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Abstract

In this work we recall well known results related to the Helgason-
Ludwig Data Consistency Conditions (DCCs) of the 2D Radon transform.
These DCCs are based on moments of each projection. The center of
mass of each projection is the projection of the center of mass of the
measured object. This property is very useful for aligning the data in case
of misalignments. However reversed projection angles, a global constant
shift of the projection angles or a global sinusöıdal shift of the line index
at each projection angle lead to consistent projection data. Thus these
acquisition parameter modifications can not be estimated from DCCs.
In this work we propose a generalization of these results to parallel and
fan-beam linograms.

1 Introduction

There continues to be increasing interest in geometric calibration procedures for
computed tomography, because small misalignments of the projections can dra-
matically degrade the quality of reconstructed images. Self-calibration, whereby
unknown geometric misalignments are corrected concurrently with the produc-
tion scan is also becoming a popular approach ([1, 6]) although there are still
challenges to be overcome.

Self-calibration methods generally appeal to data consistency conditions,
because geometric misalignments can break down some kinds of consistency [3,
2]. For example, it is known that the order-1 and order-0 Helgason-Ludwig
consistency conditions [7, 5, 8] provide information on the center of mass of
the object being imaged. Misaligned projections would then reveal inconsistent
information on the center of mass and could possibly provide a criterion for
correcting these misalignments. On the other hand, order-0 conditions alone
only provide the total mass of the object and would not be useful for detecting
misalignments. Several other well-known facts (which are all reviewed below)
are that if the projection angle is reversed, a mirror version of the reconstructed
image occurs; that a fixed shift in the projection angle will just rotate the
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reconstructed image by the same angle, but that a fixed shift in the ray variable
produces inconsistent projection data.

Although the most common (2D) tomographic imaging configuration uses
parallel or fan-beam projections measured on a circle, linogram geometries,
whereby a flat detector is placed opposite fan-beam sources following a lin-
ear path are also relevant, particularly for non-medical applications such as
non-destructive testing, baggage security scanning, etc.

Here, we present the corresponding data consistency properties for the paral-
lel and fan-beam linogram geometries. We explore the center of mass and total
mass considerations, we examine the effect of a constant shift of the projection
index or of the ray index, and we consider reversing the projection index. These
results provide the corresponding information for linogram self-calibration issues
as is known for the conventional circular tomographic model.

The 2D Radon transform corresponds to the circular tomographic model.
We begin by expressing the stated (and well- known) results mathematically
for this case. Then we take the small step to parallel linogram projections
and even there we see some interesting differences (e.g., the rotation of the
object becomes a linear shear transformation). Finally we examine the fan-beam
linogram projections. These linogram results, derived from known linogram
consistency conditions, are new.

2 2D Radon transform

We let µ ∈ L1(R2) represent the 2D object function. We define parallel projec-
tions by

pφ(s) ..= p(φ, s) ..= Rµ(φ, s) ..=

∫
R
µ(s~θφ + l~ζφ)dl (1)

where φ ∈ [0, 2π), s ∈ R, ~θφ = (cosφ, sinφ) , ~ζφ = (− sinφ, cosφ), so the parallel
projection at angle φ is pφ. See Fig. 1. We will always use the first variable to
indicate the projection index.

s

~e2

~ζφ
~θφ

φ
~e1

O

Figure 1: 2D parallel geometry. The line of integration is the dashed blue line
s~θφ + R~ζφ.
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The Helgason-Ludwig consistency conditions [8] are expressed in terms of
moments of the parallel projections.

Πn(φ) = ∀n ∈ N,
∫
R
snp(φ, s)ds (2)

As is well-known, the function p is consistent (meaning that there exists
some µ such that p = Rµ) if and only if, ∀n = 0, 1, 2, . . . ,Πn is a homogeneous
polynomial in cosφ and sinφ of degree n (or else the zero polynomial). I.e. Πn

is of the form

Πn(φ) =

n∑
k=0

ak cosn−k(φ) sink(φ) (3)

which can be alternatively expressed as

Πn(φ) =An cosn (φ−An−1) +An−2 cosn−2 (φ−An−3) +

. . .+ L (4)

where the last term L is A1 cos (φ−A0) if n is odd, and A0 if n is even.

2.1 Mass and center of mass

It is well-known and easily demonstrated that for each projection φ, Π0(φ) is
the mass of µ:

Π0(φ) =

∫
R
pφ(s) ds =

∫
R2

µ(s~θφ + l~ζφ) dl ds

=

∫
R2

µ(~x) d~x (5)

Only slightly less well-known is the fact that the center of mass cφ of the φ-

projection pφ is equal to the φ-projection, ~c · ~θφ, of the center of mass ~c ∈ R2 of
µ. Indeed

cφ =

∫
R spφ(s) ds∫
R pφ(s) ds

=
Π1(φ)

Π0(φ)
=

∫
R s
∫
R µ(s~θφ + l~ζφ) dl ds∫

R
∫
R µ(s~θφ + l~ζφ) dl ds

=

∫
R2(~x · ~θφ)µ(~x) d~x∫

R2 µ(~x) d~x
=

(∫
R2 ~xµ(~x) d~x

)
· ~θφ∫

R2 µ(~x) d~x
= ~c · ~θφ

2.2 Projection index and ray index

Suppose p = Rµ and now let pΣ(φ, s) ..= p(−φ, s). The corresponding mo-
ments are ΠΣ

n(φ) = Πn(−φ) which are also of the required form (Eq. (3)), so
they correspond to some function µΣ (i.e. pΣ = RµΣ). We easily verify that
µΣ(x1, x2) = µ(x1,−x2), which says that if the projection angle is reversed, the
reconstructed function is reflected about the x1-axis.

Now consider p(δ,0)(φ, s) ..= p (φ+ δ, s), and we observe that the correspond-

ing moments Π
(δ,0)
n (φ) = Πn(φ+ δ) are also of the required form (Eq. (4)). The

corresponding function µδ is obviously just the rotated version µδ(x1, x2) =
µ(x′1, x

′
2) with x′1 = x1 cos δ − x2 sin δ, x′2 = x1 sin δ + x2 cos δ.
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This time, shifting the ray index by a constant (instead of the projection

index), we define p(0,δ)(φ, s) ..= p (φ, s+ δ). We find Π
(0,δ)
n (φ) = Πn(φ) +

nδΠn−1(φ)+n(n−1)/2δ2Πn−2(φ)+ . . .+δnΠ0(φ) which is a polynomial in sinφ
and cosφ but it is not homogeneous. So the projections p(0,δ) are not consistent
and do not correspond to any function, which agrees with our intuition that
the projections are no longer correctly aligned with each other. However, a si-
nusöıdal shift of the ray index is consistent: ∀~v ∈ R2, p (φ, s+ v1 cosφ+ v2 sinφ)
is as consistent as p (φ, s). Indeed let µ~v ..= µ(~x+~v) then Rµ~v(φ, s) = Rµ(φ, s+

~v · ~θφ).

3 Parallel Linograms

We examine the parallel linogram case as a stepping stone to fan-beam lino-
grams. The parallel linogram l(u, q) is defined by

lu(λ) ..= l(u, q) ..= Lµ(u, q)

..=

∫
R
µ
(
(q, 0) + l(−u, 1)

)
dl. (6)

The parallel linogram projections are of the form lu where the linear projection
index u specifies the orientation of the projection. See Fig. 2.

Consistency conditions for parallel linograms are easily derived from the
Helgason-Ludwig conditions, since the lino- grams just describe the same pro-
jections using different variables [9]. Let Jn(u) be the nth moment of lu:

Jn(u) ..=

∫
R
lu(q)qn dq (7)

then l = Lµ for some object µ if and only if, ∀n, Jn(u) is a polynomial of degree
at most n, i.e. Jn(u) is of the form

Jn(u) = b0 + b1u+ . . .+ bnu
n (8)

3.1 Mass and center of mass

It can be shown directly that for each projection u , J0(u) is the mass of µ. This
property is not obvious because l(u, q) = cosφ p(φ, s) (where u = tanφ and
s = q cosφ), and the scaling factor cosφ(= 1/

√
1 + u2) would suggest the mass

is related to J0 via some function of u . However, at larger u , the sampling in
q is denser, and the combined effect cancels to yield the simple relation

J0(u) =

∫
R
lu(q) dq =

∫
R

∫
R
µ (q − lu, l) dl dq

=

∫
R2

µ (~x) d~x (9)

where we have made the change of variables x1 = q − lu and x2 = l.
The center of mass of the u-projection lu is

cu ..=

∫
R lu(q)q dq∫
R lu(q) dq

=
J1(u)

J0(u)
(10)
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Figure 2: Linogram geometry. The line of integration is the dashed blue line
(λ, 0) +R(− sinφ, cosφ) or equivalently (λ, 0) +R(−u, 1) with u = tanφ (up to
the scaling factor cosφ). λ~c = c1 + c2u is the linogram projection of the point
~c.

moreover

J1(u) =

∫
R
lu(q)q dq =

∫
R

∫
R
qµ (q − lu, l) dl dq

=

∫
R2

(x1 + x2u)µ (~x) d~x (11)

with the same change of variable as in (9) and so q = x1 + ux2. From (10), (9)
and (11) we have

cu = c1 + uc2. (12)

Now, for an arbitrary point (x1, x2), the “u-projection” (the corresponding value
of q) is x1 +ux2 = (x1, x2) ·(1, u), see Fig. 2. Thus we clearly see that the center
of mass of the u-projection lu is the u-projection of the center of mass (of µ).
In terms of the moments:

J1(u)

J0(u)
= ~c · (1, u). (13)

3.2 Projection index and ray index

In this subsection, we assume l = Lµ. Letting lΣ(u, q) ..= l(−u, q), we easily
see that the corresponding moment JΣ

n (u) = Jn(−u) is also a polynomial of
the same degree as Jn(u). We also easily see that lΣ = LµΣ, exactly as in the
conventional Radon transform: reversing the sign of the projection index will
reflect the object function about the x1-axis.

Now let lδ(u, q) ..= l(u+δ, q) ; the corresponding moments Jδn(u) = Jn(u+δ)
are obviously also polynomials of degree n or less, so there again exists an object
µδ (not the same as the previous µδ) such that lδ = Lµδ. We have established
that

µδ (~x) = µ (Aδ~x) where Aδ
..=

[
1 δ
0 1

]
(14)
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which is a linear shear mapping of µ with shear factor −δ. Indeed

Lµδ(u, λ) =

∫ +∞

0

µδ (λ− lu, l) dl

=

∫ +∞

0

µ (λ− lu+ lδ, l) dl

thus
Lµδ(u, λ) = Lµ(u− δ, λ) (15)

For the case of the translated ray index, we define l̃(u, q) ..= l(u, q + δ).

The corresponding moments satisfy J̃n(u) = Jn(u) +nδJn−1(u) + . . .+ δnJ0(u),
which is indeed a polynomial in u of degree n or less. So there exists some µ̃

such that l̃ = Lµ̃. We find µ̃(x1, x2) = µ(x1 + δ, x2), a simple translation of µ
by δ(1, 0). But this is a particular case of the following: with µ~v(x) ..= µ(x+~v)
be a translation of µ of ~v = (v1, v2) ∈ R2 then we have

Lµ~v(u, q) =

∫
R
µ
(
(q + v1, v2) + l(−u, 1)

)
dl

=

∫
R
µ
(
(q + v1, v2) + (l + v2)(−u, 1)

)
dl

= Lµ(u, q + v1 + v2u)

(16)

4 Fan-Beam Linograms

For fan-beam linograms, we define the linogram data d(λ, t) by

d(λ, t) ..= (Dµ)(λ, t)

..=

∫ +∞

0

µ
(
(λ,D) + l(t− λ,−D)

)
dl (17)

where the projection parameter λ indicates the location (λ,D) of the fan-vertex
along the line x2 = D, and the ray-variable t indicates the absolute location
along the x1-axis, which can be considered as a fixed detector. See Fig. 3. Note
that this definition is fundamentally different from that in [9] where the ray
variable indicates a point relative to the fan-vertex, as if the detector and fan-
vertex (e.g. x-ray source) were a single unit. Consistency conditions for d(λ, t)
can be found in [4]. Let Kn(λ) be the nth moment of d(λ, t):

∀n ∈ N,Kn(λ) =

∫
R
d(λ, t)tn dt (18)

then d = Dµ for some µ if and only if, ∀n ∈ N,Kn(λ) is a polynomial of degree
at most n. In [4], it is shown that

Kn(λ) =

n∑
k=0

αn−k,kλ
k (19)

where

αn−k,k =

(
n

k

)∫
R2

µ(x1, x2)
xn−k1 Dn−k(−x2)k

(D − x2)n+1
dx1 dx2. (20)

Because the compact support of µ is included in R × (−∞, D), the singularity
term (D − x2)−(n+1) does not affect the integral.
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x2
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(λ,D)

(t, 0)

D

Figure 3: 2D fan-beam linogram tomography. The (half) line of integration
(λ,D)+R+(x−λ,−D) is the dashed blue (half) line. The source position is the
red point at (λ,D). The (virtual) detector position is the blue square at (t, 0).

4.1 Mass and center of mass

From (19) and (20) we derive that

K0(λ) =

∫
R2

µ(~x)

D − x2
d~x = α0,0

i.e. for each λ-projection, the constant K0 (independent of λ) equals the total

mass of the weighted object function µ(~x)
D−x2

. Note that the object lies under the
line x2 = D and the weight is the inverse distance from ~x = (x1, x2) to the line
x2 = D.

We also have
K1(λ) = α1,0 + α0,1λ (21)

where

α1,0 = D

∫
R2

x1
µ(~x)

(D − x2)2
d~x (22)

α0,1 = −
∫
R2

x2
µ(~x)

(D − x2)2
d~x (23)

Let us define µW , the function µ weighted by 1
(D−x2)2

µW (~x) ..=
µ(~x)

(D − x2)2

We note that

K0 =

(∫
R2

µW (~x) d~x

)
(D − cW 2)

where ~cW = (cW 1, cW 2) the center of mass of µW , i.e.

cW 1
..=

∫
R2 x1µW (~x) d~x∫
R2 µW (~x) d~x
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and

cW 2
..=

∫
R2 x2µW (~x) d~x∫
R2 µW (~x) d~x

It can easily be shown that∫
R2

µW (~x) d~x =
α0,0 − α0,1

D

cW 1 =
α1,0

α0,0 − α0,1

cW 2 = − Dα0,1

α0,0 − α0,1

From Eq. (21), (22) and (23)

K1(λ) =
(
(D,−λ) · ~cW

) ∫
R2

µW (~x) d~x. (24)

Now, for an arbitrary point (x1, x2), the λ-projection of this point is given by

tλ(x1, x2) = (x1, x2) · (D,−λ)/(D−x2). Indeed, tλ(x1,x2)−λ
x1−λ = D

D−x2
, see Fig. 4.

Therefore, the center of mass of the λ-projection is the λ-projection of the center
of mass of the weighted object µW . Expressed with moments:

K1(λ)

K0
= ~cW · (D,−λ)/(D − cW 2). (25)

D

x2

(λ,D)

x1
x1

x2

D

~x = (x1, x2)

D − x2

λ
x1 − λ tλ(x1, x2)

tλ(x1, x2)− λ

Figure 4: tλ(x1, x2) is λ-projection of the point (x1, x2). Thus tλ(x1,x2)−λ
x1−λ =

D
D−x2

.

4.2 Projection index and ray index

Following the pattern of the previous sections, we define dΣ(λ, t) = d(−λ, t);
dδ(λ, t) = d(λ + δ, t); d̃(λ, t) = d(λ, t + δ). Assuming d(−λ, t) = (Dµ)(λ, t),
then all three modified fan-beam linograms are also consistent, by the same
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arguments as in section 3.2. There exists therefore, µΣ, µδ, µ̃ such that dΣ =
DµΣ, dδ = Dµδ, d̃ = Dµ̃. We find

µδ (~x) = µ (Aδ~x) where Aδ
..=

[
1 δ/D
0 1

]
or more simply µδ (x1, x2) = µ

(
x1 + (δ/D)x2, x2

)
. We can easily derive µ̃ (x1, x2) =

µ
(
x1 − (δ/D)x2 + δ, x2

)
, so a constant shift of either the projection index or

the ray variable corresponds to a shear of the object.
The expression for µΣ is more complex. We show

µΣ(x1, x2) =

(
D

2x2 −D

)2

µ

(
D

2x2 −D
(−x1, x2)

)
(26)

(FDµΣ)(λ, t)

=

∫ +∞

0

µΣ

(
(λ,D) + l(t− λ,−D)

)
dl

=

∫ +∞

0

µΣ

(
λ+ l(t− λ), D(1− l)

)
dl

=

∫ +∞

0

(
1

1− 2l

)2

µ

((
−λ(1− l)− lt

1− 2l
,D

1− l
1− 2l

))
dl

Assume now that supp(µ), the support of µ, is such that suppµ ⊂ R ×
(−∞, D/2)

(FDµΣ)(λ, t)

=

∫ +∞

0

(
1

1− 2l

)2

µ

((
−λ(1− l)− lt

1− 2l
,D

1− l
1− 2l

))
dl

=

∫ +∞

1/2

(
1

1− 2l

)2

µ

((
−λ(1− l)− lt

1− 2l
,D

1− l
1− 2l

))
dl

now the change of variable 1 − u = 1−l
1−2l or u = −l

1−2l , thus du = 1
(2l−1)2 dl. is

one to one between l ∈ (1/2,+∞) and u ∈ (1/2,+∞). Thus

(FDµΣ)(λ, t) =

∫ +∞

1/2

µ
((
−λ(1− u) + ut,D(1− u)

))
du

= (FDµ)(−λ, t) (27)

5 Discussion

We have studied five well-known properties of the Radon transform in the con-
text of parallel and fan-beam linograms, and seen remarkable differences and
similarities. For example, the center of mass of the 2D Radon parallel projec-
tion pφ, respectively the parallel linogram projection lu, is the φ-projection,
respectively the u-projection, of the center of mass of the measured object µ.
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Similarily, the center of mass of the fan beam linogram projection dλ is the λ-

projection of the center of mass of µW where µW (~x) = µ(~x)
(D−x2)2 . Offsetting the

projection index for the Radon transform corresponds to rotating the object,
whereas for linograms, it corresponds to performing a shear transformation on
the object, see Fig. 5.

We have recalled for the 2D Radon data p and shown for l (parallel linogram
data) and d (fan-beam linogram data) that

• ∀~v ∈ R2, p
(
φ, s+ ~v · ~θφ

)
, p (−φ, s) and p (φ+ δ, s) are as consistent as

p (φ, s)

• ∀~v ∈ R2, l
(
u, λ+ ~v · (1, u)

)
, l (−u, λ), l (u+ δ, λ) are as consistent as

l (u, λ).

• d(λ, t+ δ), d(−λ, t) and d(λ+ δ, t) are as consistent as d(λ, t).

We have given the respective transforms on µ to obtain the respective consistent
data, assuming respectively p = Rµ, l = Lµ, d = Dµ. As in [3], this information
(δ, ~v, the “direction” of the projection acquisition, i.e., the global sign of the
respective projection parameter φ, u, λ) can not be estimated from the DCCs.

Figure 5: Example of effect of constant offset applied to the projection variable.
Left: µ(x1, x2) is the standard Shepp-Logan phantom. Middle: Rotation due to
Radon projections offset by a constant shift. Right: Shear transformation due
to linogram projections offset by a constant shift.
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