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Introduction

There continues to be increasing interest in geometric calibration procedures for computed tomography, because small misalignments of the projections can dramatically degrade the quality of reconstructed images. Self-calibration, whereby unknown geometric misalignments are corrected concurrently with the production scan is also becoming a popular approach ( [START_REF] Aichert | Epipolar consistency in transmission imaging[END_REF][START_REF] Lesaint | Calibration for circular cone-beam ct based on consistency conditions[END_REF]) although there are still challenges to be overcome.

Self-calibration methods generally appeal to data consistency conditions, because geometric misalignments can break down some kinds of consistency [START_REF] Basu | Uniqueness of tomography with unknown view angles[END_REF][START_REF] Basu | Feasibility of tomography with unknown view angles[END_REF]. For example, it is known that the order-1 and order-0 Helgason-Ludwig consistency conditions [START_REF] Ludwig | The radon transform on euclidean space[END_REF][START_REF] Helgason | The Radon Transform[END_REF][START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF] provide information on the center of mass of the object being imaged. Misaligned projections would then reveal inconsistent information on the center of mass and could possibly provide a criterion for correcting these misalignments. On the other hand, order-0 conditions alone only provide the total mass of the object and would not be useful for detecting misalignments. Several other well-known facts (which are all reviewed below) are that if the projection angle is reversed, a mirror version of the reconstructed image occurs; that a fixed shift in the projection angle will just rotate the reconstructed image by the same angle, but that a fixed shift in the ray variable produces inconsistent projection data.

Although the most common (2D) tomographic imaging configuration uses parallel or fan-beam projections measured on a circle, linogram geometries, whereby a flat detector is placed opposite fan-beam sources following a linear path are also relevant, particularly for non-medical applications such as non-destructive testing, baggage security scanning, etc.

Here, we present the corresponding data consistency properties for the parallel and fan-beam linogram geometries. We explore the center of mass and total mass considerations, we examine the effect of a constant shift of the projection index or of the ray index, and we consider reversing the projection index. These results provide the corresponding information for linogram self-calibration issues as is known for the conventional circular tomographic model.

The 2D Radon transform corresponds to the circular tomographic model. We begin by expressing the stated (and well-known) results mathematically for this case. Then we take the small step to parallel linogram projections and even there we see some interesting differences (e.g., the rotation of the object becomes a linear shear transformation). Finally we examine the fan-beam linogram projections. These linogram results, derived from known linogram consistency conditions, are new.

2D Radon transform

We let µ ∈ L 1 (R 2 ) represent the 2D object function. We define parallel projections by

p φ (s) . . = p(φ, s) . . = Rµ(φ, s) . . = R µ(s θ φ + l ζ φ )dl (1) 
where φ ∈ [0, 2π), s ∈ R, θ φ = (cos φ, sin φ) , ζ φ = (-sin φ, cos φ), so the parallel projection at angle φ is p φ . See Fig. 1. We will always use the first variable to indicate the projection index. The Helgason-Ludwig consistency conditions [START_REF] Natterer | The Mathematics of Computerized Tomography[END_REF] are expressed in terms of moments of the parallel projections.

Π n (φ) = ∀n ∈ N, R s n p(φ, s)ds (2) 
As is well-known, the function p is consistent (meaning that there exists some µ such that p = Rµ) if and only if, ∀n = 0, 1, 2, . . . , Π n is a homogeneous polynomial in cos φ and sin φ of degree n (or else the zero polynomial). I.e. Π n is of the form

Π n (φ) = n k=0 a k cos n-k (φ) sin k (φ) (3) 
which can be alternatively expressed as

Π n (φ) =A n cos n (φ -A n-1 ) + A n-2 cos n-2 (φ -A n-3 ) + . . . + L (4) 
where the last term L is A 1 cos (φ -A 0 ) if n is odd, and A 0 if n is even.

Mass and center of mass

It is well-known and easily demonstrated that for each projection φ, Π 0 (φ) is the mass of µ:

Π 0 (φ) = R p φ (s) ds = R 2 µ(s θ φ + l ζ φ ) dl ds = R 2 µ( x) d x (5) 
Only slightly less well-known is the fact that the center of mass c φ of the φprojection p φ is equal to the φ-projection, c • θ φ , of the center of mass c ∈ R 2 of µ. Indeed

c φ = R sp φ (s) ds R p φ (s) ds = Π 1 (φ) Π 0 (φ) = R s R µ(s θ φ + l ζ φ ) dl ds R R µ(s θ φ + l ζ φ ) dl ds = R 2 ( x • θ φ )µ( x) d x R 2 µ( x) d x = R 2 xµ( x) d x • θ φ R 2 µ( x) d x = c • θ φ 2.

Projection index and ray index

Suppose p = Rµ and now let p Σ (φ, s) . . = p(-φ, s). The corresponding moments are Π Σ n (φ) = Π n (-φ) which are also of the required form (Eq. ( 3)), so they correspond to some function µ Σ (i.e. p Σ = Rµ Σ ). We easily verify that µ Σ (x 1 , x 2 ) = µ(x 1 , -x 2 ), which says that if the projection angle is reversed, the reconstructed function is reflected about the x 1 -axis. Now consider p (δ,0) (φ, s) . . = p (φ + δ, s), and we observe that the corresponding moments Π (δ,0) n (φ) = Π n (φ + δ) are also of the required form (Eq. ( 4)). The corresponding function µ δ is obviously just the rotated version

µ δ (x 1 , x 2 ) = µ(x 1 , x 2 ) with x 1 = x 1 cos δ -x 2 sin δ, x 2 = x 1 sin δ + x 2 cos δ.
This time, shifting the ray index by a constant (instead of the projection index), we define p (0,δ) (φ, s) . . = p (φ, s + δ). We find Π (0,δ) n (φ) = Π n (φ) + nδΠ n-1 (φ)+n(n-1)/2δ 2 Π n-2 (φ)+. . .+δ n Π 0 (φ) which is a polynomial in sin φ and cos φ but it is not homogeneous. So the projections p (0,δ) are not consistent and do not correspond to any function, which agrees with our intuition that the projections are no longer correctly aligned with each other. However, a sinusoïdal shift of the ray index is consistent:

∀ v ∈ R 2 , p (φ, s + v 1 cos φ + v 2 sin φ) is as consistent as p (φ, s). Indeed let µ v . . = µ( x + v) then Rµ v (φ, s) = Rµ(φ, s + v • θ φ ).

Parallel Linograms

We examine the parallel linogram case as a stepping stone to fan-beam linograms. The parallel linogram l(u, q) is defined by

l u (λ) . . = l(u, q) . . = Lµ(u, q) . . = R µ (q, 0) + l(-u, 1) dl. ( 6 
)
The parallel linogram projections are of the form l u where the linear projection index u specifies the orientation of the projection. See Fig. 2. Consistency conditions for parallel linograms are easily derived from the Helgason-Ludwig conditions, since the lino-grams just describe the same projections using different variables [START_REF] Clackdoyle | Data consistency for linograms and planograms[END_REF]. Let J n (u) be the n th moment of l u :

J n (u) . . = R l u (q)q n dq (7) 
then l = Lµ for some object µ if and only if, ∀n, J n (u) is a polynomial of degree at most n, i.e. J n (u) is of the form

J n (u) = b 0 + b 1 u + . . . + b n u n (8) 

Mass and center of mass

It can be shown directly that for each projection u , J 0 (u) is the mass of µ. This property is not obvious because l(u, q) = cos φ p(φ, s) (where u = tan φ and s = q cos φ), and the scaling factor cos φ(= 1/ √ 1 + u 2 ) would suggest the mass is related to J 0 via some function of u . However, at larger u , the sampling in q is denser, and the combined effect cancels to yield the simple relation

J 0 (u) = R l u (q) dq = R R µ (q -lu, l) dl dq = R 2 µ ( x) d x (9) 
where we have made the change of variables x 1 = q -lu and x 2 = l.

The center of mass of the u-projection l u is moreover

c u . . = R l u (q)q dq R l u (q) dq = J 1 (u) J 0 (u) (10) 
J 1 (u) = R l u (q)q dq = R R qµ (q -lu, l) dl dq = R 2 (x 1 + x 2 u)µ ( x) d x (11) 
with the same change of variable as in [START_REF] Clackdoyle | Data consistency for linograms and planograms[END_REF] and so q = x 1 + ux 2 . From (10), ( 9) and (11) we have

c u = c 1 + uc 2 . (12) 
Now, for an arbitrary point (x 1 , x 2 ), the "u-projection" (the corresponding value of q) is x 1 + ux 2 = (x 1 , x 2 ) • (1, u), see Fig. 2. Thus we clearly see that the center of mass of the u-projection l u is the u-projection of the center of mass (of µ).

In terms of the moments:

J 1 (u) J 0 (u) = c • (1, u). (13) 

Projection index and ray index

In this subsection, we assume l = Lµ. Letting l Σ (u, q) . . = l(-u, q), we easily see that the corresponding moment J Σ n (u) = J n (-u) is also a polynomial of the same degree as J n (u). We also easily see that l Σ = Lµ Σ , exactly as in the conventional Radon transform: reversing the sign of the projection index will reflect the object function about the x 1 -axis. Now let l δ (u, q) . . = l(u+δ, q) ; the corresponding moments J δ n (u) = J n (u+δ) are obviously also polynomials of degree n or less, so there again exists an object µ δ (not the same as the previous µ δ ) such that l δ = Lµ δ . We have established that

µ δ ( x) = µ (A δ x) where A δ . . = 1 δ 0 1 (14)
which is a linear shear mapping of µ with shear factor -δ. Indeed

Lµ δ (u, λ) = +∞ 0 µ δ (λ -lu, l) dl = +∞ 0 µ (λ -lu + lδ, l) dl thus Lµ δ (u, λ) = Lµ(u -δ, λ) (15) 
For the case of the translated ray index, we define l(u, q) . . = l(u, q + δ). The corresponding moments satisfy J n (u) = J n (u) + nδJ n-1 (u) + . . . + δ n J 0 (u), which is indeed a polynomial in u of degree n or less. So there exists some µ such that l = L µ. We find µ(x 1 , x 2 ) = µ(x 1 + δ, x 2 ), a simple translation of µ by δ(1, 0). But this is a particular case of the following: with

µ v (x) . . = µ(x + v) be a translation of µ of v = (v 1 , v 2 ) ∈ R 2 then we have Lµ v (u, q) = R µ (q + v 1 , v 2 ) + l(-u, 1) dl = R µ (q + v 1 , v 2 ) + (l + v 2 )(-u, 1) dl = Lµ(u, q + v 1 + v 2 u) (16)

Fan-Beam Linograms

For fan-beam linograms, we define the linogram data d(λ, t) by d(λ, t) . . = (Dµ)(λ, t)

. . = +∞ 0 µ (λ, D) + l(t -λ, -D) dl ( 17 
)
where the projection parameter λ indicates the location (λ, D) of the fan-vertex along the line x 2 = D, and the ray-variable t indicates the absolute location along the x 1 -axis, which can be considered as a fixed detector. See Fig. 3. Note that this definition is fundamentally different from that in [START_REF] Clackdoyle | Data consistency for linograms and planograms[END_REF] where the ray variable indicates a point relative to the fan-vertex, as if the detector and fanvertex (e.g. x-ray source) were a single unit. Consistency conditions for d(λ, t) can be found in [START_REF] Clackdoyle | Necessary and sufficient consistency conditions for fanbeam projections along a line[END_REF]. Let K n (λ) be the n th moment of d(λ, t):

∀n ∈ N, K n (λ) = R d(λ, t)t n dt (18) 
then d = Dµ for some µ if and only if, ∀n ∈ N, K n (λ) is a polynomial of degree at most n. In [START_REF] Clackdoyle | Necessary and sufficient consistency conditions for fanbeam projections along a line[END_REF], it is shown that

K n (λ) = n k=0 α n-k,k λ k (19) 
where

α n-k,k = n k R 2 µ(x 1 , x 2 ) x n-k 1 D n-k (-x 2 ) k (D -x 2 ) n+1 dx 1 dx 2 . ( 20 
)
Because the compact support of µ is included in R × (-∞, D), the singularity term (D -x 2 ) -(n+1) does not affect the integral. 

Mass and center of mass

From ( 19) and (20) we derive that

K 0 (λ) = R 2 µ( x) D -x 2 d x = α 0,0
i.e. for each λ-projection, the constant K 0 (independent of λ) equals the total mass of the weighted object function µ( x) D-x2 . Note that the object lies under the line x 2 = D and the weight is the inverse distance from x = (x 1 , x 2 ) to the line x 2 = D.

We also have

K 1 (λ) = α 1,0 + α 0,1 λ (21) 
where

α 1,0 = D R 2 x 1 µ( x) (D -x 2 ) 2 d x (22) α 0,1 = - R 2 x 2 µ( x) (D -x 2 ) 2 d x (23) 
Let us define µ W , the function µ weighted by

1 (D-x2) 2 µ W ( x) . . = µ( x) (D -x 2 ) 2
We note that

K 0 = R 2 µ W ( x) d x (D -c W 2 )
where c W = (c W 1 , c W 2 ) the center of mass of µ W , i.e.

c W 1 . . = R 2 x 1 µ W ( x) d x R 2 µ W ( x) d x and c W 2 . . = R 2 x 2 µ W ( x) d x R 2 µ W ( x) d x It can easily be shown that R 2 µ W ( x) d x = α 0,0 -α 0,1 D c W 1 = α 1,0 α 0,0 -α 0,1 c W 2 = - Dα 0,1 α 0,0 -α 0,1
From Eq. ( 21), ( 22) and ( 23)

K 1 (λ) = (D, -λ) • c W R 2 µ W ( x) d x. (24) 
Now, for an arbitrary point (x 1 , x 2 ), the λ-projection of this point is given by t

λ (x 1 , x 2 ) = (x 1 , x 2 ) • (D, -λ)/(D -x 2 ). Indeed, t λ (x1,x2)-λ x1-λ = D D-x2
, see Fig. 4. Therefore, the center of mass of the λ-projection is the λ-projection of the center of mass of the weighted object µ W . Expressed with moments:

K 1 (λ) K 0 = c W • (D, -λ)/(D -c W 2 ). ( 25 
) D x 2 (λ, D) x 1 x 1 x 2 D x = (x 1 , x 2 ) D -x 2 λ x 1 -λ t λ (x 1 , x 2 ) t λ (x 1 , x 2 ) -λ Figure 4: t λ (x 1 , x 2 ) is λ-projection of the point (x 1 , x 2 ). Thus t λ (x1,x2)-λ x1-λ = D D-x2 .

Projection index and ray index

Following the pattern of the previous sections, we define d

Σ (λ, t) = d(-λ, t); d δ (λ, t) = d(λ + δ, t); d(λ, t) = d(λ, t + δ). Assuming d(-λ, t) = (Dµ)(λ, t),
then all three modified fan-beam linograms are also consistent, by the same Similarily, the center of mass of the fan beam linogram projection d λ is the λprojection of the center of mass of µ W where µ W ( x) = µ( x) (D-x2) 2 . Offsetting the projection index for the Radon transform corresponds to rotating the object, whereas for linograms, it corresponds to performing a shear transformation on the object, see Fig. 5.

We have recalled for the 2D Radon data p and shown for l (parallel linogram data) and d (fan-beam linogram data) that • ∀ v ∈ R 2 , p φ, s + v • θ φ , p (-φ, s) and p (φ + δ, s) are as consistent as p (φ, s)

• ∀ v ∈ R 2 , l u, λ + v • (1, u) , l (-u, λ), l (u + δ, λ) are as consistent as l (u, λ).

• d(λ, t + δ), d(-λ, t) and d(λ + δ, t) are as consistent as d(λ, t).

We have given the respective transforms on µ to obtain the respective consistent data, assuming respectively p = Rµ, l = Lµ, d = Dµ. As in [START_REF] Basu | Uniqueness of tomography with unknown view angles[END_REF], this information (δ, v, the "direction" of the projection acquisition, i.e., the global sign of the respective projection parameter φ, u, λ) can not be estimated from the DCCs. 
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 11 Figure 1: 2D parallel geometry. The line of integration is the dashed blue line s θ φ + R ζ φ .

1 c 1 + c 2 u = c u c u φ c 2 u 1 Figure 2 :

 1112 Figure 2: Linogram geometry. The line of integration is the dashed blue line (λ, 0) + R(-sin φ, cos φ) or equivalently (λ, 0) + R(-u, 1) with u = tan φ (up to the scaling factor cos φ). λ c = c 1 + c 2 u is the linogram projection of the point c.
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 3 Figure 3: 2D fan-beam linogram tomography. The (half) line of integration (λ, D) + R + (x -λ, -D) is the dashed blue (half) line. The source position is the red point at (λ, D). The (virtual) detector position is the blue square at (t, 0).
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 5 Figure 5: Example of effect of constant offset applied to the projection variable. Left: µ(x 1 , x 2 ) is the standard Shepp-Logan phantom. Middle: Rotation due to Radon projections offset by a constant shift. Right: Shear transformation due to linogram projections offset by a constant shift.
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arguments as in section 3.2. There exists therefore, µ Σ , µ δ , µ such that d Σ = Dµ Σ , d δ = Dµ δ , d = D µ. We find

, so a constant shift of either the projection index or the ray variable corresponds to a shear of the object.

The expression for µ Σ is more complex. We show

Discussion

We have studied five well-known properties of the Radon transform in the context of parallel and fan-beam linograms, and seen remarkable differences and similarities. For example, the center of mass of the 2D Radon parallel projection p φ , respectively the parallel linogram projection l u , is the φ-projection, respectively the u-projection, of the center of mass of the measured object µ.