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S U M M A R Y
Recovering physical properties such as attenuation and velocity of the Earth’s heterogeneities
is as important as recovering the shape and the surface reflectivity of the heterogeneities them-
selves. A reliable estimate of attenuation in the Earth is necessary to improve our knowledge
of subsurface physical properties like the degree of fluid saturation. Moreover the attenuation
may also be relevant to ‘bright spot’ studies in reservoir characterization. Within this context,
this paper presents applications of asymptotic viscoacoustic waveform inversion to synthetic
and ultrasonic laboratory data recorded to characterize the velocity and attenuation of a lava
sample collected on the Vesuvius volcano.

The waveform inversion method is based on a combination of ray theory and the Born
approximation to linearize the relation between the scattered wavefield and the velocity and
attenuation perturbation models. The iterative linearized inverse problem is solved using the
classic least-squares criterion. Asymptotic local analysis of the Hessian operator published in
a previous paper by Ribodetti et al. showed the theoretical uncoupling between the velocity
and attenuation parameters.

The method is first applied to realistic and calibrated synthetic data computed using the
discrete boundary integral wavenumber method. The reliability of decoupling between the
velocity and attenuation parameters during the inversion is confirmed through two case studies
corresponding to a local velocity heterogeneity without any associated attenuation perturbation
and a local attenuation heterogeneity without any associated velocity perturbation, respectively.

Second, the method is applied to an ultrasonic laboratory data set that was recorded to
determine the velocity and attenuation of a tephrite rock sample collected on the Vesuvius
volcano. A velocity of 3200 m s−1 and an attenuation factor of 480 were found, which are
consistent with the geological nature of the analysed sample.

The numerical tests presented in this paper validate former theoretical development of
asymptotic waveform inversion for characterization of viscoacoustic media. Application to
ultrasonic data confirms that the proposed method can be used for reliable estimations of the
velocity and attenuation properties of rock from laboratory experiments. Comparable method-
ology can be extended for use with data from multichannel seismic reflection surveys, providing
an opportunity to compare results of laboratory and field experiments.

Key words: attenuation, diffraction tomography, lava, ray theory, rheology, ultrasonic seismic
data.

1 I N T RO D U C T I O N

Seismic waves propagating through the Earth are attenuated by conversion of a fraction of the elastic energy to heat. In seismic studies,
attenuation information increases our knowledge of the properties of rock above that obtained from velocities alone. This particularly
concerns the characterization and monitoring of hydrocarbon reservoirs (Sheriff 1975) and, more generally, lithological description of the
Earth, i.e. the analysis of the physical state and degree of saturation of rocks. In both laboratory and field measurements the accurate estimation
of attenuation is difficult because seismic amplitude is strongly affected by numerous mechanisms such as geometrical spreading, reflections
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and scattering in addition to intrinsic damping (Sheriff 1975). It is important that these latter effects are accounted for in order to obtain the
true intrinsic attenuation.

Different techniques are used in laboratory and field experiments to study the attenuation of acoustic waves propagating through rocks.
Toksöz & Johnston (1981) mainly focused on laboratory measurements of field samples. Methods generally used to measure attenuation
in the laboratory may be classified into the following categories: (i) free vibration, (ii) forced vibration, (iii) wave propagation and (iv)
observation of stress–strain curves (see Toksöz & Johnston 1981, for a review). Laboratory wave propagation techniques for estimation of
sample attenuation within the lower ultrasonic frequency range are of particular interest since these techniques can be extended for use with
data from field experiments. A migration/inversion method adapted to acquisition of multichannel seismic reflections was developed for 2-D
and 3-D acoustic and 2-D elastic media (Jin et al. 1992; Lambaré et al. 1992; Forgues 1996; Thierry et al. 1999a,b). Extensions of the method
to the viscoacoustic and viscoelastic cases were developed by Ribodetti et al. (1995) and Ribodetti & Virieux (1998) to retrieve the attenuation
factor in addition to velocities and density. The viscoacoustic method was finally adapted to laboratory experiments for the characterization
of rock properties (Ribodetti et al. 2000).

The inversion method is cast in the general framework of least-squares inverse theory (Tarantola 1987). It uses an asymptotic approximation
of the Hessian operator in order to formulate the quasi-Newton inversion through analytical expressions (e.g. Jin et al. 1992; Thierry et al.
1999a). The linearized inversion relies on a local optimization approach based on iterative least-squares minimization of mismatch between
observed and computed scattered wavefields. Model perturbations are parametrized by a grid of point diffractors. The forward modelling
(i.e. computation of the wavefields scattered by the model perturbations) is solved under the Born approximation. A dynamic ray tracing
is computed in the background medium to estimate ray-related parameters (e.g. traveltime amplitude, geometrical amplitude, attenuation,
slowness vectors) required to compute the kernel of the Born integral.

By virtue of Huygens’s principle, reflections from continuous reflectors are formed by the superposition of diffractions from the scatterers
lying on the reflector. Inversely, the image of a continuous reflector is formed by superposition of the individual contributions of each trace
recording the reflection from the reflector. Since this approach strongly relies on the point diffractor parametrization it will be referred to in
the following as the diffraction tomography method (DTM). Note that, compared with non-linear iterative approaches for which the forward
modelling is solved without any linearization, the background medium remains the same over iterations since Green’s functions are computed
once by dynamic ray tracing in the initial smooth velocity model.

Some unanswered questions remained in the work of Ribodetti et al. (2000) concerning the influence of the experimental set-up (e.g.
source–receiver geometry, sample rheological properties) on the estimation of viscoacoustic parameters.

The motivation behind this paper is first to verify the reliability of the method to recover the attenuation Q-factor with a realistic and
calibrated synthetic test. The experimental set-up used for the synthetic test is comparable with the one used for the ultrasonic experiment
presented hereafter. Second, the method is applied to ultrasonic data recorded in a water tank to estimate the velocity and attenuation of a
tephrite rock sample collected on the Vesuvius volcano. This application demonstrates that the DTM approach provides a reliable tool for
estimating rock properties as suggested by Ribodetti et al. (2000).

The theoretical formulation of DTM is outlined in Section 2 of the paper. The reader is referred to Ribodetti et al. (2000) for a detailed
description of the method.

Section 3 shows the results of the synthetic test. This test provides an illustration of the overall procedure, which includes the pre-
processing of the data to extract the observed scattered wavefield, the iterative inversion sensu stricto and a post-processing designed to
recover the physical properties of the target from the limited bandwidth tomographic images by adding a priori information. Results of the
synthetic test demonstrate the pertinence of the acquisition geometry used for the subsequent ultrasonic application and confirm that no
trade-off exists between the velocity and attenuation parameters. Two cases are investigated corresponding to (i) a heterogeneity with a local
variation of attenuation and no associated velocity perturbation, and (ii) a heterogeneity with a local velocity perturbation only.

The Section 4 shows the application of the method to an ultrasonic laboratory data set that was collected to estimate the velocity and
attenuation factor of a Vesuvius lava sample. A velocity of 3200 m s−1 and an attenuation factor of 480 are found which are consistent with in
situ and laboratory measurements obtained for similar solidified lava (Zamora et al. 1994; Vanorio et al. 2002) and with tomographic models
estimated in this area (Lomax et al. 2001; Zollo et al. 2002a,b).

Future work will measure the velocity and attenuation in rocks using field seismic reflection experiments, and compare the results with
those obtained from physically scaled experiments.

2 T H E O RY O F 2 . 5 - D V I S C OA C O U S T I C R AY – B O R N I N V E R S I O N

The velocity and attenuation of a viscoacoustic medium can be recovered using the tomographic algorithm proposed by Ribodetti et al. (2000).
The theory is based on the combination of (i) the ray theory, used to compute the asymptotic Green’s functions and (ii) the Born

approximation, used to linearize the relation between the scattered wavefield and the model made of small perturbations. Introducing Q in a
modelling scheme is equivalent to considering velocity as a complex quantity (Chang & McMechan 1996). The complex velocity ṽ is defined
by Toksöz & Johnston (1981):

1

ṽ
= 1

v

(
1 + i

2Q
sign(ω)

)
(1)
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where v is the velocity, Q is the attenuation factor and ω is the angular frequency. A frequency-domain inversion allows us to set up an
analytical kernel for the Born approximation of the asymptotic anelastic solutions used for the forward problem and an approximate analytical
kernel for the linearized inversion. Using the first-order Born approximation and the asymptotic Green’s functions for a viscoacoustic medium
(Ribodetti et al. 2000), we obtain:

δP(s, r, ω) = K(ω)
∫
M

A(r, x, s)eiωT (r,x,s)e−α(r,x,s)|ω|K(x, ω)

(
δv(x)
δQ(x)

)
dx (2)

where, for the 2.5-D geometry, the kernel K is expressed as

K (ω) = 1√−iω
ω2 (3)

following previous authors (Lambaré 1991; Thierry 1997).
The integration domain M covers the entire set of scattering points denoted by x. The source and receiver positions are denoted by

vectors s and r respectively and the wavefield scattered is denoted by δP while the perturbation model is represented by perturbations (δv,
δQ). The total wave amplitude and the total traveltime associated with the ray travelling from s to x and from x to r are denoted by A and
T . The total attenuation integrated along the ray path is denoted by α (Aki & Richards 1980). The kernel K(x, ω) = (a + i sign(ω)b; c +
i sign(ω) d) is a complex-valued vector (Ribodetti et al. 2000), where

a = − 2

v3
0(x, ω)

(
1 − 1

4Q2
0(x, ω)

)
, b = − 2

v3
0(x, ω)Q0(x, ω)

, c = + 1

2v2
0(x, ω)Q3

0(x, ω)
, d = − 1

v2
0(x, ω)Q2

0(x, ω)
.

The properties of the background medium are parametrized by a smoothly varying velocity v0 and attenuation Q0. Note that detailed
expressions of the vector k depend only on the rheology of the background medium and not on the source–receiver configuration. The linear
relationship that describes the forward problem in eq. (2) can be written in compact form as

δP = GfM where fM(x) =
(

δv(x)
δQ(x)

)
. (4)

Perturbations of the model parameters δv and δQ are obtained by iterative least-squares minimization of the weighted misfit between the
observed and computed wavefields using a quasi-Newtonian algorithm (Jin et al. 1992; Thierry et al. 1999a). The iterative inversion is linear
since the background model is kept constant over iterations. The solution of the quasi-Newtonian inversion is given by:

fM = [G†QG]−1QG†(δPobs − δPsynth) (5)

where G†QG, is the Hessian and QG† is the weighted gradient. δP obs and δP synth are the observed and computed scattered wavefields, the
superscript † denotes the adjoint operator. For the first iteration, δP synth = 0 since the background model is homogeneous and perturbations
are nil. Q is a weighting of the cost function.

2.1 Final formulae after diagonalization of the Hessian

In eq. (5), the term to be inverted is the Hessian, which is an operator mapping the model space to itself. It represents a huge matrix whose
dimension equals the square of the number of scatterers defining the image. The matrix dimension may increase dramatically and make the
numerical inversion computationally expensive. The asymptotic and thus local Hessian approximation for the viscoacoustic case was derived
by Ribodetti et al. (2000) for a single-offset circular acquisition geometry surrounding the target to be imaged. This acquisition geometry
will be used in the applications presented hereafter. This single-offset circular acquisition allows us to illuminate a reflector segment twice
(i.e. from both sides of the reflector). This double illumination allows the theoretical uncoupling between the velocity and Q parameters. The
asymptotic approximation of the Hessian allows its diagonalization and then its inversion. After diagonalization of the Hessian, the model
perturbations f(x) are computed analytically by a weighted diffraction stack of the data misfit �δP(φ, ω) = δP obs(φ, ω) − δP synth(φ, ω).

For the specific acquisition geometry considered in this paper, the final formula used to recover the perturbation is:

f(x) = −R
−1

∑
φ

�φ

A(φ, x)

∑
ω+

�ω

∣∣∣∣ ∂k

∂(φ, ω+)

∣∣∣∣ e|ω+|α(φ,x)Re

[
1

K(ω)
K†(x, ω+)e−iω+T (φ,x)�δP(φ, ω+)

]
(6)

where R−1 is the inverse of the matrix R:

R = K†K(x, ω) = K†
−K−(x) + K†

+K+(x) =
(

2(a2 + b2) 2(ac + bd)
2(ac + bd) 2(c2 + d2)

)
= 2

(
A B
B C

)
. (7)

In eq. (6), ω+ stands for the positive frequencies. Inversion of the Hessian matrix now reduces to the inversion of a 2 × 2 symmetric matrix.
This matrix is non-singular, which theoretically proves the uncoupling between the velocity and Q parameters. This matrix can be diagonalized
using an equivalent matrix with conditioning number less than or equal to 1 (Forgues 1996). The pair of parameters (s, r) are replaced by the
single angular parameter φ which fully describes the source and receiver positions on a circle (see the following section for a description of
the acquisition geometry). The angular step is denoted by �φ and the angular frequency step by �ω. The inverse of the Jacobian is |∂k/∂(φ,
ω+)| for a transformation of variables |∂(φ, ω−)/∂k|=|∂(φ, ω+)/∂k| (see Ribodetti et al. 2000, Appendix A for details).
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Figure 1. (a) Top view of source–receiver layout. The source and receiver are located in a horizontal plane and turn together around a fixed vertical axis. The
offset between the source and receiver is kept constant during acquisition. The heterogeneity is the circular section of cylindrical heterogeneity. The centre of
the heterogeneity coincides with the rotation axis of the source–receiver layout. (b) Close-up of the left side centred on the target heterogeneity. The diameter
of the heterogeneity is 400 m.

3 N U M E R I C A L VA L I DAT I O N : A C Q U I S I T I O N G E O M E T RY A N D N U M E R I C A L DATA

The method of diffraction tomography is applied hereafter to synthetic data calculated using the discrete wavenumber boundary integral
equation method in the viscoelastic case (Gaffet & Bouchon 1989; Gaffet 1995). A fixed-offset experiment is simulated with a circular
acquisition geometry providing a complete angular coverage of the target. The target to be recovered by DTM is the circular section of a
cylindrical heterogeneity. The source and receiver configuration is depicted in Fig. 1(a). The source and receiver are located on a horizontal
plane (X , Y ) and rotate together around a fixed vertical axis. The radius of the circle followed by the source and receiver trajectories is 3464
m (i.e. 2s × v0). Offset between source and receiver is kept constant during acquisition (fixed-offset acquisition) with an angle �ϕ(si , ri ) of
6◦ between source and receiver radius. The initial angle φ is 0◦. The angular step �ϕ(si , si+1) between two consecutive source positions is 6◦.
Sixty seismograms per common-offset gather were computed. The source excitation is an explosion with a Ricker wavelet time dependence in
displacement f (t) = (b − 0.5) exp−b with b = [π (t − t s)/t p]2, where t s and t p are the time of the maximum amplitude and the period of the
pulse respectively (Gaffet & Bouchon 1989). The dominant frequency of the synthetic seismograms is 8 Hz. This corresponds to a wavelength
of ≈200 m in the homogeneous background medium where the velocity v0 = 1732 m s−1 and attenuation Q0 = 1000. The diameter of the
circular target is 400 m (Fig. 1b). The centre of the disc coincides with the axis of the source–receiver rotating system (Fig. 1a). The target
zone ABCD displayed in Fig. 1(b) is discretized with a uniform Cartesian mesh using a grid interval of dx = dy = 2 m. The viscoacoustic
inversion scheme implies that we can only consider the compressional wavefield using the following relation:

δP = −(ρ0v
2
0) div u, (8)

where P is pressure, ρ 0 the background density, v0 the background velocity, and div is the divergence operator applied to the simulated
displacement vector u. Two models are analysed: (i) an attenuation perturbation without velocity variation within the disc denoted by the
model (δQ, 0) and (ii) a local velocity perturbation without any attenuation variation within the disc denoted by the model (0, δv). The
perturbation used within the disc is −10 per cent of the reference background model for Q0 and v0. These small amplitude perturbations are
consistent with the Born approximation that requires small and local perturbations. The main arrivals in seismograms are coloured in Fig. 2.

3.1 Inversion results

Ribodetti et al. (2000) applied the viscoacoustic inversion method to ultrasonic laboratory data and compared the results with rheologies
given in the literature. Nevertheless, some questions remain regarding the validity of the estimated parameters. Validation of the DTM
inversion requires an accurate control of the source–receiver positions together with an a priori knowledge of the rheological properties of
the experimental material to be imaged. To achieve this objective and analyse the decoupling of the Q-factor and the velocity, we apply the
viscoacoustic inversion method to synthetic data computed in the medium described in the previous section. The numerical data simulated
using the discrete wavenumber boundary integral equation method (Gaffet & Bouchon 1989; Gaffet 1995) are hereafter called the original
data. The attenuation was implemented in the discrete wavenumber boundary integral equation method using the same complex velocity
formulation that the one used in the ray–Born formalism, eq. (1). The data computed during the ray–Born inversion are called the retrieved
data. The model used to generate the original data is called the physical model. The model constructed using the iterative viscoacoustic
inversion process is termed the tomographic model or tomographic image.

C© 2004 RAS, GJI
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Figure 2. Schematic view of the different traveltimes and arrivals: (1) the red curve represents the first reflected arrival corresponding to the reflection from
the surface of the heterogeneity; (2) the green curve represents the secondary arrivals related to the reflection from the inner side of the heterogeneity; (3–6)
curves represent different diffracted waves. Seismograms obtained with only local attenuation perturbation and with only local velocity variation are plotted in
the lower left and right parts respectively.

The influence of the acquisition system completeness on the decoupling of the attenuation Q-factor and velocity in the tomographic
models associated with the physical models (δQ, 0) and (0, δv), is analysed using two tests: first, the physical model is illuminated with a
uniform circular acquisition system. This means that sources and receivers are uniformly distributed along the circle perimeter with a constant
spacing between sources and receivers. Second, the same acquisition geometry is considered except that one source–receiver couple is omitted
(experiment involving 59 traces instead of 60 in the former case).

The influence of the target zone size ABCD is assessed by comparison of the results obtained from the two following tests corresponding
to (i) a large mesh grid around the heterogeneity sampled by 901 × 901 points and (ii) a smaller mesh grid surrounding the heterogeneity
sampled by 601 × 601 points. In both cases, the mesh interval is the same. Decreasing the grid dimensions is equivalent to considering a
narrower time window in the seismograms since shorter scattered ray paths are considered. The objective of this test is to remove from the
original data later arriving phases such as multiples which are not accounted for by the first-order Born approximation (Fig. 2).

3.1.1 Sensitivity to the completeness of the acquisition system

The inversion was carried out within the frequency range 2–10 Hz corresponding to the source spectra. Ten iterations were computed to
obtain the final Q-factor and velocity images for the two studied cases (i.e. (δQ, 0) and (0, δv)). The inversion scheme was stopped short of
10 iterations when the retrieved data remain stable and in good agreement with the original data. The incomplete data set containing 59
traces was first inverted. The Q-factor and velocity images recovered for the attenuation perturbation model (δQ, 0) are displayed in Fig. 3(a).
The Q-factor and velocity images obtained for the velocity variation model (0, δv) are shown in Fig. 3(b). Although the tomographic image
includes the source signature implying that both shape and physical dimensions cannot be assessed in a straightforward way, the disc associated
with the Q-factor and velocity images is well located and clearly identifiable in Figs 3(a) and (b).

Iterations allow us to update the amplitude of the perturbations, the localization of the tomographic model remaining stable all along
the iterative process. In Fig. 3 A labels the artefact already observed during the experiment of Ribodetti et al. (2000) (see Fig. 8 in Ribodetti
et al. 2000). It results from the truncation of the source–receiver array resulting from the lack of one source–receiver couple (si , ri ) in the
acquisition geometry. Fig. 4 related to the complete acquisition geometry (i.e. involving 60 traces) shows that the previous artefact disappears
when all source–receiver couples are involved during inversion. Apart from this artefact, the tomographic images are very close in Figs 3 and
4. These tests show the full uncoupling obtained between δQ and δv (compare top and bottom for the tomographic model (δQ, 0) on Fig. 4(a)
and for the tomographic model (0, δv) on Fig. 4(b)).

3.1.2 Sensitivity to the target size

The shape of the recovered disc tends to become non-circular over iterations (see arrows in Figs 4a and 4b and compare the shape of
the heterogeneity at different iterations). This geometrical artefact results from the presence of multiples in the inverted data. Such multi-
ples are not processed properly by the ray–Born single scattering approximation and then would need to be removed from the original data. They
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Figure 3. Acquisition of 59 source–receiver couples: (a) model (δQ, 0): percentage of Q-factor perturbation (upper part) and velocity perturbation (lower part)
obtained during iterations 1, 4, 7 and 10—(b) model (0, δv): percentage of Q-factor perturbation (upper part) and velocity perturbation (lower part) obtained
close of iterations 1, 4, 7, and 10. Q and velocity perturbations are fully decoupled in both models. The point A highlights the effect of a missing trace onto the
tomographic images. Even if one source–receiver couple is omitted, the tomographic images are well recovered and parameters fully decoupled.
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Figure 4. Same as Fig. 3 for the full 60 source–receiver couples configuration. A target of 901 × 901 points is used.
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Model with attenuation perturbation
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Figure 5. Same as Fig. 3 for the full 60 source–receiver couples configuration. A target of 601 × 601 points is used.

correspond to phases labelled 5 and 6 in Fig. 2 around 7 s. These later-arriving phases tend to be stacked constructively over iterations and
migrated at the wrong locations. This constructive stack is favoured both by the iterative procedure and the non-redundancy of the single-offset
acquisition geometry. This causes the distortion of the target image observed after several inversion iterations in Figs 3 and 4. Note that this
kind of distortion is not observed when the forward modelling (i.e. computation of Green’s functions) is computed by full waveform methods
such as finite differences since they account properly for multiple arrivals (Dessa & Pascal 2003). To remove the footprint of the multiples
on the tomographic images, we consider a smaller grid size sampled by 601 × 601 nodes with the same grid interval (Fig. 5). Such a smaller
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Figure 6. Model (δQ, 0): (a) original data; (b) target zone of 901 × 901 points: original data (red line) is superimposed with retrieved viscoacoustic data at
the first, fourth and tenth iterations (respectively blue, dashed blue and green lines). (c) Same presentation for the target zone of 601 × 601 points.

target zone allows us to narrow the time window in the seismograms such that only the primary reflected phases are involved in the inversion
(Fig. 2).

Fig. 5 displays the results obtained using such a smaller target zone of 601 × 601 points. No geometrical distortion between the first
and the last iterations appears now as depicted in Fig. 5. In order to verify the efficiency of the iterative inversion, the original data and the
ray–Born viscoacoustic retrieved data are compared for the two models of Figs 6 and 7. Figs 6(a) and 7(a) present the original data. An
excellent agreement is obtained close to iteration 10 between original data and retrieved data as shown in Figs 6b and 6c and Figs 7(b) and
(c). At this step of the DTM process, the excellent match between the original data and retrieved data (Figs 6 and 7) and the full decoupling
between δQ and δv (Figs 3, 4 and 5) confirm numerically the results expected from the theoretical development of the Hessian operator which
was shown to be non-singular for the circular acquisition geometry (see eq. 7 and Ribodetti et al. 2000, for more details).

3.2 Post-processing of images: absolute geometry and analysis of properties of the medium

A deconvolution-like post-processing is designed in order to remove the limited bandwidth source signature from the tomographic Q-factor
and velocity images (Fig. 8 box 2 corresponds to Fig. 5 at iteration 10). This procedure allows us finally to estimate the absolute values of the

C© 2004 RAS, GJI



June 10, 2004 16:45 Geophysical Journal International gji2245

10 A. Ribodetti et al.

Data

Viscoacoustic Ray+Born it. 4
Viscoacoustic Ray+Born it. 10

Viscoacoustic Ray+Born it.1

(a)

(b)

(c)

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

Time (sec)

-1

+1

start of target

target discretized with 901X901 points

4 6 75

end of target

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

Time (sec)

-1

+1

start of target

target discretized with 601X601 points

4 6 75

end of target

Ti
m

e 
(s

ec
)

Receiver number

4

6

0 20 40

Data

Viscoacoustic Ray+Born it. 4
Viscoacoustic Ray+Born it. 10

Viscoacoustic Ray+Born it.1

Data (  v=-10% v  ;    Q=0% Q  )δ δ0 0Original

Figure 7. Same as Fig. 6 for the model (0, δ v).

attenuation Q-factor and velocity in the heterogeneity as shown in Fig. 8 (box 7). The post-processing is formulated as a series of 1-D inverse
problems. The data set associated with one inverse problem is a section of the 2-D tomographic image extracted along one azimuth (Fig. 8
box 3). The inverse problem is solved for several closely spaced azimuths ranging from 0◦ to 360◦ such that the full 2-D tomographic image
is considered in the inversion. By the end, a 2-D synthetic tomographic image is built by assembling all the 1-D sections in the (X , Y ) plane
(Fig. 8 box 6).

The model space is a family of centred boxes (Fig. 8 box 4) with a variable amplitude and width. These boxes mimic the section of the
true physical model (i.e. the section of the cylinder). The amplitude of the boxes represents the absolute values of attenuation Q-factor and
velocity in the cylinder. The width of the boxes represents the thickness of the heterogeneity (i.e. the diameter of the cylinder). The predicted
or synthetic data set is computed from the boxes through a simple convolution with the source wavelet. The boxes are transformed from
perturbation space to time space using the velocity of the background medium and convolved with the source wavelet (Fig. 8 box 5). Then, the
convolved box is converted back to perturbation space for comparison with the section extracted from the tomographic model (Fig. 8 box 3).

Since the forward problem is a simple convolution, the inverse problem can be solved using a grid search of the parameters. Given one
azimuth (Fig. 8 box 3), the log of the tomographic model is compared with each convolved synthetic log (i.e. the box after convolution with
the source wavelet) sampling the model space. The best fitting model is determined under the L 2-misfit criteria. Assemblage of the best fitting
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Figure 8. Post-processing scheme allowing both deconvolution of tomographic images from the source signature and estimation of the absolute value of
attenuation Q-factor and velocity in heterogeneity.

boxes and the associated synthetic logs in the (X , Y ) plane allows to verify that the 2-D shape of the heterogeneity was properly recovered by
the independent 1-D inverse problems (Figs 8 box 6 and 8 box 7).

The best δQ and δv values corresponding to the minima of the attenuation and velocity misfits are displayed for one azimuth in the
upper and lower parts of Fig. 9(b). Forty radii were tested with a step of 10 m. The best fitting values are δQ = − 100 and δv = − 173 m s−1

which exactly correspond to the physical model perturbations introduced numerically (i.e. −10 per cent for the Q-factor and −10 per cent
for velocity). The shape and the dimension of the recovered heterogeneity are in excellent agreement for both the attenuation Q-factor and
the velocity retrieved models (Figs 9a and c) in comparison with the original physical model used to compute the original data. The absolute
value of the heterogeneous physical properties (i.e. velocity and attenuation factor) can be deduced by simple summation of the homogeneous
background medium properties with the estimated model perturbation ones: v = v0 + δv and Q = Q0 + δQ.

4 A P P L I C AT I O N T O U LT R A S O N I C L A B O R AT O RY DATA F O R E S T I M AT I N G
P RO P E RT I E S O F L AVA S A M P L E S

The objective of this section is to estimate the seismic velocity and attenuation Q-factor of calibrated rock samples using laboratory viscoa-
coustic diffraction tomography as developed by Ribodetti et al. (2000).
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Figure 9. Results of the processing sequence for the attenuation Q-factor (top) and velocity (bottom). (a) Best fitting convolved models for attenuation and
velocity perturbations deduced from procedure described in Fig. 8. (b) Misfit between attenuation Q-factor perturbation tomographic image and the best fitting
convolved model. (c) Dimension and shape of discs δQ and δv are in good agreement with the original model geometry.

4.1 Lava sample and experimental set-up

A cylindrical tephrite rock sample (also called ‘black lava’) collected in the quarry of Boscotrecase near to the Vesuvius volcano, Italy, is
analysed (Fig. 10). The diameter of the sample is 0.06 m and its height is 0.50 m. As in the experiment performed by Ribodetti et al. (2000),
the measurement is carried out in a water tank. The water tank located at the University of Rennes (France) measures 2.0 m × 1.40 m × 1.50 m
and includes a computer-based control and data acquisition systems (see Valero 1997, for a more complete description of this experimental
apparatus). Five thousand litres of water are used to fill the tank and constitute the constant-velocity background medium. Two hydrophones
are used for the source and receiver. The frequency bandwidth of hydrophones ranges between 1 kHz and 70 kHz. The source and receiver
configuration are identical to the numerical test presented in the previous section (Fig. 1). The source and receiver are located in a horizontal
plane surrounding the sample (Fig. 10). The axis of the sample cylinder corresponds to the axis of the source–receiver rotating system. The
radius of the circle described by the source and receiver trajectories is 0.469 m. The offset between source and receiver is kept constant
during acquisition (fixed-offset acquisition) with an angle ��sr of 15◦ between the source and the receiver radius. The source and receiver
hydrophones are 0.67 m below the water surface. The initial angle φ is 7.5◦. The angular step ��s between two consecutive source positions
is 5◦ leading to 72 seismograms per common-offset gather. The dominant frequency of signals emitted by the source hydrophone is 40 kHz
corresponding to a wavelength of ≈0.04 m in water. Waveforms are recorded with a sampling frequency of 1 × 106 Hz. The source and
receiver lie in a common (X , Y ) horizontal plane. The target geometry (i.e. the cylindrical shape of the cylinder) is invariable along the Z
vertical axis. Such a configuration leads to a 2.5-D geometry where the heterogeneity is a circular section of the lava cylinder located in the
horizontal plane defined by the source and receiver positions (Fig. 10). The target zone is sampled using a uniform mesh of 500 × 500 nodes
with a mesh spacing dx = dy = 0.001 m.
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Figure 10. Map of Vesuvius area and water tank with lava sample from Boscotrecase.

4.2 Pre-processing of data and background medium analysis

Only the wavefield diffracted by the lava sample is processed. The scattered wavefield is presented in Fig. 11. The arrival at around 0.63 ms is
the reflection from the surface of the lava sample. The recorded data are not aligned along a straight line as in the numerical simulations shown
in Figs 6(a) and 7(a) because the cylinder axis does not exactly coincide with the centre of the acquisition circle (Fig. 1a). Data are band-pass
filtered within the frequency range 15–55 kHz corresponding to wavelengths of ≈0.25 to ≈1.0 times the diameter of the lava sample. In the
framework of ultrasonic experiments which involve very short wavelengths, an accurate estimation of water velocity is important since the
location of the structures in the image is sensitive to the accuracy of the background model (i.e. the accuracy of the estimation of the water
velocity). A water velocity v0 = 1489 m s−1 and attenuation Q-factor Q0 = 210 000 corresponding to a temperature of 20◦ C and mean
frequency of 100 kHz (Fujii & Masui 1993; Toksöz & Johnston 1981), are used.

4.3 Inversion results and post-processing of images: geometry and analysis of properties of the medium

Inversion was carried out within the frequency range 33–45 kHz. This scaled experiment uses wavelengths approximately equal to the diameter
of the lava sample, as in the simulation detailed in the previous numerical experiment. Five iterations were computed to obtain the final velocity
and attenuation Q-factor images. The recovered Q and velocity images are shown in Fig. 12 close to iterations 1, 3 and 5. The shape and
dimension of the recovered object are difficult to estimate accurately because the source signature is convolved with the tomographic image.
Thus, at this stage, the amplitudes of the perturbation remain relative (i.e. the picture is chosen to be dimensionless) and the absolute values
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Figure 11. Observed data in red are superimposed with synthetics at the first and fifth iterations. At the bottom of the figure there is a comparison between
the observed and the computed trace 25 close to iterations 1 and 5 showing the improvement of the fit over iterations.

of the physical parameters will only be determined in the subsequent post-processing deconvolution. The main effect of iterations is to update
the amplitude of perturbations since the shape and location of the object do not vary significantly over iterations.

The overall good continuity of Q and velocity images of the cylinder suggests that the estimation of these two parameters is reliable
along most of the cylinder contour. Some local discontinuities in the shape of the Q and velocity tomographic models are labelled A, B, C
and A, B respectively in Fig. 12. The discontinuities are probably related to the inaccuracies of the experimental set-up (i.e. noisy traces). In
order to check the efficiency of the iterative inversion, the fit between observed data and the ray–Born synthetics, superimposed in Fig. 11, is
quantified by the root mean square misfit (rms misfit) over iterations in Fig. 13.

The quality of the fit between observed and predicted seismograms asymptotically increases with the number of iterations. The iterative
procedure is stopped when the rms variation is less than 5 per cent of the rms obtained from the previous iteration. Due to the dedicated
weighting of the Hessian operator (see eq. 5, Appendix A1 in Ribodetti et al. 2000), the first iteration fits the data very well by itself. In
practice, as shown in Fig. 13, five iterations are enough to achieve a good fit. Fig. 13 shows the evolution of the rms until the 20th iteration. The

C© 2004 RAS, GJI



June 10, 2004 16:45 Geophysical Journal International gji2245

Asymptotic waveform inversion for Vesuvius lava sample analysis 15

iteration 1 iteration 5

-0.2 -0.1 0 0.1 0.2
X (m)

A

B

C

-0.3

-0.2

-0.1

0

0.1

Y
 (

m
)

-0.2 -0.1 0 0.1 0.2
X (m)

-0.3

-0.2

-0.1

0

0.1

Y
 (

m
)

-0.2 -0.1 0 0.1 0.2
X (m)

(b)
-0.2 -0.1 0 0.1 0.2

X (m)

A

B

-0.2 -0.1 0 0.1 0.2
X (m)

iteration 3

-0.2 -0.1 0 0.1 0.2
X (m)

(a)

Figure 12. Tomographic models for attenuation (a) and for velocity (b) over iterations.

fit improvement after the fifth iteration is not really significant because at this level of resolution the acquisition noise becomes predominant
and cannot be explained by the synthetic simulation. This noise level leads to a rms misfit greater than 0.

The post-processing procedure described in the previous section is applied in order to remove the source signature from the tomographic
images and to estimate the absolute value of the attenuation Q-factor and velocity in the cylinder. Results of this post-processing are depicted
in Figs 14 and 15 for the attenuation Q-factor and for the velocity perturbations respectively. The source signature was obtained by stacking
the direct wave travelling from the source to the receiver (Fig. 14b). The best fitting impulse model representing the absolute value of the Q
perturbations within the lava sample and its geometry is presented in Fig. 14(b). An attenuation factor of 480 is obtained within the lava sample
(Fig. 14b). A 3-D view of the misfit as a function of azimuths and Q perturbation δQ is presented in Fig. 14(c) to illustrate the robustness of
the estimation of Q with respect to the azimuth. The projection of the misfit on the plane (δQ, azimuth) exhibits local minima around δQ =
2.09520 × 105. For some azimuth (i.e. (1◦, 10◦) and (160◦, 180◦)) the minimum of the misfit is mislocated and the attenuation perturbation
is overestimated. The same processing sequence is applied to the velocity perturbation tomographic model. A homogeneous velocity around
3200 m s−1 was found within the lava sample (Fig. 15b). A 3-D view of the misfit as a function of the azimuths between 0◦ and 180◦ and of
the tested δv is presented in Fig. 15(c). The level misfit surface shows local minima around δv ≈ 3700 m s−1. For some azimuths around 30◦

and around 150◦ the minimum of the misfit is obtained for underestimated values of δv (Fig. 15c bottom). The post-processing successfully
recovered the shape of the cross-section of the lava sample, although some local discontinuities are observed in the synthetic tomographic
images (Figs 14a and 15a) and the impulse models of the lava sample (Figs 14b and 15b). These discontinuities are labelled A, B, C and A,
B for the attenuation factor Q and velocity respectively in Figs 14(a) and (b) and in Figs 15(a) and (b). The discontinuities may result from
noisy traces in the observed data related to inaccuracies of the acquisition system.

The estimated value of the Q-factor (Q = 480) is consistent with the basaltic nature of the lava sample (Toksöz & Johnston 1981, p. 104,
Q = 590 for basalt) and indicates a more elastic response than a viscous behaviour; the estimated velocity of the tephrite (v = 3189 m s−1) is
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Figure 13. Rms misfit versus iteration number.

quite low; however, it is within the range of velocities obtained from in situ and laboratory measurements for similar solidified lava (Zamora
et al. 1994; Vanorio et al. 2002) and from tomographic studies carried out in this area (Lomax et al. 2001; Zollo et al. 2002a,b).

5 C O N C L U S I O N

The viscoacoustic tomography presented in this paper provides the attenuation Q-factor and velocity of heterogeneities without any trade-off
between the two classes of parameters. To verify these theoretical results, asymptotic viscoacoustic diffraction tomography using an iterative
quasi-Newtonian formulation was first applied to synthetic data computed using the discrete wavenumber boundary integral equation method.
The various tests confirm that the attenuation Q-factor and velocity parameters are fully decoupled for a circular acquisition geometry
surrounding the target. Even if one source–receiver couple is omitted in the circular source–receiver array, the method remains stable and
the tomographic model is well recovered. Both tomographic models of the attenuation Q-factor and velocity allow us to clearly characterize
the geometry and the rheology of the physical heterogeneity. The excellent agreement between observed data and viscoacoustic predicted
synthetic seismograms demonstrates the validity of the iterative viscoacoustic modelling and inversion steps. A deconvolution-like post-
processing of the tomographic image allows us to remove the source signature from the attenuation factor and velocity tomographic images in
order to estimate the absolute values of the velocity and attenuation factor inside the true sample, assuming the spatial distribution of expected
heterogeneities. The full process was finally applied to ultrasonic laboratory data recorded to characterize the velocity and attenuation factor
of a lava sample collected on the Vesuvius volcano.

The experimental set-up and processing developed in this study show that waveform inversion methods provide a useful tool for analysis
of rock properties in laboratory experiments (Saracco et al. 2000).
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Figure 14. Results of the post-processing sequence in order to estimate δQ perturbation of the lava sample. (a) The best fitting convolved model for Q-factor
and (b) the best fitting impulse models for Q. The source wavelet used during the convolution processing is shown in the inset. A 3-D view of the misfit versus Q
perturbation and azimuth in (c). On the bottom some azimuths is selected. The misfit presents a minimum around δQ = 2.09520 × 105 and for some azimuths
(i.e. (1◦, 10◦) and (160◦, 180◦)) the attenuation perturbation is overestimated. This result is probably associated with the recovered discontinuities labelled A,
B, C.
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Figure 15. Results of the post-processing sequence in order to estimate δv perturbation of the lava sample. (a) The best fitting convolved model for v factor
and (b) the best fitting impulse models for v. A 3-D view of the misfit versus Q perturbation for all the azimuths in (c). Minima are clearly identified for velocity
v = v0 + 1700 ≈ 3200 m s−1 for the lava sample. Only for the azimuths around 30◦ and 150◦ is the velocity underestimated.
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Paris.
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tion, PhD thesis, Universié de Paris VII., Paris.
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