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Chain complexes, filtrations and their invariants
I Let C⇤ is a chain complex over field k, a sequence of vector

spaces with linear operators

! Cj+1
∂j+1! Cj

∂j! Cj�1 ! . . . ! C0

which satisfy
∂j � ∂j+1 = 0

I An R�filtration F is an increasing sequence of subcomplexes
FsC⇤ ⇢ FrC⇤, s < r , indexed by finite set of real numbers

I !Canonical Form (C⇤,F ) introduced in ([SB1994],”The

framed Morse complex and its invariants”) -

combinatorial invariants of filtered complexes

I
Canonical Form (C⇤,F )=Persistence Diagrams (C⇤,F )

I algorithm “bringing to Canonical Form” from loc.cit. =
= standard algorithm for Persistence Diagrams

I this gives a simple explanation for the latter algorithm
!generalizations of PD and of the algorithm for them



“Canonical form” of R-filtered complexes [SB1994]
I Let C⇤/k is an R�filtered chain complex, FsC⇤ ⇢ FrC⇤,

s < r , indexed by finite set of real numbers.
I It usually comes with a basis compatible with filtration so that

each subspace FrCj is the span
D

e

(j)
1 , . . . , e

(j)
ir

E

, e

(j)
i 2 Frij

I Chain complex is in “canonical form” in bases
{ẽ(j)i }i21,...,dimF Cj

j2{0,1,...} if for any basis element ẽ

(j)
i either ∂ẽ

(j)
i = 0

or ∂ẽ

(j)
i = ẽ

(j�1)
i 0 , and in the latter case, ẽ

(j)
i 6= ẽ

(j)
i1

) ∂ẽ

(j)
i 6= ∂ẽ

(j)
i1 .

I This is the same as decomposition of the set of basis elements
S = S

birth

t S

death

t SH such that ∂ẽ

(j)
i = ẽ

(j�1)
i 0 for

ẽ

(j)
i 2 S

death

, ẽ

(j�1)
i 0 2 S

birth

, ∂ẽ

(j)
i = 0 for ẽ

(j)
i from SH .

I
Theorem (SB, 1994) One can bring an R�filtered complex
to canonical form by a linear change of basis preserving the

filtration. The resulting canonical form filtered chain complex
is unique.



Category of filtered complexes is semi-simple

I reformulation of the theorem: Any object in the category of
R�filtered complexes over field is isomorphic to a canonically

defined sum of simple objects: 1-dimensional R�filtered
complex with trivial differential, ∂ẽ

(j)
i = 0 ,

D

ẽ

(j)
i

E

= Fr ,
r 2 R, and 2-dimensional R�filtered complex with trivial
homology ∂ẽ

(j+1)
i2 = ẽ

(j)
i1 ,

D

ẽ

(j)
i1

E

= Fs1 ,
D

ẽ

(j)
i1 , ẽ(j+1)

i2

E

= Fs2 , s1, s2 2 R.

I Proof of the theorem: bring the complex to the required
canonical form by induction, starting from the lowest
generators of degrees 1, then 2 etc, the claim is that
manipulating degree k generators does not destroy the
canonical form in degree k � 1 and in lower critical values of
degree k .

I This theorem is somewhat similar in spirit to the Poincare’s
definition of the torsion in homology groups.



Proof of the theorem
I Let for p = j and m  i , or p < j and all m, ∂e

(p)
m has the

required form. Let’s simplify ∂e

(j)
i+1

∂e

(j)
i+1 = Â

k
e

(j�1)
k ak . (1)

I Move all the terms with e

(j�1)
k = ∂e

j
q, q  i , from the right to

the left in (1): ∂(e(j)i+1 � Âqi e
(j)
q ak(q)) = Âk e

(j�1)
k bk

I If bk = 0 for all k , let ẽ

(j)
i+1 = e

(j)
i+1 � Âqi e

(j)
q ak(q), ∂ẽ

(j)
i+1 = 0

I Otherwise let k0 be the maximal k with bk 6= 0:

∂(e(j)i+1 � Â
qi

e

(j)
q ak(q)) = e

(j�1)
k0

bk0 + Â
k<k0

e

(j�1)
k bk , bk0 6= 0.

where k0 6= k(q) for q  i . Define

ẽ

(j)
i+1 =

1
bk0

 

e

(j)
i+1 � Â

qi
e

(j)
q ak(q)

!

, ẽ

(j�1)
k0

= e

(j�1)
k0

+ Â
k<k0

e

(j�1)
k

bk

bk0

I Then ∂ẽ

(j)
i+1 = ẽ

(j�1)
k0

, with k0 6= k(q) for q  i⇤.



Uniqueness of the “canonical form”
I Let

n

a

(j)
i

o

,
n

b

(j)
i = Âki a

(j)
k ak

o

, be two bases of C⇤ for the
two canonical forms. Assume that for all indexes p < j and all
n, and p = j and n  i the canonical forms agree. Let
∂a

(j)
i+1 = a

(j�1)
m and ∂b

(j)
i+1 = b

(j�1)
l with m > l .

I It follows that

∂

 

Â
ki+1

a

(j)
k ak

!

= Â
nl

a

(j�1)
n bn,

where ai+1 6= 0, bl 6= 0. Therefore

∂a

(j)
i+1 = Â

nl
a

(j�1)
n bn/ai+1 � Â

ki
∂a

(j)
k ak/ai+1.

I On the other hand ∂a

(j)
i+1 = a

(j�1)
m , with m > l , and ∂a

(j)
k for

k  i are either zero or some basis elements different from
a

(j�1)
m . This gives a contradiction and the canonical forms

agree for p = j and n = i + 1.
I Similarly if ∂b

(j)
i+1 = 0, then ∂a

(j)
i+1 = �Âki ∂a

(j)
k ak/ai+1⇤



Example of the canonical form



Homology H⇤ (FsC⇤)

I From the “Canonical Form” one can immediately read the
homology of any subcomplex H⇤ (FsC⇤) as well as the images
of Hi

�

Fsj C⇤
�

! Hi (FskC⇤)

I For each 2-dim piece, or pair ∂ẽ

(j)
i2 = ẽ

(j�1)
i1 in the “canonical

form”, with filtration indexes s1, s2 2 R a new homology class
of H⇤ (FsC⇤) is born at s1 and dies at s2.

I Similarly each 1-dim piece ∂ẽ

(j)
i = 0, ei 2 SH , with filtration

index r 2 R in the “canonical form”, corresponds to a new
homology class of H⇤ (FsC⇤) born at r which never dies.



“Canonical form” invariants =”Persistence Diagrams”

I This is precisely the definition of the persistence diagram:
I 2-dim pieces in canonical forms or pair ∂ẽ

(j)
i2 = ẽ

(j�1)
i1 in the

“canonical form”, with filtration indexes s1, s2 2 R are in 1-to
1 correspondence precisely with the points (s1, s2) in the
persistent diagram

I 1-dim pieces ∂ẽ

(j)
i = 0, ei 2 SH , with filtration index r 2 R in

the “canonical form”, are in 1-to-1 correspondence precisely
with points (r ,+•) in the persistence diagram



“Canonical form” invariants =”Persistence Bar-codes”
There are three equivalent visualizations

of the same invariants. ”Persistence Bar-codes”/”Persistence
diagrams” were introduced in applied mathematics in the beginning
of 2000s (H.Edelsbrunner, J.Harer, A.Zamorodian “Hierarchical
Morse complexes for piecewise linear 2-manifolds” Proc. of Symp
on Comput Geometry, June 2001, A.Zamorodian “Persistence and
hierarchical Morse complexes, PhD Thesis, University of Illinois,
2001). There are several software packages for computing these
invariants of a finite filtration. The principal algorithm is based on
the bringing of the filtered complex to its canonical form by
upper-triangular matrices from [SB1994].



Partition of critical values into pairs “birth-death” plus
homological critical values (“births” paired with +•)



Arnold’s problem on extension of smooth function inside a
ball

I Given f 2 C

• (∂B

n ⇥ [�#, #]) ! how many crtitical points of
given index must a generic smooth extension of f inside the
ball B have?

I Example: function on closed manifold and a ball containing all
critical points of the function. Then a restriction of the
function to the neighborhood of the boundary of this ball must
contain information on the Betti numbers of the manifold.



Morse complex
f : M

n ! R, f 2 C

•, generic, {x | f (x)  c}�compact. Then
pa�critical points, df |Tpa

= 0, are isolated, near
pa:f = Âj

l=1 �(x l )2 + Ân
l=j (x

l )2. Let g is a generic metric. Then
define

Cj = �
index(pa)=j

⇥

pa, or(T�
pa
)
⇤

where Tpa = T

�
pa
� T

+
pa

is wrt ∂2
f and g .

The differential is

∂j [pa, or] = Â
index(pb)=j�1

⇥

pb, or
⇤

#M(pa, pb)

M(pa, pb) = {g : R ! M

n |

˙g = �(gradg f )(g(t)), lim
t!�•

= pa, lim
t!+•

= pb

�

/R



What are the invariants of Morse complexes independent of
metrics?

I The Morse complex is naturally filtered FsC⇤ ⇢ FrC⇤,
s < r , by the set {f (pa)} ⇢ R of critical values of f :
[pa] 2 FsC⇤if f (pa)  s

I Claim: under generic perturbation of the metrics, the
anti-gradient trajectory exceptionnaly goes from the critical
point pa to the critical point p

˜a
lower

with
index(pa) = index(p

˜a
lower

)

I The change of the Morse complex is described then by the
change of the basis: [pa] ! [pa]± [p

˜a
lower

].
I What can be done with the complex using such

upper-triangular change of bases?



“Canonical form” invariants of Morse complexes

I The Morse complex is naturally filtered by the set {f (pa)} of
critical values of f : [pa, or] 2 FsC⇤ if f (pa)  s

I !canonical partition of the set of critical values {f (pa)} into
pairs “birth-death”, plus separate set giving a basis in H⇤(M, k)
or “births” paired with +•

I Claim: the “canonical form” of Morse complex does not
depend on the metrics: under generic perturbation of the
metrics the complex changes via series of chage of
bases:e(j)i ! e

(j)
i ± e

(j)
l
lower

I when the function is deformed the “canonical form” invariant
changes naturally in continuous way. This can be expressed in
e � d language.



Partition of critical values into pairs “birth-death” plus
homological critical values (“births” paired with +•)



Another comparison

This illustration is taken from the plenary talk “Persistent
Homology: Theory and Practice.” H. Edelsbrunner, D. Morozov, at
the European Congress of Mathematics, 2012:



Point clouds and Čech Complex
I

f = distance to a set of points(point cloud), M = Rn,
sublevel sets {x | f (x)  d} are unions of balls, their
intersections define the Čech complex for each d 2 R,
increasing the distance d !more intersections ! the filtered

complex.
I the “canonical form” invariants=“persistence

bar-codes/diagrams” of the filtered complex!main tool in the
topological data analisys.

I these invariants permit to calculate the homology of the
manifold which is approximated by the point cloud, since for
some d the sublevel set of the distance is homotopically
equivalent to this manifold.



Arnold’s problem on extension of smooth function

I Given f 2 C

• (∂B

n ⇥ [�#, #]) !how many are there crtitical
points of generic smooth extension of f inside the ball B?

I Theorem (SB,1994) These pairs in “canonical form” f |∂Bn

indicate the crititical points of certain index in B

n :

They can cancell each other in
certain configurations, details are in [SB1994].



Small eigenvalues of twisted Laplacian

These “canonical form” invariants were also applied in Le Peutrec
D., Nier F., Viterbo C. “The Witten Laplacian and

Morse–Barannikov Complex” [LNV2011] to find formulas for small
eigenvalues of the Witten Laplacian of df ,h = hd + df and
identification of critical points with eigenforms
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