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The paper establishes that a generalization of Monge-Kantorovich equation gives rise to a necessary and sufficient optimality condition for the Kantorovich dual problem and minimal flow problem associated with a very degenerate Finsler metric without any assumption on coerciveness.

Introduction

Monge-Kantorovich equation appears as an optimality condition to the two following variational problems, called Kantorovich dual problem (see e.g. [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport: old and new[END_REF]), max

u∈W 1,∞ (Ω) Ω u d(f 1 -f 0 ) : |∇u| ≤ 1
and, called minimal flow problem (or, Beckmann's continuous model of transportation [START_REF] Beckmann | A continuous model of transportation[END_REF], see also [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]), min

Φ∈M(Ω) N Ω d|Φ| : -div Φ = f 1 -f 0 in D (Ω) . (1.1)
Here, Ω is a bounded Lispchitz domain of R N . Two finite Radon measures f 0 and f 1

on Ω satisfy the mass balance

Ω df 0 = Ω df 1 .
The space of vector-valued finite Radon measures on Ω is denoted by M(Ω) N . The divergence constraint -divΦ = f 1 -f 0 in D (Ω) 1 is understood in the sense of distribution, coupled with a homogeneous Neumann boundary condition, that is,

Ω Φ |Φ| • ∇ξ d|Φ| = Ω ξd(f 1 -f 0 ), ∀ξ ∈ C 1 (Ω).
The Monge-Kantorovich equation has first been studied by Evans and Gangbo [START_REF] Evans | Differential equations methods for the Monge-Kantorovich mass transfer problem[END_REF] for regular functions f 0 and f 1 with the aim of deriving the existence of optimal map to Monge's transportation problem via very deep PDE techniques. The equation was generalized to finite Radon measures f 0 and f 1 by Bouchitté and Buttazzo [START_REF] Bouchitté | Shape optimization solutions via Monge-Kantorovich equation[END_REF] as follows

     -div(µD µ u) = f 1 -f 0 in D (Ω) |D µ u| = 1 µ-a.e. |∇u| ≤ 1 a.e. in Ω,
where D µ u is the tangential gradient with respect to (w.r.t.) the measure µ. It turns out to be the standard gradient ∇u if µ is absolutely continuous w.r.t. the Lebesgue measure.

It is well known that φ := µD µ u is an optimal flow to the minimal flow problem (1.1), which is closely related to the Monge-Kantorovich transport problem with the Euclidean distance cost.

These relations were also generalized to Finsler metric costs in (1.1) of the form

Ω F x, Φ |Φ| d|Φ|.
Let ω := x ∈ Ω : F (x, .) ≡ 0 . Finsler metric F is called coercive on Ω \ ω if there exist positive constants c 1 , c 2 such that c 1 |p| ≤ F (x, p) ≤ c 2 |p| ∀x ∈ Ω \ ω. Monge-Kantorovich equation for such a coercive Finsler metric is studied in [START_REF] Bouchitté | Characterization of optimal shapes and masses through Monge-Kantorovich equation[END_REF] under the assumption ω being a regular domain. Related works for non-degenerate Finsler metrics (i.e., coercive on the whole Ω and ω = ∅) are also discussed in [START_REF] Benamou | A numerical solution to Monge's problem with a Finsler distance as cost[END_REF][START_REF] Igbida | Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations[END_REF][START_REF] Igbida | Optimal partial mass transportation and obstacle Monge-Kantorovich equation[END_REF]. The case of F (x, p) ≡ F 1 (p) (independent of x) is treated in [START_REF] Jimenez | Dynamic formulation of optimal transport problems[END_REF], where F 1 (.) is a continuous even convex function satisfying F 1 (p) → +∞ as p → +∞.

The purpose of this paper is to derive the Monge-Kantorovich equation as a necessary and sufficient optimality condition for degenerate Finsler metrics without any assumption on coerciveness. This generalization is useful in view of applications such as, for example, F (x, p) = k(x)|p| for a nonnegative continuous function k. It is clear that F is not necessarily coercive on the set Ω \ ω with ω := {x ∈ Ω : k(x) = 0}. To obtain the result in general case, the main difficulty corresponds to finding a sequence of smooth approximation functions satisfying a similar property of 1-Lipschitz functions w.r.t. such a degenerate Finsler metric.

The paper is organized as follows. We present some preliminaries in Section 2. Section 3 is devoted to the smooth approximation issue. Finally, the Monge-Kantorovich equation for degenerate Finsler metrics is presented and proven in Section 4.

Preliminaries

Degenerate Finsler metrics

Let Ω be a bounded Lipschitz domain of R N . A Finsler metric is a continuous function

F : Ω × R N -→ [0, +∞) such that F (x, .
) is convex and positively 1-homogeneous w.r.t. the second variable, i.e., F (x, tp) = tF (x, p) ∀(x, p) ∈ Ω × R N and t ≥ 0. Its polar function F * is defined by

F * (x, q) = sup {p: F (x,p)≤1}
q, p .

As a typical example, F (x, p) = k(x)|p| and

F * (x, q) = 1 k(x)
|q| for any nonnegative continuous function k on Ω, with the convention 0 0 = 0. Another example in 1D is

F (x, p) = k 1 (x)p -+ k 2 (x)p + and F * (x, q) = 1 k 1 (x) q -+ 1 k 2 (x)
q + for two nonnegative continuous functions k 1 and k 2 , where p + = max(p, 0), p -= max(-p, 0).

Let ω := {x ∈ Ω : F (x, .) ≡ 0} be a closed set. As in [START_REF] Bouchitté | Characterization of optimal shapes and masses through Monge-Kantorovich equation[END_REF], we assume that ω is a regular domain, but without any assumption about coerciveness on Ω \ ω. More precisely, in this paper, we make use of the following assumption:

(A):
ω Ω is a Lipschitz domain and F (x, p) = 0 for any x ∈ Ω \ ω, 0 = p ∈ R N .

Duality issue

Given two finite Radon measures f 0 and f 1 on Ω satisfying

Ω df 0 = Ω df 1 .
We consider the Beckmann problem for a degenerate Finsler metric F as (B): min

Φ∈M(Ω) N Ω F x, Φ |Φ| (x) d|Φ|(x) : -div Φ = f 1 -f 0 in D (Ω) .
In the case of non-degenerate Finsler metric F (i.e., there exist

c 1 > 0, c 2 > 0 such that c 1 |p| ≤ F (x, p) ≤ c 2 |p| ∀(x, p) ∈ Ω × R N )
, the existence of optimal flow Φ to min (B) can be guaranteed by the direct method. When F is degenerate, the existence can be obtained via optimal transport and the disintegration theorem.

The dual problem of (B) is given by (DP): max

u∈W 1,∞ (Ω) Ω u d(f 1 -f 0 ) : F * (x, ∇u(x)) ≤ 1 a.e. in Ω .
The existence of optimal solutions to max (DP ) can be shown by the direct method.

Proposition 2.1. We have the duality relation

min Φ∈M(Ω) N Ω F x, Φ |Φ| (x) d|Φ|(x) : -div Φ = f 1 -f 0 in D (Ω) = max u∈W 1,∞ (Ω) Ω u d(f 1 -f 0 ) : F * (x, ∇u(x)) ≤ 1 a.e. in Ω .
Proof. As usual, it is not difficult to show that max(DP ) ≤ min(B) by taking u as a test function in the divergence constraint. It remains to prove the inverse inequality. Consider the functional H : L ∞ (Ω) N -→ (-∞, +∞] defined by

H(z) = inf u∈W 1,∞ (Ω) - Ω u d(f 1 -f 0 ) : F * (x, ∇u(x) + z(x)) ≤ 1 a.e. in Ω .
Then we can check at once that H is convex and lower semicontinuous in L ∞ (Ω) N , equipped with the weak* topology. And therefore H(0) = H * * (0). For any Φ ∈ L 1 (Ω) N , we have

H * (Φ) = sup z∈L ∞ (Ω) N Φ, z -H(z) = sup z∈L ∞ (Ω) N u∈W 1,∞ (Ω) F * (x,∇u(x)+z(x))≤1 Φ, z + Ω ud(f 1 -f 0 ). Set v = ∇u + z, and z = v -∇u, we get H * (Φ) = sup v∈L ∞ (Ω) N F * (x,v(x))≤1 Φ, v + sup u∈W 1,∞ (Ω) Φ, -∇u + Ω u d(f 1 -f 0 ) = Ω F (x, Φ(x))dx + sup u∈W 1,∞ (Ω) Φ, -∇u + Ω u d(f 1 -f 0 ). Observe that if H * (Φ) < +∞, we obtain Φ, ∇u = Ω u d(f 1 -f 0 ) ∀u ∈ W 1,∞ (Ω).
In other words, -div

Φ = f 1 -f 0 in D (Ω). Moreover, H * * (0) = sup Φ∈L 1 (Ω) N -H * (Φ) = -inf Φ∈L 1 (Ω) N Ω F (x, Φ(x))dx : -div Φ = f 1 -f 0 in D (Ω) .
Finally, max(DP ) = -H(0) = -H * * (0) ≥ min(B), which completes the proof.

3 Approximation by smooth functions Lemma 3.1. Let F be a degenerate Finsler metric satisfying the assumption (A) and u be a Lipschitz function such that F * (x, ∇u(x)) ≤ 1 a.e. in Ω.

(i) Then there exists a sequence of smooth functions u ε ∈ C ∞ c (R N ) such that u ε ⇒ u uniformly on Ω as ε → 0 and lim sup ε→0 F * (x, ∇u ε (x)) ≤ 1 for all x ∈ Ω.

(ii) In addition, if F * (x, q) is bounded from above on (Ω \ ω) × {|q| ≤ 1} then there exists a sequence of smooth functions u ε ∈ C ∞ c (R N ) such that u ε ⇒ u uniformly on Ω as ε → 0 and F * (x, ∇u ε (x)) ≤ 1 for all x ∈ Ω without passing to the limit. In particular, this holds whenever F is a non-degenerate Finsler metric. Before giving the proof, let us comment that the main difficulty comes from the approximation near to the boundary as well as the degeneracy of F .

Proof. Let u be the extension of u on R N by the value zero outside Ω, i.e.,

u(x) := u(x) if x ∈ Ω 0 if x ∈ R N \ Ω.
Step 1 (Approximating at points near the boundary of ω). Fix any z ∈ ∂ω.

Since ω is a Lipschitz domain, there exist r z > 0 and a Lipschitz continuous function γ z : R N -1 -→ R such that (up to rotating and relabeling if necessary)

ω ∩ B(z, r z ) = {x | x N > γ z (x 1 , ..., x N -1 )} ∩ B(z, r z ).
In other words, the boundary of ω is locally expressed as the graph of a Lipschitz continuous function in (N -1)-dimension. Set U z := ω∩B(z, r z 2 ). Define a translation T ε z : R N -→ R N given by T ε z (x) = x + ελ z e N , where we choose a fixed sufficiently large λ z and all small ε, namely fixed

λ z ≥ Lip(γ z ) + 1, 0 < ε < r z 2(λ z + 1)
, e N is the N th element of canonical basis in R N . By this choice and the Lipschitz property of γ z , we see that

B(T ε z (x), ε) ⊂ ω ∩ B(z, r z ) for all x ∈ U z . (3.2) 
Let us define

u ε (x) := R N ρ ε (y) u (T ε z (x) -y) dy = B(T ε z (x),ε) ρ ε (T ε z (x) -y) u(y) dy for all x ∈ R N , (3.3)
where ρ ε is the standard mollifier on R N . It is clear that u ε ∈ C ∞ c (R N ). Using (3.2), (3.3) and the continuity of u on Ω, we get 

u ε ⇒ u on U z . ( 3 
B(z i , r z i 2 ).
By similar arguments, there exist also finite points z m+1 , ..., z n ∈ ∂Ω such that

∂Ω ⊂ n i=m+1 B(z i , r z i 2 )
and (3.2), (3.3) and (3.4) hold at z = z i , i = 1, ..., n.

Step 2 (Approximating at points far from the boundaries).

Let U 0 int(ω) ∪ (Ω \ ω) be an open subset such that Ω ⊂ n i=1 B(z i , r z i 2 ) U 0 .
Let {φ} n i=0 be a smooth partition of unity on Ω, subordinate to U 0 , B(z 1 ,

r z 1 2 ), ..., B(z n , r zn 2 ) 
(see e.g. [6, Chapter 9]), that is,

           φ i ∈ C ∞ c (R N ), 0 ≤ φ i ≤ 1 ∀i = 0, ..., n supp(φ i ) B(z i , r z i 2 ) ∀i = 1, ..., n, supp(φ 0 ) U 0 n i=0 φ i (x) = 1 for all x ∈ Ω.
For short, we will write

T ε i , U i from Step 1 instead of T ε z i , U z i and x ε i = x ε z i = T ε i (x), i = 1, ..., n. Due to Step 1, there exist u 1 ε , ..., u n ε ∈ C ∞ c (R N ) such that u i ε ⇒ u on U i , i = 1, ..., n. For i = 0, since U 0 int(ω) ∪ (Ω \ ω), we can define T ε 0 (x) ≡ x and the standard convo- lution u 0 ε := ρ ε u. Then u 0 ε ∈ C ∞ c (R N ) and u 0 ε ⇒ u on U 0 . Step 3 (proof of (i)). Set u ε (x) := n i=0 φ i (x) u i ε (x) = n i=0 φ i (x) B(T ε i (x),ε) ρ ε (T ε i (x) -y) u(y) dy for all x ∈ R N .
Let us show that the sequence {u ε } satisfies the desired properties. We check at once that

u ε ∈ C ∞ c (R N ) and u ε ⇒ n i=0 φ i u = u on Ω.
It remains to prove that lim sup ε→0 F * (x, ∇u ε (x)) ≤ 1 for all x ∈ Ω. By the construction, B(x ε i , ε) ⊂ Ω for sufficiently small ε and x ε i → x as ε → 0. Observe that

∇u ε (x) = n i=0 ∇φ i (x) u i ε (x) + n i=0 φ i (x)∇ u i ε (x) = n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy + n i=0 φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)∇u(y)dy.
• If x ∈ ω, then B(x ε i , ε) ⊂ ω and ∇u(y) = 0 a.e. y in ω (since u is a constant on ω), we have ∇u ε (x) = 0 and therefore F * (x, ∇u ε (x)) = 0 ≤ 1.

• If x ∈ Ω \ ω, there exists a sequence of small ε (depending on x) such that x ε i ∈ Ω \ ω for all i = 0, ..., n. We have that

F * (x, ∇u ε (x)) ≤ F *   x, n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy    + n i=0 φ i (x) B(x ε i ,ε) F * (x, ∇u(y)) ρ ε (x ε i -y)dy ≤ F *   x, n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy    + 1 + n i=0 φ i (x) B(x ε i ,ε) (F * (x, ∇u(y)) -F * (y, ∇u(y))) ρ ε (x ε i -y)dy.
(3.5) Since F * (x, q) is finite and continuous on (Ω \ ω) × R N , we have F * (x, ∇u(y)) -F * (y, ∇u(y)) → 0 as y → x whenever ∇u(y) exists. Letting ε → 0, we obtain lim sup ε→0

F * (x, ∇u ε (x)) ≤ 1.
Step 4 (proof of (ii)). Set

u ε := 1 1 + Cε + w(ε) n i=0 φ i u i ε ,
where the constant C is chosen later and

w(ε) := sup x,y {|F * (x, q) -F * (y, q)| : x, y ∈ Ω \ ω, |x -y| ≤ M ε, |q| ≤ ∇u L ∞ }, with a fixed constant M ≥ max 1≤i≤n {λ z i + 1}, λ z i is given in Step 1.
We show that u ε satisfies all the desired properties. By the assumption of (ii), w(ε) → 0 as ε → 0. It is clear that

u ε ∈ C ∞ c (R N ) and u ε ⇒ n i=0 φ i u = u on Ω.
At last, we show that F * (x, ∇u ε (x)) ≤ 1 ∀x ∈ Ω. Similar to Step 3, we have F * (x, ∇u ε (x)) = 0 ≤ 1 for all x ∈ ω. Let us now prove for the case x ∈ Ω \ ω. Using the fact that n i=0 ∇φ i (x)u(x) = 0 for all x ∈ Ω, we have

n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy = n i=0 ∇φ i (x)    B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy -u(x)    . (3.6) Moreover, B(x ε i ,ε) ρ ε (x ε i -y)u(u) dy -u(x) ≤ B(x ε i ,ε) ρ ε (x ε i -y) (u(y) -u(x ε i )) dy + |u(x ε i ) -u(x)| ≤ C 1 ε ∀i = 0, ..., n,
where the constant C 1 depends only on Lip(γ z i ) and the Lipschitz constant of u on Ω. Thus, by combining this with (3.6),

n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy ≤ C 2 ε ∀x ∈ Ω,
where C 2 depends only on C 1 and ∇φ i L ∞ . Since F * (x, q) is bounded from above on (Ω \ ω) × {|q| ≤ 1}, there exists K > 0 such that F * (x, q) ≤ K|q| for all x ∈ Ω \ ω, q ∈ R N and therefore

F *   x, n i=0 ∇φ i (x) B(x ε i ,ε) ρ ε (x ε i -y)u(y)dy    ≤ C 3 ε for all x ∈ Ω \ ω. Now, if y ∈ B(x ε i , ε) then |x -y| ≤ |x -x ε i | + |x ε i -y| ≤ M ε.
So we obtain, in view of (3.5),

F * (x, ∇u ε (x)) ≤ 1 1 + Cε + w(ε) [C 3 ε + 1 + n i=0 φ i (x) B(x ε i ,ε) ρ ε (x ε i -y) (F * (x, ∇u(y)) -F * (y, ∇u(y))) dy] ≤ C 3 ε + 1 + w(ε) 1 + Cε + w(ε) ≤ 1 (choose a constant C ≥ C 3 ).
Here, we have used ∇u(y) = 0 in ω and the boundary ∂ω is negligble. Thus,

B(x ε i ,ε) ρ ε (x ε i -y) (F * (x, ∇u(y)) -F * (y, ∇u(y))) dy = B(x ε i ,ε)∩(Ω\ω) ρ ε (x ε i -y) (F * (x, ∇u(y)) -F * (y, ∇u(y))) dy ≤ w(ε).

Monge-Kantorovich equation

In this section, we present a generalization of Monge-Kantorovich equation for degenerate Finsler metrics:

(MKE)          -div Φ = f 1 -f 0 in D (Ω) Φ |Φ| (x) • D |Φ| u(x) = F x, Φ |Φ| (x) |Φ|-a.e.
F * (x, ∇u(x)) ≤ 1 a.e. in Ω, where D |Φ| u is the tangential gradient w.r.t. the total variation measure |Φ| (see [START_REF] Bouchitte | Energies with respect to a measure and applications to low dimensional structures[END_REF][START_REF] Bouchitté | Shape optimization solutions via Monge-Kantorovich equation[END_REF][START_REF] Jimenez | Dynamic formulation of optimal transport problems[END_REF]). This equation turns out to be a standard Monge-Kantorovich equation if F (x, p) = |p| is the Euclidean norm (independent of x). Also, it is worth noting that we do not use the constraint F * (x, D |Φ| u(x)) ≤ 1 as in [START_REF] Igbida | Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations[END_REF]. 

∈ M(Ω) N such that -div Φ = f 1 -f 0 in D (Ω), then Φ |Φ| (x) • D |Φ| u(x) ≤ F x, Φ |Φ| (x) |Φ| -a.e. x ∈ Ω.
(ii) u and Φ are optimal solutions, respectively, to the Kantorovich dual problem (DP) and the minimal flow problem (B) if and only if (u, Φ) satisfies the system (MKE).

Proof. (i) Let B be any Borel subset of Ω. By Lemma 3.1, there exists a sequence of smooth functions u ε such that u ε ⇒ u on Ω and lim sup Conversely, if (u, Φ) satisfies the system (MKE), then

Ω ud(f 1 -f 0 ) = Ω Φ |Φ| (x) • D |Φ| u(x)d|Φ|(x) = Ω F x, Φ |Φ| (x) d|Φ|(x),
which implies the optimalities of u and Φ, in view of the duality.

Remark 3 . 2 .

 32 This lemma generalizes [8, Lemma 3.2], [9, Lemma A.1].

Theorem 4 . 3 .

 43 (i) For any u such that F * (x, ∇u(x)) ≤ 1 a.e. in Ω and any Φ

ε→0F*

  (x, ∇u ε (x)) ≤ 1 for all x ∈ Ω.We getB Φ |Φ| (x) • D |Φ| u(x)d|Φ|(x) = lim ε→0 B Φ |Φ| (x) • ∇u ε (x)d|Φ|(x) ≤ lim sup ε→0 B F * (x, ∇u ε (x))F x, d|Φ|(x),where the last inequality follows from Fatou's lemma and lim sup ε→0F * (x, ∇u ε (x)) ≤ 1 for all x in Ω. By the arbitrariness of Borel set B, it follows that Φ |Φ| (x) • D |Φ| u(x) ≤ F x, Φ |Φ|(x) for all |Φ|-a.e. x in Ω.(ii) Let u and Φ be optimal solutions to the Kantorovich dual problem and minimal flow problem, that is,F * (x, ∇u(x)) ≤ 1 a.e. x ∈ Ω and Φ ∈ M(Ω) N , -div Φ = f 1 -f 0 in D (Ω), and by the duality in Subsection 2.2,Ω u d(f 1 -f 0 ) = Ω F x, Φ |Φ|(x) d|Φ|(x).On the other hand, taking u as a test function in the divergence constraint, we getΩ ud(f 1 -f 0 ) = Ω Φ |Φ| (x) • D |Φ| u(x)d|Φ|(x)and thereforeΩ Φ |Φ| (x) • D |Φ| u(x)d|Φ|(x) = Ω F x, Φ |Φ| (x) d|Φ|(x).By (i) above, we deduce thatΦ |Φ| (x) • D |Φ| u(x) = F x, Φ |Φ| (x)|Φ|-a.e. x in Ω.
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