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Abstract Accurate cone-beam computed tomography (CBCT) 
reconstruction requires knowing the true geometric parameters 
of the scanner, obtained from calibrating the system. Positioning 
the detector panel offset to the source-detector axis is a technique 
used by linac-mounted CBCTs in the context of radiation therapy
in order to image the full width of the patient over the 360-degree 
scan. However, offsetting the detector panel increases the 
difficulty of calibration as the resulting projections will be 
truncated along their width. We present an extended version of 
an existing phantom-based geometric calibration method that we 
have adapted for use in offset detector systems. This calibration
method extracts the required geometric parameters from 
measured projection images of a specific calibration phantom we 
designed for use in the method. The calibration has been 
implemented in tandem with a variant of the Feldkamp-Davis-
Kress (FDK) reconstruction algorithm which we have modified to 
both integrate our calibration and reconstruct width-truncated 
projections. The calibration and modified FDK algorithm are
validated by the successful reconstruction of a simulated Shepp-
Logan phantom generated with misaligned detector geometry
(detector panel shifting, and variable detector panel rotation 
along the 360-degree scan). The method also applies to other 
types of detector misalignment. A physical version of the 
phantom has been constructed to validate the method with real 
data in the future.

I. INTRODUCTION

Accurate cone-beam computed tomography (CBCT) 
reconstruction is crucially dependent on knowing the true 
geometric parameters of the scanner (geometric calibration). 
In the context of linac-mounted CBCTs used for image-guided 
radiation therapy (IGRT), it is common to position the 
detector panel offset to the source-detector axis to image the 
full width of the patient over the 360-degree scan [1] (Fig. 1). 
However, offsetting the detector increases the difficulty of 
geometric calibration and reconstruction as the resulting 
projections will be truncated along their width. For phantom-
based geometric calibration methods, this truncation implies
that the full calibration object will not be visible in any single
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Fig. 1.  The offset-detector principle. The x-ray source travels in a circle 
around the object. The axis of rotation projects to a line on the detector, . 
The object is too big to be entirely imaged by the detector. By offsetting, half 
of the object is seen in one view, whereas the other half of the object is seen in 
the view taken 180 degrees later in the scan.  There is a small overlap region 
of width centered on .

projection. Additionally, reconstruction of truncated 
projections using the widely used Feldkamp-Davis-Kress 
(FDK) algorithm [2] requires a modification wherein ray sums 
missing due to truncation are replaced by the closet matching 
opposite ray sums [3]. This modification relies on robust 
geometric calibration to be effective. Clinically, a two 
degrees-of-freedom (2DOF) calibration approach is used in 
the Elekta XVI CBCT-Linac systems, which measures the 
shifting of the projection of a point located at the linac 
isocenter in the two orthogonal directions of the detector at 
each scanning angle [4]. The benefit of this approach is that 

s straightforward to implement in the FDK algorithm by 
correcting each ray for this shift during backprojection. The 
drawback is that higher-order misalignment such as variable 
detector tilting, rotation, and sag
corrected over the whole field of view with only a 2DOF 
correction. We present an extended version of an existing 
phantom-based 9DOF geometric calibration method [5] for 
CBCT systems capable of accounting for more complex 
geometric misalignment than the clinical standard 2DOF 
approach, which we have adapted for offset detector systems 
and implemented in tandem with the FDK reconstruction 
algorithm. The method was validated by the successful 
calibration and reconstruction of a Shepp-Logan phantom with 
simulated detector misalignments. Previous work by V.G 
Nguyen [6] also used a phantom-based geometric calibration 
to determine the projection matrix of the system for use with 
offset detector positions, however, our method differs in our 
interpretation and method for determining the geometric



Fig. 2.  The 13-ball calibration phantom. (a) In the reference frame of the 
phantom, the markers are along the axes: , ,

, , , ; and , 
, etc. with values all in cm. 

At the center, . (b) Simulated projection of the phantom onto an 
artificially large detector. (c) projection of the phantom onto the offset (width-
truncated) detector; part of the phantom projection is truncated.

parameters, a different calibration phantom, and we have 
shown our method is compatible with the FDK reconstruction,
whereas the previous work requires an iterative reconstruction 
method.

II. METHODS

A. Determining Geometric Parameters

A geometric calibration method proposed by Mennessier et 
al. [5] and implemented by Spencer et al. [7] was modified for 
offset detector systems. This calibration method extracts
geometric parameters from measured projection images of a 
specific calibration phantom during a calibration scan to apply 
to subsequent scans. Our phantom consists of 13 point-like 
objects at known locations in the reference frame of the 
phantom as detailed in Fig. 2. As discussed in the following 
section, our method has three conditions: 1) there must be at 
least 2 markers on each axis (6 balls total) visible in each 
projection, 2) each projected marker must be identifiable, even 

as it enters and exits the FOV due to the offset detector 
geometry, and 3) the phantom must be placed at isocenter. 
Condition 1 requires a minimum of 12 small marker balls to 
be used because nearly half the phantom will project outside 
the offset detector when the phantom is positioned at 
isocenter. While not strictly required for the calibration, a 13th

ball was included at the origin of the phantom for 
convenience, so we easily obtain the location of the projection 
of the isocenter on the detector. In practice, positioning the 
phantom would be facilitated by the CBCT-Linac laser 
alignment system (Fig. 9). Condition 2 was achieved through 
careful choice of the ball-marker locations in the phantom. In 
our construction, no ball-marker orbits over the 360-degree
scan overlap, as seen in Fig. 3, allowing markers to be
identified by their location in the projections, provided the 
(projection-dependent) misalignments are not excessive.

B. Geometric Calibration Phantom

A brief overview of the original calibration method from [5] is 
presented here. The parameters which determine the geometry 
of the systems were extracted from each projection of the 
calibration phantom. The parameters are, the vector

Fig. 3.  Left: the trace of calibration phantom marker-ball orbits projected 
onto an ideal (aligned) detector. Right: the trace of the marker-balls for a 
misaligned detector. The misaligned detector was shifted by 5 mm in both 
directions and a varying in-plane detector rotation was applied. For these 
traces, ball identification can be automatically achieved using projected orbit 
locations. Truncation, represented by the dashed lines, occurs perpendicular to 
the axis.

Fig. 4. The geometric parameters of the system to be determined by 
calibration, as well as a known point and phantom center are projected 
onto the detector . The parameters are distance from the x-ray source 
to the detector ( ; the projection of the source onto the detector ; the 
three components of the position of the source ; and the unit vectors which 
describe the orientation of the detector panel , or equivalently the 
Euler angles describing the detector orientation.



describing the position of the source, , the projection of the 
source onto the detector , the distance from the source 
to the detector, , and the unit vectors which describe the 
orientation of the detector , as shown in Fig. 4. The 
projection of any point in the phantom frame onto the 
detector plane can be found via the mapping

(1)

After translating the detector coordinates so that the isocentre 
projects to , (1) can be simplified using

intermediate parameters

(2)

where .

For each projection in the scan of the calibration phantom, 
we obtain two position values per marker on the detector, 

. For the calibration scan, the locations to were
known and the to were measured, allowing
(2) to be solved for vectors for each projection. The 

vectors were used for the backprojection step of image 
reconstruction without conversion back into the original
parameters because (2) provides the relationship between the 
voxel positions and corresponding detector locations .

Equation (2) can be readily solved for the vectors 
in the phantom frame because simple linear equations arise 
due to the structure of the phantom. For example, 

and for ball 1, and 
similarly for each appearing marker. In our implementation,
the vectors were obtained from the pseudo-inverse by 
solving three linear systems (one for each component 
of the vectors) where is the number of visible markers 
present in the projection. The full x-component matrix which
occurs when all of the markers on the phantom x-axis appear 
is

. (3)

The matrices for y and z components are similar. The size of 
each of these three matrices vary depending on how many 
markers happen to be in the projection at a given angle,
however, as long as the identity of each marker is known and 
at least two markers on each axis are visible (i.e conditions 1
and 2 are satisfied) then the system will not be 
underdetermined, and solution yields the required 
vectors.

Fig. 5.  Truncated projection of a Shepp-Logan phantom overlaid with 
smoothing weight boundaries from (4). The -direction of (4) is perpendicular 
to the defined line. The area , ) is the overlap region of the detector, 
which is in each projection. This method measures from the projected axis
of rotation, which for misaligned detectors is not generally on a line parallel to 
the edge of the detector. This line, , is found with (2) and projected onto the 
detector as shown and used as the origin for the smoothing weight.

C. Modified Cone-Beam Reconstruction

We have implemented a variant of the FDK reconstruction 
algorithm [2], that integrates our geometric calibration to
reconstruct from width-truncated (i.e. offset-detector) 
projections. The geometric calibration aspect of the
reconstruction procedure primarily concerns the 
backprojection step, which we modified to incorporate the 
calibration information by using the vectors and (2). 
The method for reconstruction of width-truncated projections 
described by Cho [3] was implemented, where conceptually 
the missing ray-sums are estimated from the closest matching 
opposing rays and a smooth weighting scheme was applied for 
rays in the overlap region near the center. We used the 
standard scheme, which has the form

(4)

where, with the offset occurring in the direction,
is the overlap region of the detector and is in each 

projection, is the area of measured data, and 
is discarded by projection truncation but will appear 

in the opposite projection. This method measures from the 
projection of the axis of rotation, assumed known. For 
misaligned detector panels the projection of the axis of 
rotation onto the detector is not generally a line parallel to the 
edge of the detector. To find the true line, (1) is used to 
determine the location of two additional hypothetical phantom
markers, located at p
space. If the center of the phantom is positioned at isocenter, 
the line defined by these points is the axis of rotation projected 
onto the detector, as shown in Fig. 5.

D. Simulations

To validate our method, simulated projections of the 
calibration phantom were generated with a non-ideal detector
geometry and used to perform the calibration. The determined 
calibration parameters were then used to reconstruct a Shepp-
Logan phantom that was generated with the same non-ideal
geometry. The simulated geometry was modeled after the 



Fig. 6. Non-truncated projection of simulated calibration phantom shown 
in Fig. 2b), including the plastic shell.

specifications of the Elekta XVI CBCT-Linac [4]. The 
source to detector distance was 1.536 m, and the source to 
isocenter distance was 1.000 m. The detector size was 409.6
mm x 409.6 mm with 1024 isotropic pixels of width 0.4 mm.
A total of 348 projections over the 360-degree scan were 
generated. To create the non-ideal geometry, the center of the 
detector was shifted in both orthogonal directions of the 
detector by 5 mm, and the detector was rotated in the detector 
plan with varying magnitude between [-1,1] degrees over the 
scan. The overlap region was tested at different values
between 180 pixels (minor truncation) to = 20 pixels 
(major truncation).

The calibration was performed by first, extracting the
locations of the ball markers projected onto the detector from 
each projection of the calibration phantom scan. Marker 
location extraction was done by thresholding the images to 
eliminate noise and the plastic shell of the phantom (Fig. 6), 
then using the standard circle detection function in ImageJ [8]
to find the center of mass location of each marker. The marker 
locations for each projection were passed to a Matlab
implementation of the calibration [7] to determine the 
parameters. The parameters were supplied to our modified 
FDK reconstruction algorithm, written in C and used to 
reconstruct the non-idealized Shepp-Logan phantom.

A reconstruction was also made of a Shepp-Logan phantom
generated with a non-ideal detector, but without applying the 
calibration as a comparison. In the non-calibrated case, the 
detector width was doubled (1024x2048 pixels) as the FDK 
algorithm modified for truncation requires the calibration to 
define the overlap region. The presented comparison is,
therefore, the misaligned and truncated projections corrected
with the calibration against an uncorrected misaligned
reconstruction, but full-width projections.

III. RESULTS

Fig. 7 shows the obtained reconstructions made with a 
truncation of = 20 pixels (i.e with 49.9% of the phantom 
truncated in each projection). Without geometric calibration 
(Fig. 7a, 7b) significant artifacts surrounding the Shepp-Logan 
objects are observed, whereas the calibrated reconstruction
(Fig. 7c, 7d) shows a high degree of spatial fidelity in its 
ability to resolve the Shepp-Logan objects. In the calibrated 
reconstructions we do observe the imperfect recovery of the 
three small ellipsoids and a broad low-level shading artifact 
(about 0.8% in intensity) both of which we tentatively 

Fig. 7.  FDK reconstructions of 3D Shepp-Logan phantom from simulated 
misaligned projections. (a) and (b) show the reconstruction with uncorrected 
misalignment only, i.e. no detector truncation (no offset processing needed)
while (c) and (d) show corrected misalignment, including offset detector 
implementation.

Fig. 8. The source to detector distance determined with the calibration 
parameters plotted against the projection index of the 348 projections along 
the 360-degree scan. The mean source to detector distance (red line) 
determined from the calibration was (1536 +/- 4) mm.



attribute to uncalibrated FDK filtering which we have not yet 
corrected in our current implementation. In addition to the 
reconstructions, the determined calibration vectors were 
used to recover the specifications of the virtual geometry using 
(1). Fig. 8 shows the determined source to detector distance as 
a function of the projection index. The mean source to detector
distance over the 348 projections was found to be (1536 +/- 4)
mm, which matches the true value of 1536 mm.

IV. DISCUSSION

We have presented a phantom-based method CBCT
geometric calibration which is applicable to offset detector 
panels, as well as compatible with the widely used FDK 
reconstruction algorithm. We reconstructed a simulated 3D 
Shepp-Logan phantom generated with a misaligned scanner 
geometry involving shifting and variable rotation of the 
detector panel. Our method applies to other types of detector 
misalignment, such as source to detector distance, however,
we do assume that the x-ray source travels along a perfect 
circle. Our results of the calibrated and truncated Shepp-Logan 
phantom versus the uncalibrated but full-width phantom show 
that despite being truncated, the Shepp-Logan objects are 
more clearly recovered and geometrically accurate in the 
calibrated reconstruction. An attempt to approximate the line 
of rotation using a 2DOF approach was shown to lead to 
significant artifacts at high amounts of truncation, which
disqualified this approach from inclusion in the comparison. 
This implies that a calibration method with more than 2DOF
could be beneficial for reconstrcuting projections with extreme 
truncation (approaching as well as for severly 
misaligned detectors. The calibration was also validated by the 
recovery of the true geometric parameters the system was 
simulated with. Noise in Fig. 8 is hypothesised to be 
introduced when the calibration marker locations were
extracted from the projections.

Positioning the phantom at isocenter (condition 3) is not 
strictly required for the calibration, but in combination with 
the inclusion of the marker such positioning allows for 
easy determination of the projection of the isocenter onto the 
detector, . This condition could be alleviated by using 
the known marker locations in phantom space and their 
projected locations on the detector to determine 
analytically, similar to [5] and [7]. However, the phantom was 
designed to satisfy the additional conditions 1 and 2 when 
placed at isocenter, so while an analytical method to determine 

would alleviate the need for condition 3, the 
positioning of the phantom is still somewhat limited.

This work is of clinical importance in the context of image-
guided radiation therapy due to the need for accurate 
reconstructions from projections acquired with offset detector 
commonly obtained with CBCT-Linacs. 

We have constructed a physical version of the calibration 
phantom, to validate the method with real data (Fig. 9).

Fig. 9. Physical calibration phantom. The plastic shell was 3D printed as a 
single piece. Tungsten-carbide ball markers were implanted with a precision 
of 0.05 mm.
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