N
N

N

HAL

open science

Model-Based Testing of GUI Applications Featuring
Dynamic Instanciation of Widgets

Alexandre Canny, Philippe Palanque, David Navarre

» To cite this version:

Alexandre Canny, Philippe Palanque, David Navarre.
Featuring Dynamic Instanciation of Widgets. IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW 2020), Oct 2020, Porto (virtual), Portugal. pp.95-

104, 10.1109/ICSTW50294.2020.00029 . hal-03099199

HAL Id: hal-03099199
https://hal.science/hal-03099199
Submitted on 7 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Model-Based Testing of GUI Applications

https://hal.science/hal-03099199
https://hal.archives-ouvertes.fr

Model-Based Testing of GUI Applications Featuring
Dynamic Instanciation of Widgets

Alexandre Canny
ICS-IRIT
Université Toulouse Il Paul Sabatier
Toulouse, France
alexandre.canny@irit. fr

Abstract— The testing of applications with a Graphical User
Interface (GUI) is a complex activity because of the infinity of
possible event sequences. In the field of GUI Testing, model-based
approaches based on reverse engineering of GUI application have
been proposed to generate test cases. Unfortunately, evidences
show that these techniques do not support some of the features of
modern GUI applications. These features include dynamic widgets
instantiation or advanced interaction techniques (e.g. multi-
touch). In this paper, we propose to build models of the
applications from requirements, as it is standard practice in
Model-Based Testing. To do so, we identified ICO (Interactive
Cooperative Object) as one of the modelling techniques allowing
the description of complex GUI behavior. We demonstrate that
this notation is suitable for generating test cases targeting complex
GUI applications in a process derived from the standard Model-
Based Testing process.

Keywords—GUI Testing, Model-Based Testing, User Interface
Description Languages

1. INTRODUCTION

The testing of applications with a Graphical-User Interface is
known to be a complex activity [30], especially due to the
unpredictability of the human behavior as well as to the infinite
number of possible event sequences [9]. To cope with these
challenges, model-based testing techniques have been
developed to try to generate relevant test sequences without
relying on manual scripting or capture and replay of tester’s
interactions. These model-based techniques mostly relies on the
generation of test cases from models built dynamically while
exploring the execution space of the Application Under Test
(AUT) [37] (i.e. models built by reverse engineering).
Unfortunately, evidences that these approaches tend to be less
effective than less structured ones with a significant random
aspect (i.e. random and systematic techniques [37]) has been
found for both mobile [13] and desktop applications [37].
Furthermore, evidences that these approaches does not enable
the testing of increasingly complex GUI applications have also
been provided, for instance because they do not support ad-hoc
and non-standard widgets [25] or advanced interaction
techniques [10][25] (e.g. multi-touch ones).

If in Model-Based approaches for GUI Testing models are built
dynamically while exploring the execution space of the AUT,
the process of Model-Based Testing as defined by Utting et al.
[38] proposes to build the models from the requirements of the

Philippe Palanque
ICS-IRIT
Université Toulouse Il Paul Sabatier
Toulouse, France
palanque@irit.fr

David Navarre
ICS-IRIT
Université Toulouse Il Paul Sabatier
Toulouse, France
navarre@irit.fr

application. One of the main challenge in Model-Based Testing
is that it requires modelling techniques that are expressive
enough to describe the behavior of the AUT. Increasingly
complex GUI applications may features multimodal interaction
techniques (e.g. “put-that-there” voice+gesture interaction [7]),
dynamic instantiation of input devices (e.g. adding fingers on a
touch-screen), scaling, dynamic instantiation of GUI widgets,
etc. Each of these features raises challenges for both modelling
and testing and this paper focuses on the challenges related with
MBT of applications featuring dynamic instantiation of GUI
widgets. To overcome these challenges, we investigated the
expressiveness of several User Interface Description
Languages (UDILs) to establish which ones are expressive
enough to allow the generation of test cases for such
applications. We identified ICO (Interactive Cooperative
Object) as the best fit for this purpose. We illustrate the
possibilities offered by this notation by modelling an Air
Traffic Control Application. Additionally, we propose a
process derived from [38] to enable both the implementation
and the testing of a GUI application from the ICO models. This
process relies on random-constrained simulation of the models
to build relevant test cases while allowing to cope with the
potentially infinite number of event sequences that can be
generated.

This paper is structured as follow: section II presents the
challenges in GUI testing and the current state of the art in
modelling of GUI applications. Section III presents the ATC
application we use as a case study and section IV presents ICO,
the notation we identified as the most expressive for describing
GUI applications featuring dynamic instantiation of GUI
widgets. Section V demonstrates the ability to model the
behavior and the presentation of the ATC application with ICO
and section VI presents our process for building and testing the
AUT from ICO models. Ultimately, section VII concludes this
paper in addition to discussing future work.

II. CHALLENGES AND CURRENT STATE OF THE ART IN TESTING
AND MODELLING OF GUI APPLICATIONS

This paper aims at providing solutions to challenges
encountered in GUI Testing by generating test cases from
models built prior to development. As the understanding of
these problem is a key in building new test case generation
techniques, this section first present some of the challenge

DOI 10.1109/ICSTW50294.2020.00029

encountered in GUI testing before discussing how expressive a
description technique must be to enable test cases generation
from models built prior to development.

A. Challenges and Current State of the Art in GUI Testing

GUI Testing is defined by Banerjee et al. as the testing of an
application that has a Graphical User Interface solely by
performing sequence of events (e.g. click on button, enter text)
on GUI widgets (e.g. buttons, text-fields) [2]. The key issue
here is that the space of all possible event sequences that may
be executed is extremely large, in principle infinite [2]. Thus
test case generation is made difficult and manually generated
test scripts usually offers little coverage of the event sequences
[2] as it would be too long and costly for testers to
comprehensively explore the execution space of the AUT.
These manual test scripts are usually produced using scripting
language (e.g. Abbot ', Selenium Web Driver 2) or
Capture/Replay techniques (where user interaction are logged
for being replayed latter in regression testing, (e.g. GUICat
[12]; Test Automation FX?)).

Automatic GUI Testing techniques aims at solving some of the
issues brought by manual GUI testing approaches by offering
better coverage of the event sequences through automated
exploration of the execution space. Various techniques enables
automatic GUI testing, such as [37]:

e Random-Walk (e.g. Testar-Random [40],
Ul/Application Exerciser Monkey*) which randomly
plays events on available GUI widgets and is
particularly relevant for crash-testing (making sure
that no event sequence lead to the AUT stop
responding/crashes);

e Model-Based Techniques (e.g. ABT [26], GUITAR
[30], Testar-QLEARNING [40]) that drive the
generation of test cases with a model of the GUI of the
AUT. Model-based techniques use graph models built
dynamically while exploring the execution space of
the AUT [37].

The later approach is rather original as Model-Based Testing
techniques usually relies on models built from the requirements
specified for the AUT [38]. This may explain why, even though
Model-Based Testing is often praised for its effectiveness, GUI
Testing using Model-Based techniques is less effective than
random techniques [13][37]. Unfortunately, most of the
existing GUI applications were not built from models. Thus,
these techniques makes sense, especially if we consider that
building models allows to reason on the application behavior.

Yet, while models of applications still are not the norm, the
User-Centered Design process in Human-Computer Interaction
(HCI) involves the production of models of the user interactions
with the applications, called Task-Models. These models are
more likely to exist for modern applications, and techniques has
been proposed for building test cases from them [8]. Beyond
HCI, current trends towards pushing Model-Based Software

! http://abbot.sourceforge.net/doc/overview.shtml

2 https://selenium.dev/documentation/en/webdriver/
3 http://www.testautomationfx.com/

4 https://developer.android.com/studio/test/monkey

Engineering (MBSE) in Software Engineering [16] makes it
conceivable that in a foreseeable future, more and more GUI
applications will be built from some sort of model, but which?
Advanced GUI applications features behavior that cannot be
described [25][10] using the modelling techniques found in
GUI Testing [27]. These behaviors includes ones based on non-
standard® GUI widgets (e.g. drawing area of a drawing tool),
dynamic instantiation of GUI widgets or actions tied to multiple
events sources (e.g. multiple fingers during multi-touch
interaction). The following sub-section discusses the state of
the art in describing GUI applications to help in identifying
modelling techniques that support the description of these
behaviors to enable test cases generation, with focus on
dynamic instantiation of GUI widgets.

B. Modelling of GUI Applications

Model-Based Testing (MBT) of software relies on explicit
behavior models of a system to derive test cases [38]. The
complexity of deriving comprehensive test cases increases with
the complexity of the AUT: with complex behaviors come the
need for modelling techniques expressive enough to describe
the complexity of the AUT behavior [10]. Any behavior that
cannot be described cannot have test cases generated for using
MBT. The techniques for describing the behavior of GUI
applications are called User Interface Description Languages
(UIDL). In [17], Hamon et al. identified several characteristics
UIDLs must handle to enable the comprehensive description of
user interfaces behaviors. These characteristics include some
common to all GUI applications while other applies specifically
to applications featuring dynamic instantiation of widgets,
multimodal interaction, etc. As the focus of this paper is on the
testing of applications featuring dynamic instantiation of GUI
widgets, we investigated the following subset of the
characteristics from [17]:

e Data description for describing the objects and values
so information such as widget location at a given time
is know;

e State/Event representation as commonly described
is Model-Based techniques for GUI Testing [27];

e Qualitative time between two consecutive model
elements aims at representing ordering of actions such
as precedence, succession, and simultaneity;

e Quantitative time between two consecutive model
elements represents behavioral temporal evolutions
related to a given amount of time (usually expressed
in milliseconds);

e Concurrent behavior representation is necessary
when the interactive systems feature multimodal
interactions;

e Dynamic instantiation of widgets is a characteristic
required for the description of interfaces where objects
are not available at the creation of the interface as, for

> We call non-standard the GUI widgets that were built
purposely for an application and are not found in the GUI
widgets library of programming languages.

instance, in desktop-like interfaces where new icons
are created according to user actions.
Table 1 details the expressiveness of UIDLs regarding these
characteristics. For all characteristics, there are three possible
values:
e Yes means that that characteristic is explicitly handled
by the UIDL;
e No means that the characteristic is not explicitly
handled;
e Code means that the characteristic is made explicit but
only at the code level and is thus not a construct of the
UIDL.
Table 1. UIDL expressiveness for the main characteristics of modern
application (adapted from [17]).

",
'v’eh;, ¢
&
O s
Seqr
S o "
ey

&
] — = ==
8 | |=l&lg| |ElsBE
== ol e £ | = %|&
£l =l o2&
Eln = 2
Blx | S|=| g Q| ml 2l
S|lwm| sl 2 & @ 2
2l 8|=| 5| E E|B|IZ[E
cSl3g|%lE =B e
S|zl 8 s E
Olwn| x| 0o \9 aw T|o
Data Description = ..
State Rep i
Event Representation

Qualitative between two
_consecutive model elements
‘Quantitative between two
consecutive model elements

Quantitative over non
consecutive elements
Concurrent
Dynamic Ir

Time

1 of Widgets

I:|Concepts covered in this paper -Yes Code DNB

Due to space constraint, we won’t detail on the handling of all
these characteristics by all the UIDLs we present. Yet, thanks
to an analysis based on categories of UIDLs, we can observe
that state-based and flow-based approach (also used in MBT of
GUI applications, as shown in [27]) are not suitable for an
effective description of advanced GUI applications.
Additionally, we observe that UIDLs based on Petri Nets
augmented with temporal aspects (time was intentionally
avoided in Petri’s original work [36]) such as CPN [22] and
ICO [18] are amongst the most expressive UIDLs. Yet, only
ICO [18] appears to be expressive enough to support the
characteristics required for comprehensively describing GUI
application featuring dynamic instantiation of GUI widgets. In
the following of this paper, we will introduce the ICO UIDL
and demonstrate that its expressiveness combined with tool
support enables test cases generation for such applications on
an example based on an Air-Traftic Control Application.

III. EXAMPLE OF AN APPLICATION FEATURING DYNAMIC
INSTANCIATION OF GUI WIDGETS: THE AIR TRAFFIC
CONTROL SYSTEM

The case study in this paper focuses on the GUI aspects of an
Air Traffic Control application. Nowadays, the airspace is
divided in sectors, each of them being controlled by two air
traffic controllers managing different tasks and working in a
cooperative way. The air traffic controller has at his disposal a

workstation for handling the traffic over a given sector, by
communicating with the pilots in the planes currently flying in
the sector. This section presents an overview of the ATC
application and the requirements it must fulfills.

A. Overview of the ATC Application

From his/her position, an air traffic controller can interact with
aircraft pilots using two means: voice and datalink messages.
For the Air Traffic Controller, the ATC Application (see Fig. 1)
is the entry point for every exchange s/he wants to initiate with
the pilot. The air traffic controllers may request the pilot to
contact them using the radio (VOICE command) or send them
command (text message through datalink) to change the course
of their flights. These commands are the following and are all
followed by a parameter value:
e FREQ for asking the pilot to switch from one radio
frequency to another one;
e CFL for notifying the new Cleared Flight Level for
the flight (i.e. the altitude it is allowed to fly at);
SPEED for requesting a speed change;
e HEAD for requesting an heading change;
BEACON for requesting a change of the route of the
place by designating the next beacon it has to fly over.

43
26
0/EABORT
201
BSI

20
82 200
0

SEND

Fig. 1. The ATC Application with the pop-up menu for flight DLH5629 opened
and SPEED sub-menu selected.

The GUI of the ATC application (Fig. 1) can be split in three:

e the light grey part which correspond to the sector
handled by the controller. In this sector, white line
represent plane routes. On these routes planes are
represented by a succession of white dots, the first one
being the actual position of the plane and the smaller
ones its previous positions. Along with these dots
information concerning the flight are displayed: the
call sign of the flight, its speed, its heading and the
next beacon it is supposed to fly over;

e the dark grey part which represent all the outside of
the controlled sector;

e the open menu used by the controller for entering
information. This menu is a pop-up menu that appears
when the air traffic controller clicks on the label of a
flight. When it pops-up, the menu is split in two parts:

o On the left side the direct command menu (no
parameter is needed) which offers three
commands, SEND and ABORT (for sending
or cancelling the current data-link command)
and VOICE for asking the pilots to call the
controller using the radio (sending the
request is still required once VOICE is
selected);

o On the right side of the menu the user can
select one of five commands which need
parameter (FREQ, CFL, SPEED, HEAD
and BEACON). Each time the controller
selects one of these commands, another pop-
up menu appears that allows for entering the
parameter of the command. By pressing CNC
(cancel) this pop-up menu is closed, by
selecting a value, the parameter is set. The air
traffic controller can choose amongst
additional values by scrolling amongst the
available ones using the arrows at the top and
bottom of the value list.

B. Requirements for the ATC Application

The following set of requirements have to be fulfilled by the
ATC application:

e A control order is only received by one plane;

e Any request sent by a controller will be received at

some time by a pilot;

e A control order is sent to only one plane (only one

plane can be selected at a time);

e For each control order, only one information is sent;

e All control orders finish by either Abort or Send,

e Itis not possible to build several orders at a time.
These requirements can be classified in two categories: high-
level requirements related to the very semantics of air-traffic
control, and lower level ones, related to interaction techniques.
In the following of this paper, we will discuss on how to model
and test some of these requirements on GUI widgets
representing the aircrafts that are the dynamically instantiated
widgets in this application.

IV. THE ICO USER INTERFACE DESCRIPTION LANGUAGE

By analyzing the expressiveness of UIDLs, we have established
that ICO (Interactive Cooperative Objet) is one of the most
relevant for describing the characteristics of advanced GUI
applications. In this section, we introduce ICO and details how
it enables the description of the behavior of the GUI.

A. Informal Presentation of ICO

ICOs (Interactive Cooperatives Objects) are a formal
description technique dedicated to the specification of
interactive systems. ICO uses concepts borrowed from the
object-oriented approach (dynamic instantiation, classification,
encapsulation, inheritance, client/server relationship) to
describe the structural or static aspects of systems, and uses
high-level Petri nets to describe their dynamics or behavior. The
ICO notation is based on a behavioral description of the

interactive system using the Cooperative objects formalism that
describes how the object reacts to external stimuli according to
its inner state. This behavior, called the Object Control
Structure (ObCS) is described by means of Object Petri Net
(OPN). An ObCS can have multiple places and transitions that
are linked with arcs as with standard Petri nets. As an extension
to these standard arcs, ICO allows using test arcs and inhibitor
arcs. Each place has an initial marking (represented by one or
several tokens in the place) describing the initial state of the
system. To convey the relationship between the evolution of the
behavioral model and its impact on the GUI, ICO uses
rendering and activation functions, tying places and transitions
to properties/event handlers of the GUI widgets. The ICO
notation is fully supported by a CASE tool called PetShop
[4][35]. ICO has already been applied in the field of Air Traffic
Control interactive applications [28], space command and
control ground systems [34], interactive military [5] or civil
cockpits [3]. In previous work, the notation capability to
support the testing of multi-touch interaction technique has
been demonstrated [10] (yet, as mentioned previously, testing
of interaction techniques comes with its own set of challenges
that are out of scope of this paper).

B. Notation for the description of the behavioral part of the
GUI

The ICO notation uses concepts borrowed from Petri nets. Fig.
4 presents an example of such Petri net, which is one of the ICO
model we use to describe the ATC application. It is made of
places (oval shapes, e.g. Flights), transitions (rectangular
shapes, e.g. addingFlight) and arcs. The marking of this Petri
net is the distribution of tokens (numbered circles in the places)
in the different places at a given time (Fig. 4.a and Fig. 4.b
presents two different markings). As ICO relies on Object Petri
nets, tokens can carry values, from generic types (e.g. int, float)
to complex objects, including instances of other ObCSes. Fig.
2 details the marking of the place “Flight” found in Fig. 4.a.
Each line of the table in Fig. 2 describes tokens. Here, there are
3 lines with a multiplicity of 1, meaning that there are three
token in the place each carrying a different object. In that
particular case, the objects carried are three instances of

ObCSes corresponding to the ICO description of
SimpleFlights.
1] Simpie 1] Simplef | Simpler x]
Analysis ICompohet Checking Test mswry Bl D | H \@\@\ % lm
[Place Flights — O x
Place name: Fights| -
how <RSI oo (ight > S
N .

FAtame [Marking < gt
N

ddingFligh
o e L e

multiplidty flight Fighttodel I
proxy of; SimpleFlight—-nstance3 <flight:
1|Proxy of; SmpleFlight—nstance 2
1lProxy ofi SmpleFlight—nstance 1

) Flgpts >
=L

Fig. 2. Marking of the place "Flights" of the model PlaneManager1.

The marking of an ICO can change after invocations or firing
of armed transitions. There are two kinds of transitions in
ICO: standard transitions and event transitions. They are
both armed whenever there are tokens matching the pre-
conditions of the transition in the places from which there are

incoming arcs®. For instance, in Fig. 3, the “transition1” can be
fired if “place0” contains a token carrying the value 5 (initially,
it contains 2 of them). Note that only one token is consumed
when the transition is fired, so 2 step are required to consumer
the two tokens with value==5. Note that, in Petshop, armed
transition are represented in purple, non-armed ones in grey

(see Fig. 3).
init)
ﬂr p@<valu5?—.-—‘ p@
first firing)
m lD.l!a":g—_8>_<v.aluEh—h-—.w p@
second firing)
transition |
WD plecst v —v| et ——> @l placel >
Mactions o

Fig. 3. Example of a transition with a pre-condition. Initially, place0
contains 9 tokens, 2 of which carrying a value of 5.

Event transitions differ from standard ones as they are fired if
and only if they are armed and the event they are listening for
has been produced. Event transitions are the ones relevant
for generating event sequences for GUI Testing. In the
bottom-left of Fig. 4.b, the transition “sendingCommand” is an
example of event transition. Next to its title, “::send” indicates
the name of the event the transition is listening for. Below
details are provided regarding this event such as the expected
source (“from” menu, another model describing a menu), the
parameters of the event (if any, in that case the command

) SEP_acdF light >
< SIP_addFLight S0P _ader Light >
2
< ifight AT
LY

o
addingFlight

[

<flight>
i —>

<flight>

@ MexOpenFligts <menu>

<flight> Snenux

< GpenedLignt

<flight> Sights

sendingCommand :send ‘ cancelingCommand - cancel 1|
send from . menu. cancel from menu
eventParams: (command) eventParams: ()
eventCandition: true eventCondition: true
flight senc 12 ommand); menu.close()
menu close():
a) b)

selected in the menu) and the preconditions on the event. At the
very bottom of the transitions are invocations on other ObCSes.
Invocations enables unicast and synchronous communication,
represented by method calls in ICO. When an ObCS offers
invocations, they are each mapped into a set of three places
representing three communication ports (the invocation input,
output and exception ports). For instance, in Fig. 4.a, the places
SIP_addFlight, SOP_addFlight and SEP_addFlight are the
input, output and exception ports of the method addFlight.
When this method is called, a token is created, holding the
parameters of the invocation and is put in place SIP_addFlight.
ObCSes can invoke each other: for instance, in the event
transition “sendingCommand”, the bottom part contains
invocations on both the ObCS describing the menu
(menu.close()) and the flight
(flight.sendCommand(command)).

C. Notation for description of the presentation part of the
GUI (rendering and activation)

In addition to the Petri net describing the behavior of the GUI,
ICO description defines the relationship between the behavioral
model and the GUI elements. To do so, it makes use of
rendering and activation functions. Rendering (how the
changes in the behavioral model affects the GUI) and activation
(how the actions on the GUI widgets affects the behavioral
model) functions are provided in the form of tables such as
Table 2 and Table 3, respectively.

The rendering function (see Table 2) associates the changes
of the places markings with rendering methods on GUI
elements. For example, in Table 2, rendering methods for the
place “Flights” of Fig. 4 are associated to the following event:
token entering (token_enter) and leaving (token removed) the
place as well as resetting the marking (marking_reset) of the
place (i.e. going back to initial marking). Table 2 shows that

<)) SEP_auaFlight >
TP e Light > eSO e Light >
N A
<_iflight= <>

4
addingFlight

N

<flight>
@ Flights
<flight>

apeningFlight openFlight |
openFlight from flight

W HaxpenFLigts | eventParams: () se—<meno—ai® Henu >
eventCondition: true
menu gpen(fiight)

<fight> <menu>

=flight= <flight>

Fig. 4. Excerpt of the ICO specifications with 3 flights in the sector and a) the menu closed, b) the menu opened.

whenever a token enters the place “Flights”, a component
(widget) is added to the drawing area of the radar screen.
Similarly, a widget is removed whenever a token leaves the
place.

Table 2. Excerpt of the rendering function associated with Fig. 4.

Place ObCS Event Rendering method

Flights token_enter add(component) of the radar
drawing area

Flights token_removed | remove(component) of the
radar drawing area

Flight marking reset | removeAll() of the radar

drawing area

The activation function (see Table 3) associates the GUI
elements with the event transitions bi-directionally. On one
hand, the user events (e.g. mouseClicked on a flight) are
associated with the event of a transition (e.g. openFlight). On
the other, the states of event transitions (armed or not) are
associated with activation methods (e.g. setEnabled(bool)).
Table 3 shows that the “openFlight” event in the
“openingFlight” transition from Fig. 4 is associated with a
mouseClicked event on a flight. Table 3 also indicates that
whenever the associated transition is armed, flights must be
enabled (clickable), disabled (non-clickable) otherwise. Note
that even though they are not visible when no flights are open,
SEND and ABORT menu item are enabled/disabled according
to the state of their associated event transitions, thus preventing
the use of accelerator keys, if any.

Table 3. Excerpt of the activation function associated with Fig. 4.

User Event ObCS Event | Activation method
mouseClicked on | openFlight setEnabled(bool) of
a flight flights
actionPerformed | send setEnabled(bool) of
on SEND SEND menu item
actionPerformed | cancel setEnabled(bool) of
on ABORT ABORT menu item

V. MODELLING OF THE ATC APPLICATION GUI USING ICO

The modelling of the ATC application using ICO requires the
description (using ObCS and rendering/activation functions) of
three elements 1) the radar image, 2) flight and 3) menu. This
section introduces the description of these three elements and
highlights their means of supporting dynamic instantiation as
well as the characteristics that enables them to support the
requirement previously listed.

A. Description of the Radar Image (Main Screen)

The “main screen” of the ATC application consists in an image
of the sector controlled by the air traffic controller on which
aircraft are drawn after being dynamically instantiated. Fig. 4
presents two markings of the model describing the radar image
behavior.

The dynamic instantiation of flights is supported through the
addFlight invocation. The “addingFlight” transition consumes
the token placed in the “SIP_addFlight” and add them to the
Flights place.

Interaction with the dynamically instantiated aircraft must be
controlled as it is required that:
e A control order is sent to only one plane (only one
plane can be selected at a time);
e All control orders finish by either Abort or Send,
With regards to GUI widgets, this means that:
e (reql) A flight should be clickable if and only if there
is no flight already opened;
e (req2) Closing of the pop-up menu is allowed only as
a result of a click on Send or Abort (as opposed to the
behavior of contextual menus in standard applications,
i.e. ones that are closing as soon as another is opened).
In Fig. 4.a, three flights are on the sector (place “Flights”) but
no flights are opened (place “OpenedFlights™). Thus, it is
possible to “open” a flight (the event transition “OpeningFlight
is armed). When the “openFlight” event is raised by a flight, the
marking of the ICO changes to the one presented in Fig. 4.b. The
firing of the transition led to the consumption of the token in
the place “MaxOpenFlight” (the flight token is copied as a test
arc is used). This disarmed the transition “openingFlight”. At
this point, and according to the activation function (Table 3), all
the flights become non-clickable, fulfilling (req1).
In Fig. 4.b, a flight is opened, which led to the opening of the
menu (action “menu.open(flight)” in the “openingFlight”
transition). The fulfillment of (req2) is ensured by the fact that
the “menu.close()” invocation is performed only on the
“sendingCommand” and “cancellingCommand” transitions.
These transitions respectively handle “send” and “cancel”
events from the menu. When one of these transitions is fired,
the token in “OpenedFlight” is consumed, and a token is added
to MaxOpenFlights: the model returns to the marking of Fig. 4.a.

B. Description of a Flight

The modelling of the behavior of a flight enables the
verification of properties that goes beyond the requirements
listed in the presentation in the case study. For the ATC
Application to be usable, the data it provides must be accurate.
Modelling the behavior of aircrafts enables the verification of
widgets properties such as location, label for flight number,
speed, etc. ICO allows these parameters to be provided at every
instantiation of a model and one may allow to update them at
any time via event transitions or invocation once the model is
instantiated. Due to space constraint, we do not present the
model of a SimpleFlight, which is mainly composed of getters
and setters (in the form of invocation) for properties such as
latitude, longitude or speed and of getters for properties such as
position (derived from latitude and longitude).

C. Description of the Menu

By design, the menu must prevent sending inconsistent data to
the aircraft. For instance, “VOICE 12500 is an invalid
command as VOICE is non-parameterized. Similarly, the
command “HEAD” misses the heading parameter value. To
prevent the production of such command explicitly, the model
of the menu contains a pattern similar to the one presented in
Fig. 5. This pattern forces the deactivation of the SEND button
(see the two event transitions at the bottom of Fig. 5) until
either the “VOICE” command is selected (armed transition :

“commandWithoutParam”) or a command that is not the
“VOICE” one is selected with a parameter set (place
“PARAMETER”) .

Note that to prevent sending a parameter incompatible with the
selected command, this pattern is designed to remove any token
from the place “PARAMETER” when a click on a new
command is done (a token is added in “CLEAR
PARAMETER?”; if a parameter was set, the token is consumed
by the transition “clearingParameter”. The arc between the
place “PARAMETER” and the ‘“noParameterToClear”
transition is an inhibitor one: it implies that the transition is
armed only if “PARAMETER” is empty).

=oldComi

selectringVoiceT ::voiceClicked
<commanc

clearingParametsr noParameter ToClsar
® »

=noOldCommand>
.

<command> <param> <param>

o
i

=oldCommand=
<command=
selectingHeadingd ::headingClicked

<noCldCommand>

ommand>

headingClicked from =params

teventParams: ()
eventCondition: true

ununuug \

oA senCleted £
command squals("VOICE")

sendClicked from

sventParams: ()

eventCondition; frue

raiseEvert send(command)

scommands — - —
commandRequiresParam sendClicked

lcommand equals{"VOICE")
==_gm_mg=n :flfu_m-
eventParams: ()
eventCondtion; irue
raiseEvent send(command + " + param)

Fig. 5. Example of a pattern preventing clicking on the "send" button
with an incorrect command.

VI. A PROCESS FOR MODEL-BASED-TESTING OF APPLICATIONS
FEATURING DYNAMIC INSTANCIATION OF GUI WIDGETS

So far, we showed that ICO enables the description of GUI
applications featuring dynamic instantiation of GUI and carries
some properties regarding GUI widgets thanks to the rendering
and activations functions. In this section, we present a process
inspired by [38] to take advantage of the ICO expressiveness to
enable:

e The implementation of the AUT using ICO as

specification;
e The generation of test cases for the AUT from the ICO
models.

To cope with the challenges associated with test cases
generation, this process involves a random exploration of the
application model, constrained by test selection criteria. This
allow selecting relevant sample of the infinite execution space
of applications during generation. Fig. 6 presents our process
that uses the requirements for the AUT as inputs (top of Fig. 6)
and relies on the exact same models for driving the
implementation and the testing activities. The following
sections detail the activities of this process and discusses the
challenges they raises, especially regarding the generation of
relevant invocations and event parameters.

Requirements

Modelling of the AUT and

Definition of Test

Objectives Definition of Rendering

and Activation Functions

\ i
Y 1CO Description of the AUT

Test Objectives

Rendering and
Activation
Function

High-Level Petri
net Model

\i \i
Definition of Test
Selection Criteria (With
Test Objectives in Mind)

Development of the AUT

Test Selection Criteria
(e.g. mandatory
transition)

A Y

Simulation and Logging of
Test Cases (in Petshop,
constrained-randomness)

Extraction of Ul Content
fromthe AUT

Test Cases Based on
Result of ICO
Simulation

Ul Content
Description

Test Scripts Instanciation

Instanciated
Test Scripts

Test Execution

Fig. 6. The Process of Random-Model Based Testing of applications
featuring dynamic instanciation of GUI widgets.

A. Preliminary activities

1) Definition of Test Objectives
According to the Software Engineering Body of Knowledge
[21], testing can be aimed at verifying different properties. Test
cases can be designed to check that the functional

specifications are correctly implemented, which is variously
referred to in the literature as conformance testing, correctness
testing, or functional testing. However, several other non-
functional properties may be tested as well—including
performance, reliability, and usability, among many others.
Defining such test objectives is standard practice in software
engineering. By building models prior to development, our
approach is mainly geared towards Acceptance/Qualification
Testing. Yet, one can elect our approach for the identification
of faults in Reliability evaluation.

2) Modelling of the AUT and Definition of Rendering and
Activation Functions
The production of a description of the AUT is a key element in
our process as this description is used in both test generation
and development activities. For the Modelling of the AUT and
Definition of Rendering and Activation Functions activity (top-
left of Fig. 6), a formal model engineer is appointed with the
task of producing an ICO description of the application
behavior in the CASE tool supporting the notation, Petshop.
This model must be accompanied by the description of the
rendering and activation functions, i.e. the mapping between
GUI elements properties and information associated with
places (token entered, token removed) and transitions
(transition available or not) of the Petri net model.

B. Test generation activities

The test generation activities aims at producing, from the ICO
description of the AUT, test cases and test scripts for the
targeted implementation.
1) Definition of Test Selection Criteria
The Definition of Test Selection Criteria consists into
translating the Test Objectives into constraints on the models
for the test cases generation. For instance, in a scenario where
the objective is Acceptance/Qualification Testing, the goal is to
identify relevant places/transitions for verifying that customer’s
requirements are met. For instance, with the requirement “all
control orders finish by either Abort or Send”, we want the test
case generator to produce test cases from the model by selecting
paths on which the events related to the “Abort” and/or “Send”
command are raised.
2) Simulation and Logging of Test Cases

The Simulation and Logging of Test Cases happens in the
CASE tool supporting the ICO notation, Petshop. The aim of
this step is to produce traces of an automated simulation
(constrained by the test selection criteria) of the Petri net that
contains:

e the invocations and events to be played on the SUT;

e the expected state of the GUI elements before/after the

invocation/event is done/raised.

The key at this step is the production of relevant
invocation/events, which can be made difficult by the
parametrized nature of some of them. Indeed, while a click on
a button is not parameterized, producing an input on a text box
is, as it requires the actual string input. In a similar way, the
simulator must know parameters of an invocation. Our
strategies for dealing with these issues are the following:

e Event parameters are obtained by solving the pre-
condition associated with the transition receiving the
event using the Z3 SMT (Satisfiability Modulo
Theory) solver [29] interfaced with Petshop;

e Instantiation and invocation parameters are provided
manually by the user and may either be described as
unique value, ranges (e.g. parameter altitude €
[0,25000]) or arrays (e.g. parameter flightNumber €
(“U29876”, “NK 1234, “D7 6543")).

At the end of the simulation, the logs are saved in an XML file.
Fig. 7 provides an overview of the XSD associated with this
XML file. It shows that a test description (testdesc) files
contains:

e A definition of the User Interface (uidef) with the list
of Petri nets involved in the simulation (obcses) as
well as the events (event transition), invocations and
renderings (places) they contain;

e A list of all the user interface states (uistates)
encountered during the simulation, an uistate
containing the parameters for activations (was a
transition armed or not?) and renderings (what were
the value carried by the tokens in a place?) functions.

e A list of test cases composed of test steps. Each test

step refers to a uistate that must be verified before
performing any actions. The actions in a step can
either be invocations or production of events. After
performing these actions, non-deterministic behavior
of some GUI applications may lead to different
uistates depending of the execution. To cope with that,
Petshop logs all the possible nextsteps containing an
UI state the GUI application may reach.

8| <> description

{2 te

Fig. 7. Overview of the XSD for the XML containing the test cases.

3) Test Scripts Instanciation
The Test Scripts Instantiation consist is a semi-automated
process that builds the structure of a test script (Junit, MStest,
XCTest, etc.) from three elements:
e The test cases based on the results of the simulation;
e The Ul Content description (name of widgets,
containers, etc.);
e The list of rendering and activation functions from the
ICO description.
For the test script generation to occur, the user must manually
specify the actual correspondence between the
renderings/activation functions and the application source code.
Note that one may have decided to model the application with
a particular target platform in mind (e.g. Java Swing), thus
directly mentioning them in the ICO rendering and activation
function. Yet, we claim that these functions should be
generically described (e.g. “Deactivation of the send button”)
so test script can be instantiated for different target platform.

C. Development activities

1) Development of the AUT

The Development of the AUT consists in the production, by a
team of software engineers and developers, of an
implementation of the AUT for the targeted platform. Details
on implementing from an ICO specification are provided in
[32] and [4]). This process involves obtaining the reachability
graph of the ICO Petri net. A reachability graph of a Petri-net
is a directed graph G=(V,E), where v EV represents a class of
reachable markings; e € E represents a directed arc from a class
of markings to another class of markings [41]. We take
advantage of the APT (Analysis of Petri nets and labelled
transition systems) project to generate this graph [6].

D. Test Execution

The Test Execution is, due to the nature of the script we generate
(Junit, MStest, XCTest, etc.), totally dependent of the IDE the
testers are working on. For this reason we will not comment
further on test execution.

VII. CONCLUSION AND FUTURE WORK

Model-Based Testing requires modelling techniques that are
expressive enough to describe the behavior of the Application
Under Test [10][38]. Since long known for their complexity in
the field of GUI Testing [2][30], GUI applications are getting
more and more complex, featuring dynamic instantiation of
widgets and complex interaction (e.g. multi-touch ones)
[10][25]. This increasing complexity affects the ability of
dynamically building model of the AUT by exploring its
execution space, as done in the field of GUI Testing [37]. To
cope with the increasing complexity, this paper proposed to
build the application models from requirements as done in the
standard Model-Based Testing process [38]. Comparing over
20 UIDLs, we have established that ICO [18] is one of the most
suitable notation for describing the large set of behavior found
in modern GUI applications. We demonstrated some of the [CO
abilities by describing an Air Traffic Control application

featuring dynamic instantiation of widgets as well as non-
standard behavior (e.g. on pop-up menu and menu items).

The expressiveness of ICO enables the models to be used for
two different purposes. On one hand, they are suitable as
specification for the development of the application [4][32], on
the other they enable test cases generation. In this paper, we
proposed a development/testing process that takes advantage of
both of these characteristics. While one may decide to model
the application with a particular development environment in
mind, we propose to rely on the generation of abstract test cases
then instantiated for the targeted platform by referring to the
ICO activation and rendering functions.

The approach proposed in this paper ends up with enabling the
testing of the GUI applications using test scripts. Thus, we are
conducting “offline” testing [38]. While this allow for easy
replaying of test cases, this also implies that we constrain the
test case generation so they are manageable in size and
generation is not too long. We are currently investigating the
opportunity of conducting “online” testing [38] using ICO.
With online testing, the test generation algorithms can react to
the actual outputs of the SUT. This has the potential to enable
longer test run while benefiting from the correctness of models
built from the application requirements.

REFERENCES

[1] C. Appert and M. Beaudouin-Lafon, “SwingStates: adding state machines
to the swing toolkit,” in Proceedings of the 19th annual ACM symposium
on User interface software and technology, Montreux, Switzerland, 2006,
pp. 319-322, doi: 10.1145/1166253.1166302.

[2] 1. Banerjee, B. Nguyen, V. Garousi, and A. M. Memon, “Graphical user
interface (GUI) testing: Systematic mapping and repository,” Information
and Software Technology, vol. 55, no. 10, pp. 1679-1694, Oct. 2013, doi:
10.1016/j.infs0£.2013.03.004.

[3] E. Barboni, S. Conversy, D. Navarre, and P. Palanque, “Model-Based
Engineering of Widgets, User Applications and Servers Compliant with
ARINC 661 Specification,” in Interactive Systems. Design, Specification,
and Verification, Berlin, Heidelberg, 2007, pp. 25-38, doi: 10.1007/978-
3-540-69554-7_3.

[4] R. Bastide, D. Navarre, and P. Palanque, “A Model-based Tool for
Interactive Prototyping of Highly Interactive Applications,” in CHI 02
Extended Abstracts on Human Factors in Computing Systems, New York,
NY, USA, 2002, pp. 516-517, doi: 10.1145/506443.506457.

[5] R. Bastide, D. Navarre, P. Palanque, A. Schyn, and P. Dragicevic, “A
model-based approach for real-time embedded multimodal systems in
military aircrafts,” in Proceedings of the 6th international conference on
Multimodal interfaces, State College, PA, USA, 2004, pp. 243-250, doi:
10.1145/1027933.1027974.

[6] E. Best and U. Schlachter, “Analysis of Petri Nets and Transition
Systems,” Electron. Proc. Theor. Comput. Sci., vol. 189, pp. 53-67, Aug.
2015, doi: 10.4204/EPTCS.189.6.

[71 R. A.Bolt, ““Put-that-there’: Voice and gesture at the graphics interface,”
in Proceedings of the 7th annual conference on Computer graphics and
interactive techniques, Seattle, Washington, USA, 1980, pp. 262-270,
doi: 10.1145/800250.807503.

[8] J.C. Campos et al., “A More Intelligent Test Case Generation Approach
Through Task Models Manipulation,” Proc. ACM Hum.-Comput.
Interact., vol. 1, no. EICS, pp. 9:1-9:20, Jun. 2017, doi: 10.1145/3095811.

[9] A. Canny, E. Bouzekri, C. Martinie, and P. Palanque, “Rationalizing the
Need of Architecture-Driven Testing of Interactive Systems,” in Human-
Centered and Error-Resilient Systems Development, 2018.

[10] A. Canny, D. Navarre, J.C. Campos and P. Palanque, “Model-Based

Testing of Post-WIMP Interactions Using Object Oriented Petri-nets.” in
8th Formal Methods for Interactive Systems Workshop (FMIS).2019.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Cardelli and R. Pike, “Squeak: a language for communicating with
mice,” SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 199-204, Jul.
1985, doi: 10.1145/325165.325238.

L. Cheng, J. Chang, Z. Yang, and C. Wang, “GUICat: GUI testing as a
service,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2016, pp. 858—863.

S. R. Choudhary, A. Gorla, and A. Orso, “Automated Test Input
Generation for Android: Are We There Yet?,” in 2015 30th [IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2015, pp. 429-440, doi: 10.1109/ASE.2015.89.

P. Dragicevic and J.-D. Fekete, “Support for input adaptability in the
ICON toolkit,” in Proceedings of the 6th international conference on
Multimodal interfaces, State College, PA, USA, 2004, pp. 212-219, doi:
10.1145/1027933.1027969.

B. Dumas, D. Lalanne, and R. Ingold, “HephaisTK: a toolkit for rapid
prototyping of multimodal interfaces,” in Proceedings of the 2009
international conference on Multimodal interfaces, Cambridge,
Massachusetts, USA, 2009, pp- 231-232, doi:
10.1145/1647314.1647360.

J. Gregory, L. Berthoud, T. Tryfonas, A. Rossignol, and L. Faure, “The
long and winding road: MBSE adoption for functional avionics of
spacecraft,” Journal of Systems and Software, vol. 160, p. 110453, Feb.
2020, doi: 10.1016/1.js5.2019.110453.

A. Hamon, P. Palanque, J. L. Silva, Y. Deleris, and E. Barboni, “Formal
Description of Multi-touch Interactions,” in Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems,
New York, NY, USA, 2013, pp- 207-216, doi:
10.1145/2494603.2480311.

A. Hamon, P. Palanque, J. L. Silva, Y. Deleris, and E. Barboni, “Formal
Description of Multi-touch Interactions,” in Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems,
New York, NY, USA, 2013, pp- 207-216, doi:
10.1145/2494603.2480311.

A. Hamon, P. Palanque, M. Cronel, R. André, E. Barboni, and D. Navarre,
“Formal Modelling of Dynamic Instantiation of Input Devices and
Interaction Techniques: Application to Multi-touch Interactions,” in
Proceedings of the 2014 ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, New York, NY, USA, 2014, pp. 173—
178, doi: 10.1145/2607023.2610286.

K. Hinckley, M. Czerwinski, and M. Sinclair, “Interaction and modeling
techniques for desktop two-handed input,” in Proceedings of the 11th
annual ACM symposium on User interface software and technology, San
Francisco, California, USA, 1998, pp- 49-58, doi:
10.1145/288392.288572.

IEEE Computer Society, P. Bourque, and R. E. Fairley, Guide to the
Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0,
3rd ed. Los Alamitos, CA, USA: IEEE Computer Society Press, 2014.

K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems,” Int J Softw
Tools Technol Transfer, vol. 9, no. 3, pp. 213-254, Jun. 2007, doi:
10.1007/s10009-007-0038-x.

D. Kammer, J. Wojdziak, M. Keck, R. Groh, and S. Taranko, “Towards a
formalization of multi-touch gestures,” in ACM International Conference
on Interactive Tabletops and Surfaces, Saarbriicken, Germany, 2010, pp.
49-58, doi: 10.1145/1936652.1936662.

K. Katsurada, Y. Nakamura, H. Yamada, and T. Nitta, “XISL: a language
for describing multimodal interaction scenarios,” in Proceedings of the
5th international conference on Multimodal interfaces, Vancouver,
British Columbia, Canada, 2003, pp- 281-284, doi:
10.1145/958432.958483.

V. Lelli, A. Blouin, B. Baudry, and F. Coulon, “On model-based testing
advanced GUIs,” in 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops (ICSTW),
2015, pp. 1-10, doi: 10.1109/ICSTW.2015.7107403.

[26]

[27]

[28]

[29]

[30]

61

(321

[33]

[34

(35

[36]

[37]

[38

(39

[40]

[41

L. Mariani, M. Pezze, O. Riganelli, and M. Santoro, “AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications,” in
Verification and Validation 2012 IEEE Fifth International Conference on
Software Testing, 2012, pp. 81-90, doi: 10.1109/ICST.2012.88.

A. M. Memon and B. N. Nguyen, “Advances in Automated Model-Based
System Testing of Software Applications with a GUI Front-End,” in
Advances in Computers, vol. 80, M. V. Zelkowitz, Ed. Elsevier, 2010, pp.
121-162.

D. Navarre, P. Palanque, J.-F. Ladry, and E. Barboni, “ICOs: A Model-
based User Interface Description Technique Dedicated to Interactive
Systems Addressing Usability, Reliability and Scalability,” ACM Trans.
Comput.-Hum. Interact., vol. 16, no. 4, pp. 18:1-18:56, Nov. 2009, doi:
10.1145/1614390.1614393.

L. de Moura and N. Bjerner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, Berlin,
Heidelberg, 2008, pp. 337-340, doi: 10.1007/978-3-540-78800-3_24.

B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: an
innovative tool for automated testing of GUI-driven software,” Autom
Softw Eng, vol. 21, no. 1, pp. 65-105, Mar. 2014, doi: 10.1007/s10515-
013-0128-9.

S. Oney, B. Myers, and J. Brandt, “ConstraintJS: programming interactive
behaviors for the web by integrating constraints and states,” in
Proceedings of the 25th annual ACM symposium on User interface
software and technology, Cambridge, Massachusetts, USA, 2012, pp.
229-238, doi: 10.1145/2380116.2380146.

P. A. Palanque, R. Bastide, L. Dourte, and C. Sibertin-Blanc, “Design of
user-driven interfaces using Petri nets and objects,” in Advanced
Information Systems Engineering, Berlin, Heidelberg, 1993, pp. 569—
585, doi: 10.1007/3-540-56777-1_30.

P. Palanque, R. Bastide, and F. Paterno, “Formal Specification as a Tool
for Objective Assessment of Safety-Critical Interactive Systems,” in
Human-Computer Interaction INTERACT ’97: TFIP TC13 International
Conference on Human-Computer Interaction, 14th—18th July 1997,
Sydney, Australia, S. Howard, J. Hammond, and G. Lindgaard, Eds.
Boston, MA: Springer US, 1997, pp. 323-330.

P. Palanque, R. Bernhaupt, D. Navarre, M. Ould, and M. Winckler,
“Supporting Usability Evaluation of Multimodal Man-Machine Interfaces
for Space Ground Segment Applications Using Petri nets Based Formal
Specification,” in SpaceOps 2006 Conference, 0 vols., American Institute
of Aeronautics and Astronautics, 2006.

P. Palanque, J.-F. Ladry, D. Navarre, and E. Barboni, “High-Fidelity
Prototyping of Interactive Systems Can Be Formal Too,” in Human-
Computer Interaction. New Trends, Berlin, Heidelberg, 2009, pp. 667—
676, doi: 10.1007/978-3-642-02574-7 75.

C. A. Petri, “Communication with automata,” http://edoc.sub.uni-

hamburg.de/informatik/volltexte/2010/155/pdf/diss_petri_engl.pdf,
1966.

M. Pezze, P. Rondena, and D. Zuddas, “Automatic GUI Testing of
Desktop Applications: An Empirical Assessment of the State of the Art,”
in Companion Proceedings for the ISSTA/ECOOP 2018 Workshops,
New York, NY, USA, 2018, pp. 54—62, doi: 10.1145/3236454.3236489.

M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297—
312, Aug. 2012, doi: 10.1002/stvr.456.

K. Vorobyov and P. Krishnan, “Comparing model checking and static
program analysis: A case study in error detection approaches,”
Proceedings of SSV, 2010.

T. E. J. Vos, P. M. Kruse, N. Condori-Fernandez, S. Bauersfeld, and J.
Wegener, “TESTAR: Tool Support for Test Automation at the User
Interface Level,” IJISMD, vol. 6, no. 3, pp. 4683, Jul. 2015, doi:
10.4018/1JISMD.2015070103.

X. Ye, J. Zhou, and X. Song, “On reachability graphs of Petri nets,”
Computers & Electrical Engineering, vol. 29, no. 2, pp. 263-272, Mar.
2003, doi: 10.1016/S0045-7906(01)00034-9.

