
6—27'6”(%) — 0 strongly in L*(Q x y¢; HY(D))". O
Remark 7.1. Due to (4.2)), the warping u satisfies
/ ﬂ(~, S, 53) dSsdSs3 =0,
b ae in Qxvy, Ye{l,...,m}. (7.11)

/ U(', S, 53) AN (Sgtg + Sgtg) dSsdS3 =0,
D
Denote

per,0

’Dmi{(ﬁ, B) € H, (S)® x H, (S)® | M:l§/\t17 A =0 on all the nodes ofS}.

per per ds

Dp, = {Z c H' ,(S)® | AAty is an affine function on every segment v, £ € {1,...,m} },

The field U is in L?*(Q; Dg.) while the pair (Z:{\, 73,) belongs to L?(€;Dr,). It worth to notice that a field A
belonging to H;EKO(S)?’ is a local extensional displacement if and only if

dA dA
— - —=dS =0
s dS dS
for all A € H;ET(S)g’ which is the first component of an element belonging to Dy,,.

We endow Dp, (resp. Dy,) with the semi-norm

- dA PPN dB
=42 ¢ ‘ , . I(A4,B = H— .
s = |55 6] sy G 1A BNDs = |55,
Lemma 7.1. On Dg, the semi-norm || - ||s is a norm equivalent to the norm of H*(S)®. On Dy, the semi-norm
I, )Ip,, is a norm equivalent to the norm of HY(S)? x H*(S)3.
Proof. The proof is given in Appendix O
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7.2 Asymptotic behavior of the strain tensor

-~

For every V € HA(Q)®, (V,V,B) € L2 Dpy x D) and & € L2(Q x S; H(D))? we define the symmetric
tensors &, €s, Ep by

(G(V)tl) t: 0 O gg)l t1 325,‘; <SQtQ+S3t3> * ok
EV) = 0 0 0], Es(V,V, B) —%,%Bl-h ,
S. OB
0 0 0 Zie -t
1o 107
0 265‘)2 t1 28751‘)3 t1~
Ep@) = |* -ty 32 ta+ ity a.e. in Q x S x D.
ool
* * 95, ts3

Theorem 7.2. Let u. be the solution to (5.8). There exist a subsequence of {e}, still denoted {e}, and U €
HE(Q)3, (UU,R) € L*(Q;Dp, x Dr,) and i € L?(Q x S; HY(D))? such that the following convergences hold
(te{l,...,m}):

1~ .
f'7;l”£(u5) — U+ U weakly in L*(Q x v¢; HY(D))?, if k € (0,400,
K

; (7.12)

E—Sﬁb’e(us) — U weakly in L*(Q x v¢; HY(D))?, if k=0

and
3x3.

gzbf(es(us)) S EU) + EsUU,R) + Ep(W)  weakly in  L2(Q x v¢ x D) (7.13)

Proof. Below, we give the asymptotic behavior of the sequence {7*(u.)} as ¢ — 0 and r/e — 0. One has
T2 (ue) = T2HUE) + T2 (ue).
From (7.7); we have (¢ € {1,...,m})
1
ST (@) T weakly in (2 x v H(D))®.
From Definition [4.1) we have (¢ € {1,...,m})
TEAUE) = TSU + (U= - t1)t) + TS U= — (Us - t1)t1) + 7T (Re) A (Sath + Ssth), ae. in Q x 4, x D.
The convergences ([7.2))3, . - 7.5)) yield
gzb’f(U:) U+ AT weakly in L2(Q x ve HA(D))®, if x € (0, +o0].
K

if k =0, from we obtain
Z—ZTE"’E(U;) — U weakly in L*(Q x v, H'(D))>.
Hence, the convergences hold.
Now we consider the asymptotic behavior of the strain tensors T2 (e (u.))
T2 (es(ue)) = T (es(@e)) + T2 (es(UE)).
From (7.7)), we obtain (¢ € [1,...,m])

f?‘f’f(es(ﬂs)) — Ep(@) weakly in  L2(Q x 7, x D)

Next from the convergences (| 4, .27 and (| . we obtain
(Vuss + L) - ¢ - gﬁ;g (S th+ S5 th) «
(Ut + 4+ 2). tZ — S0k ¢ 0 0| weaklyin L*(€x~ x D)
(VU t, + 8” +Z) th+ 3297 BR -t

3x3

3><3

ST ea(US) =

NI= N
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We set

a:ﬂ+52((vm1+a—u+z) -t2)t1+53((vut1+8—“+z) ‘tg) 1 ae in QxSxD.

851 aSl
Hence, one has
T bl —_— S ~ . 2 3x3
;7:_. (es(ue)) = EU) + Es(U,U,R) + Ep(u) weakly in  L7(Q2 x v x D)
and (7.13)) holds. O

Denote

D, = {(1}71,@2,&3) € H'(D)? | / (S3w2(S2, S3) — Sows(S2, S3)) dS2dSs = 0,
D

(7.14)
/ ﬁi(527 Sd) dSsdS3 = 0, 1€ {17 2, 3}}
D
Thanks to the conditions ([7.11)) satisfied by @ and the definition of u, one obtains
U= (u-t1)ts + (W-t2)to + (U t3)ts is such that (@ -t1,0-ts,U-t3) € L*(Q x S; D). (7.15)

For the sake of simplicity, if v belongs to L?(Q x S; H'(D)?3) and is such that
U= (U-t1)t1 + (V- ta)to + (U t3)ts satisfies (V-t1,0-t2,0-t3) € L*(Q x S; D)

we will write that v belongs to L?(Q X S; D).

8 The limit unfolded problem

To obtain the limit unfolded problem, we will choose test displacements v in V., which vanish in the junction
domain J; , or which are equal to rigid displacements in J; ,. In doing so, we will have

m

2 ~
/ o(ue) :e(v)de =) %/ g T (€515 (we)) T (e g (v)) dwdS.
Se,r =1 € QXvex D

The step-by-step construction of the unfolded limit problem (8.12)) is considered in Lemmas

Lemma 8.1 (The limit problem involving the limit warping). For every £ € {1,...,m} one has
/ asji (EU) + EsUUR) +Ep (@), (Ep(@)),, dSdz =0,  Vie L’ (Qxy;H'(D)®.  (81)
QXvexD
Proof. Set

Ter(z) = W (€ + £AY) v(%)@(i“', ‘13)

T or

(8.2)
for a.e. & = ef + A’ + s1th + soth + s3th, (s1,80,83) € (0,ely) x D,., € € Z,

where W € D(Q), V € D(vy) and ¢ € Hl(D)s7 ¢ e {1,...,m}. Since V belongs to D(v,) and r/e goes to 0,
the support of the above test-displacement is only included in the beams whose centerline is €€ + €7,. Moreover,
this displacement vanishes in the neighborhood of the extremities of this beam, it means that this displacement
vanishes in the junction domain 7 .

One has
r dV ¢ 1(y 90 ¢ rdv A 9 ¢ rdv ¢
N A et §(Va*§;'t18+g§@‘t2) fl(Vqé'},'tlﬁg@@'t;)
es(Ver) = ;W(s{JreA) % V S& -t 3(V 5 b5+ V g8 - th) (8.3)
* * % ad—gz -t

We apply the unfolding operator 7¢ and pass to the limit, this gives
Eﬁb’e(es(ﬂg7r)) — WV Ep(p) strongly in  L*(Q x v, x D)BXB. (8.4)
€
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Hence

/ o(u2) : e(v.,) dz = / Loty (u0)) s ST ey (3er)) dr
Ser QxyexD € £

— Qijkl (5([/[) + SS(H,Z/I,R) =+ Sp(ﬂ))”WV (SD(QO))M dx dS.
QXyexD

Using (5.20) and then unfolding and passing to the limit yield

’/ f. vgrd:c 7’—/ ’TM( ) T“(v” dde‘
Qxy,xD

07.

p €]l Lo @) W[ Lo () IV | oo (vo) 2Nl L2 (D) — O.

The above convergences lead to
/ aigi (EU) + EsUUR) + Ep (@) ;W V (Ep (), dw dS = 0.
QX xD

Finally, since the space D(Q) ® D(v,) ® Hl(D)3 is dense in L?(Q x v; HI(D))3 we obtain (8.1)). O
Lemma 8.2 (The limit problem involving the extensional and inextensional limit displacements). One has

-~

/ ai(EQU) + EsUUA,R) + Ep(@),,(£5(V. V. B)),, dx dS
QxSxD (8.5)

~

(ZB )dx+ / £-V(,8)dSdz, V(V,V,B) € L2 Dgy x Dry).
Ak 1+ £ Joxs

~ ~

Proof. Let ¢ be in D(Q) and (V,V, B) in Dgx x Dy, such that ¥ and (V, B) are constant in the neighborhood of
every node of S.

Step 1. The test displacement.

Set _ R . R s
Ver =6:Y(2),  Ver=20o,V(2). Br=6e,B(2)

where ¢, , is defined in AppendixE Since the above fields are constant in the neighborhood of every node of S, this
allows to extend them in functions belonging to H'(S. ). Hence, these functions are constant in the cross-sections
and in the neighborhood of every node. We remind (see Appendix

TE(per) — ¢ strongly in  L*(Q x S),
(8.6)

Ts<d¢zr>’ 527;“(%) — 0 strongly in  L*(Q2 x S).

We define v, , in the beam whose centerline is €€ + evp, £ € {1,...,m} by

2

~

Ve () = —V”(a£+eA +sl)+ V”(e£+aA +31)+% r (26 + AL + 51) A (sath + ssth) + . . (2),
- ed doe r

V(@) = r2 ds;

for a.e. = ef 4 A’ + s1t] + soth + s3t, (s1,50,83) € (0,elg) x Dy, £ € {1,...,m}, £€E..

(e€ + eA" + sl)]’}(Aé + Z—l) . (32t§ + 83tg)t{,

Observe that for every = in B(e€ + A%, cor) N S.,,. one has

Ve p(2) = ¢(5g+5Af)[rv(Af)+ = B(a%) A (w—e€ —eA")].

Hence, v, is a rigid displacement in B(e£ + e AL, cor) N Se,r. This test displacement belongs to V.
Step 2. Limit of the LHS.
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One has

81}8 r 52 8?5 r 62 895 - 52 BB\E i, , , 856 )
2 = — 2 — ) N /\ t t
aSl r 881 + r2 681 + r2 881 (82 o 1 83 3) + a

o= () %vdsl( ) () Wwdv )

+*( WrB(2) +brae (;>>A<szté+ssté>+a;;%

% e ( ) /\t + a’UE’T avé qs ( ) /\t + a’UE T
ds2 7“2 = 27 sy Ds3 er 37 sy
Ove.r ty = ve.r “t3 = Over bty — Ove.r -to = 0 and by definition of (\A/, A) € Dy, one has ﬁ-tl = 0.
Oso 0s3 0sg2 0s3
The convergences yield

Observe that

R

Tbé(a’l)sr.tg) @ -

= 5, - (Sath + Sstf) strongly in  L%(Q x v, x D),
s1

3

gﬁbz(%) —0 strongly in  L2(Q x 7, x D)°.

dpe,r

The presence of v, in the test displacement is just to eliminate —ZTV( : ) -tﬁ in
T S1 €

8ve,r ¢! avsr
s T o

t;,1€{2,3}.
Then, again using the convergences , we obtain

YY) 0 V.
95, t ~ 952 . (Sgt2 + Sgt3) * ok , 3
X

gtb’e(es(”s,r)) — ¢ strongly in  L*(92 x v, x D)

—~
Qly S
5'1‘<\
o+
[ SN

|
n

[\ w
Q|
SB[
o+
—s
SN—

NI N
—~
Qly
£°‘<\
o+
WS
+
N
)
&
o+
—s
S—

Hence,
ST (eu(ve,)) — 6 (Es(V, V. B) + Ep(®))  strongly in (2 x 7 x D) (8.7)

where .
~ oy oV
=295 “to ) t S -t3 )ty
v (asl )+ 3(351 )t
Unfolding the left-hand side of ([5.8) and passing to the limit give

m

ce(v T = Cb’e(f‘u :i b’eev .
/Swa(ug). (ver)d ;/ﬂ T2 (0u0)) : LT (eufo ) d

Xye XD €
— aij (EU) + EsUU,R) + En(@)),;6(Es(V, V,B) + £p(3)),, dv dS.
QxSxD
Step 3. Limit of the RHS.

Now, we consider the right-hand side of (5.8)

e Ve dr =
/Smf Ve r dx Z

/ FT‘,/CE *Ver dz + / fE *Ver dx. (88)
Aek, Y B(Ar) S

e,r

Let’s take the first term in the right- hand side of @ Taking into account the symmetries of the ball B(e£+c A, r)

dmr
and the fact that / |z|? do = % After a straightforward calculation, one obtains
B(O,r)

Fr grd = 4 AZ + G + Ag _ B AZ
A;g/B(A,r) Ko+ Veyr 6T = Ag}q;/ggﬂﬂ F(e€ +eA%) (€ + AN (x — (€ —¢ )}

= TS Y (et + A F(et + eA’) V(4 e 3 3" b(et +eA)G(et + 2AY) - B(AY).

AteK §€E. AlteK §€E.
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Since |Y| = 1, one has

> Po(se +ea)Fleg+ea”) V(A) — | Foo( D V(4))de

AteK E€E. Q@ Aek
Z Z e8¢ (et +cAY) G (et + AY) ,E(Ae) — | G- qﬁ( g(A)) dz.
Alek EEE. Q Aek
Hence,
Z/ TIC 'Uard-r—> /G Zg ) (89)
Aek, ’/B(Ar) Aek
Now, we take the second term in the right hand side of
Due to (6.6)), we only need to Consider — / T e( _) - T2 (ve,,) dadS. One has
QXvex D
r? —

= Z / TYUE) - T2 (ve,r) dadS
— QXyex D

be bL(Y bL(Y (B ¢ ¢ g
gzrﬂmifmwj [ﬂ;( W)+ TP Vo) + T2 (B )/\(Sgt2+83t3)} dz dS.

Assumptions (7.I)) and convergence (8.6)1 lead to

g2 m/ ~
T2AE T“ dzdS — / f(z) - p(x) V(S) dz dS

T 2 o O ST V) el RIORECNC)
Er o ¥l a
— T2HE) - T2 (Ve ) dS dz — 0,
T+EZZ/S2XVZXD () ( 7)

TP4B..,) A (Sath + S5t5)] dadS — 0.
S [, T T 0

Hence,

4 R R
/S fsms,rdxH? G~¢(ZB(A)) dx + 1_~_K/stf~¢V(S)dde.

@ AeK
Lemma and the density of D(Q) ® Dg, in L?*(Q; Dg,) and D() @ Dy, in L3(;Dry,) lead to

-~

/ @it (EU) + Es@U,R) + Ep(@),, (Es(V. D, B) + Ep(5)) , dadS
QAxSxD

(ZB )dx—i— / £.-V(-,S)dzdS, V(WV,V,B) e L*(;Dgy x D).
AeK 1+ £ Joxs
Besides, since v belongs to L?(Q2 x 8; HY(D))? equality (8.1)) together with the one above yield (8.5). O

Lemma 8.3 (The limit problem involving the macroscopic limit displacement). One has
/ @it (EU) + Es@U,R) + Ep(@),, (E(V)  dr dS
QxXSxD

4
”"q/ F-Vidax +1"|+S| f.Vdz, VVEH%(Q)?’
Q

(8.10)

where || is the number of points of K and S the measure of S.

to )

2Here, by convention
1+ oo
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Proof. Step 1. Limit of the LHS of (5.8).

Let V be in D(R?)? such that ¥V = 0 in Q' \ Q. We define V. ,. using |[F| This function is extended as in Step 1 of
the proof of Lemma [8:2] Set

3
Ve,r = ;Va,r € Ve,

)

We have

ETSI”Z(UE,T) —V strongly in  L*(Q x 7y, x D)S,

(VVt])-t7  * % (8.11)
T bl 1 ¢ Vi = . 2 3x3
and 27; (es(ver)) — ?(Vth) t5 0 0| =E(V)+Ep(W) strongly in  L*(2 x v, x D)
F(VVE))-t5 0 0
where ~
U= SQ((Vth) . tg) t1 + Sg((Vth) -tg) t1, a.e. in QxS xD.
Convergence (8.11)) leads to
/ o(ue) : e(V) dw —> aiji (EU) + Es(UU,R) + Ep(@)) , (EV) + Ep (D)), dz dS.
S. ., QOxSxD ’
Step 2. Limit of the RHS.
Now we consider the right-hand side of (5.8)). By (5.20)), firstly we have
2
3 / Fux, vepdz=Y" / (SFA) + 56 A e A)) - Ev(A) d
Ack. Y B(Ar) ek, IB(A) NT T r
4
Z Z (e€+¢€A)- (55—1—514)63—)$ F-Vdx
A€K geE. @

and secondly, due to , we pass to the limit in

Z S|
Tb£ Tbé - drdS ‘%| / Vd
527“—1—82 »/QX’WXD ( ) ’

Hence

4
/ ferve, = Z/ Fr,,cs.vwdx+/ £ ve, dz —> ”"q/ Foyde+ /f~de.
Seor Acr. IB(Ar) Ser 3 Ja 1+k Ja

e,r

Since the set of functions belonging to D(R3)? and vanishing in Q' \ Q is dense in H}(Q)3, we obtain

/Q o (E@U) + EsUU,R) + Ep (@), (EV) + Ep (D)), dzdS

3 Q 1 Q2

+ K
Taking into account that v belongs to L2 (2 x S; HY(D))? and using (8.1), equality (8.10) is proved. O

Theorem 8.1 (The unfolded limit problem). Let u. be the solution to (5.8)). There existU € HL(Q)?, U,U,R) e
L?(Q;Dg. xDry) and i € L*(QxS; Dy, such that (L{,H,Z/{, R, ﬂ) 18 the solution to the following unfolded problem:

-~

/QS Daijkl(g( )+ Es(UU,R) + Ep (@), (EV) + Es(V, V, B) + Ep (1)), dw dS

:%/ F-Vdr+ I/
3 Q2 5 AeK

VYV e HEQ)?R, YV, V,B) € L2(Q;Dgy x Dr,), Vo € L2(Q x ;D).

K|S| W 5 (8.12)
A)) +1+ff vt ) EV(S)deds

Moreover, the following convergences hold (¢ € {1,...,m}):

3x3

gTEb’e(es(uE)) — EU) + EsUU,R) + Ep(@)  strongly in L*(2 x v, x D) (8.13)
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100 0 0 0 00 0
MUY=(0 0 0, M2=10 1 0], M¥®=[0 0 0
0 0 0 0 0 0 00 1

L (0 10 0 0 1 00 0

M M*P=_110 0], MB=M3=_-(0 0 0 MPB=M32=_10 0 1

2\0 0 0 100 01 0

Proof. From Lemmas 8.1] E We obtain that (U, U,U, R, ) satisfies (8.12) for every test function V € HA(€2)3,

(V,V,B) € L*(Q;Ppy x D) andw € L?*(Qx 8;Dy,) C L2 x S;HY(D ))

The coercivity of this problem is given by Lemma m Since the problem (8.12) admits a unique solution, the

whole sequences in Theorems n - and ( converge to their limits.

Now, we prove the strong convergence 8.13. First, observe that due to the inclusion of J;, in U B(A,cor)
Ak,

given by (5.1)), the portions of beams which correspond to Sy € (2¢or, ly — 2¢or) are all disjoint. Furthermore, since

o(ue) : e(ue) is non-negative, one has

e—0

r? —
= Z /Q Ny ﬁb’e(as(us)) : sz(es(us))l(gcwll 2¢0m) dz dS < hmmf/S o(ue) : e(ue) de.
x £ e,r

From ([7.13) and the fact that r goes to 0, one obtains (¢ € {1,...,m})
” PO - 3x3
LT e ) Lt ae0r) — EU) + Es(@,T, R) + En(@) weakly in L(2 x 7 x D)™

Hence, choosing u. as a test function in (5.8) and using a weak lower semi-continuity of convex functionals, one
has

A~

/QS Daijkl(g(U)+5s(H,ﬁ,7€)+5D('a))ij(g( ) + EsU,U, B) + Ep(1)),, dw dS

<lim lnf 2 / e ( 1jkl)T (687ij (’Uﬂ’:‘))tra‘b’Z (esykl(ua))1(200T7lé—2007“) dx d§
e=0 g2 Qx(0,1¢)x
<lim 1nf/ o(ue) : e(ues) dx < lim sup/ o(ue) : e(ues) de = lim bup/ feruedx
e—0 e—0 Ser e—0
4 ~
’T"q/F U da +7/ (ZR ) ﬂ/ U da £.2(,S) dx ds,
e L+k Jo 1+k Jaxs

_ / aijt(EQU) + Es@.U.R) + Ep(@),, (EU) + EsU.UB) + Ep (W), du d5.
QxXSxD
Thus, all inequalities above are equalities and

~

im [ o(ue) :e(u.)de = /Q . Daijkl(g(w+53(ﬁ,ﬁ,7€)+50(a))ij(5(m+5s(ﬁ,z), )+ Ep(@)),, dz dS,

e—0 Jg

e,

which in turn leads to the strong convergence (8.13]). O

9 The homogenized problem

9.1 Expression of the warping u

In this subsection we give the expression of the warping u in terms of the macroscopic displacement ¢/ and the
microscopic fields U, Z/{ R.
To this end, we use the variational formulation (8.1)). For every ¢ € {1,...,m} one has

/ aijit (Ep(@)),; (Ep (D)), dS2dSs = — / aijm (EU)+EsULU, 7%)) (Ep(D)),,dS2dSs, ae. in Qxy, VU € Dy,
D D
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This shows that u can be expressed in terms of the elements of the tensors £ and Es.

We write
(G(U)tl) t: 0 O %'tl—g%ﬁg' (Sztg-l-Sgtg) * ok
EU) + EsU,V,R) = 0 0 0f+ _SadR ¢
0 00 S20R ¢

_ ou 11 = 0*U 11 IR 13 12 (9.1)
=((e@ntr) -1+ gt )M 7;2352 o SaM 4 Tt (S2M - SM*2)
— aﬁ 11 aﬁ 13 12 aR 87/?\’ 11
~((ethtr) - t1+g~t1)M t g b EAVEEAY )+(8—Sl 6285~ 5o tg 52 )M

ae. in QxS xD.

Now, we introduce 4 correctors which are the solutions to the following cell problems:
aijri(S,-) (Ep(X1)(S, ) + Mll)ij (ép(D)),, dS2dSs = 0,

aijri(S,-) (Ep(X2)(S,-) + SaM*'? — 531\/[12)” (Ep(0)),, dS2dS3 =0,
forae. SinS, VveD,. (9.2

o\u\u\

aijui(S.-) (Ep(X3)(8,-) + S3M'), (Ep(D)),, dS2dSs = 0,
/D aijui(S,-) (Ep(Xa)(8S, ) — $2M™") - (Ep(D)),, dS2dSs = 0,

Since ajjri’s belong to L>(S x D), then x, € L>(S;Dy,), g € {1,...,4}.

Hence, we have

_ oM\ . =OR . _ .
u:((e(U)t1)~t1+aS-t1>X1+;as~thq+1 a.e. in QxS xD.

9.2 Expression of the microscopic fields U/, Z:{\, R

In this subsection we give the expression of the microscopic fields I, u , R in terms of the macroscopic displace-
ment Y. To this end, as before, we use the variational formulation (8.12]).
Thus, taking V =0, v = 0 in (8.12), then replacing u by its expression, using the following equality:

_ o = 0R _ .
SD(U) = ((6(“) tl) 'tl + ais 'tl) (c:D(Xl) + qul ais 'tq SD(Xq+1) ae. in QxS xD
together with (9.1) give

L[ i [(1ere) 0+ 58 ) eo) + M)+ 2R (e (7a) + S.M5 — 5i02)

OR

OR L
+5g -t (ED(X3)+53M“) + 55 ts (5D(X4) 52M11)Lj [55(v,v, )] ngng)dS (9.3)
_img. > B(A) + f~/V(S)dS, ae. inQ,  V(V,V,B)€Dgy X Dpn.

5 S

AeK
We write
5o a - (V. n, 08 5 g2 L (98 9B 11
Es(V, V), )’(as t1>M +ogt (521\4 S3M )*(as 625 — 5 t352)M
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and the variational problem (9.3)) has the following form:

o (U\ o [V (e)t1)-t1\ o [V
Lm(%(ﬁ).%(g)ds:—fsm( - )'as(g ds o

4 . . o
+g G- E B(A) + f'/ V(S)dS, ae. inQ, V(V,V,B)€ Dg, x Dy,
AeK

where the symmetric matrix 2 belongs to L>(S)**4.

o (V oV OB _ 9B . 9B _\T
H i £, ot — -t -t :
ere, the column 7S (@) stands for the column <8S 1 ag tag Tt ag 3> , while the

e(V)t1) -t
column (( ( ) 1) 1) stands for ((e(V)t1)-t; 0 0 O)T
0
Matrix 2l satisfies

V¢ e RY, 2A¢-¢= / Aijkl C1 (Ep(X1) + M) + G (Ep(X2) + SoM™ — 53M™?)
G (Ep(X3) + SsMM) + ¢ (Ep(Xa) — SzMH)} - _
Y a.e. in §

[ (Ep(%1) + M) + G (Ep(R2) + $:M™ — 5;M2)

)

+ Go (En(Xs) + S6M™) + G (Ep (V) — $:M™)|  dSzdSs

since x,’s verify (9.2).

At this step, the unfolded problem becomes
(etd) t1) - 1 o (U (e(V)t1) - 1 a (Vv
QxS 0 08 0 08 B
/€|S‘ ™ 3 (9.5)

4r|K| /
= F-Vdr + — B f- f-V(,S)dxdS,
3 Q + (Z ) 1+ kK Q v 1+ kK QxS ( ) v

VYV e HAQ)®, V(V,V,B) € L*(Q;Dgy x Drn).

dx dS

Now, we introduce 12 correctors
X7 = (X9,%9,x7), x= (XLXLXY) € Ppa X Py (6,4) €{1,2,3)%, g€ {l,...,6}.
They are the solutions to the following variational problems:
X7 = (X7,X7,X") € Dga X Din,
d (XY d [V (M% t1) -ty d [V N
A — — s ]dS=— | A c— | o] dS v B) € Dg, X Dyy,
/ dS( 1]) dS(g) /S ( 0 s\ g (V,V,B) € Dg, x Drp

= (X, X% XY € PDps X Py g€ {1,2,3},

d (X*\ d (Y 2 T3 B
[ (%) 5 (5) s S oW @DHED D

Aek
Xq+3 - (yq+3,5<\q+3’>2(1+3) € Dg, X DIT” qc {1,2,3},

d (X3\ g [V R o
/Ql S \get3) dS \ g €q /SV ; V(V,V,B) € Dg, x Dy
T T T g 3
where e, = (1 0 0) ) €2 = (0 1 0) and ez = (0 0 1) . Note that x* = x7".
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Hence, one has

Z Gox? + —qux‘ﬁ?’
where G = Zz G eq7 =53
In problem (9.5)), we replace (U, Z/I ’R ) by (9.7) and we choose

(e(t) t1)
/SZ><$Ql ( : ) " Z eU

1,0=1
3
4
—[(Fxal|f
/Q<5 q=1

(V,V,B) = (0,0,0). That gives
v )] ( P
() (7))
T 2 0 Xq+3 ) )
=% /s%s<xq+3>-( S )] )

47|K| n\S|/ Lren3
F-Vvd f-Vd A Hin(Q)".
+ 3 /Q 1% x+1+/{ A Vdz, V € Hr(Q)

Now, taking into account the definition of the corrector % = (

X) ><\

/\

+

X7, X%, x%), the left-hand side becomes

/ B (e(U), e(V)) da,
Q

where B°™ is a symmetric bilinear form associated to the definite positive quadratic form

[ ((Ct)- AYIN(EOR
;Bhom(C’C):/SQ[ < ) ZC”@S( ) ( 1, 1>dS

1,j=1 0
(Ct1) -t 5. g (X\] [/t t g (Y (9.9)
:/sQl < 0 ) ZC”(’)S( zg> [( 0 ) ZC”@S( )]ds
L ,j=1 i i,j=1
= b7 G

for every 3 x 3 symmetric matrix (.

3
Write ¢ = Z ¢i; M. Hence,
ij=1

ol = [ = (MYt -6\ o (X
ikl = s 0 3S X

Now, we simplify the right-hand side of . Set

(MY t1) -t o (X9
0 95 %

Thus, the limit field 4 € H} (Q)‘3 is the solution to the homogenized problem

/bUkTew(U)ekl dz—f—Z/G cz]q ei;j (V

47 |K]|

(Mkltl) ty 9 chl
: l( i ) + 55 (92“)1 ds. (9.10)

ds,

om a Yq
- f23 (1)

(i,7,q) € {1,2,3}2 x {1,...,6}. (9.11)

Z/f cfom s e (V) da

(9.12)
/F-deﬁ/f-wz, vV e HA Q).
Q 1+/i Q

Lemma 9.1. The components of the homogenized elasticity tensor b;ji; € R satisfy the usual symmetry and
positivity conditions

+
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hom _ phom __ hom.
bijkl - bjikl - bklij ’

o there exists C§ > 0 such that for every 3 x 3 symmetric matriz, one has
B (¢, ¢) = b7 il > Col¢I*.

Proof. By definition of the bZ"kT’s the symmetry of matrices M = MJ? and correctors x¥ = x?¢ we obtain the

symmetries of the b]'}}"’s.

From equality (9.9 ., Lemma and estimate (G.4]) we have

t1 X | t1) X4
) SR ) a0

i,j=1 ,j=1

]2
X"
> co/ ‘ Py Gl 5 ( ) ds = C3|¢ .

1,j=1

O

Theorem 9.1 (The homogenized limit problem). The limit field U € H%(Q)3 is the unique solution to the homog-
enized problem

/b”k’?e” Yer (V) dx:——Z/G c”q ei;j (V dw+1+KZ/f c”q+3e” V) dx

3 Q 1+k Jq

(9.13)

where the b?jokT are given by (9.10) and the cfﬁl’” by (9.11)).

10 The case of an isotropic and homogeneous material

We consider an isotropic and homogeneous material for which the relation between the linearized strain tensor
and the stress tensor is given as follows

o(u) = ATr(e(u)) Is + 2ue(u), (10.1)

where I3 is the unit 3 x 3 matrix and A,  are the material Lamé constants.
The correctors Xq € L>(S; Dw), g € {1,2, 3,4}, have the following form (see [13])

X1(+, 82, 93) = —v(Sata + Ssts), Xa(+,52,53) =0,
- 52 — 52 - S2 - 52
X3(+, S2,S3) ZV(—5253’52+ : 5 2t3), Xa(+, S2,S3) =V< 2 3t2+5253t3),
A . . .
where v = ——— is the Poisson coefficient.
2(p+A)

Due to the symmetries of the elasticity coefficients and cross-sections, we have immediately
g?;(ﬂ 523 S3) = _24('7 533 SZ)
Hence, we obtain

9%U 52— 62
e )

S3 83
2

U= 1/[ - ((e(U)h) b1+ % ‘t1> (Sato + Ssts) +

821/1
882

(10.2)

(5253t2 + tg)} a.e. in QxS xD.
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The matrix 2 becomes

mE 0 0 0
0 Zu O 0
— 2
A 0 0 TE 0 | (10.3)
0 0 0 3K
A+2
where E = M is the Young’s modulus.
A+
The correctors '/ = (Y, X", x") € L (4 Dgs X Drw), (i,5) € {1,2,3}%
These correctors are the solutions to the variational problems 1. Hence, by virtue of (10.3]), we have
dx | dv dx¥  dB y dv
X St by e by )dS = M t1) -ty o -t dS. 10.4
/S (a1 as tds 1+Z Gorlatl™ g "t gg "t /5““( )-tigg et (104)

Choosing the function (O XY,X) as a test function we obtain

dx¥ dx
/Zaq+1q+1 X tq%-tqu:O.

Hence, for every (i,j) € {1,2,3}? one has (X", x") = (0,0).
Let £ bein {1,...,m} and ¢ € H}(y). Consider the test function V € Dp, defined by

V:{(bt{ on 7y,

0 on the other segments of S.
That gives N
/e fg 15§ds_—Le(Mijtf) tf%ds
and then oy
1% =0 in H ().

It means that X - t; is affine on every segment of S. The function ¥* belongs to Ugs. Set
US,per,O =UsnN Hp?r O(S)S'

For every (i,7) € {1,2,3}? one has -
yw € US,per,O'

Denote M the restriction to S of the linear field = € R3 +— M#z € R3. It belongs to Us. Problem (10.4)
becomes

d dy _
/ dS (YZJ + M ) dS ’ tl dS = 07 VV S US,per,O~ (105)

The corrector Y% is the projection on Ug pero of the field M” € Ug for the scalar product < -, >1 (see (2.2)) and

Lemma .
The correctors: x4 = (Y?,Y?,x%) € L (% Dgs x Drn), q € {1,2,3}.
They are the solution to the following variational problems 2. Hence, by virtue ((10.3)), we have

dx? v dx? . dB .
/s (cu 1S “t] —= 7S -t + Z Qi 1,641 e S 1@ -ti)dS =e;- gCB(A). (10.6)

Choosing the function (yq, 0,0) as a test function we obtain

dq
/i t1 g -t dS =0.
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Hence, for every ¢ € {1,2,3} one has ¢ = 0, since this function belongs to Dg,.
Let £ be in {1,...,m} and ¢1 € H} (), ¢2, ¢3 € HZ (). Consider the test function defined by

. Pots + sty on v, . ¢ _ @ ¢
V= B={Mti-gghti  on (10.7)
0 on the other segments of S, 0 on the other segments of S.

A~

The couple (]A), ) belongs to Dy,. Choosing this couple as a test function in (10.5) leads to

Xt - cx L, dPxT 2
dS% : tl = O m H (7@)7 dsi’, *ly = dS% : t3 = 0 m H (’yz)
Hence, for every £ € {1,...,m} X?-t{ is an affine function on 7, while X9 - t5 and x?- tg are polynomial functions
of degree less than 2 on 7. A straightforward calculation gives the restriction of x? to the segment v, (S1 € [0,1y])
~ S S
(51 = x(A) (1 - 2 ) +x1(B) 7
¢ ¢ g g (10.8)
=3((R1(4) + x7(B)) — (R(4) + X1(B)) -1 -¢f) T+ (1- 1)
since / X7 - thdS = / X7 -t5dS = 0. Then, an integration gives
e e
S S? S? S
0U(G,) = o4 ¢ _21 e21 2 P21 (2 PL 10.9
R(S1) = K1) A6 (1= ) + B AL = 3(R1) +R1B) At T (5 - ). (10.9)
since x?(A) = x%(B) = 0.
The correctors: x4+3 = (Y913, 34+3 x173) € L (4 Dpy X Drn), q € {1,2,3}.
They are the solution to the variational problems (9.6))s. Hence by virtue (10.3)) we have
dyat? dy dxat3 dB
CASRE " .y b g :)dS = Vds. 10.10
/s(““ s "as’ 1+Z““ T1Tas T tas ca / (10-10)
As in the previous case, for every ¢ € {1,2,3} one obtains ¥4 = 0.
Again, we consider the test function defined by (10.7). That leads to (¢ € {1,...,m})
*xr . —1 Px 4 Px 4 ¢ —2
157 -t1=0in H™ " (vye), 153 cty = —5% -t5, 453 ty = Eeq~t3 in H *(v¢). (10.11)
Hence, for every £ € {1,...,m}, the restriction of X?*3 to the segment v, is (S; € [0,1])
~ ~ S N S N
() = XA (1= 7H) +RB) T - 3R A) + x7B))
(10.12)
S S 203 Sy/1 S S
— (XT3 (A) + X3 (B .tft> 1(1——1) L -tftf—l<f——1)(1——1>.
(XA +XTB)) Iy L) Faep (e e it) o5 - g, le
Then, integrating leads to
=q+3 __ <q+3 ¢ o é =q+3 ¢ Sl
XT(S1) =X (A) At S (T 5, ) TX (B) Aty o 2,
¢ e s i gi\2 ) (10.13)
= 3(X(A) + RHB) ) n e L (7 — oM - L (1= 2 ) et
X ( )+X ( ) 1 lZ 3ll 6 E l% l@ eq 1

The last step allows us to reduce the corrector problems 2’3 to the algebraic equations with respect to the

unknown vector of nodal values. Denote E, the function belonging to H,., 1(S)* and defined by (¢ € {1,...,m})

14 52 S1\ 2
&r—eEl—g(l - —) e, ANt on vy, (S1€10,L)]).

Eq(Sl) = ZZ
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Poer(S) = {B € 13, (5)° | B(sy) =By (1- ) + B(B) -
S

= 3[(B() + B(B) - (Bl + () -e)ed] 3 (1- 31,

on v =[A,B], Si€l0l], £e{l,...,m}.

Set

So x%, (¢ € {1,2,3}), belongs to Pper(S) and solves the discrete problem

X\q epper(s)v q € {1 2a3}a
dx? . dB - 10.14
/(Z Qig1it1 g X : i%.ti)dszeq-ZB(A), VB € Pper(S). (10.14)
AeK

dE
Similarly x93 + dSq Aty (g € {1,2,3}), belongs to P, (S) and solves the discrete problem

N dE
XT3+ =2 Aty € Pper(S), q€{1,2,3},

ds
3 ~

d dE dB o

Ai1,it1 X34+ =LAt -ti—~tidS:/ e, - VdS .
/sz_‘: erin g5 (% &) s (10.15)

E d*E dB
et ( thl).Eds, VB € Pper(S).

4 ds? ds
One has , , , , R
TE ’E, dB ..~ I S3 Sy dB
T/S (G 1) =2 5 / rsg(g(l‘z*) )(eq ) - g d
=1 ¢
R 3 3 i ° (St S1y?
:i Q(e At1) - (B(B) — B(A)) i/ (51 - ll)(e Aty)-BdS
=1 1 ! =177t 2 !
and
/ e, VdS = / e, VdS = —Z/ (51 —lé)eq-dﬁdS:—zm:/ (51 —ll)eq-(éml)ds
s =1 Ve =17 2 ds =1 Ve 2
= / (51 - lﬁ)(eq Aty) - BdS
=1 Y
Tq+3 qu : :
Hence X797 + S At1, (g € {1,2,3}) are solutions of the discrete problem
X+ % At1 € Pper(S), q€{1,2,3},
3 s m s
d dE B dB
Ly ooas BT 4% s = ab (10.16)
/s Z G141 7 (x + /\tl) 6o - tidS = | B ds
i=1 _1 £
VB € Pper(S).

11 Conclusion
We conclude, that for our e-periodic r-thin structure, the solution to the linearized elasticity problem (5.7)) (in

the strong), or (5.8) (in the weak/variational form) can be reconstructed in the following form
2

ue () z; 4Mz ZG <{ }\s> 52+r Zf NHB({ }\8>+O<€7>’ (11.1)

for a.e. x € Ssm.
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From Proposition [7.2] we have

9 ~t1—82a'Q52t2+53t3) * *

(e(Z/I)tl) t1 0 0 o o
EU) = 0 0 0o, EUUTR) = SR g o ol>
0 0 0 %%—E t1 0 0
ou ou
) Eh | B,
Ep(u) = a—gz-tg §T§3-t§N+ §T;2 t3 a.e. in QxS xD,
* * 653 - t3
where
R 3 dr & 38
(U,Z/[,R) = Z em(u) (Y”,an) + ? Z Gq(07Xq7Xq) + ﬁzfq(onq+37Xq+3)~
1,j=1 q=1 q=1
and R R
0*U 52— 52 o*U S2 - 52
U= —-t(ut SSt) —— -t (SSt 3 Qt)}.
U VL'?S? 2 5 2 +0203t3 +882 3 | ©2053t2 + 3

The strain tensor in the global coordinates can be obtained using ([5.3). Then, we can reconstruct the local stress

field for Pﬁw beam as follows

. E((e(u)t1+g%) 'tl —Ag%h (Sgt2+53t3)) * *
os(ue) ~ - _SSM% t, 0 % a.e. in 2 xS xD. (11.2)
Sgu% 'tl 0 0

A Proof of Proposition
Lemma A.1. Let S be a 3-PSS. For every u in V. ,, one has

g e
Ul L2 riney < C=lle(u)llrzgs. ) VU 2 qring < C=lle(u)llzzs. )
’ " : " (A1)

€ 1
IR L2 (qriney < C;He(U)HL?(SE,T)v IVRI L2 (qriney < C;H@(U)HH(SE,T)-

Proof. Since u belongs to V., by definition, it is equal to 0 in S‘;T \@ Then, there exists a rigid displacement
r'(z) =a' + b Az, (a/,b’) € R? x R3 such that (using (5.17) with Q' instead of )

S
||u - r/HHl(Qlaint) S C;”e(u)”Lz(SET).

Let O be an open set satisfying O strictly included in Q \ Q.
If £ is small enough then O. = {z € R? | dist(z,00) < 2v/3e} C Q" \ Qint. As a consequence Y = R = 0 a.e. in

O. Hence,
13 13
Il 0) < It =2l qiney < O lle(@llizs..) == lal+ D] < Cl'llao) < O lle(w)] r2(s.,.)-

The constants do not depend on ¢ and r. Therefore,

3
1211771 agimey < Cola’] + b']) < Clle(u) 2. )

where the constant Cy only depends on the volume and diameter of Q'. Finally,

€
||u||H1(ng) < Hu”Hl(Q’Eim) <|u- r/HHl(Q;im) + ||rl||H1(Q'€i"t) < C;H@(U)HL?(SE,,«)

and (A.1)); o are proved. Estimates ((A.1f)3 4 follow from (A.1)); 2 and (5.16); .

35



Lemma A.2. Let S be a 3-PSS. One has (see (5.14]) for a and b)

g
lallzzo.) + IPllr2.) < O lle(@llzzs. .y,

g? Ce
24 = all L2 (oiny < O—lle(w)llz2s. ) IR =bllrz@iny < —=lle(wr2(s. ),
h
h € au C
U = all s,y < C () ags. . | o rt ], < Tle@lies. ),

. h
482000 < CTlle@lsecs..oy i

Proof. From estimates (5.13))1, (5.15)), (A.1))s and the definition of R we obtain
2.3 &2 2
> b(eg)Pe® < Clle(u)lfizs. -
EEEE

Then, from the above estimate and ([5.13)2 we obtain

3 4
Z > la(eg + cei) — ale)%* < O lle(w)[Fas. .

=1 e*—‘e i

which in turn with (5.15)), (A.1)); and the definition of U lead to

2
3
> la(eg))*e’ < C5lle@lzz .,

§E€E.

C
< — .
sy < 7 lle@lzas.

(A.2)

(A4)

(A.5)

Hence we have (A.2);. Estimate ( .2 is the consequences of 1, and the definition of U while (| 3

follows from (|5.13)); and the definition of R.
Estimate (5.11)); yields

et — a()lIE2 (o (exs)) < || (u )Iliz(s<g+s,./g>> +Clb(e€) <.

Summing up over all £ € =, the above inequality, using 2 and applying (A.3) give (| -4 5.

Inequalities (A.2))s 7 are the immediate consequences of 1,4’5.
Proof of Proposition : Since U = U™ + U we have

Ul 2.y < U™ |L2gs.) + Ul 2s.)

<%

H ds ‘ L2(S. L2(S
From the estimates of Lemmas we obtain (5.18])1 2. Estimate (5.12)) yields

052

IR 122 c(ersy) < — g le@lizeiess, . + Clb()*e™,

Summing up over all £ € ZE. and applying (A.3)) give

[R*||L2s.) < C 2H e(u)llz2(s. -

Then, this inequality together with the estimates (5.10) yield (5.18))s.
From Definition 1] we have

U L2(s...) < Orlldllzzcs.) + Cr® Rl as

du
vU* < C( H* Hi
IVUSllz2s..) < (7| 4 sy ds

Then, the estimates (5.18)1,2 and (5.18)2 lead to (5.18)3 4.
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B The applied forces

First, note that the number of elements in K., which is denoted by |K.| is less than

|KC|mes|Q|

el < =

(B.1)

where |K] is the number of elements in K.
Proof of Lemma Let u be in V. ,.. By the estimates of Proposition we have

b / £ - ude| < O]~ @ le(w) | zxcs. .. (B.2)

§€E,
Now, taking into account that for every node A € K. the following decomposition holds:
u(z) =U(A)+ R(A) A (xz— A) 47, forae xe€ B(Ar),

we have

/5 ( Z F(A)1pan + Z G(A) A (x — A)1B(A,T)) cudz

Aek. Aek.

-y /(M) F(A) - U(A)da +

/ F(A) - (R(A) A (z — 4)) da
Ack. B(Ayr)

Aek. (B3)

G(A x—A))-U(A)dz
3 [, (COAGA) Ut de s

+ / F(A) - 1de +
A%:CE B(A,r)

/ (G(A) A (@ — A)) - (R(A) A (@ — A)) da
Aek. 7 B(Ar)

G(A r—A)) - -udz.
A;ég/BW)( (A) A (z — A))

Let us estimate every integral in (B.3|) separately. Due to the symmetries of the ball we have
/ F(A)- (R(A)/\(x—A)) dx =0, / (G(A)/\(x—A)) -U(A)dz =0, VAeKk.
(A,r) B(A,r)

Thus, the second and third terms in the right-hand side of (B.3]) vanish. Then, using the Cauchy-Schwarz inequality,
(5.9)1 and (B.1)), the last two integrals in (B.3|) are estimated as follows

‘ 2 /B(A ") Udm‘ = < > /B(Aﬂ |F(A)|2dx)1/2(/s |ﬂ|2dx)l/2

Aek. Aek. &7

<o() 1Pl zcs.. < Or(5) IF I~ @ lle@lzes.

‘A%;E/(A , (G(A) A ud:c’ < 3 /(A ) 2G(A |2dm)1/2(/3 |ﬂ|2dm)1/2
(2
= U(

and

AEIC e
< or(D) 161w ..y < 072 (5) 1G5, -
Since UM (A) =

contiguous nodes

A) and R"(A) = R(A), then using the fact that U", R" are affine functions between two

Yo UM APe <ClUMagsys Y IRMA)Pe < CIRM (s, (B.4)
Aek, Aek.
Then, the remaining two integrals in the right-hand side of are estimated using , 6, 2 and
B3
1/2
>/ (4)de| < ( Z/ A dr)” (X [ uaps)
Aek. /B4, ’“) A€k, A’“) Aek, /B, T)
r3/2 T h 2\ Y/ r3 h 72
<Can ”Fllmm(; >t a)Pe) " < O Il @ s,y < O 1Pl @ylle@lzacs.,

Aek.
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and

D> /BW) (GA) A (2= A)) - (R(A)/\(x—A))dg;‘

AeK.
Z /AT Az — A |2dx Z /AT Az fA)|2dac)1/2

A€EK. Aek.
1/2
Z/ r2|G(A |2dx Z/ r2R(A |2d:c)
AEIC B(A.r) AE!C B(Ar)
r5/2 h 1/2 7o h r3
o lGlim (5 Y RHPEE) " < L1l | R x5,y < O Gl i le)1ogs. .
Aek.

The above estimates, those of Lemma and the fact that » < ¢ end the proof of Lemma

C Unfolding method results

Proof of Lemma : Since ®. belongs to W1*°(€2.) then ®
e + A’ + sty in S., we have equality (6.10)).

Since Q1(Y) is a finite dimensional vector space, there exist two strictly positive constants ¢ and C such that for
every ¥ € Q1(Y)

is in W1°°(S.). Taking into account that z =

els.

d\IJ|5 d\I/|S
CH\II\SHLZ(S) < ||\Il||L2(Y) < CH\I"SHLQ(S)’ CH dsS llrzs) — ”v‘IIHLZ Y) = CH L2(S)
Now, for every ® € W'>°(Q.) satisfying (6.9), after e-scaling, we obtain
2 2
((6+eY)NS.) S||q’HL2(EE+6Y < Ce? | ((e£+eY>ﬂ8 )’ Ve e D
dd <« |12 dq; € =,.
2 ‘SE’ <V P 2 <C QH |Se
H ds lr2((ee4evins.) SIVOILeeerer) < C7| =5 LZ((55+5?)mss)’

Summing up all these inequalities for all £ € =, yields (6.10)4 3.

Now, suppose that the sequence {®.}. of functions belonging to W1°°(Q.) satisfies (6.11]). Then, up to a sequence
of &, there exists ® € L?(Q) such that (6.12]); holds and furthermore due to (6.3)) (see also [9, Theorem 3.6]), one
has

T P,) = & weakly in L*(Q x V).
But, taking into account (6.9)), we have the convergence (6.12))> which implies (6.12)), since the embedding @1 (Y) C
H(S) is continuous.

Moreover, if [|®.|| g1 (o) < C then, up to a sequence of €, there exists ® € H'(£2) such that (6.13); holds. In the
same way as [0, Theorem 3.6], we obtain convergence (6.13)2, from which, taking into account (6.10);, we have

convergence (6.13))3.
Proof of Lemma : Using the properties of the unfolding operator 7.5 (6.3)-(6.4) and the estimates for ¢., we
obtain

172 (@e)llL2 2o xs) = ellellLasy < €,

e~ (E)

1TE ()l L2(sm(s)) < ITE (@)l 2 (o m(sy) < C-

Hence, up to a subsequence ¢, there exists ngS € L%(Q; HY(S)) such that (6.14) holds.
In order to prove of (6.15)), first observe that T.°(¢.1g5,,.) belongs to L?(€%; H(S)) and

de

and

H 0T (¢e)
s

H doe.
ds

L2(Q. xS) L2(S.)

Thus,

S
||T (d)g) antx‘gHLZ(Q s HL(S)) < E(||¢E”L2(S ﬁQI"t) te H L2(35ﬁﬂént)) S
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And, up to a subsequence of {¢}, there exists ¢ € L*(€2; H'(S) such that (6.15) holds.

In both cases, the periodicity of (}5 is obtained proceeding in the same way as to prove [10, Theorem 4.28].

Proof of Lemma[6.5: The Poincaré-Wirtinger inequality gives a constant such that

vV e HY(S), Hw_ﬁl‘/swdSHLz(s)

CH— .
- dSllLz(s)

We apply the above inequality with the function 1(S) = ¢.(¢£ + €S5), £ € Ec. Then, after summation over £ € =,
that yields

¢ — MZ(9e)llL2(s.) < Ce (C.1)

I

Now, consider the function ®. defined in the cell e(£ +Y), £ € Z., as the Q; interpolation of MZE(¢)(e€) on the
vertices of this parallelotope. One has

L2(S.)

D, € W (Q,).
Observe that ®. also belongs to W1 (Qi"t). Proceeding as in [I}, Chapter 4] we obtain the following estimates:

do
||(I) ||L2(Q < CE||¢8HL2(S ) ”V(I) ||L2(Q ) = = C&H - L2(S )’
€ C.2
9. — M6 20, < O 2 -
€ e\¥Ye/llL2(Q,.) = ds L2(85).
Therefore,
[@c [z (iney < [|Pell @,y < C-
Lemma 5.1 in [16] gives ® € H'(Q) such that (up to a subsequence)
®.1gine —> @ strongly in L*(9), (C.3)

V. 1lgine — V@ weakly in  L*(Q)°.

Besides, by definition of ., ®_g 5 belongs to WLOO((AZE NS.) and Lemma gives

dq)8|55 .A d(I)8|S
T Vet ae in QNS HT s S ||v<1> [ (C.4)
Hence,
[ <% e ) < SVl + ] s, < 2
ds l2(@.ns.) ds llL2(@.ns.) ds llz2(s.) = ¢ L2(Q.) ds llz2(s. ) ds llz2(s €

By (6.16)), (C.1)-(C.2), we obtain

do
DU Y g
Therefore, Lemma gives a function ¢ € L2(; H,,,.(S)) such that (up to a subsequence)
1 -~ .
ETES((ba - (bg)lﬁéntxs — ¢ weakly in L*(Q; H(S)). (C.5)

Due to estimate ((C.4]), there exist a subsequence of {¢} and F € L?(S) such that

d®
7;8( d;)lﬁsxs — F  weakly in L*(Q x S).

Let O be an open set strictly included in €. If € is small enough, one has

O c Q" c Q..
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Applying Lemma in the context of the open set O leads to (up to a subsequence)

d®,
TS ( - )1OX5 = T (VD, - t1)loxs — V& -t; weakly in L2(O x S).

Hence,
F=V®d-t; ae inOxS8.

As a consequence F' = V& -t; a.e. in Q x S and (| are proved. Now, from (C.3) and (| we obtain

TE(®)1gim, s — @ strongly in  L*(Q; H(S)),
TES(% — &)1, g — 0 strongly in LZ(Q; HI(S)).

Hence,
7'65((;55)1@”,th — & strongly in LQ(Q;HI(S)).

D Proof of Lemma [7.1]

Step 1. We show that the semi-norm | - ||s is a norm in Dg,.

2s) = 0 then A is a rigid displacement (remind that S is a stable structure). The periodicity of
L

A implies that A is a constant field. Since the mean value of A is equal to zero then A = 0. Hence, the semi-norm
I ||s is a norm in Dg,.

Indeed, if H% -t1’

Step 2. We show that the norm || - [|s is equivalent to the norm || - || z1(s)
First, we have
_ — dA
VA< D, =% 4l <l
AeDe A= 0y < %] e < sy
The map
A€ Dp, — Aus € H),,.(S)* N Us,
where A, is defined by B B
AAff(A) = A(A) VA S IC.
Lemma [2.T] claims that there exists a rigid displacement r such that
dA
s = xllirs(s) < CliAnalls = C|| =25 4| .
2(8)

Since S is a 3-periodic structure and A, is a periodic function, we can choose r constant. Hence,

H dA i (D.1)

<] ol

L2<S) L2(s)
The function A — A, vanishes on all the nodes. Therefore by the definitions of the functions A and A, we obtain

(A — A,) Aty is an affine function on all the segments vg, ¢ € {1,...,m} .

Hence, L
d(A—Aye) |2 dAse |2 dA 2
=5 e [T s = 15 4] D2
H dS ! L2(S + ! L2(S) ds ! L2(S) (D-2)
and, therefore,
d(A-A d(A-A
H (.A -AAff) _ H (-A AAff) . 1‘ < Hi . tl‘ . (D?))
dS L2(S) dS L2(S) dS L2(S)
As a consequence of (D.1)-(D.3)), one obtains
e [ D=l D
B dS llz2s) — "lpeesy
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Remind that since A belongs to H;ET’O(S )3, the Poincaré-Wirtinger inequality gives

<o)

B . dA
VA € Dg,, ||’A||L2(S) < CH@ L2(S)

L2(s)
Thus,

B o dA
VA € Dg,, ||‘A||H1(S) SOH% .tl‘

s, = Al
Both norms are equivalent.

Step 3. We show that the semi-norm ||(-,-)||p,, is @ norm in Dy,

Indeed, if HZ—S} Lo(s) = 0, then B is a constant field. Remind that VZ vanishes on all the nodes, therefore one has

B A t; = 0in S. Since every node is a common extremity of at least two segments with non-collinear direction,

then B vanishes on every node and thus B = 0 in S. Hence, we have A = 0 on S and the semi-norm [|(-,-)||p,, is
a norm in Dy,.

Step 4. We show that the norm ||(-,-)||p;, is equivalent to the norm |[|(-,-)|| g1 (s)xH1(s)-
First, we have

V(A,B) € Dy,

< Al s +

B . -
(A Blor = | T 18118y = 1A Bl s 5y s

We prove by contradiction that there exists a constant C strictly positive such that

YAB) €Dy [[(AB) s (syxss) < CIAB)lIp,,.-

Suppose that such constant does not exist, then for every n > 1, there exists (An, B € Dy, such that

)
~ o~ ~ o~ 1
H(A’an’n)HHl(S)XHl(S) =1 and H(AnaBn)”'DIn < ﬁ

Thus, there exists a subsequence, still denoted n, such that

-~

(A, By) — (A, B) weakly in (HY.(S)’ x H.,,(8)°) N Dy

per per

Then, one has

-~

||(.Z,B)||»DM = Hflﬁ <1 mlan—’

Slizaes) = notoo = lim uf |4, B, =

L2(S) n—+oo

Hence, ||(A, B)||p,, = 0 which implies (A, B) = (0,0). As a consequence of the above convergences, the Sobolev
embedding and the definition of Dy, we obtain

B, — 0 strongly in H} (S)3

per

and then A, — 0 strongly in H} (S)3

per

Finally H(/TT,, B\n)”Hl(S)XHl(S) — 0 which gives us a contradiction.

E Density results

Let v and a be two constants such that 0 < 4t < a.
Lemma E.1. For every ¢ in H'(0,a), we define F..(¢) € H'(0,a) by

»(0) if t 10,7,

(6(26) = 6(0) " + 6(0) + A(t ~ 1)t — 20 i e e,
Feald)(t) = { 0(0) i e 202,

(¢(a) — ¢(a— 2@)% +¢la)+Bt—a+r)(t—a+2t) iftea—2t,a—1],

o(a) ftela—ra,
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where A and B are determined by the equalities

2t 2t

Fo@@a- [owa [ Fo@oa- [ owa

0 0

Then one has

1F (@) 200,20) + 1 Fe.a(@) L2 (a—20,0) < C (110 | 220,20) + 16 [ L2 (0200 )-

The constant does not depend on a and t.

Proof. From ([E.1)); we have

A= S (5000 oo+ [ 6o -owa) =S5 [Towa- [ [ s@ i)

Then, using the Cauchy-Schwartz inequality we obtain

36
4

2v t
- - 36
AR < 5 (10 mm + [ [ 16O aiar) < 3 (616 o0 + 2610/ 0 =

T

By definition of F , and again using the Cauchy-Schwartz inequality we have

Fea @0z = [ (200 4 a4 a0 - 20) " a

T

3
2
3

/2t (6(2¢) — $(0))* dt + 342 /2t (t —v)*dt +3A2 /2t (t —2v)2 dt
¢ ¢ ¢
= i
< 6H¢/||%2(0,2t) + 204||¢/H2L2(0,2r) = 210||¢/||%2(0,2r)‘
In the same way we obtain
[1F (@) 72(a—20.0) < 21006172 (0200
and holds.

2
= 16172 (0,20)-

2t N2 3 2 2t - 2
S o@a) arvane <2 ra)( [ 16@F ) + 20406 e
0 0

O

Let S be a 3D-periodic structure. For every t satisfying (remind that I, is the length of the segment v, C S)

we define the map F, from H'(S) into H'(S) by
V(b € H1(8)7 V’W - 87 :Ft((b)lw = j:t,lz((b\w)‘

Lemma E.2. F, is a linear and continuous map from H},.(S) into H',.(S). We have

per per

Vo € H),,.(S), Fo(p) — ¢ strongly in H}, (S).

per
~

For every (./T, ) € Dy, we define A, € H: (S)? by

per

d('iAr = ]-'t(é) Aty A. =0 on all the nodes of S.
S

The couple (le\r,f't(l/i"\)) belongs to Dy, and we have

F.(B) —B strongly in H_ (S)3,

per

A — A strongly in H,.(S)>.

per

(E.5)

Proof. First observe that for every ¢ € H*(S), the function F.(¢) — ¢ vanishes on every nodes. As a consequence,

F. maps H!, .(S) into H!, (S). Then (E.3) follows from Lemma

per per

Due to properties (E.1) of ft(g), the function A, is well define by (E.4). Then, the convergences (E.5) are the

immediate consequences of Lemma [E.1}
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F The test functions ¢., and V.,

Let ¢ be in D(Q). We define the field ¢. ,. belonging to W1>°(S.) as follows:
for every &€ € =, and every v, = [AY, AY +[,t]] € S we set
d(c€ +eA") in [—cor, cor],
ber(s) = Per(s1) if 81 € [eor, ely — cor],
p(e€ + eBY) in [ely — cor, €ly + cor],

where ®. , is a polynomial function of degree less than 3 with respect to s; such that

d®. ., L

®. ,(cor) = Pp(e€ + 5A£), ®. ,(elp — cor) = Pp(e€ + eBé), s, (cor) = ?81’7'(615 —cor) =0.

By construction ¢, .| belongs to W2 (£ + ev,). We easily check that

ef+evy

7-58(¢s,r) — ¢ strongly in LQ(Q’ x 8",

TS( doe, r)7 627—:,6(%) — 0 strongly in L*(Q' x &).

Let V be in D(R3) such that V = 0 in '\ Q. We define the field ¢. ,. belonging to W1>°(S.) as follows:
for every &€ € Z. and every v, = [AY, AY +[,t{] € S we set

V(e€ + EAZ) in [—cor, cor],
Ver(s) = V(e + eAY) + (V(EE +eAl +eth) — Vet + 5Ae))% if 51 € [cor, €lg — cor],
¢ — 2¢o
V(e€ + eBY) in [elp — cor, €ly + cor],

We easily check that

75 (st,r

I ) — VV-t; strongly in L*(Q' x&').

G Coercivity results.

Lemma G.1. For every v = (51,52,53) € D, and every ( € R*, one has

1
/ €0(3) + M| dSadss = (167 + (G617 + Ial?) + 1clGal?) + ||w1||L2(D>+Z||eJk Dz (G1)

7,k=2
where M¢ = (G + S3¢s — S2G) MM — SsM'2 + SoM .
Moreover, there exists a strictly positive constant C' such that
~ - 2

Proof. A direct calculation gives

81)1

/ |<€D (’17) + M<|2dSQdS,3 = / (Cl + S3(3 — 5244) dS>dSs + — / (
D D 652

S3C2) dS>dSs

6’01
/ (85 +S2CQ> dS>dSs + Z llejk(v HL2(Q)

7,k=2

Observe that

8 81}1 o
/D( 5335 S )dsgdsg_o.

Hence, we obtain (G.1)). Then (G.2)) follows from the definition of D,,, the Poincaré-Wirtinger and the Korn
inequality. O
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Lemma G.2. There exists a strictly positive constant C' such that

VYV € HA(Q)?, ( V.V,B) € L*(Q;Dpy x D), Vo € L2(Q x S; D),
A 2 ~  (G.3)
||VHH1(Q) + v, )HL?(Q sy t ||”HL2(Q iy <C EWV) +Es(V,V,B) + Ep ()| dzdS.
QxXSxD
Proof. Step 1. A preliminary result.

Let ¢ be a 3 x 3 symmetric matrix. Consider the displacements W € D, and V¢(z) = (z, # € R®. The restriction
of V¢ to S belongs to Ug and one has

th ow 6(Vt4—VV)

-t t1) -t t1) -t — bt = ———— - t1.

a5, B = =(Ct1) -1, (Cta) 1t 55, 0 o5, 1

As in Step 2 of Lemma and since the structure S is stable, we obtain a rigid displacement r such that

oV +W) 'tl’

Ve + Wl < €| =g

L2(s)

Remind that S is also a 3-periodic structure. Therefore, comparing the values of V. + W —r on the opposite faces
of Y NS gives o
I¢ =Dbl <Cl[Ve+W —rllns),

where b = Vr is a 3 x 3 antisymmetric matrix. Hence,

Vt%—VV) t‘

b| < CH .
I+ b 1

Since W belongs to H

ver0(S)?, we obtain

G(VC—F$V)

55 -tl‘ (G.4)

S+ Wlms) < €|

L2(s)’

Step 2. Inequality (G.2|) leads to

oy ~
| ettt + 5= -] a8 do + 10Dl 0,0, + 1lscurm o
X

<C IE(V) + Es(V,V, B) + Ep(v)|* dS da.
QAxXSXD

Then, the estimate (G.4) and Lemma [7.1] give (G.3). O

Lemma G.3. There exists C}, > 0 which does not depend on the variable S, such that
V¢ e RY, A¢-¢ > CHI¢)? a.e. inS. (G.5)

4
Proof. Set xX¢ = Z CqXq- By (b.4) one obtains

q=1

A¢-¢ = Co/ 1€ (Xe¢) +M<|2d52d53, a.e. in S,
D

1 1
Lemmayields / |€p(Xe) + M<|2 dS2dSs > W(‘C1|2 + §(|<3|2 +lcal?) + E|C2|2), Thus, (G.5)) is proved. O
D
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