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S U M M A R Y
We previously proposed a method of seismic endoscopy and a related prototype tool to acquire
directional information and to produce three-dimensional (3-D) seismic images in a cylindrical
volume surrounding a borehole, with an investigation radius of several metres. Basic imaging
algorithms were developed where the azimuthal move out (AMO) process is combined to a
timescale method to refocus directional information and analyse the surrounding medium.
Further processing tools, however, were necessary for separating the various types of waves
recorded. The present paper describes a multiscale and dynamic azimuthal filtering to separate
the far-field waves from borehole or tube waves, generated by the pipe. We call this filter
Stoneley move out (SMO), because it characterizes Stoneley waves associated with the tube.
It is then possible to reconstruct details of the far field by an inverse wavelet transform. The
comparison with classical methods such as the covariance method is discussed. Applications
on noisy synthetic and experimental data are presented.

Key words: azimuthal move out, complex continuous wavelet transform, demodulation, dy-
namic Stoneley move out, multiscale filtering, three-dimensional geophysical imaging.

1 I N T RO D U C T I O N

The main objective in borehole imaging is to obtain an accurate
three-dimensional (3-D) seismic image to safely operate in a cylin-
drical volume surrounding the well. Such information is of interest
for geotechnical studies in tunnel monitoring, rock stratigraphy, wa-
ter resource evaluation (Kelly & Mares 1993; Nobes 1996), chemical
or nuclear waste disposals (Hardin et al. 1987; Burger 1992) and
in reservoir engineering (Avis & Annan 1989). The knowledge of a
fracture position and its thickness is important for the reorganization
of a reservoir monitoring, tunnel construction, or for the localization
of a nuclear waste storage. Most borehole geophysical techniques
cannot do azimuthal acquisition along the vertical axis (the depth z),
which is important for decisions in sensitive cases such as nu-
clear waste disposal (Hardage 1983; Oristaglio 1985; Hornby 1989;
Paillet & Cheng 1991). Therefore, a 3-D analysis including textural
and structural information of the formation surrounding the well in
a given azimuth, is a challenge.

∗Now at: Schlumberger Doll Research, 36 Old Quarry Road, Ridgefield, CT
06810, USA. E-mail: hvalero@ridgefield.oilfield.slb.com
†Now at: CNRS-UMR 6635, CEREGE, Département de Géophysique,
Europôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France. E-mail:
ginet@cerege.fr

The 3 classical degrees of freedom that sonic or vertical seismic
profile (VSP) tools possess are the offset ζ , the depth z of the receiver
and the time t of the recorded signal. The main objective of the sonic
tool is to determine from an array of acoustic data, the slowness of
the formation (Kimball & Marzetta 1987; Paillet & Cheng 1991),
whereas the main interest of the VSP tool is to calibrate the surface
seismic and in some cases to characterize the structure around the
borehole (Hornby 1989). If the sonic tool is not able to perform
directional acquisition, multicomponent VSP acquisitions, where
azimuthal information is provided in an indirect way, cannot detect
small discontinuities as a result of the frequency range of the source
(80–100 Hz). The only tool providing azimuthal measurements is
the so-called televiewer, which is composed of directional trans-
ducers (Zemanek et al. 1970). However, it does not allow a deep
penetration in the formation because of the very high frequencies of
transducers (500 MHz). This renders impossible the imaging of the
formation surrounding the well. Some others techniques like Geo-
radar (Fisher 1992) were tested but have limited use for reservoir en-
gineering owing to the frequent presence of shale layers at the top of
reservoirs.

In this context, some studies concerning the design of a specific
tool (Fig. 1) and a method called seismic endoscopy (Valero 1997;
Valero et al. 2001) have been conducted to produce a 3-D azimuthal
seismic image in a cylindrical volume with an investigation radius
of several metres. The introduction of the directional azimuthal
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Figure 1. Directional probe during an experiment in the water tank. The
isotropic source is located vertically at the bottom of the probe. Above is the
window of absorbing material, where the receiver cell is included. The cell
composed of two directional receivers is of variable offset (distance source–
receivers is between 15 and 80 cm). The stepping motor located at the top
of the probe controls its rotation in the horizontal plane.

parameter θ implied an additional degree of freedom with spe-
cific processing that a sonic or VSP tool does not possess. Fig. 1
presents the prototype probe during an experiment in the acoustic
tank. This probe makes it possible to obtain directional azimuthal
measurements in the horizontal and vertical planes around the bore-
hole, owing to the rotation and translation of the tool in the well.
This prototype was developed to operate in a frequency range of 20–
200 kHz with an omnidirectional source (hydrophone) and a direc-
tional receiver cell composed of two hydrophone receivers, verti-
cally set above the source. Azimuthal information is obtained by
rotation of the tool in the borehole while the directional acquisi-
tion and the spatial resolution are obtained from the aperture of
the receiver cell and from the wavelength of the source signal. The
directivity patterns of the cell (ear cell) were defined for the fre-
quency range of the source (20–100 kHz) in both the horizontal
and vertical plane. The directivity is sharp and presents a full-width
half-maximum aperture of approximatley 40◦ (horizontal axis) and
60◦ (vertical axis). This is a compromise between good precision in
the detection of microfractures and the possibility to hear the sig-
nal coming far from strong heterogeneities in both axes. The probe
can move vertically along the well and scans the rock with an off-
set variation between the source and the directional receiver cell of
15–80 cm and a azimuthal sampling step of 5◦ (see Fig. 2). For
more details on the prototype design, operating constraints and basic
processing, the reader should refer to Valero (1997) and Valero et al.
(2001).

Figure 2. This figure presents the principle of seismic endoscopy. Thanks
to directional receivers of the probe, we record azimuthal acquisition. By
rotation and translation of the probe into the well, we acquire a cylinder
volume of data.
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Figure 3. Principle of the experiment. The probe is put in a miniature
concrete borehole. A target (metallic plate) is located outside the well at a
distance of 0.35 m.

Because this concept was new, a specific processing algorithm
called azimuthal move out (AMO; Valero 1997) combined with
a timescale or complex wavelet method (Saracco 1994) was ini-
tially developed. This AMO processing allows us to refocus the
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Figure 4. Experimental data recorded with the prototype probe set in the
miniature concrete borehole. We note that it is impossible to detect the acous-
tic signature of the metallic plate, which is masked by the strong borehole
waves. Remark the directive character of the probe allows us to detect a
discontinuity in the concrete pipe at the azimuth of 90◦.

energy of the recorded signal in the azimuthal–time domain, while
the complex continuous wavelet transform (CCWT) allows us to
select the signal of interest among the various borehole waves.
These preliminary processes were successfully tested on experi-
mental data in an acoustic laboratory (Valero et al. 2001). When
the recorded signal needs to be deconvolved from the instrumen-
tal devices and/or the source effect, the methodology developed in
Saracco & Tchamitchian (1990) and Valero et al. (2002) is applied.
This study encountered the well-known problem of imaging around
the well, because of the large amplitude difference between the bore-
hole waves and the far-field reflected waves, of interest. Note that,
in this study, borehole waves are the waves related to the borehole
shapes, as opposed to the far-field reflected waves coming from the
medium surrounding the well. These preliminary experiments show
that the key part of borehole imaging is to separate small energy
of far-field events from strong energy of borehole waves. There-
fore, we concentrated efforts to develop filtering methods that can
discriminate between the signal of interest, the noise and the high
amplitude of borehole waves. If the AMO correction provided good
results in academic configurations (Valero et al. 2001), a dynamic
and multiscale filtering (MSF) is necessary in real-life situations to
discriminate among contributions of the various waves and to detect
and localize fractures in complex media.

This paper focuses on dynamic and MSF of borehole waves,
independently of the location of the probe in the well and of the am-
plitude ratio of the far-field reflected waves. Its aim is to propose an
accurate 3-D seismic imaging. The azimuthal information θ carried
by the specific tool is added to the cylindrical volume data (ζ , z, t).
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Figure 5. Process to dynamically filter the borehole waves. We start first
with data recorded in the azimuth–time domain (1). The DEM correction
is applied in (2). We compute the variance indicator and create a section of
variance filter (3). The inverse correction (DEM−1) is then applied tis filter
section to recreate oscillations (4). Result of the variance filter multiplied by
the input data producing the dynamic Stoneley move out (SMO) filtering of
borehole waves (5).
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Figure 6. Principle of the demodulation (DEM) correction. When the tool
is off-centred (S position) it induces a sinusoidal shape on the recorded data.
The tool is located in O if it is well centred in the hole.

C© 2005 RAS, GJI, 161, 813–828



816 H. P. Valero and G. Saracco

In Section 2, we present the experimental set-up developed to val-
idate our processing algorithm in the acoustic tank. The prototype
tool is set in a miniature concrete pipe with a scatterer located out-
side the well. Moreover, the concrete pipe presents some defective
responses in the same frequency range of the scatterer and borehole
waves, as it occurs in field experiments. The dynamic azimuthal cor-
rection called Stoneley move out (SMO) is presented Section 3, first
on noisy synthetic data, then on acoustic experimental data. SMO
allows us to focus the energy of borehole waves according to the
off-centring of the tool, with a dynamic filtering in the azimuthal–
time domain. This filtering will be shown to have some limitations,
particularly if the noise and the signal of interest are in the same
frequency range. To avoid such limitations, we developed, in Sec-
tion 4, a multiscale decomposition of the total reflected field. Some
characteristics of the filtered far field can be then reconstructed.
This reconstruction is based on the direct and inverse continuous
wavelet transform using the properties of the reproducing kernel
of the transform (Saracco 1989). The proposed method is applied
efficiently, first to synthetic complex waves trains in the presence
and absence of noise, then to real experimental data recorded in
the acoustic tank. Results of reconstruction imaging from the dy-
namic MSF are compared, in Section 5, to the well-known singular
value decomposition (SVD), generally used to filter borehole waves
(Hsu 1990). Conclusions and perspectives are given in Section 6.

2 L A B O R AT O RY A C O U S T I C
E X P E R I M E N T

A miniature cement pipe, used in civil engineering is introduced ver-
tically in the water tank to obtain strong tube waves like in real field
experiments (Tubman et al. 1984; Winkler et al. 1989). The probe
is set inside this concrete pipe and a metallic plate is located outside
at a distance d = 0.35 m and at the azimuth 0◦ from the probe.
Fig. 3 presents the design of the experiment. The source signal, se-
lected by the user via a numerical generator, is amplified before to
be sent to the hydrophone source of the probe. The reflected pres-
sure field measured by the directive receiver cell (or ear) is then
pre-amplified before to be sampled synchronously ( f e = 500 kHz)
by the analogue-to-digital (A/D) converter. The azimuthal rotation
of the tool is controlled by a device allowing an angular precision of
0.1◦. For each experiment, 72 traces of 2048 time samples per com-
mon offset are measured (the increment is 5◦). All experiments are
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Figure 7. Comparison between simulation and data obtained by automatic time picking. Note the good agreement between simulated and real data.

automatized and controlled by the computer. One complete acqui-
sition (0 < θ < 360◦) takes less than 2 min. The source signal used
in these experiments is a Ricker function in time (second derivative
of a Gaussian function) defined as

r (t) = [
1 − 2(π fct)

2
]

exp
[−(π fct)

2
]
, (1)

where f c is the central frequency of the hydrophone source ( f c =
50 kHz).

The metallic plate in this experiment mimics a discontinuity of
a medium, or a fracture. It is not identical to real conditions be-
cause of the presence of water around the pipe rather than a solid
medium. The use of water for the surrounding medium is interesting
for testing our algorithms. The penetration of the signal into the for-
mation depends on the frequency range of the source: the lower
the frequency, the deeper the distance of investigation. Besides,
the properties of the surrounding medium do not play an important
role in the directivity properties of the tool (Valero et al. 2001), but
in the penetrating power of the source signal as a result of scattering,
diffusion, attenuation and/or absorption. A fracture, microcavity ap-
pears as a discontinuity in the acoustic velocity and pressure fields,
and creates a reflected/diffracted wavefield. Our objective is to filter
out the borehole waves in order to recover a weak reflected/diffracted
wavefield caused by a microcavity or interface and that could be
blurred by the strong borehole waves.

Fig. 4 presents the experimental raw data. The strong reflection
measured around the azimuth θ = 90◦ corresponds to a longitudinal
junction in the concrete pipe. This information demonstrates the ef-
ficiency of our directional probe. As we can observe, the detection
of the signature of the metallic plate is masked by strong borehole
waves generated in the same spectral range as the reflected/diffracted
signal. We also see that the recorded data show a similar level of
complexity as a real record, which allows us to validate our algo-
rithms on a realistic data set.

3 DY N A M I C A Z I M U T H A L F I LT E R I N G
O F B O R E H O L E WAV E S

3.1 Principle of the method

The SMO processing is a dynamic filtering of specific waves gen-
erated in the borehole (for example Stoneley or tube waves) that
mask the information coming from the surrounding medium. The
principle is based on the arrival time of borehole waves in the
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Figure 8. Demodulation (DEM) correction for two borehole waves prop-
agating in the hole. After correction, both arrivals are flattened, as
expected.

(t, z, ζ ) domain and their invariance property versus azimuth in
the (θ , t) plane. Since the tool is centred in the pipe, the wave front
of borehole waves will be represented as a continuous line in the
(θ , t) plane. The higher the off-centring of the tool, the greater the
modulation of the arrival time of the borehole waves. This SMO
filtering involves two steps: first the parameters of eccentricity are
computed to correct the data from the sinusoidal shape as a result of
the off-centring of the probe. We called this operation demodulation
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Figure 9. Demodulation (DEM) correction in presence of noise. Even if
the noise level is high, the DEM algorithm is able to flatten the two arrivals.
This result proves the robustness of this process.

(DEM). An inverse demodulation (DEM−1) is also defined and used
to verify our processing. Secondly, the calculation in the azimuthal
domain of the variance of the wave front duration allows us to filter
automatically borehole waves. The dynamic SMO filter is the result
of two operations: a demodulation and an azimuthal stacking. To
validate this method, we applied it to both on synthetic and acoustic
experimental data. Fig. 5 presents the whole processing sequence.
The details of the method will be now presented.
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Figure 10. Raw data after the demodulation (DEM) correction. Note how
the main oscillation was flattened as expected.

Consider a tool located in a borehole of radius r containing a
fluid (mud) of sound velocity cm. Fig. 6 describes the geometry of
the problem for a fixed depth z, in the section (t , z = Cst, ζ , θ ). The
position of the tool can be defined by the eccentricity a (distance
between the centre O of the pipe and the position S of the probe in
the pipe) and θ a (the angular position associated to the eccentricity
a). r denotes the distance between the pipe and the probe in the
direction θ . Using these notations, we can express the zero offset
reflected traveltime of borehole waves, in the θ , r plane assuming a
high-frequency asymptotic condition:

t(θ ) =
√

t2
o + t2

a − 2tota cos[θ − θa], (2)

where to = r
cm

and ta = a
cm

.
This is the DEM equation. The assumption is tested by picking

up iteratively the arrival times on the data recorded during the ex-
periment and compared with the simulated values calculated from
eq. (2). Although the DEM equation was obtained under a high-
frequency assumption, it can be seen (Fig. 7) that the predicted
arrival times are in good accordance (phase and amplitude) with
experimental data. We note that eq. (2) used to perform a dynamic
correction of the bias in the arrival times presents some similarities
with the normal move out (NMO) equation (Dobrin 1983; Burger
1992).

The estimation of the two parameters of eccentricity a and θ a is
obtained for a given angle θ and time to by an iterative local opti-
mization of the least-squares misfit function between the recorded
time and the computed arrival time from eq. (2):

N∑
i=1

[
tobs − tcalc(a, θa)

]2
. (3)
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Figure 11. Result obtained after the dynamic Stoneley move out (SMO)
filtering on raw data. Most of borehole waves have been filtered. It is now
possible to detect the acoustic signature of the metallic plate around θ < 0◦.
We also see some reflections as a result of the junction effect of the pipe (A)
and of the bottom of the tank (B).

The construction of the SMO filtering is then based on the iden-
tification of plane reflectors (continuous flat line versus azimuth) in
the (θ , t) domain (step 2, Fig. 5). To detect such events, the variance
along curves whose arrival times are t(δθ ) for both given θ and to

can be computed in the azimuthal domain as follows:

Var(t) = 1

N

N∑
i=1

[
p2(θi , t) − p2(θi , t)

]
, (4)

where p(θ i , t) represents a trace and p is the average at the time
t along the azimuth θ . N is the number of traces; in our specific
case it is equal to 72. This stacking increases the signal-to-noise
ratio and cancels all echoes coming from the far field that do not
possess azimuthal invariance. When Var(t) is small it means that the
event at the time t is continuous versus azimuth and corresponds to
borehole waves. Echoes coming from borehole shape are enhanced
and present a flat line in the azimuthal–time domain, as expected.

A filter section is automatically built from the N traces of variance
Var(t) and corrected by the DEM−1 process. This dynamic SMO
filtering is then applied to rough data (see Fig. 5). Borehole waves
multiplied by small variance values are cancelled while the far-field
waves are emphasized by high variance values. The amplitude level
of the waves coming from the formation around the borehole is
automatically increased.

3.2 Application to synthetic data

We first applied this method to synthetic data free of noise. The ge-
ometrical parameters of the off-centring of the tool were chosen
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Figure 12. Final result after the Stoneley move out (SMO) and the az-
imuthal move out (AMO) correction. The energy is refocused in the azimuth–
time domain thanks to the AMO correction. The final section shows clearly
the echo corresponding to the target (T) we wanted to detect.

according to real experimental parameters with an eccentricity
a = 0.03 m and a deviation θ a = 120◦, for a borehole diameter r of
0.12 m. The first group of tests consists of computing the wave
front arrival time of two borehole waves using ray theory with-
out noise. The sound velocity in the borehole is set at 1486 m s−1

for our simulations (sound velocity for a temperature of water of
20.2 ◦C). Fig. 8 presents the results before and after the DEM cor-
rection. As expected, the DEM corrects successfully the data from
the off-centring of the tool and flattens the observed sinusoid shape.
A second series of tests using the same set of data was considered in
the presence of a white Gaussian noise with a signal-to-noise ratio
sn = 2:

ŝ(t) = s(t) + scale × noise,

with

scale =
(

1

sn

)
×

[ | max(signal)|√
2N

]
.

Fig. 9 presents the results in the presence of noise. Even in the
presence of a high level of noise, the algorithm corrects the data
from the off-centring of the tool. This test shows the robustness and
the efficiency of the dynamic DEM correction.

3.3 Application to acoustic experimental data

The complete processing of experimental data is shown Fig. 4.
Fig. 10 shows the result after the DEM correction of rough data.
The eccentricity parameters found are respectively a = 0.01 m and

θ a = −115◦. As expected, the first arrival is flattened. The final re-
sult is presented Fig. 11, where the two-dimensional (2-D) variance
filter is applied to cancel or at least to minimize the effect of the bore-
hole waves. Most of borehole waves have been removed, improving
the signal-to-noise ratio. It is now possible to observe in Fig. 11 the
acoustic signature of the metallic plate located at the azimuth θ = 0◦

around the time 0.5 ms < t < 0.6 ms, together with a signal of weak
energy at the azimuth θ = 90◦ as a result of the junction effect of
the pipe (Fig. 11, arrow A). Nevertheless, a first and strong arrival
wave front of the direct reflected waves (specular echo) generated
by the bottom of the water tank is still present (Fig. 11, arrow B).
This direct wave is partially filtered by our processing around the
defect.

Finally, an AMO correction is applied to refocus the energy spread
out in the azimuthal–time domain. The main characteristic of the
AMO processing is to sharpen the angular resolution of the probe by
correcting the transfer function of the receivers. The reader can refer
to Valero et al. (2001) for details regarding this processing. Fig. 12
presents the result of this correction. The acoustic signature of the
metallic plate is located around the time t = 0.54 ms (arrow A), for
0◦ < θ < 40◦ centred on θ = 20◦ with some multiple reflections
inside the object. This azimuthal difference in the localization of the
metallique plate is the result of a weak rotation of the receiver cell
of the prototype probe after several experiments, compared with its
original position. A strong wave front located at the time t = 0.64 ms
can be observed (Fig.12, arrow B) . This second reflector partially
hidden by the metallic plate and enhanced by the AMO correction
corresponds to a part of the field reflected by the bottom of the tank.
Nevertheless, it is now possible to locate the position of the object.
The remaining arrivals do not introduce difficulties in the detection
of the metallic plate position. The comparison of this final result
with the raw data set demonstrates clearly the efficiency and the
robustness of this SMO filtering.

4 M U LT I S C A L E F I LT E R I N G

4.1 Recall: continuous wavelet transform

The continuous wavelet transform is a well-known method devel-
oped by Alex Grossmann and Jean Morlet (Grossmann & Morlet
1984). Its first applications were in quantum mechanics, geophysics
and acoustics. Its efficiency was demonstrated in various domains
and different objects as fractal functions, musical synthesis, turbu-
lence and wave propagation (Morlet et al. 1982; Saracco 1989).
The properties of the CCWT (isometry, linearity, scaling and co-
variance) and of the analysing wavelet itself (regularity and pro-
gressivity) that we can add, allow us to study independently the
various contributions constituting the reflected or the transmitted
field and to obtain methods for numerical computation of the po-
tential field. The wavelet transform of the Green’s function is more
regular than the Green’s function itself. This regularizing property
allows precise localization of various wave fronts and selective
reconstruction of the acoustic or seismic pressure field (Saracco
1994).

This transformation allows to decompose an arbitrary time or
space dependence signal s(p) into elementary contributions of func-
tions called wavelets obtained by dilation and translation of a
mother or analysing wavelet g(p). Let p be the time variable in
our data. We can do a local and accurate analysis (at � f / f = Cst )
in the time–frequency or timescale half-plane (b, a) (Grossmann
et al. 1989). The wavelet coefficients at a point (b, a) are defined

C© 2005 RAS, GJI, 161, 813–828
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Figure 13. Presentation of input signal used in this study. The top curve is the signal of interest built by summation of the different components presented
below.

by the scalar product of the signal s(t) with the wavelets family
1√
a

g( t−b
a ):

S(b, a) = a−1/2

∫
s(t)g

(
t − b

a

)
dt. (5)

If g is a complex analysing wavelet, g is the complex conjugate
of g, dilated in time of a (a > 0) and translated in time of b
(b ∈ R). a and b are respectively the scale (or dilation) parameter
and the translation parameter (see Appendix for more details and
demonstrations).

In order to correctly define and give a physical meaning to the
phase of the wavelet coefficients, the analysing wavelet must ver-
ify the analytic or progressive property [i.e. ĝ(ω) = 0, ω < 0].
The calculation of the wave fronts of different wave contributions
(Saracco 1994) and their spectral components can be performed
precisely without artefacts or interferences as a result of no Fourier
components on the negative axis.

4.2 Principle of the multiscale filtering (MSF)

Let consider a signal s(t) composed by the sum of m waves fi of
various spectral contents and/or arrival times. We assume that these

waves are not isolated but present some weak interferences. If we
compute the wavelet transform of this signal we obtain, thanks to
the linearity property of the transform, a spread of its energy in the
time–frequency space:

Ss(b, a) =
m∑

i=1

S fi (b, a). (6)

In order to extract a component fi(t) from the total wavelet coeffi-
cient Ss, we have to define a mask Mfi(b, a) in the half-plane (b, a)
and use, under some conditions, the reconstruction formula of the
CCWT on the pattern of interest. In experimental situations, noise
is generally present; it is therefore necessary to construct a mask,
to define a threshold based on the maximum of energy contained in
the time–frequency space.

The principle of the wavelet filtering consists of extracting, from
the timescale half-plane, the signal fi(t) from Ss(t) by using the
reproducing equation (Appendix eq. A9) and the properties of the
reproducing kernel and the continuous wavelet transform [Sfi(b, a);
Saracco 1989]. The mask is defined with respect to a threshold χ ,
according to the total energy and the signal-to-noise ratio. Each
mask allows us to define a polygon function h associated with each
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Figure 14. Modulus of the complex continuous wavelet transform (CCWT) of the studied signal. We clearly observe the different components that comprised
the signal of interest. The black polygon corresponds to the truncature of the wavelet transform in the half-plane (b, a).

Wavelet Transform Noisy Case

Time(s)

F
re

qu
en

cy
(H

z)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Figure 15. Modulus of the complex continuous wavelet transform (CCWT) of the input signal in presence of noise (signal/noise ratio equals 2). We note that
even in the presence of a high level of noise, it is still possible to detect the different components present in the initial signal.

wave in the half-plane (b, a):

M f i (b, a) = 0, ES f i (b, a) < χ,

M f i (b, a) = 1, ES f i (b, a) ≥ χ.

Let Dh be the domain defined by the polygon function h; the energy
pattern related to a component fi(t) can be expressed as ES f i =

M f i (b, a)ESs |Dh . We have

ES f i =
∫ ∫

|S f i (b, a)|2 dadb

a2

≤ c−1
g

∫ ∫
Dh

|Ss(b, a)|2 dadb

a2
, (7)

where cg is defined from the isometry property of the wavelet trans-
form (Appendix eq. A4). ESfi is therefore a function of finite energy.
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Figure 16. Presentation of the different components extracted using the algorithm developed in presence of noise. Each component is superimposed with the
initial component to show the efficiency of the method.

Ss(b, a) and Sfi(b, a) verify the reproducing equation (eq. A9). We
have∫ ∫

Dh

Ss(v, u)N (v, u; b, a)
dudv

u2
(8)

=
∫ ∫

S f i (v, u)N (v, u; b, a)
dudv

u2

= S f i (b, a). (9)

These previous equations clearly demonstrate that we can apply the
inverse continuous transform (see Appendix).

The use of a progressive and modulated Gaussian function as an
analysing wavelet (progressive Morlet-type wavelet) allows us to
obtain an explicit formula of the reproducing kernel (Grossmann
et al. 1989). Because this analysing wavelet is a function well lo-
calized in the time–frequency space, the associated kernel is well
localized in the plane of the transform. We can remark that in the
first approximation, the reproducing kernel N (bo, ao; b, a) can be
considered as a Dirac function for the couples {ao, bo}.

This result is very important because it demonstrates that if we use
a Morlet wavelet, the form of the mask is not important, it just helps

to consider all the energy pattern of the signal we want to filter. If the
mask includes some information far from the energy pattern of the
signal, the contribution coming from this far information will not
affect the results of the filtering. Therefore, it is possible to filter the
component i of the signal s(t) using the inverse continuous wavelet
transform as

fi (t) = Re

[
c−1

g

∫ ∫
S f i (b, a)g

(
t − b

a

)
dadb

a3/2

]
, (10)

or to calculate directly from dilation parameter (Saracco &
Tchamitchian 1990):

fi (t0) = Re

[
k−1

g

∫
S f i (t0, a)

da

a

]
, (11)

where cg and kg are constants that depend only on the analysing
wavelet g (see Appendix).

4.3 Application to synthetic data

Initially a synthetic signal composed by a sum of various wave trains
was built (see Fig. 13). Fig. 14 presents its wavelet transform, which
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Figure 17. Time–frequency map computed for three traces recorded at the azimuth −60◦, 0◦ and 60◦. The presence of the target signature among a lot of
borehole waves induces some difficulties to detect the target with standard techniques.

allows the discrimination between different components of the sig-
nal according to their characteristics (frequency, dispersion law of
phase velocity, arrival time, etc.). Under asymptotic conditions of the
signal with respect to the local properties of the analysing wavelet,
it is possible to extract some ridges from the phase of the transform
that characterize the frequency and amplitude modulation laws of
the signal. The algorithms are based on the stationary phase ap-
proximation (Saracco et al. 1991). From ridges, the reconstruction
of the signal (wave packet or echoes) is possible using the reproduc-
ing equation. The MSF process developed here has the advantage of
characterizing and dissociating two close events (or waves) as you
can see below with an additional ambient noise.

We select in the time–frequency domain the energy associated
with each component that we want to filter. This is of importance
because the algorithm will reconstruct only the part of the time–
frequency selected by the mask, i.e. corresponding to the event we
want to extract from the analysed signal. This operation is repeated
for the different components of the signal. In a second step, a white
Gaussian noise was added to the same set of data with a signal-
to-noise ratio of 2. The continuous wavelet transform of this noisy
data is shown Fig. 15. Fig. 16 presents the result of the different
components extracted using the MSF and superimposed with the
initial components of the original signal. We note that their recon-
structions are in good accordance with respect to the true amplitude
and frequency modulation laws of each wave train even with a high
level of noise. It should also be noted that the reconstructions are
performed without any assumption of the form of the mask. This
processing is very effective in separating different components and
in the recovery of their amplitudes with a good accuracy even in the
presence of a high level of noise.

4.4 Application to acoustic data experiment

As previously explained, we want to extract information from the far
field as a result of some discontinuities of the surrounding medium

(materialized by the metallic plate). This event is hidden by the
reflected waves of the ambient medium and by borehole waves.
Their energy is then spread out in the time–azimuthal plane with a
frequency range of 25–180 kHz.

Fig. 17 presents the wavelet transform map computed for three
different traces recorded respectively at the azimuth position of
−60◦, 0◦ and 60◦. The target is expected to be located around
θ = 0◦, between the times 0.55 and 0.6 ms, and with a frequency
range around 70–120 kHz. The acoustic signature of the object can
be clearly observed on the timescale plane for the azimuth zero and
not on the two others maps. Looking at the data in three dimensions
explains why the differentiation of the acoustic signature of the ob-
ject is possible. A specific mask (polygon function) can be defined in
the time–frequency domain and applied to each computed wavelet
map corresponding to a trace in the time–azimuthal plane. Because
the position of the target is invariant with respect to the azimuth,
we applied the same polygon for all previously filtered traces with
the help of the SMO method. Fig. 18 presents the result of the MSF
and the reconstruction of the waves corresponding to the metallic
plate.

The waves corresponding to the borehole waves have been suc-
cessfully filtered thanks to the time–frequency filter. It is now pos-
sible to observe the echo corresponding to the target among a weak
ambient noise. It still remains around the same azimuth, some ar-
rivals with low energy corresponding to the multiple reflections on
the target. These waves arrive at the same time and present the
same frequency range as that of the signal of interest. It shows the
difficulty of filtering data in such environment. Fig. 19 presents
the spectral density of the filtered data in the frequency–azimuthal
plane. We see clearly that the maximum of the energy is located in the
neighbourhood of the object and decays very fast with a ratio of 3.
Fig. 20 presents the final result after the energy in the time–azimuthal
plane has been refocused thanks to the AMO correction (Valero
et al. 2001). The first arrival time (t 	 0.54 ms) of the wave train
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Figure 18. Result after the multiscale filtering (MSF). The strong borehole
waves and the refracted signal resulting from the junction of the pipe are
removed. Some waves are still present on the other traces but they are of
weak amplitude compared with the target echo.

corresponds to the wave front of the metallic plate and a weak noise
corresponding to the multiple reflection on the wall tank around
−180◦ and 180◦.

5 C O M PA R I S O N W I T H C OVA R I A N C E
M E T H O D

We want to compare the SMO and MSF filtering to well-known co-
variance methods often used in seismic signal processing and geo-
physical prospection (Hsu 1990; Kirlin & Done 1999). We recall
briefly the principle of this method. Let us consider experimen-
tal data as a matrix X of M traces of N samples, such that M ≥
N . The SVD methods are based on this following property: X =
UDVT , where U and V are respectively M × N and N × N orthog-
onal matrices, VT is the transpose matrix of V, and D is a diagonal
N × N matrix with positive or zero elements, the singular values.
We can write

X =
N∑

i=1

σi uikvki , (12)

where uik and vki are the ith eigenvector of XXT and XTX respec-
tively, and σ i is the ith singular value of X. σ i is the positive square
root of the eigenvalues of the matrices XXT and XTX. These eigen-
values are always positive as a result of the positive definite nature
of matrices.

If most of the singular values are very small, X will be well ap-
proximated (reconstructed), only by a few eigenvalues. The previous
equation shows clearly that the reconstruction of the matrix X can
be seen as the sum of different images, weighted by the correspond-
ing eigenvalues. In this case, we consider an image as a seismic
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Figure 19. Frequency spectrum of the data in the azimuthal–frequency
plane after wavelet filtering. The main energy is located around 0◦ where
the target is expected, with an energy ratio of 3. This result allows us to
demonstrate that the other detected signals are some residuals as a result of
weak multiple reflections of the target and the ambient noise.

section of dimension (uikvT
ki). The principle of the filtering is just

to consider how a seismic section can be decomposed into a sum
of different reflectors related to the signal and a residual section of
noise. We define the noise as the part of the information that is of no
interest. Freire & Ulrych (1988), defined three eigenimages as three
filters: the bandpass XBP, the low-pass XLP and a high-pass XHP in
terms of ranges of the singular values used in the reconstruction of
the matrix X. The bandpass image is reconstructed by rejecting the
uncorrelated and correlated traces and it is given by

X =
q∑

i=p

σi uikvT
ki , 1 < p ≤ q < N . (13)

The summation of the XLP is defined from i = 1 to p − 1 and XHP

from i = q + 1 to N (Hemon & Mace 1978). The choice of p and
q depends on the relative magnitudes of the singular values, which
are functions of the observed data. In practice, these parameters are
estimated from a plot of the eigenvalues as a function of the index i.

We applied the same kind of techniques in order to detect the
acoustic signature of the target. The plot of the eigenvalues computed
from the raw data (cf. Fig. 4) is presented in Fig. 21. We observe
that the highest eigenvalues are the first three ones. As expected,
the image is reconstructed (Fig. 22) with the most energetic arrival
related to the highest eigenvalues. The acoustic signature of the
object is not observed because it is at the level of the noise. To avoid
this problem, we subtract the reconstructed section from the initial
ones. Results are presented Fig. 23. As expected, the strong borehole
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Figure 21. Relative magnitude of the eigenvalues computed for the raw data.

waves are removed but other undesired wave fronts remain that
hide the arrival of interest. The result is similar when we increase
the number of eigenvalues (Fig. 24). The SVD method partially
filters borehole waves, but does not allow us to localize the target
in the azimuthal–time domain, because of the low signal-to-noise
ratio. An alternative that could improve results is to first apply an
SMO filtering (see Fig. 25). In this case, the obtained results are
comparable to Fig. 12 before applying the MSF. In comparison, the
methods we proposed are not so sensitive to the signal-to-noise ratio
and they give good results when the common techniques failed.

6 C O N C L U S I O N

We presented in this study two algorithms to filter borehole waves
and extract information about the formation surrounding the bore-
hole (fracture, cavity, etc. . .). The algorithms are used in conjunc-
tion with seismic endoscopy applications. Experimental tests in
an acoustic tank illustrated the potentiality of the proposed meth-
ods. The first one, called SMO, performs a dynamic correction
of borehole waves. This method is based on the fact that a bore-
hole wave will be seen as a plane reflector (or straight line) in
the azimuthal–time domain (invariance symmetry of tube waves,
or borehole waves). This property has been exploited to remove
borehole waves from the recorded section. The second one, based
on the wavelet theory, allows us to perform an MSF and the recon-
struction of some details of the far field. The idea is to extract, from
the total reflected waves, some weak information coming from the
surrounding medium, with the help of the properties of the kernel re-
producing and of the analysing wavelet itself. Both algorithms were
applied to real and synthetic noisy data. Moreover, the azimuthal
information provided by the probe offers a new investigation tool
for looking at borehole data, in particular to discriminate in the (θ , t)
plane reflected borehole waves from the reflected waves of weak en-
ergy coming from the far field. Comparisons with the SVD method
points out the efficiency of coupling SMO and MSF, when there is
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Figure 22. Reconstructed waveform using only three eigenvalues. It is not
possible to observe an echo corresponding to the object.
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Figure 23. Difference between the raw data and the reconstructed section
with three eigenvalues. The amplitude of strong borehole waves decreases
but some of them still remain. It is not possible to detect the acoustic signature
of the metallic plate.
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Figure 24. Reconstructed waveform using 20 eigenvalues.
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Figure 25. Final result: reconstructed waveform using 20 eigenvalues after
azimuthal move out (AMO) and Stoneley move out (SMO) correction. Only a
multiscale filtering (MSF) allows to filter borehole waves and to reconstruct,
with accuracy, some details of the far field.
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a low signal-to-noise ratio. Results on synthetic and real acoustic
data were in good agreement.
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Yves Guéguen, Joël Lancelot and Patrick Lebon for their strong
support since the beginning of this project.

R E F E R E N C E S

Avis, J.L. & Annan, A.P., 1989. Ground penetrating radar for high-resolution
mapping of soil and rock stratigraphy, Geophys. Prospect., 37, 531–551.

Bendat, S. & Piersol, A.G., 1986. Randow Data: Analysis and Measurement
Procedures, Wiley-Interscience, New York.

Burger, H.R., 1992. Exploration geophysics of the shallow subsurface,
Prentice-Hall, Englewood Cliffs, NJ.

Cheng, C.H. & Toksoz, N.M., 1981. Elastic wave propagation in a fluid-filled
borehole and synthetic acoustic logs, Geophysics, 46(7), 1042–1053.

Cheng, C.H., Toksoz, N.M. & Willis, M.E., 1982. Determination of in situ
attenuation from full waveform acoustic logs, J. geophys. Res., 87(B7),
5477–5484.

Cohen, J.K. & Stockwell, J.W., Jr, 2001. CWP/SU: Seismic Unix Release 35,
Center for Wave Phenomena, Colorado School of Mines, Golden, CO.

Dobrin, M.B., 1983. Introduction to geophysical prospecting, 3rd edn,
McGraw-Hill, New York.

Fisher, E., 1992. Acquisition and processing of wide-aperture ground pen-
etrating radar data, Geophysics, 57(3), 495–504.

Freire, S.L.M. & Ulrych, T.J., 1988. Application of singular value decom-
position to vertical seismic profile, Geophysics, 53, 778–785.

Gradshteyn, I.S. & Ryzhik, I.M., 1990. Table of Integrals, Series and Prod-
ucts, Academic-Press, New York.

Grossmann, A. & Morlet, J., 1984. Decomposition of Hardy functions into
square integrable wavelets of constant shape, SIAM J. Math. Anal., 15,
723–736.

Grossmann, A., Kronland-Martinet, R. & Morlet, J., 1989. Reading and
understanding continuous wavelet transform, in Wavelet, Time–frequency
Methods and Phase Space, pp. 2–20, eds Combes, J.M., Grossmann, A.
& Tchamitchian, P., Springer-verlag, Berlin.

Hardage, B.A., 1983. Vertical Seismic Profiling, A: profiling, Geophysical
exploration, Geophysical Press, Amsterdam.

Hardin, E.L., Cheng, C.H., Paillet, F.L. & Mendelson, J.D., 1987. Fracture
charecterization by means of attenuation and generation of tube waves
in fractured crystalline rock at mirror lake, New Hampshire, J. geophys.
Res., 92(B8), 7989–8006.

Hemon, C.H. & Mace, D., 1978. Essai d’une application de la transformee
de Karhunen-Loeve au traitement sismique, Geophys. Prospect., 26, 600–
626.

Hornby, B.E., 1989. Imaging of near-borehole structure using full-waveform
sonic data, Geophysics, 54(6), 747–757.

Hsu, K., 1990. Wave separation and feature extraction of acoustic well-
logging waveforms using Karhunen-Loeve transformation, Geophysics,
55(2), 176–184.

Kelly, W.E. & Mares, S., 1993. Applied Geophysics in Hydrogeological and
Engineering Practice, 44, Elsevier Science, London.

Kimball, C.V. & Marzetta, T.L., 1987. Semblance processing of borehole
acoustic data, Geophysics, 49, 530–544.

Kirlin, R.L. & Done, W.J., 1999. Covariance analysis for seismic signal
processing, Vol. 8, Soc. Expl. Geophys., Tulsa, OK.

Morlet, J., Arens, G., Fourgeau, I. & Giard, D., 1983. Wave propagation and
sampling theory, Geophysics, 47, 203–236.

Nobes, D.C., 1996. Troubled waters: Environmental applications of electrical
and electromagnetic methods, Surv. Geophys., 17, 393–454.

Oristaglio, M., 1985. A guide to current uses of vertical seismic profiles,
Geophysics, 50, 2473–2479.

Paillet, F.L. & Cheng, C.H., 1991. Acoustic waves in borehole, CRC, Boca
Raton, FL.

Paillet, F.L. & White, J.E., 1984. Acoustic modes of propagation in the bore-
hole and their relationship to rock properties, Geophysics, 47(8), 1215–
1228.

Papoulis, A., 1984. Random Variables and Stochastic Processes, McGraw-
Hill, New York.

Saracco, G., 1989. Acoustic propagation through an inhomogeneous medium
in harmonic and transient regime: Asymptotic methods and Wavelet trans-
forms, PhD thesis, CNRS-UPR 7051-LMA & UER II, Campus de Lu-
miny, Marseille, France.

Saracco, G., 1994. Propagation of transient waves through a stratified fluid
medium: Wavelet analysis of a nonasymptotic decomposition of the prop-
agator, J. acoust. Soc. Am., 95(3), 1191–1205.

Saracco, G. & Tchamitchian, Ph., 1990. Retrieval of a time-dependent source
in an acoustic propagation problem, in Inverse Problems in Action (In-
verse Problems and Theoretical Imaging), pp. 207–211, ed. Sabatier, P.C.,
Springer-Verlag, Berlin.

Saracco, G., Sessarego, J., Sageloli J., Guillemain, P. & Kronland-Martinet,
R., 1991. Extraction of modulation laws of elastic shells by the use of
wavelet transform, in Research notes in Applied Mathematics: Wavelets
and Applications, pp. 61–68, eds Meyer, Y. & Paul, T., Masson-Springer,
Paris.

Tubman, K.M., Cheng, C.H. & Toksoz, N.M., 1984. Synthetic full waveform
acoustic logs in cased boreholes, Geophysics, 49(7), 1052–1059.

Valero, H.P., 1997. Mise au point d’une méthode d’endoscopie sismique 3D
en géophysique de puits: Développements & Traitement de l’information,
PhD thesis, IPG, Paris, and Geosciences, Rennes, France.

Valero, H.P., Saracco, G. & Gibert, D., 2001. Three-Dimensional Seismic
endoscopy-Part I: Design of apparatus and basic Imaging Algorithms,
IEEE T. Geosci. Remote, 39(10), 2262–2274.

Valero, H.P., Gautier, S., Saracco, G. & Holschneider, M., 2002. Deconvolu-
tion from instrumental devices and source effect in acoustic experiemnts,
IEEE T. Instrum. Meas., 51(2), 268–276.

Winkler, K.W., Liu, H.L. & Johnson, D.L., 1989. Permeability and boreholes
stoneley waves: Comparison between experiment and theory, Geophysics,
54(1), 66–75.

Zemanek, J., Glenn, E.E., Norton, L.J. & Caldwell, R.L., 1970. Formation
evaluation by inspection with the borehole televiewer, Geophysics, 35(2),
254–269.

A P P E N D I X A : R E C A L L : C C W T
A N D R E P RO D U C I N G K E R N E L

Let s(p) be an arbitrary time or space dependence signal, and g(p)
the chosen complex and progressive analysing wavelet, necessary to
study wave propagation phenomena (Saracco 1989). a and b repre-
sent respectively the dilation and the translation parameter. The con-
tinuous wavelet transform S(b, a) of a function s(p) is the scalar prod-
uct of this signal by the dilated (contracted) and translated wavelets
family g, such as T b Da[g(p)] = a−1/2g( p−b

a ). It follows:

S(b, a) = 〈T b Da[g(p)], s(p)〉

= a−1/2

∫
s(p)g

(
t − b

a

)
dp, (A1)
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where g is the complex conjugate of g. g is chosen to be analytic or
progressive [i.e. ĝ(ω) = 0, for negative (spatial or time) frequency
components ω < 0].

Let p be the time variable. The translation parameter b is then ho-
mogeneous to the time, while the scale parameter can be interpreted
like a zoom. This number defined to be strictly positive. Small dila-
tions will be related to the high frequencies and reverse. The choice
of the analysing wavelet is free but its has to verify the admissibility
condition deduced from the isometric property of the transform in
the following sense: there exists for every s(t) a constant cg depend-
ing only on the wavelet g such that:∫

|s(t)|2dt = c−1
g

∫ ∫
|S(b, a)|2 dadb

a2
(A2)

and

cg = 2π

∫ |ĝ(ω)|2
|ω| dω. (A3)

ĝ is the Fourier transform of g and ω is the dual variable of the time
t. It follows that g is of zero mean [

∫
g(t)dt = 0 or ĝ(0) = 0]. If

this condition is satisfied, there exists an inversion formula, which
reconstructs the analysed signal (Saracco 1989):

s(t) = Re

[
c−1

g

∫ ∫
S(b, a)a1/2g

(
t − b

a

)
dadb

a2

]
, (A4)

where Re[.] represents the real part.
It can be shown also that s(t) verifies a simple inversion formula

(Saracco & Tchamitchian 1990) involving only a one-dimensional
(1-D) integral over the dilation parameter:

s(t) = Re

[
k−1

g

∫
S(t, a)

da

a3/2

]
. (A5)

The analysing wavelet verifies the following admissibility condition:

∫ |ĝ(ω)|
|ω| dω < ∞ and kg = 2π

∫ |ĝ(ω)|
|ω| dω.

Because the continuous wavelet transform (CWT) is non-
orthogonal, 〈g(b, a), g(b′, a′)〉 �= 0. There exists a reproducing
kernel Ng defined from eqs (A1) and (A3) as

Ng(b, a, v, u) = C−1
g 〈g(b, a), g(v, u)〉. (A6)

Let Ng(v, u; 0, 1) = C−1
g 〈T u Dvg, g〉.

Ng verifies the following:

Ng(v, u; b, a) = Ng

(
0, 1;

v − b

u
,

a

u

)
.

Ng is then a function of scale ratio a
u with a distance defined in scale

ratio v−b
u . It reflects the coherence of the wavelet coefficient in the

half-plane (b, a) (timescale resolution of the wavelet). Its modulus
|Ng| has a maximal value when the couples {b, a} = {v, u} and
decays quickly when the distance from the couple {v, u} increases,
it means a

u ≈ 1, v−b
u � 1.

We choose a progressive analysing wavelet of Morlet type such
that g(t) = exp(iω0t) exp( −t2

2β2 ), here, ω0 = 2π , β = 1 with ĝ(ω) = 0

for ω < 0 (Saracco 1994). Let us denote a′ = a
u and b′ = v−b

u , using
(Gradshteyn & Ryzhik 1990) the modulus and the phase of the
Kernel reproducing has the explicit form:

|Ng(0, 1; b′, a′)| = βa′

Cg

√
2π

1 + a′2

× exp

[
−1

2

ω0β
2(a′ − 1)2 + b′2

1 + a′2

]
;

arg[Ng(0, 1; b′, a′)] = ω0b′(1 + a′)
1 + a′2 .

(A7)

It follows:

|Ng(v, u; b, a)| = βa

cg

√
2π

u2 + a2

× exp

[
−1

2

ω0β
2(a2 − u2) + (v − b)2

a2 + u2

]
;

arg[Ng(v, u; b, a)] = ω0(v − b)(u + a)

u2 + a2
.

(A8)

From eqs (A1) and (A3), all wavelet coefficients verify the repro-
ducing equation:

S(v, u) =
∫

S(b, a)Ng(v, u, b, a)
dbda

a2
. (A9)

It allows, by using the interpolation formula introduced by
Grossmann et al. (1989), to reconstruct an approached value of
the CWT from the value of the discrete wavelet transform (DWT).
Some details of the surrounding medium will be reconstructed with
the help of the reproducing equation (Section 4).
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