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Optimal entanglement witnesses: a scalable data-driven approach

Multipartite entanglement is the key resource allowing quantum devices to outperform their classical counterparts, and entanglement certification is fundamental to assess any quantum advantage. The only scalable certification scheme relies on entanglement witnessing, typically effective only for special entangled states. Here we focus on finite sets of measurements on quantum states (hereafter called quantum data); and we propose an approach which, given a particular spatial partitioning of the system of interest, can effectively ascertain whether or not the data set is compatible with a separable state. When compatibility is disproven, the approach produces the optimal entanglement witness for the quantum data at hand. Our approach is based on mapping separable states onto equilibrium classical field theories on a lattice; and on mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.

Introduction. Preparing and processing strongly entangled many-body states, in both a controlled and scalable way, is the goal of all quantum simulators and computers. Indeed, as the efficient representation of generic entangled many-body states is impossible on classical machines, entanglement represents the key computational resource of these devices [START_REF] Georgescu | Quantum simulation[END_REF][START_REF] Preskill | Quantum computing and the entanglement frontier[END_REF]. As a consequence, developing generic and scalable methods to certify entanglement in multipartite systems stands as a grand challenge of quantum information science. Even more fundamentally, entanglement certification is a central task to probe the resilience of quantum correlations from the microscopic world to the macroscopic one [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF].

Any practical method must circumvent the tomographic reconstruction of the full density matrix [START_REF] Paris | Quantum State Estimation[END_REF][START_REF] Doherty | Detecting multipartite entanglement[END_REF] (which implies a number of measurements scaling exponentially with system size), and it should instead infer entanglement from the partial information contained in a given data set of measurement results (hereafter referred to as quantum data). When one adopts this data-driven strategy, the goal of entanglement certification is to establish whether or not the quantum data are compatible with a separable state [START_REF] Doherty | Detecting multipartite entanglement[END_REF][START_REF] Gühne | Lower bounds on entanglement measures from incomplete information[END_REF][START_REF] Navascues | Entanglement marginal problems[END_REF]. Given an extended quantum system composed of N tot degrees of freedom, grouped together into N ≤ N tot clusters [see Fig. 1(a)], the state ρ of the system is separable [START_REF] Werner | Quantum states with einstein-podolskyrosen correlations admitting a hidden-variable model[END_REF] if it can be written in the form ρp := dλ p(λ) ρprod (λ) [START_REF] Georgescu | Quantum simulation[END_REF] where ρprod (λ) = ⊗ N i=1 |ψ i (λ i ) ψ i (λ i )| is a product state of the partition, |ψ i (λ i ) being the state of the i-th cluster, parametrized by parameters λ = (λ 1 , ..., λ i , ..., λ N ), distributed according to p(λ) ≥ 0. The distribution p fully specifies classical correlations across the partition. A multipartite entangled state ρ, on the other hand, cannot be written in the above form. Given a set of observables Âa (a = 1, ..., R), multipartite entanglement is therefore witnessed by the quantum data set { Âa ρ} R a=1 [where Âa ρ = Tr( Âa ρ)] if one proves that the latter cannot be reproduced by any separable state. This task is accomplished by proving that the quantum data violate an entanglement witness (EW) inequality, Ŵ ρp = a W a Âa ρp ≥ B sep , valid for all separable states ρp [START_REF] Gühne | Entanglement detection[END_REF]. Here W a are suitable coefficients and B sep is the so-called separable bound. EW operators Ŵ are generally defined based on the properties of special entangled states (e.g. squeezed states, total spin singlets, etc.) [START_REF] Gühne | Entanglement detection[END_REF], and failure of a data set to violate a given EW inequality does not exclude the existence of a different violated inequality involving the same data, yet to be discovered. This may erroneously suggest that entanglement witnessing is limited by creativity and physical insight; and that the entanglement witnessing problem ("is a quantum data set compatible with a separable state?") [START_REF] Doherty | Detecting multipartite entanglement[END_REF][START_REF] Gühne | Lower bounds on entanglement measures from incomplete information[END_REF][START_REF] Navascues | Entanglement marginal problems[END_REF] is generically undecidable. The goal of our work is to show that this is not the case, and that the entanglement witnessing capability of a quantum data set can be exhaustively tested. Our key insight is that the problem of finding the distribution p(λ), which defines the separable state reproducing at best the quantum data, is a statistical inference problem; and remarkably it has the structure of a convex optimization problem, whose solution can be attained in a time scaling polynomially with the partition size (under mild assumptions), and with the Hilbert space dimension of the subsystems composing the partition. When the optimal separable state fails to reproduce the quantum data, the distance between the quantum data set { Âa ρ} and the optimal separable set { Âa ρp } allows one to reconstruct the optimal EW inequality violated by the quan-... ... i ...
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the scalability of quantum correlations from the microscopic world to the macroscopic one.
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Any practical method must circumvent the tomographic reconstruction of the full density matrix [START_REF] Preskill | Quantum computing and the entanglement frontier[END_REF][START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF] (which implies a number of measurements scaling exponentially with system size), and it should instead infer entanglement from the partial information contained in a given data set of measurement results (hereafter referred to as quantum data). When one adopts this data-driven strategy, the goal of entanglement certification is to establish whether or not the quantum data are compatible with a separable state [START_REF] Fröwis | Macroscopic quantum states: Measures, fragility, and implementations[END_REF][START_REF] Paris | Quantum State Estimation[END_REF][START_REF] Doherty | Detecting multipartite entanglement[END_REF]. Given an extended quantum system composed of N tot degrees of freedom, grouped together into N  N tot clusters see (see Fig. 1), the state ⇢ of the system is separable [START_REF] Gühne | Lower bounds on entanglement measures from incomplete information[END_REF] if it can be written in the form ⇢p := is based on mapping separable states onto equilibrium classical field theories on a lattice; and in mapping the compatibility problem onto an inverse statistical problem, whose solution is reached in polynomial time whenever the classical field theory does not describe a glassy system. Our results pave the way for systematic entanglement certification in quantum devices, optimized with respect to the accessible observables.
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h Âa i ⇢p = Z d p( )A a ( ) = hA a i p (2) 
where

A a ( ) = P m x (a) m Q N k=1 o (i) m i [ i ] and o (i) m i [ i ] = h ( i )| Ô(i) m i | ( i )i.
Given a product state, the calculation of each term in the sum defining A a ( ) is clearly an operation scaling as O(N ). Once the quantum nature of the state has been absorbed in A a ( ), the calculation of h Âa i ⇢p , Eq. ( 2), is a classical statistical average on the distribution p which, from a statistical physics viewpoint, can be regarded as the Boltzmann distribution p( ) =: exp[ H( )]/Z of a classical field theory on a lattice (normalized by the Z factor), with a vector field i defined on each of the N clusters. The complexity of separable states is fundamentally inscribed in the e↵ective Hamiltonian H( ), which is a priori arbitrary, namely it is specified by a number O(exp(N )) of parameters.

Once the classical statistical structure of the expectation values on separable states is exposed, the problem of reproducing the quantum data with the separable state takes the form of a classical statistical inference problem, whose solution is well known in the statistical physics [START_REF] Frérot | Detecting many-body bell nonlocality by solving ising models[END_REF]. First of all, applying a maximum-entropy principle [START_REF]correlations among these observables using separable states by choosing the local states |ψi to be joint eigenstates of the observables, and[END_REF] the apparent arbitrariness of the Hamiltonian H can be collapsed, and the Hamiltonian can be parametrized e ciently with as many parameters as the size of the quantum data, namely as

H( ) = R X a=1 K a A a ( ) . (3) 
The parameters K = {K a } R a=1 -the coupling constants of the classical field theory -are the Lagrange multipliers whose optimization allows the expectation values {h Âa i ⇢p } on the separable state best approximate the quantum data {h Âa i ⇢}. The optimization of K can be e ciently achieved upon minimizing the cost function L(K) := log Z(K) P a K a h Âa i ⇢ [START_REF] Navascues | Entanglement marginal problems[END_REF][START_REF] Frérot | Detecting many-body bell nonlocality by solving ising models[END_REF]. The a-th component of the gradient of L is g a := @L @K a = h Âa i ⇢p h Âa i ⇢, and its Hessian matrix is computational intractability of statistical sums in classical field theory is only proven for Ising models, involving discrete variables [START_REF]di complex amplitudes, up to normalization of the state and an arbitrary global phase[END_REF]. On the other hand, the classical field theories that describe separable states depend on continuous variables. Furthermore, in the examples considered below, glassy behavior is excluded by considering translationally invariant systems. Construction of an optimal entanglement witness. As illustrated on Fig. 1(c), the algorithm converges to the distribution p which minimizes |g| -the norm of the gradient of L. If the minimal distance g (min) vanishes (within the error on the quantum data), i.e. if h Âa i ⇢(min) p = h Âa i ⇢ for all a = 1, . . . R, then entanglement cannot be assessed from the available data. But in the opposite case, the coupling constants K a increase indefinitely along the optimization, and the coe cients of the gradient g
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(min) a = h Âa i ⇢(min) p h Âa i ⇢ allow us to build a violated EW inequality. First, we define the normal- ized coe cients W a := g (min) a /|g (min) |. The condition |g (min) | 2 > 0 is then rewritten as: X a W a h Âa i ⇢ < min ⇢p ( X a W a h Âa i ⇢p ) := B sep (4)
The linear combination Ŵ := P R a=1 W a Âa is the datadriven EW operator. The separable bound B sep , namely the minimal value of Tr(⇢ Ŵ) over separable states, is violated by the data set, ultimately proving that entanglement is present among the subsystems. The operator Ŵ is optimal, in that any other normalized linear combination Ŵ0 = P a W 0 a Âa defines an EW inequality whose violation cannot exceed the violation of the inequality involving Ŵ. This property follows from the convexity of the set of separable states. Complexity of the algorithm. If the quantum data contain correlation functions involving up to k points, the e↵ective Hamiltonian H contains O(N k ) terms; therefore the computational cost of evaluating statistical averages of
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Heisenberg antiferromagnetic chain. The first of entangled states that we study with our ap the thermal equilibrium state of the S = 1/2 H chain Ĥ = J P N i=1 Ŝ(i) • Ŝ(i+1) , where Ŝ(i) are spin operators, J is the exchange energy, and boundary conditions (PBC) are assumed. Therm librium states ⇢ (/ exp[ Ĥ/k B T ]) give hˆ 
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The most e↵ective existing mu entanglement criterion for this quantum data is the collective spin, namely h [START_REF] Nguyen | Inverse statistical problems: from the inverse Ising problem to data science[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF], which is verified for t = T /J . 1.4. T rion is a permutationally invariant EW (PIEW ing correlations at all distances on the same foo it cannot be optimal at su ciently high temp namely when the correlation length ⇠ becomes o der of a few lattice spacings.
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As a first validation of our approach, we searc optimal EW based on two-body correlations hˆ ( a using as input quantum data the correlations ( via quantum Monte Carlo -QMC [START_REF] Barahona | On the computational complexity of ising spin glass models[END_REF]) at t = 1 64 spins, at which ⇠ = 0.72. Because of their fin we only used correlations up to a distance r m Fig. 2 illustrates the results of our approach. Th tion to a finite value of the distance between the FIG. 1: (a) Partition of a quantum device into N clusters, each of which is subject to Mi measurements; (b) A separable state of the system is described as a probability distribution p(λ) of local states defined by the {λi} parameters; (c) Our algorithm builds a trajectory of separable states (parametrized by couplings {Ka} defining p(λ)) which converges to the optimal state approximating at best some target quantum data. If the state fails to reproduce the quantum data exactly, the vector joining the optimal separable data and the quantum data reconstructs the optimal EW inequality.

tum data. We benchmark our approach by establishing new EW inequalities satisfied by the low-temperature states of the Heisenberg antiferromagnetic chain and the quantum Ising chain; in the latter case, our new EW inequalities outperform all previously known EW criteria for multipartite entanglement. Our work parallels the recent mapping of the Bell-nonlocality detection problem onto an inverse statistical problem [START_REF] Frérot | Detecting many-body bell nonlocality by solving ising models[END_REF], and it offers an efficient scheme for entanglement detection in state-ofthe-art quantum devices within a device-dependent scenario. Quantum data set. For definiteness, we assume that on each subsystem i = 1, ..., N , M i local observables Ô(i) m can be measured (m = 1, . . . M i ; e.g. the Pauli matrices σ(i) a , a ∈ {x, y, z} for individual qubits taken as subsystems). For convenience, we denote the local identity operator by Ô(i) 0 := 1. In order to reveal entanglement, these local observables must be non-commuting [START_REF]correlations among these observables using separable states by choosing the local states |ψi to be joint eigenstates of the observables, and[END_REF]. From these local observables, we build p-body correlators of the form Ôm = ⊗ N i=1

([ Ô(i) m , Ô(i) n ] = 0 for 1 ≤ m < n ≤ M i )

Ô(i)

mi where m i = 0 for Np subsystems. Arbitrary observables can be built as linear combinations of correlators -such as e.g. powers of collective spin variables [START_REF] Tóth | Spin squeezing and entanglement[END_REF][START_REF] Vitagliano | Spin squeezing inequalities for arbitrary spin[END_REF] 

Ĵa = i σ(i)
a /2 (a = x, y, z) for systems of qubits. Hence we shall assume that R observables of the form Âa = m x (a) m Ôm can be measured, where the sum runs over all strings m = (m 1 , . . . m N ), and x (a) m are arbitrary real coefficients. The quantum data { Âa ρ} R a=1 form the basis for entanglement certification in our scheme. The problem of entanglement certification based on a data set has been discussed in the past, but the proposed methods either lack scalability [START_REF] Gühne | Lower bounds on entanglement measures from incomplete information[END_REF], or are scalable only under some restrictive assumptions (shortrange correlations, low-dimensional geometry) [START_REF] Navascues | Entanglement marginal problems[END_REF]. Our method aims at surpassing these limitations. Mapping onto an inverse statistical problem. The key aspect behind our approach is the limited information content of separable states. The parameters λ specifying the product state ρprod (λ) can indeed be chosen as i (2d i -2) ∼ O(N ) real parameters, where d i is the di-mension of the local Hilbert space of the i-th subsystem [START_REF]di complex amplitudes, up to normalization of the state and an arbitrary global phase[END_REF]. The average of the Âa observable on a separable state reads

Âa ρp = dλ p(λ)A a (λ) =: A a p (2) 
where

A a (λ) = m x (a) m N i=1 o (i) mi (λ i ) and o (i) mi (λ i ) = ψ i (λ i )| Ô(i) mi |ψ i (λ i ) .
Given a product state, the calculation of each term in the sum defining A a (λ) is clearly an operation scaling as O(N ). Once the quantum nature of the state has been absorbed in A a (λ), the calculation of Âa ρp , Eq. ( 2), is a classical statistical average over the distribution p which, from a statistical physics viewpoint, can be regarded as the Boltzmann distribution p(λ) =: exp[-H(λ)]/Z of a classical field theory on a lattice (normalized by the Z factor), with a vector field λ i defined on each of the N clusters (Fig. 1(b)). The complexity of separable states is fundamentally inscribed in the effective Hamiltonian H(λ), which is a priori arbitrary, namely it is specified by a number O(exp(N )) of parameters.

Once the classical statistical structure of the expectation values on separable states is exposed, the problem of reproducing the quantum data with a separable state takes the form of a statistical inference problem, whose solution is well known in statistical physics [START_REF] Nguyen | Inverse statistical problems: from the inverse Ising problem to data science[END_REF]. First of all, applying a maximum-entropy principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], the Hamiltonian can be parametrized without loss of generality with as many parameters as the elements of the quantum data set:

H(λ) = - R a=1 K a A a (λ) . (3) 
The parameters K = {K a } R a=1 -the coupling constants of the classical field theory -are Lagrange multipliers whose optimization allows one to build the separable state ρp whose expectation values { Âa ρp } best approximate the quantum data { Âa ρ}. The optimization of K can be efficiently achieved upon minimizing the cost function L(K) := log Z(K)a K a Âa ρ [START_REF] Frérot | Detecting many-body bell nonlocality by solving ising models[END_REF][START_REF] Nguyen | Inverse statistical problems: from the inverse Ising problem to data science[END_REF]. The a-th component of the gradient of L is g a := ∂L ∂Ka = A a p -Âa ρ, and its Hessian matrix is

∂ 2 L ∂Ka∂K b = A a A b p -A a p A b p
, namely the covariance matrix of the A a (λ) functions. Since the latter is a semidefinite positive matrix, L is a convex function. Therefore, a simple gradient-descent algorithm, which consists in iterating the update rule K a = K a -[ A a p -Âa ρ] with 1, or any improvement thereof, is guaranteed to reach the global optimum of the problem. In practice, this requires to repeatedly compute A a p as in Eq. ( 2), a task efficiently accomplished e.g. by Markov-chain Monte Carlo sampling of p(λ), whenever the Hamiltonian H does not describe a glassy system. The latter restriction to non-glassy systems is the only practical limitation of our approach. In fact, at a fundamental level, the computational intractability of statistical sums in classical field theory is only proven for Ising models, involving discrete variables [START_REF] Barahona | On the computational complexity of ising spin glass models[END_REF]. On the other hand, the classical field theories that describe separable states depend on continuous variables. Furthermore, in the examples considered below, glassy behavior is excluded by considering translationally invariant systems. Construction of an optimal entanglement witness. As illustrated on Fig. 1(c), the algorithm converges to the distribution p which minimizes |g| -the norm of the gradient of L. If the minimal distance g (min) vanishes (within the error on the quantum data), i.e. if Âa ρ(min) p = Âa ρ for all a = 1, . . . R, then entanglement cannot be assessed from the available data. But in the opposite case, the coupling constants K a increase indefinitely along the optimization, and the coefficients of the gradient g The linear combination Ŵ := -R a=1 W a Âa is the datadriven EW operator. The separable bound B sep , namely the minimal value of Tr(ρ Ŵ) over separable states, is violated by the data set, ultimately proving that entanglement is present among the subsystems. The operator Ŵ is optimal, in that any other normalized linear combination Ŵ =a W a Âa defines an EW inequality whose violation cannot exceed the violation of the inequality involving Ŵ. This property follows from the convexity of the set of separable states. Complexity of the algorithm. If the quantum data contain correlation functions involving up to k points, the effective Hamiltonian H contains O(N k ) terms; therefore the computational cost of evaluating statistical averages of the kind of Eq. ( 2) with a precision of (using Monte Carlo sampling) scales as O(d mi (λ i ) when d i = d. The polynomial scaling of the computational cost with the number N of parties and with the local Hilbert space dimension is the central asset of our approach. Ensembles of qubits. Hereafter we shall specify our attention to the case of systems of N qubits partitioned into subsystems consisting of single qubits; and quantum data will be assumed to consist of one-and two-point correlations, σ(i) a ρ and σ(i) a σ(j) b ρ respectively, fully specifying all one-and two-qubit reduced density matrices. Product states are parametrized by the orientations {λ i } = {n (i) } of each qubit on the Bloch sphere (where n (i) are unit vectors), so that the effective Hamiltonian describes classical Heisenberg spins (namely, rotators), coupled via bilinear interactions and immersed in an external field:

H({n (i) }) = - N i=1 a=x,y,z K (i) a n (i) a - i<j a,b K (ij) ab n (i) a n (j) b .
Heisenberg antiferromagnetic chain. The first example of entangled states that we study with our approach is the thermal equilibrium state of the S = 1/2 Heisenberg chain Ĥ = J N i=1

Ŝ(i) • Ŝ(i+1)
, where Ŝ(i) are S = 1/2 spin operators, J is the exchange energy, and periodic boundary conditions (PBC) are assumed. Thermal equilibrium states ρ (∝ exp[-Ĥ/k B T ]) give σ(i) a ρ = 0 and σ(i) a σ(j) b ρ = δ ab C(|i -j|), due to rotational invariance of the spin-spin couplings and translational invariance. These elementary symmetries of the quantum data are directly inherited by the classical Hamiltonian defining separable states aimed at reproducing them. The Hamiltonian takes the form of a classical long-range Heisenberg model H({n

(i) }) = -i<j K |i-j| n (i) • n (j) with K r = K N -r .
The most effective existing multipartite entanglement criterion for this quantum data is based on the collective spin, namely [START_REF] Wieśniak | Magnetic susceptibility as a macroscopic entanglement witness[END_REF], which is verified for t = T /J 1.4. This criterion is a permutationally invariant EW (PIEW), treating correlations at all distances on the same footing, and it cannot be optimal at sufficiently high temperatures, namely when the correlation length ξ becomes of the order of a few lattice spacings.

Ĵ 2 = ij Ŝ(i) • Ŝ(j) < N/2 [19,
As a first validation of our approach, we search for the optimal EW based on two-body correlations σ(i) a σ(j) a by using as input quantum data the correlations (obtained via quantum Monte Carlo -QMC [18]) at t = 1 for N = 64 spins, at which ξ = 0.72. Because of their finite range we only used correlations up to a distance r max = 10. Fig. 2 illustrates the results of our approach. The saturation to a finite value of the distance between the quantum data and those of the optimized separable state (measured by the norm of the vector g, see Fig. 2(a)) and the divergence of the couplings K r (Fig. 2(b)) clearly indicate the success of entanglement witnessing. The optimal EW operator can be reconstructed in principle from the asymptotic value of the gradient vector g (∞) as Ŵ = -

N i=1 a∈{x,y,z} rmax r=1 w r σ(i) a σ(i+r) a with w r = -g (∞) r /|g (∞) |.
In practice, we found a more strongly violated EW inequality using the asymptotic couplings of the effective Hamiltonian, namely w r = K (∞) r /|K (∞) |which display a clear spatial structure, shown in Fig. 2(c) (see [18] for the numerical values). The final step of the approach consists in determining the separable bound B sep = min ρp Tr(ρ p Ŵ), which can be readily obtained by finding the ground-state energy of the classical Hamiltonian i+r) . This value can be numerically obtained via temperature annealing [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF], as illustrated in Fig. 2(d). There we observe that B sep /N = -0.5032, while the quantum data reach Ŵ ρ/N = -0.6089. This represents a 21% violation of the separable bound, to be compared with that of Ĵ 2 ρ/N = 0.411 < 1/2, offering a 18% violation of the bound. This result is not incremental, because the EW inequality we find is optimal among all those containing two-body correlators. Interestingly, for temperatures t 1.4 (at which the PIEW ceases to work) we found numerically impossible to prove that ρ(T ) is entangled The star corresponds to t = 0.28, g = 0.5, at which the quantum data used as input were calculated. The color represents the violation ∆ = ( Ŵ ρ -Bsep)/N of our data-driven EW. The various curves correspond to the temperature below which different entanglement criteria are satisfied (nearest-neighbour concurrence [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF]; best PIEW [START_REF] Tóth | Spin squeezing and entanglement[END_REF]; and quantum Fisher information (QFI) of Ĵz [START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF].

W cl = - N i=1 rmax r=1 w r n (i) • n (
solely based on two-point correlators: this in turn shows that the maximal set of thermal states whose entanglement can be witnessed using two-point correlators is essentially captured by the PIEW. This will not be the case in our next example, in which our approach significantly extends the range of witnessed entangled thermal states. Quantum Ising chain.

Our final example is the quantum Ising model with Hamiltonian

Ĥ = -J N i=1 ( Ŝ(i) z Ŝ(i+1) z + g Ŝ(i) x )
, where J is the interaction strength and Jg the transverse field. In the ground state, the system displays a quantum critical point (QCP) at g = g c = 1/2 between a ferromagnetic phase (g < g c ) and a paramagnetic phase (g > g c ) [START_REF] Sachdev | Quantum Phase Transitions[END_REF]. At finite temperature around the QCP, the system is known to exhibit robust entanglement [START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF][START_REF] Frérot | Quantum critical metrology[END_REF][START_REF] Frérot | Reconstructing the quantum critical fan of strongly correlated systems via quantum correlations[END_REF]. Given the symmetries of the correlation functions ( σ(i) a ρ = 0 for a = y, z; σ(i) a σ(j) b ρ ∼ δ ab ), the classical Hamiltonian tailored to reproduce them is of the form:

H({n (i) }) = -K x N i=1 n (i) x - a=x,y,z i<j K |i-j| a n (i) a n (j) a .
As input quantum data, we consider the correlation functions of a chain of N = 64 spins with PBC at a temperature t = T /J = 0.28 for g = 0.5 -obtained as well via QMC. Given the finite correlation length, we only used correlators up to a distance r max = 20. Following the same procedure as described for the Heisenberg chain, we find an optimal EW operator which is spatially structured, of the form Ŵ = -w x N i=1 σ(i)

x -a=x,y,z i<j w

(|i-j|) a σ(i) a σ(j)
a (coefficients and separable bound in the Supplemental Material [18]). On Fig. 3, we show that this new EW criterion, optimal for the thermal state at t = 0.28, g = 0.5, allows one to prove entanglement for a larger set of ther-mal states than all the existing criteria in the literature (namely the nearest-neighbour concurrence [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF], the PIEW [START_REF] Tóth | Spin squeezing and entanglement[END_REF], and the quantum Fisher information [START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF] see [18] for further details).

Conclusions. We introduced a data-driven method to probe multipartite entanglement in many-body systems. This method relies on mapping separable states onto Boltzmann distributions for a classical field theory on a lattice. The classical degrees of freedom of this field theory are dictated by the considered partitioning of the system. The structure of the corresponding classical Hamiltonian is dictated by the quantum data at hand; and its parameters are optimized in order to fit at best the quantum data. This method allows to exhaustively test the entanglement witnessing capability of a set of quantum data in a time scaling polynomially with the number of parties in the partition (if the size of quantum data is also polynomial); this is guaranteed whenever the classical field theory is not a model of a glass (namely when it does not feature disorder and frustration). This opens the way to the systematic certification of entanglement in intermediate-scale quantum devices.

Supplemental Material

In this Supplemental Material, we provide: 1) further technical details on the variational algorithm described and implemented for the data presented in the main text; 2) on the generation of quantum data, used as input to our algorithm, by quantum Monte Carlo; 3) on the comparison with existing entanglement criteria. In the attached .csv files, the numerical coefficients of the entanglement witnesses discussed in the main text are given.

Details on the algorithm

In the main text, we introduced a variational algorithm to fit a given data set of expectation values by using separable states, represented as Boltzmann distributions over classical Heisenberg spins n (i) on the unit sphere. In the examples discussed in the main text, the data set contains one-qubit expectation values σ(i) a ρ and twoqubit correlations σ(i) In the case of the Heisenberg model, which displays SU (2) invariance, we have m a = 0. In this case, we considered as quantum data

C (r) ρ = C (r) x + C (r) y + C (r) z ρ.
Correspondingly, the classical Hamiltonian aiming at reproducing the quantum data contains one-and twobody interactions terms (the latter truncated beyond a given distance r max ). For the Heisenberg model, we get

H = - i rmax r=1 K (r) n (i) • n (i+r) ; (5) 
while for the quantum Ising model, where m y = m z = 0, we have

H = -K x N i=1 n (i) x - a=x,y,z i rmax r=1 K (r) a n (i) a n (i+r) a . (6) 
The K's coefficients are the variational parameters of our algorithm, which are optimized in an iterative manner.

A simple gradient-descent algorithm consists in iterating the following update rule (for the Ising model):

K x = K x -[ m x p -m x ρ] (7) 
(K (r) a ) = K (r) a -[ C (r) a p -C (r) a ρ] (8) 
for a ∈ {x, y, z}, and r ∈ {1, 2, • • • N/2}; and (for the Heisenberg model):

(K (r) ) = K (r) -[ C (r) p -C (r) ρ] . (9) 
In the above equations, • p is the expectation value on the Boltzmann distribution for the classical Hamiltonian (whose couplings are the K's coefficients), while • ρ are the target quantum data. As discussed in the main text (see also [START_REF] Frérot | Detecting many-body bell nonlocality by solving ising models[END_REF]), is a small parameter, implementing a numerical gradient descent of the (convex) L function.

In practice, we implemented the accelerated gradientdescent algorithm of Nesterov (NAG), with = 0.01. Each step of the NAG algorithm requires to compute the Euclidean distance g between the separable data and the quantum data, namely to compute m x p and C (r) a p

for the Ising model and C (r) p for the Heisenberg model. This was implemented using Markov-chain Monte Carlo.

The number of Monte Carlo steps (defined below) implemented at each step of the NAG algorithm was chosen such that the relative error on g be smaller than a given threshold η, which we chose as η = 0.05 for the Ising model, and η = 0.1 for the Heisenberg model. In other words, one step of the NAG algorithm is completed when:

2 α |g α | Err(g α ) |g| 2 < η , (10) 
where Err(g α ) is the error on g α , as estimated from the Monte Carlo algorithm. Each step of the Monte Carlo algorihm consisted of 2N iterations of single-spin Metropolis updates and of single-spin microcanonical overrelaxation updates [START_REF] Creutz | Overrelaxation and monte carlo simulation[END_REF]. The amplitude of the proposed Metropolis updates was adapted along the Monte Carlo simulation so that the move be accepted with frequency 0.5±0.1. Therefore, a single Monte Carlo step consists of 2N microcanonical updates, and of N accepted Metropolis updates (on average).

As the variational optimization of the K's parameters progresses along the NAG algorithm, the norm of the gradient g decreases, and therefore an increasing number of Monte Carlo steps is required at each step of the NAG algorithm in order to achieve the required relative precision of η. When the quantum data cannot be fitted by a separable state, g stabilizes to a finite value. The number of steps of the NAG algorithm to achieve this convergence (and therefore the total number of Monte Carlo steps along the whole optimization) depends on the value of |g| as obtained at the end of the optimization. For the examples presented in the main text, about 10 3 steps of the NAG algorithm were necessary, each of them comprising 10 4 ÷ 10 7 Monte Carlo steps.

Quantum data from Quantum Monte Carlo

Data-driven entanglement witnessing is fundamentally based on reliable quantum data on quantum manybody systems. Here we chose to use quantum Monte Carlo data for quantum spin chains at finite temperature, obtained using Stochastic Series Expansion [START_REF] Syljuåsen | Quantum monte carlo with directed loops[END_REF], which provides numerically exact correlation functions for the model of interest (within the statistical error bar). Finite-temperature equilibrium calculations offer the most reliable source of data for mixed states -which pose the real challenge in terms of entanglement detection, while for pure states any form of connected correlation is an entanglement witness. Beyond their significance in condensed matter physics and quantum statistical physics, the models we chose (quantum Heisenberg and quantum Ising chain) are also of direct relevance to several experiments in quantum simulation, see e.g. [START_REF] Boll | Spin-and density-resolved microscopy of antiferromagnetic correlations in fermi-hubbard chains[END_REF][START_REF] Browaeys | Many-body physics with individually controlled rydberg atoms[END_REF] for recent examples.

Existing entanglement witnesses

In this section, we provide additional details on the existing entanglement witnesses against which the quantum data of the quantum Ising model were tested (Fig. 3 of the main text).

Concurrence. The concurrence [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF] defines a necessary and sufficient condition for the separability of a twoqubits density matrix. We computed the concurrence between nearest-neighbours, after reconstructing the density matrix ρ12 from the knowledge of one-and twoqubits expectation values σ(1) (with a, b ∈ {x, y, z}) [START_REF] Paris | Quantum State Estimation[END_REF]. The dashed line on Fig. 3 defines the temperature below which ρ12 is entangled. Since the concurrence criterion [START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF] is based on a subset of the full quantum data we considered (which contains all one-and two-qubits correlations functions, which is equivalent to all two-body reduced density matrices ρij , and not only ρ12 ), by construction our data-driven method must detect entanglement in a region of the phase diagram strictly larger than the one detected by the concurrence -a fact clearly visible on Fig. 3.

a ρ, σ (2) 
Permutationally-invariant entanglement witnesses. In Ref. [START_REF] Tóth | Spin squeezing and entanglement[END_REF], a complete family of 8 entanglement witnesses based on the two-qubits reduced density matrix averaged over all pairs, ρav,2 = 2 i =j ρij /[N (N -1)], was derived. Equivalently, ρav,2 is reconstructed from the knowledge of all one-and two-body correlations averaged over all permutations: m a := Since m a and C ab are coarse-grained features of the quantum data we have considered, if an EW inequality is violated by m a and C ab (namely if one of the 8 EW inequalities of ref. [START_REF] Tóth | Spin squeezing and entanglement[END_REF] is violated), then our data-driven algorithm must also reconstruct a violated entanglement witnesses -in general, a more strongly violated one. As illustrated on Fig. 3 for the quantum Ising model, for which we tested all 8 criteria for each parameters (t, g) (temperature and transverse field), this is clearly the case.

Quantum Fisher information. The quantum Fisher information (QFI) is another multipartite entanglement witness. Formally, the QFI quantifies the sensitivity of the state ρ to unitary transformations ρ(φ) = e -iφ Ô ρe iφ Ô with Ô a quantum observable [START_REF] Pezzè | Quantum theory of phase estimation[END_REF]. The QFI can be expressed as QFI( Ô, ρ) = 2 n =m (p np m ) 2 | n| Ô|m | 2 /(p n + p m ), where ρ is diagonalized as ρ = n p n |n n|. Here, we chose for Ô the collective spin

J z = N i=1 σ(i)
z /2, which is optimal to witness entanglement around the quantum critical point of the quantum Ising model [START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF][START_REF] Frérot | Quantum critical metrology[END_REF]. The inequality QFI( Ĵz , ρ) ≤ N is satisfied by all separable states, so that a QFI exceeding the system size is an entanglement witness [START_REF] Pezzè | Quantum theory of phase estimation[END_REF]. In general, computing the QFI involves the knowledge of the full density matrix ρ, but the mapping of the quantum Ising chain onto a free-fermion model [START_REF] Sachdev | Quantum Phase Transitions[END_REF] makes this computation tractable [START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF]. Notice that computing the
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  Âa ρ allow us to build a violated EW inequality. First, we define the normalized coefficients W a := -g (min) a /|g (min) |. The condition |g (min) | 2 > 0 is then rewritten as: a W a Âa ρ < min ρp a W a Âa ρp =: B sep (4)
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 2 FIG. 2: Data-driven entanglement witness for the Heisenberg chain at T /J = 1. (a) Distance between the quantum data (all spin-spin correlators) and the optimized separable state (g: gradient of the cost function), as a function of optimization steps in a Nesterov accelerated gradient descent ( = 0.01). Each step contains 10 5 -10 7 Monte Carlo steps to achieve a relative precision of 10% on the modulus of the gradient [18]. (b) Normalized coupling constants Kr in the classical Hamiltonian defining the separable state (solid lines, left axis), and overall amplitude |K| (dashed-dotted line, right axis). (c) Normalized couplings Kr at the end of the algorithm; (d) The separable bound can be obtained via simulated annealing by calculating W cl (β) against exp[-βW cl ], ramping β from 0 to 1000. The minimum W (min) cl is actually the lowest value recorded for W cl throughout the ramp.
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 3 FIG.3: Data-driven EW for the quantum Ising chain. Phase diagram around the QCP. The star corresponds to t = 0.28, g = 0.5, at which the quantum data used as input were calculated. The color represents the violation ∆ = ( Ŵ ρ -Bsep)/N of our data-driven EW. The various curves correspond to the temperature below which different entanglement criteria are satisfied (nearest-neighbour concurrence[START_REF] Wootters | Entanglement of formation of an arbitrary state of two qubits[END_REF]; best PIEW[START_REF] Tóth | Spin squeezing and entanglement[END_REF]; and quantum Fisher information (QFI) of Ĵz[START_REF] Hauke | Measuring multipartite entanglement through dynamic susceptibilities[END_REF].
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  In the examples we considered (namely, the one-dimensional antiferromagnetic Heisenberg model, and the Ising model in a transverse field, both with periodic boundary conditions), correlations σvanish if a = b. Since we used translationally invariant chains (with periodic boundary conditions), the one-qubit data reduces to the average magnetization m a ρ = N i=1 σ(i) a ρ/N , and the the twoqubit correlations depend only on the inter-qubit distance: C

  Bsep is the so-called separable bound.
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QFI requires knowledge beyond one-and two-body correlators, and therefore it goes beyond the data set we have considered. Hence there is no guarantee a priori that our method exceeds the EW capability of the QFI. Nevertheless, as illustrated on Fig. 3, the parameter region where entanglement is detected by the QFI is broadly included in the region where entanglement is detected via our data-driven algorithm.

Detailed numerical values of the entanglement witnesses

The numerical coefficients of the entanglement witnesses reconstructed by our algorithm are given in this Section. For the Heisenberg model at temperature T /J = 1 (Fig. 2 of the main text), we discarded the correlations at distances beyond r = 10, and we found: