N

N

Interpreting the PDEVS formalism and algorithms to
enhance the state handling mechanism

Clément Foucher

» To cite this version:

Clément Foucher. Interpreting the PDEVS formalism and algorithms to enhance the state handling
mechanism. European Simulation and Modelling Conference 2020, Oct 2020, Toulouse, France. hal-
03099174

HAL Id: hal-03099174
https://hal.science/hal-03099174

Submitted on 6 Jan 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03099174
https://hal.archives-ouvertes.fr

INTERPRETING THE PDEVS FORMALISM AND ALGORITHMS
TO ENHANCE THE STATE HANDLING MECHANISM

Clément Foucher
LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
Clement.Foucher @laas.fr

KEYWORDS
DEVS, Discrete-Event Modeling, Meta-Models.

ABSTRACT

The DEVS formalism consists in a rigorous frame for
model building and simulating. One one hand, the math-
ematical description of the DEVS meta-model allows for
thorough building of models. One the other hand, the
proposed algorithms for model simulation allow for quickly
building simulating tools for these models. However, in
between these two phases, there are some less-detailed steps
such as components initial state handling.

This article aims at proposing an interpretation of DEVS
formalism slightly different from the one generally ob-
served, and at strengthening the executable model building
stage. The article proposes to explicitly split the model
description between an user-defined abstract model and an
executable model which construction can be automatically
done by the simulating tool. Based on this vision, the initial
state of executable models can be managed from within the
DEVS formalism.

I. INTRODUCTION

Discrete Event System Specification (DEVS) [8] has been
introduced decades ago in order to propose a sound math-
ematical frame for discrete-event system modeling and
simulation. The specifications include a meta-model as a
mathematical syntax to write models, as well as algorithms
defining the simulation behavior for these models. DEVS
has since seen many extensions, including the fundamental
Parallel DEVS (PDEVS) formalism, which makes it a fam-
ily of meta-models. Thus, we usually refer to the original
DEVS formalism as Classic DEVS (CDEVS) and use the
DEVS acronym to refer to the family of formalisms and not
specifically to the initial DEVS formalism.

The DEVS formalisms family uses the notion of compo-
nents to build models: a system is represented by a compo-
nent, which can either be described as a single DEVS model
(atomic component) or be composed of multiple other
components (coupled component). Atomic components for-
malism describes models using the notions of internal state
and state transitions resulting from time advance or stimuli
from outside the model. Coupled components are simple
collections of components associated with a connection map
describing how events are propagated between components.

However, while the model description and its simulation
behavior are strongly defined in DEVS formalisms, there
is room for interpretation regarding the simulator building
phase, notably its initialization. DEVS algorithms notably
assume that at the beginning of the simulation the model is
ready and in its initial state when the initial ¢ — message

is received. Moreover, we find various interpretations and
representations of the initial state notion in the DEVS-
related literature.

This article will intend to define a way of handling the
simulator building phase and simulator state initialization. It
will propose to make explicit how the simulator is built from
an existing model, trying to specifically separate abstract
model building from simulator building.

The main objective of this work is to strengthen the
independence between a model description and its simu-
lation, notably in order to enhance the notion of Platform-
Independent Model (PIM) which is the core of the Model-
Driven Architecture (MDA) process [5]. This will help
advancing on the standardization of the simulation tools
behavior. Moreover, this work is a foundation for the
author’s current developments in relation with components
state management from the formalism itself, such as saving
or restoring a component state, which is important when
dealing with dynamic structure models.

Section II of this article describes the basics of DEVS
models formalisms, focusing on PDEVS which we will
more specifically consider. Section III will focus on the
simulation algorithms and the notion of simulator in DEVS.
In Section IV, we will look into the variable handling
mechanisms at stake in DEVS and propose a refined vision
of the variables by separating their definition from their
value. In the Section V, we will make a proposal on how the
state variable initialization phase could be integrated into the
formalism itself rather than being left over to interpretation
by the simulation tool. Finally, Section VI will conclude on
this topic and review what doors are being opened by this
study in the path of future work.

II. DEVS MODELS DEFINITIONS

DEVS family’s formalisms define atomic components mod-
els to be the foundation by expressing a behavior. Coupled
components are also defined which aggregate other compo-
nents, either atomic or coupled themselves.

The full equivalence between atomic components and
coupled components is a fundamental requirement for the
formalism. This notion is called closure under coupling and
has been proven for both CDEVS [8] and PDEVS [2]. This
allows for hierarchical construction of components with an
unlimited depth and ensures these components will still
behave according to the meta-model specifications as, at
each level, coupled components are indistinguishable from
atomic components made of a single DEVS model.

This section will review the definition of these compo-
nents in PDEVS in order to identify the relevant notions of
state and abstract model.



A. PDEVS Atomic Components Models
The PDEVS formalism defines a model M as a tuple:
M =< X)Y, 57 56:1:157 5int7 600717 A ta >

In this definition, the notions of inputs and outputs are
respectively carried by X and Y. This forms the interface
of the model indicating how it is allowed to interact with
its surrounding environment. The notion of ports is usually
integrated to the formalism, allowing to distinguish inter-
actions in a finer-grained way than just separating inputs
from outputs. This allows for refining the models interfaces
by using named ports, as well as specifying their coupling
individually in coupled components. Basically, a port is a
name associated with a domain of definition, indicating
which values are expected or allowed through the port.
When seeing them this way, this definition matches the one
of a variable: e.g. an output port can be defined as @) € N.

S is defined as the set of sequential states, i.e. the set
of values that can be reached by the model’s state. In this
sense, .S is the domain of definition of the component state
itself. Following the vision of [3], we will consider here that
S can be expressed as a list of variables associated with the
sets of values that they can reach by the model evolution.

The ¢ functions are responsible for the model state
evolution, depending on the source of the event causing
the evolution, which can be internal (time triggered) or
originate from the environment through an input port.
Collisions between various simultaneous events are handled
in PDEVS through the 4., function, marking its difference
with CDEVS and allowing for a real parallel simulation.

The A function dictates how the component should emit
events on its output ports in reaction to an internal event.

Finally, the ta function associates time to the compo-
nent’s state, in order to allow for internal events.

What can be noted with this model definition is that there
are two kinds of mathematical objects involved: variables
definitions and functions.

In particular, there is no notion of an initial state at this
point in the original definition. Some authors prefer to add
it as an sg value directly within the component definition to
indicate the starting point of an executable model, e.g. [6]
or [4]. However, we will here keep it separated from the
model definition, and consider this value can be set at simu-
lation time to test different scenarios through different initial
states and input vectors. Moreover, this is more coherent
with the remark concerning the simulation process in [8]:
“typically, we are given a system specification together with
the initial state values [...]”, explicitly stating the initial state
is not part of the system specification.

B. PDEVS Coupled Components Models

There are multiple, equivalent, definitions of a PDEVS cou-
pled component depending if we reason in terms of interface
map or influencers. Here, we will adopt the influencers
notation by defining a PDEVS coupled component’s model
N as:

N =<X,Y,D,{My},{14},{Z; a} >

We find here the same notion of component interface with
X and Y as in the atomic components.

D is defined as the set of components contained in the
coupled components, while {M;} contains their respective
models. This is an explicit separation between a component
and its model. We can here treat D as the names (or the
references) of the components, their specification being the
associated model.

Finally, {I;} and {Z; 4} detail the links between the
components from D as well as with the interface of N
itself. We will not detail this part further as it is not the
focus of this article to discuss the components relations.

What is important however is that there is no notion of
state at the coupled component level: states are fully handled
at atomic component level.

C. Interpretation of the Components Specifications

We can already feel from this brief look at the models
definitions that, in Zeigler’s view, models of systems are
more of a template than an actually runnable object that will
evolve over time. It is, indeed, intended: the evolution will
be taken care of by the simulator and not by the model itself.
We will detail in the following section the concept (actually
the concepts) of simulator in DEVS formalisms, but what
is important here is to see a model as an unchangeable
definition of a system, defining the frame in which it can
behave as well as the way in which it will respond to specific
stimulus depending on a given state. We also remarked that,
in the original definitions, there is no specific initial state.

To follow this approach, we have to consider that the
model built at this step does not have to be executable on its
own as we are still in the modeling phase. This is what we
call an abstract model, as opposed to an executable model.

Thus, there is no need here for variables, in the sense of
a placeholder for a value. What we need is the variables’
definitions, i.e. their domain. This is valid for an abstract
model’s state as well as for its ports.

What we can also see is that the various functions defined
for an atomic model does not require an internal state. E.g.
the d;,,; function is defined as S — 5, i.e. the input state is
a parameter of the function and the new state is outputted
from the function, thus not requiring it to be internal.

III. PDEVS SIMULATORS

There are three different notions of simulator in the DEVS
context: an atomic component simulator, a DEVS compo-
nent simulator (which is called a simulator for an atomic
component and a coordinator for a coupled component), and
a simulation tool, usually referred to as a simulator too. To
prevent confusion, the lone term simulator will here be used
to specifically designate an atomic component simulator;
we will use the term DEVS simulator to encompass atomic
components simulators and coupled components coordina-
tors; finally, the term simulating tool will refer to a tool
implementing DEVS simulators.

In the simulation phase, each atomic component model is
thus associated with a simulator, and each coupled compo-
nent model is associated with a coordinator in a one-to-one
relation. There is furthermore a root coordinator handling
the general simulation.

This section will aim at quickly describing the structure
for simulation variables provided by the simulation algo-
rithms.



A. Atomic Component Simulator

When dealing with an atomic component, there is on one
hand the abstract model, defining the states allowed through
the simulation as well as the behavior of the component, and
on another hand the simulator in charge of the evolution of
the model.

When taking a look at the simulator’s algorithm, defined
as pseudo-code specifying a few functions that are triggered
in reaction to message exchanges, we remark that the
variables are defined there. The simulator defines a set of
variable amongst which the DEVS model itself and time-
related variables ¢l and tn (respectively times of latest and
next event). The mention of the variable containing the
model (simply called DEVS) indicates “with total state
(s, ).

There is a slight incertitude in this definition regarding
the current state s (and elapsed time variable e) being part
of the model or variables of the simulator. As we chose here
to treat the abstract model as an immutable definition, there
can’t be any variable in it in this vision. So the variables
will be part of the simulator itself in our approach, or at
least placed outside the abstract model.

We remark that the e variable, while being part of the
DEVS definition, is replaced here by t/ and tn. However,
the value of e is still used once in the algorithms, in the
i — message phase, thus the e variable is still present but
only reduced to what we could call ey, the initial value of
e. After the initial use of eg, the variable is no longer used,
except as a temporary value to pass as a parameter to the
function d.,;. We could also argue that this value should be
passed to the d.,, function too, as this one can use the total
state to compute its result, but this is out of the scope of
this article. Other variables in the simulator, parent and y,
are respectively a constant and a simple temporary record
of the output’s value(s).

We also notice that, in DEVS definitions, the initial state
is supposed to have been defined prior to the simulation
launch, as it is not handled in the algorithms. This is why
some prefer to treat the initial state as a variable of the
model itself by adding s to the M tuple. We however will
consider the model description to be independent from its
initial state, in order to allow multiple uses of the same
model in different use cases.

B. Coupled Component Coordinator

As with coupled components models, we will not detail the
coupled components coordinator algorithms too much, as
we are not focused here on the model hierarchical structure.
We can however remark that the coordinator does indeed
have a notion of time through its ¢/ and ¢n variables, which
plays the role of e in the simulation. It means that, while
the coupled components models does not have any notion
of time, these variables are still required for coordination

purpose.
IV. VARIABLES DEFINITION AND INITIAL STATE

In the above description of PDEVS models and simulation
algorithms, we chose to see a PDEVS model as a static
object, that does not need to be executable by itself. This

part agrees with PDEVS formalism where a model needs
to be associated with a simulator to be run.

However, many DEVS simulating tools choose to directly
describe the model as executable, for example declaring the
state variables and other objects as being members of a
class. This is the case of PythonDEVS [7] for example:
the model object is described as a whole, and variables are
included within it. The various functions associated with the
model description then simply use these variables as object
members, not needing to pass them as parameters.

While this way of doing is fully functional, it marks a
distinction with the vision that is proposed here: the de-
scription done here by the modeler is the executable model,
there is no abstract model notion within the simulating tool.

What we propose here is to methodically separate the
abstract model definition from the executable model. The
abstract model notion can then be brought to the simulating
tool, and the executable model be automatically built from
this abstract model.

In this section, a proposal is made to build an executable
model from a DEVS model.

A. Variables of an Executable Model

Regarding the state variables of an executable model, two
main variables are to be considered: the state s and elapsed
time e, together forming the total state ¢ =< s, e >.

As said previously regarding the e variable, this one
is broken up into two variables in the DEVS simulation
algorithms: ¢/ and tn. With these two variables, e is only
used within the simulator for its initial value eg.

For the s variable, this one can be a collection of mul-
tiple variables in order to better reflect the model internal
behavior. The initial state sy must then be a collection of
values for each variable of s.

As said previously, the port definition also resembles
variables definitions, as having a name and a domain.
Internally, an executable model can thus represent an output
or input port as a variable.

Finally, we identified in the DEVS simulators that there
are requirements for variables outside the ones defined in
the models. E.g. the parent variable is required for com-
munication while, in the meta-model, the only hierarchy is
directed from the root to the leaves, coupled models having
knowledge of their children but not the other way around.
Thus, these variables are internal elements required by the
simulator, and can vary depending on the implementation
that is made of it. We then consider these variable to not
be part of the executable model, and will not discuss them
further in.

We treat state variables within s and port variables in a
PDEVS abstract model as simple definitions, associating a
name with a definition set indicating the allowed values for
the variables. In an executable model, implementing such
a model would require a specific mechanism for handling
definition. It can rely on the notion of fype, that exist in
much programming languages. But this notion alone has
limitations toward what we try to accomplish here. As an
example, a variable defined as varl € R can be of type
float or double in a C++ executable model, limitations
due to precision set aside. However, how to treat a variable
var2 € [0 : 1000]? This requires that the variable not only



be of type int or unsigned int, but also to have a restriction
on its boundaries.

This is why the variable defined in the executable model
must remain linked to the variable definition from the
abstract model. When building the executable model from
the abstract model, the simulating tool has to choose the
most relevant type for the variable, but if a restriction is
expressed on the domain (i.e. defined as a subset of a generic
set), the simulator must remember that checks may have to
be made on the value against the variable definition.

B. Initial State Management

One of the main objectives of this discussion is to allow
a component’s abstract model to be usable in multiple
environments, even multiple times in the same simulation,
as a class can be instantiated as multiple objects. For that
purpose, the initial state has to be provided alongside the
model, but not within it. The simulator will be in charge of
initializing an executable model instance with a provided
initial state.

We also have to remember that the initial state a com-
ponent requires is qg, not only sg. The e variable’s initial
value is used to initialize ¢/ and ¢n in the i — message
phase. This initial value on e allows for the simulation
initial situation to represent a state in which a component
has already be waiting for some time. Thus ey has to be
provided within a component initial state. An initial state
for an atomic component M is then defined as follows:
Qo =< 80,5€00 >

Providing gy is relatively simple for a single atomic com-
ponent. However, for a multi-component coupled model, in-
cluding any levels of hierarchy, it requires a bit of attention
to make sure each component is correctly assigned its initial
state. There must be a way of matching the members of the
set of components initial states to the correct component.
There are two ways this can be achieved.

The first one is simply to store states in a set and label
each one with its associated component name. This only
works if all components in the model are given a unique
name. We already mentioned that the D set in a coupled
component can be seen as the list of inner-components
names. However, this list does not have to be text- or
number-based: the D set has no restriction over its content
in terms of mathematical object nature. Components could
be represented as sets or data structures for example.

Moreover, even if components are labeled using an al-
phanumerical notation, there is no guarantee the names are
unique amongst the various levels of hierarchy. This can be
a good practice however to ensure from the abstract model
that all names are unique within the system’s model.

A second way of doing is to represent the initial state
as a tree of states matching the model’s structure. All
states of components residing in a coupled component
would be gathered together in a virtual state of the coupled
component. Doing so at each level of hierarchy results in
a virtual state for the root component in the form of tree.
Distributing these states can then be the responsibility of the
coupled component in a pre-i —message phase or as a part
of it. This way makes the component’s name uniqueness
only required at a single level of hierarchy.

The difference between these two approaches is thin, as
we still require each component to have a label, and that
that label must be unique in a certain context. However,
the tree approach has the advantage of respecting DEVS’
philosophy of coordinators and simulators, and allows it to
be integrated within the simulation process itself, not as part
of a separate model set-up phase. We will thus propose here
to use the tree approach. For a coupled component [V, its
initial state will then be of the following form: g9, = {qo, |
deD N}"

V. EXECUTABLE MODEL BUILDING PHASE

This leads us to the way we propose to interpret executable
model building phase. We will use here the PDEVS algo-
rithms provided by Zeigler.

The idea is to input only an abstract model and an
initial state to the simulation tool, which will then auto-
matically build the according DEVS simulators. Let a model
PDEV S and an arbitrary initial state matching its structure
Q0pprvs-

The simulation tool will first have to build the PDEVS
simulator tree. This part is done as by the original PDEVS
behavior, except for the initial state that is not set at this
point but only further. The idea is that this part should be
integrated within the simulation algorithms themselves.

As defined in the original algorithms, there is a tiny
initialization stage in the simulators. This phase intends
at setting the time variables of the components. For an
atomic component, this allows to run the ta function for
the first time and expose it to its parent. For a coupled
component, this sets not only the time variables, but also
prepares and sort the list of imminent components. This
part could have been hidden from the algorithms, supposing
that the components already know the initial state of the
simulation at the beginning of the simulation, and devolve
the responsibility for this to the simulator tool. However,
it has been decided to include the phase in the algorithms,
probably in order to ensure a careful procedure and make
sure there is no divergence of interpretation on this. This has
not been the case with the initial state, gy being supposed
to already be set in the component when the ¢ — message
arrives.

This may be because there is a difference in vision in
the proposed simulators from the meta-model definition.
Indeed, the DEVS Definition Language [8] proposed by
Zeigler marks a difference with the vision exposed when
dealing with mathematically-defined models. In this exam-
ple of a language allowing to define DEVS components, the
initial state is integrated into the model definition, which is
a difference from the original statement that a model and
initial state are provided to the simulator: here, both are a
single entity.

In order to allow for the initial state set-up mechanism
described earlier, it seems a good approach to integrate that
step to the algorithms.

Following this approach, we propose to add a pre-
i — message function to the algorithms called the g0 —
message. This function is depicted in Algorithms 1 and 2.

This phase could also be merged with the ¢ — message
phase by simply adding the g0 parameter, as described in



Algorithm 1 Initial state function for atomic components
when receive q0-message (q0)
8 = qo-So
€ = (go-€o

Algorithm 2 Initial state function for coupled components

when receive q0-message (qo)
for-each d in D do
send qO0-message (go,) to child d

Algorithms 3 and 4. In that case, the persistent e variable
becomes unnecessary in the simulator.

Algorithm 3 Modified i-message function for atomic com-
ponents
when receive i-message (7, qo, t)
S = qo-So
tl=t- qo-€o
tn = tl + ta(s)

Algorithm 4 Modified i-message function for coupled
components
when receive i-message (7, qo, t)
for-each d in D do
send i-message (4, qo,, ¢) to child d
sort event-list
tl=max { tly|de D }
tn =min { tny |d € D }

This slight modification allows for explicitly handling the
initial states values from the DEVS simulators. This step
opens room for further handling of the state: for example,
the simulation could be reset to another starting point for the
simulation without having to rebuild the DEVS simulator
tree, simply by sending a new initial state message.

Moreover, we can also imagine a functionality within the
formalism whose purpose would be to extract the state at
some point of the simulation to build a gg object that can
be used to restart the simulation from the current point.

These elements can seem to have few advantages com-
pared to existing state-handling mechanisms already built
in many PDEVS simulators. However, by integrating the
state management directly within the formalism, this lays
the foundation for future work on individual component
state handling, and allows for harmonization on how the
state is handled between simulator tools.

VI. CONCLUSION AND FUTURE WORK

This article tried to propose a clarification on the initial
state subject in DEVS models and algorithms, notably in
PDEVS. We remarked that the proposed DEVS algorithms
allowed to choose an arbitrary simulation starting time, but
relied on a preset initial state for the components. We also
remarked that despite the initial state not being part of
an abstract DEVS model, most implementations, including
DEVS Definition Language, still deeply linked the initial
state to the model.

On our way to this proposal, we also found that there is a
distinction to be made between a variable and its definition,

and that while the former was needed for an executable
model, only the latter was required for an abstract model.

We then proposed to slightly modify the PDEVS algo-
rithms in order to integrate the initial state management
within the PDEVS simulation algorithms. To do so, we
proposed two different ways to enhance the DEVS simulator
process by adding a initialization phase, either indepen-
dently from the ¢ — message phase or directly within it.

These considerations allow to advance on a standardiza-
tion on the component state representation, that we proposed
to treat as a tree matching the model structure. Moreover, by
directly integrating the component’s state handling within
the simulation algorithm, we lay the foundations of dynamic
components state handling from the simulation algorithm,
allowing to integrate mechanisms such as state saving and
restoring.

What remains to be done from this point is to further
develop these state handling mechanisms beyond the initial
value. Indeed, if the interest remains limited in a static
structure model such as CDEVS or PDEVS, this allows
for much more considerations in dynamic structure models,
such as in DS-DEVS [1]. This preliminary work had to be
done on static structure models at first in order to allow
for an easy formalization of the elements at stake, but will
reach their full potential when applied to dynamic structure
models.

REFERENCES

[1] Fernando J Barros. “Dynamic structure discrete event
system specification: a new formalism for dynamic
structure modeling and simulation”. In: Winter Sim-
ulation Conference Proceedings, 1995. IEEE. 1995,
pp- 781-785.

[2] A. C. H. Chow and B. P. Zeigler. “Parallel DEVS: a
parallel, hierarchical, modular modeling formalism”.
In: Proceedings of Winter Simulation Conference. Dec.
1994, pp. 716-722. DOI: 10.1109/WSC.1994.717419.

[3] Stéphane Garredu. ‘“Meta-modeling approach and
model transformations in the context of modeling and
discrete event simulation : application DEVS formal-
ism”. Theses. Université Pascal Paoli, July 2013.

[4] Hae Young Lee. “Elapsed-time-sensitive DEVS for
model checking”. In: Proceedings of the 2013 Winter
Simulation Conference: Simulation: Making Decisions
in a Complex World. Citeseer. 2013, pp. 3998-3999.

[5S] MDA OMG. The Architecture of Choice for a Chang-
ing World. 2016.

[6] Vilian Solcany. “Simulation Algorithms for DEVS
Models”. In: (2008).

[7] Yentl Van Tendeloo and Hans Vangheluwe. “The mod-
ular architecture of the Python (P) DEVS simula-
tion kernel”. In: Proceedings of the 2014 Symposium
on Theory of Modeling and Simulation-DEVS. 2014,
pp- 387-392.

[8] Bernard P Zeigler, Herbert Praechofer, and Tag Gon
Kim. Theory of modeling and simulation: integrating
discrete event and continuous complex dynamic sys-
tems. 2nd. Orlando, FL, USA: Academic press, 2000.
ISBN: 0127784551.



