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29 Abstract

30 Vitamin D regulates homeostasis, anti-microbial response, and inflammation. The vitamin D 

31 receptors are expressed in the macrophages and other immune cells, regulating the transcription of 

32 many different genes, including those coding the anti-microbial peptides. One of the most severe 

33 complications of the SARS-CoV-2 infection is the acute respiratory distress syndrome (ARDS) 

34 caused by the hyperinflammatory response (commonly called cytokine storm) of the lung 
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35 macrophages. Studies showed that Vitamin D deficiency increases the severity of the ARDS in 

36 COVID-19 infection. We discuss here how the vitamin D supplementation may influence 

37 macrophage and myeloid-derived suppressor cells (MDSCs) inflammatory response, subdue the 

38 hyperinflammatory response, and lessen the ARDS in COVID-19 patients.

39

40 Key words: macrophages, myeloid-derived suppressor cells (MDSCs), hyperinflammatory response, 

41 vitamin D, vitamin D receptor, COVID-19, SARS-CoV-2

42

43 Introduction

44 COVID-19 pandemic has revived and increased interest in vitamin D as a potential modulator of the 

45 immune response in SARS-CoV-2 infection. As the macrophage immune response plays an 

46 important role in the severity of COVID-19, any factor modulating their functions is, currently, of the 

47 high interests. Besides macrophages, the myeloid-derived suppressor cells (MDSCs), which suppress 

48 T cells activity and attenuate the overall immune response, are also the target of Vitamin D. This 

49 indicates that Vitamin D may have therapeutic applications as an additive to conventional anti-viral 

50 therapies.

51 Vitamin D (25 (OH)2 D) is a fat-soluble secosteroid (steroid with a “broken” ring) hormone that 

52 regulates absorption and homeostasis of magnesium, calcium and phosphate, and various aspects of 

53 human health, including mitochondrial integrity, systemic inflammation, and the anti-microbial 

54 immune response (1, 2). The active metabolite of vitamin D, the 1, 25 dihydroxy vitamin D (1,25 

55 (OH)2D3) that circulates in the blood, functions through the binding to vitamin D receptor (VDR), 

56 also called the NR1I1 (nuclear receptor subfamily 1, group I, member 1), which is the member of the 

57 nuclear receptor family of transcription factors. The 1,25 (OH)2 D/VDR complex heterodimerizes 

58 with the retinoic-X receptor (RXR), causing nuclear translocation, and binding to the vitamin D 

59 response elements (VDREs) on DNA. This, in turn, dissociates repressors, recruits the co-factors, and 

60 regulates the transcription of over 900 different genes (Fig. 1); (3, 4). Because the VDR is also 

61 abundantly expressed in the immune cells such as T cells, dendritic cells, and macrophages, many of 

62 these target genes have immune response-related functions (4). For example, such targets are the 

63 cathelicidin, and defensin, genes that encode the anti-microbial peptides that reduce viral replication 

64 rate and promote chemotaxis of macrophages and other immune cells to the inflamed organs (3, 7, 8). 

65

66 Macrophages and hyperinflammatory response in the lungs of COVID-19 patients

67 One of the deadliest effects of SARS-CoV-2 infection is the acute respiratory distress syndrome 

68 (ARDS) caused by the overdrive of the inflammatory response of lung macrophages (Fig. 2); (9-16). 
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69 There are two different (intrinsic and extrinsic) mechanisms inducing macrophage inflammatory 

70 response. In the intrinsic response, the alveolar macrophages, express the ACE2 (angiotensin-

71 converting enzyme-2), which acts as the receptor recognizing spike proteins on the surface of SARS- 

72 CoV-2 and similar viruses (SARS-CoV, and NL63), and facilitates virus entry, are infected with the 

73 virus (17,18). This, in turn, switches on a rapid and severe immune response flooding the lungs with 

74 the inflammatory cytokines and factors such as tumor necrosis factors (TNFs), IL-1, IL-6, IL-8, and 

75 IL-12, and many others (16, 19), which affect B cells, neutrophils, basophils, and T cells, sending 

76 additional pro-inflammatory signals to macrophages and amplifying the inflammatory response (19). 

77 In the extrinsic response, the macrophage immune response is induced by the incoming inflammatory 

78 signals from the lung epithelial cells (that also express ACE2 and are infected by the virus), 

79 macrophages in the pulmonary lymph nodes and spleen, or/and immune cells of other infected 

80 organs. The produced cytokines, and chemokines (cytokines which have a chemotactic function) can 

81 also recruit monocytes and additional macrophages to the lungs propagating further inflammatory 

82 response (19). Some studies show that the effectiveness of the currently used anti-inflammatory 

83 therapies for the treatment of various diseases relies not only on the inhibition of cytokine production 

84 but also on the decrease of macrophage infiltration (15).

85

86

87 Molecular mechanisms of Vitamin D effects on the hyperinflammatory response in COVID-19 

88 Recent analyses of COVID-19 patients’ data from Germany, UK, US, France, Spain, Italy, China, 

89 and South Korea showed that a severe vitamin D deficiency correlates with a high 

90 (C-Reactive Protein) CRP level in patients with COVID 19 infection (10). As we described in 

91 previous sections, the ARDS is caused by the overdrive of the lung macrophage and other immune  

92 cells (B cells, neutrophils, basophils, and T cells) inflammatory response (19). Here we discuss how 

93 vitamin D may be involved in the modulation/suppression of macrophage response in the COVID-19 

94 patients. Such a suppressing effect of vitamin D on the hyperinflammatory response was already 

95 suggested during the influenza pandemic in 1918-1919 (20).

96

97 Expression and role of vitamin D receptors

98 The response to and modulation of immune cells activity by vitamin D depends on the vitamin D 

99 receptors expressed by these cells. One of the recently proven functions of VDRs is the prevention of 

100 the immune response of T cells and dendritic cells (4). Mouse studies showed that VDR-KOs have 

101 more pro-inflammatory Th17 effector cells, which produce more IL-17 (4, 21). In contrast, the 

102 upregulation of VDR expression inhibits transcription of the IL-2 gene and prevents the immune 
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103 system overdrive. Similarly, it has been shown that vitamin D, by promoting the development of 

104 tolerogenic dendritic cells and the suppressive iTregs involved in immune tolerance, prevents 

105 potential over-reaction of the immune system (4, 22). The VDR is also crucial for the integrity of 

106 mitochondria and prevents increased respiratory activity and production of damaging reactive oxygen 

107 species (ROS) that are the important activators of pro-inflammatory signaling in the macrophages 

108 (23-25).

109 Already one hundred years ago, in the pre-antibiotic era, the increase of vitamin D by sun exposure or 

110 fish oil consumptions was used for the treatment of tuberculosis, and the vitamin D supplementation 

111 may still be considered today as a beneficial adjunct to the antibiotic therapy for pulmonary 

112 tuberculosis  (26, 27). Recent studies showed that macrophages, including alveolar macrophages that 

113 are crucial for the development of the hyperinflammatory response in the lungs of COVID-19 

114 patients, have an inducible expression of vitamin D 1α-hydroxylase Cyp27B1 that converts the 

115 inactive form of vitamin D to its active metabolite 1,25 (OH)2) D that binds macrophage VDRs (28). 

116 Studies also showed that the genetic deletion of macrophage VDRs, which are activated either by the 

117 circulatory or macrophage-produced 1,25 (OH)2 D, impairs the immune response to cutaneous injury 

118 in mouse wound-healing model (29).  Zhang et al. (30) showed that vitamin D treatment increased 

119 the binding of the VDR to the vitamin D response element in the promoter of the mitogen-activated 

120 protein kinase phosphatase-1 (MKP-1) promoter. This caused the upregulation of MKP-1 expression, 

121 and, in turn, inhibited the production of pro-inflammatory IL-6 and TNF-α in the monocytes and 

122 macrophages. It is still unknown if in the response to vitamin D, the VDR receptors, which regulate 

123 gene transcription, become localized in the cell nucleus permanently or if they shuttle between the 

124 nucleus and cytoplasm (31). Studies on the chronic inflammatory lung disease such as cystic fibrosis 

125 showed that vitamin D, acting through its receptors, upregulates transcription of the anti-

126 inflammatory Dual specificity protein phosphatase 1 (DUSP1) gene, which down-regulates the 

127 expression of inflammatory chemokine IL-8 produced by over-reactive (hyperinflammatory) 

128 macrophages (32). This suggests a therapeutic potential of vitamin D for the treatment of 

129 inflammatory lung diseases. Also, a recent large-scale analysis of COVID-19 patients suggests that 

130 vitamin D activates the innate, and suppresses the adaptive immune response, which, by lowering the 

131 cytokine expression level may downregulate the hyperinflammatory response responsible for 

132 COVID-19 severity and mortality (10, 33-35). In line with these findings, the National Institute of 

133 Health posted on their ClinicalTrials gov. website, several clinical trials, which will assess the 

134 efficacy of vitamin D in the prevention and treatment of COVID-19. A recent studies by Rastogi and 

135 colleagues (36) show that a high dose of vitamin D supplementation by oral administration helped to 
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136 achieve SARS-CoV-2 RNA negativity along with a significant decrease of the inflammatory markers 

137 (Fig 1).

138

139 Potential functions of myeloid-derived suppressor cells (MDSCs) in COVID-19

140 The myeloid-derived suppressor cells (MDSCs) exit from the bone marrow as functionally immature 

141 cells. Depending on the signals from the microenvironment they mature into monocytic MDSCs 

142 (mMDSCs) and granulocytic MDSCs (gMDSCs). They suppress the T-cell cycle and immune 

143 checkpoints, downregulate T cell receptors, and recruit Tregs (37). They also suppress the activity of 

144 other immune cells through the production of ROS, RNS, degradation of L-arginine, and the 

145 production of the anti-inflammatory factors, such as (TGF)-β  and IL-10 (38), (Fig.1).  

146 Recent studies indicated that the granulocyte-colony-stimulating factor (G-CSF) granulocyte-

147 macrophage colony-stimulating factor (GM-CSF), which are the main factors driving recruitment and 

148 differentiation of MDSCs are abundant in the lungs of COVID-19 patients. Recent analyses of 

149 MDSCs in 128 SARS-CoV-2 infected patients, showed a very high frequency of MDSCs, especially 

150 in the intensive care patients. It is very plausible that the immunosuppressive function of MDSCs 

151 prevented virus elimination and increased the severity of the disease (39). This suggests that the 

152 MDSCs may be a valuable target for therapeutic intervention in COVID-19 patients (40). Like other 

153 immune cells, the MDSCs express Vitamin D receptors, and as such can be a target for vitamin D 

154 intervention (41). Studies also show that the level of expression of VDRs correlates with the 

155 immunosuppressive activity of MDSCs and that the active form of vitamin D, 1,25(OH)2D, reduces 

156 the suppressive activities of MDSCs by 70%, especially in the early stages of their maturation (41) 

157

158 Vitamin D in COVID-19 pediatric patients

159 It is now well established that children are less frequently infected with SARS-CoV-2 and are more 

160 often either asymptomatic or suffer less severe symptoms than adults (42-49). The immune system of 

161 newborns and very young children is not yet fully developed (50), and their innate immune response 

162 based on monocytes, macrophages, dendritic cells, and neutrophils seem to work differently than in 

163 the adults and is associated with clearly lower cytokine response. For instance, De Wit and coworkers 

164 showed impaired production of IL-12 and IFN- α and an increased synthesis of IL-10 in the neonatal 

165 cord blood after the exposure to TLR-4 and TLR-3 ligands, in comparison to the adult blood, which 

166 may indicate an impaired anti-viral and anti-Gram-negative bacteria response in the neonates (51). 

167 This under-responsiveness may protect, in part, SARS-CoV-2 infected children against the 

168 hyperinflammatory response. The immune response of children is also clearly different than in adults 

169 with respect to the production of the antibodies (52). In short, adults produce anti-spike (S) IgG, IgM, 
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170 and IgA antibodies, and anti-nucleocapsid IgG antibody, while children have much lower levels of 

171 anti-SARS-CoV-2-specific antibodies, and predominantly generate IgG antibodies specific for the S 

172 protein, but not against the nucleocapsid proteins. Moreover, children`s antibodies have much less 

173 pronounced neutralizing activity than the antibodies of adult patients. The authors concluded that 

174 children clear SARS-CoV-2 faster than adults, probably via more efficient and adequate innate 

175 immunological response due to macrophages involvement. 

176 Another important point is that in the developed countries the newborns receive vitamin D 

177 supplementation soon after birth, while in the subtropical and tropical countries babies and young 

178 children are exposed to the sunlight, which supplements them with vitamin D naturally. Another 

179 factor may be the presence of other respiratory viruses common in young children, which could 

180 competetively limit the growth of SARS-CoV2 (53). A recent large non-pediatric study reveals the 

181 cross-reactivity between the SARS-CoV-2 antigens and the antibodies presumably originating from 

182 the previous human coronaviruses infections (54). As children get these diseases more often than 

183 adults and possibly had these infections not long before the COVID-19 pandemic, they have 

184 statistically more chances to be protected by this cross-reactivity than adults. 

185 In summary, it seems that vitamin D supplementation should have beneficial effects by lessening the 

186 macrophage-dependent hyperinflammatory response in the lungs of COVID-19 patients. This 

187 supplementation is of special interest in the northern hemisphere during the second wave of COVID-

188 19 pandemic in winter 2020/2021. 

189
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374 Figure Legends

375 Figure 1. Regulation of transcription and activities of immune cells by vitamin D.
376 A) The hormonal metabolite of vitamin D, the 1,25-dihydroxyvitamin D (1,25(OH)2D3) is the ligand 
377 for the vitamin D receptor (VDR). In the absence of the 1,25(OH)2D3, the VDR is localized in the 
378 cytoplasm. Interaction of VDR with the 1,25(OH)2D3 causes heterodimerization with the retinoid X 
379 receptor (RXR). This complex translocates to the nucleus where it binds to the vitamin D responsive 
380 element (VDRE) of the vitamin D-responsive genes. Further recruitment of regulatory factors, 
381 dissociation of repressors, histone modification, and chromatin remodeling, induce RNA polymerase 
382 binding and activate transcription of the target gene(s). B) Reciprocal effect between the 
383 macrophages, T cells, and MDSCs. Inflammatory signaling from the macrophages mature and 
384 activate MDScs, and T cells regulate the activity of  MDSCs [55]. The MDSCs may also suppress the 
385 function of T cells and this, in turn, indirectly, may suppresses the activity of other immune cells. 
386 Vitamin D affects transcription and protein expression in macrophages and MDSCs and modulates 
387 the inflammatory response. Although not shown here, the T cells also express VDR, and they are also 
388 directly affected by the vitamin D supplementation.
389
390 Figure 2. Hyperinflammatory response induced by alveolar macrophages
391 Arrow 1. The SARS-CoV-2 virus infects, through the ACE2 receptors the alveolar macrophages and 
392 alveolar epithelial cells that induces the production of proinflammatory cytokines by the 
393 macrophages.The infected epithelial cells send the proinflammatory signals to the alveolar 
394 macrophages enhancing macrophage response and sending inflammatory signals to other immune 
395 cells. Arrow 2. The virus also infects the dendritic cells, which also produce proinflammatory 
396 cytokines and chemokines. Arrow 3. All these pro-inflammatory factors recruit monocytes, 
397 granulocytes, and various leukocytes from the circulation. The recruited immune cells produce more 
398 cytokines and chemokines amplifying the proinflammatory response. Arrow 4. Such an overdrive of 
399 the inflammatory response causes the hyperinflammatory response in the lungs and the acute 
400 respiratory distress syndrome (ARDS) in the COVID-19 patients.
401

402

403 Highlights
404
405 Vitamin D deficiency increases the severity of the ARDS in COVID-19 infection
406 Vitamin D receptors are expressed in the macrophages and other immune cells
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407 Vitamin D supplementation may influence macrophage inflammatory response, subdue the cytokine 
408 storm and lessen the ARDS in COVID-19 patients409

410

411


