See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348187065

Canonical forms=Persistence diagrams.

Presentation · April 2020 DOI: 10.13140/RG.2.2.29927.68003 CITATIONS 0

READ

Serguei Barannikov Paris Diderot University 32 PUBLICATIONS 565 CITATIONS SEE PROFILE

1 author:

All content following this page was uploaded by Serguei Barannikov on 04 January 2021.

Canonical forms=Persistence diagrams "Algebraic topology and its applications" seminar, NRU HSE Moscow

S.Barannikov (Skoltech, Sorbonne University)

24 April 2020

Chain complexes, filtrations and their invariants

Let C_{*} is a chain complex over field k, a sequence of vector spaces with linear operators

$$\rightarrow C_{j+1} \stackrel{\partial_{j+1}}{\rightarrow} C_j \stackrel{\partial_j}{\rightarrow} C_{j-1} \rightarrow \ldots \rightarrow C_0$$

which satisfy

$$\partial_j \circ \partial_{j+1} = 0$$

- An \mathbb{R} -filtration F is an increasing sequence of subcomplexes $F_{\leq s}C_* \subset F_{\leq r}C_*$, s < r, indexed by finite set of real numbers
- ➤ Canonical Form (C_{*}, F) introduced in ([SB1994],"The framed Morse complex and its invariants") combinatorial invariants of filtered complexes
- Canonical Form (C_*, F) =Persistence Diagrams (C_*, F)
- algorithm "bringing to Canonical Form" from loc.cit. =
 standard algorithm for Persistence Diagrams
- ► this gives a simple explanation for the latter algorithm →generalizations of PD and of the algorithm for them

"Canonical form" of R-filtered complexes [SB1994]

- Let C_{*}/k is an ℝ-filtered chain complex, F_{≤s}C_{*} ⊂ F_{≤r}C_{*}, s < r, indexed by finite set of real numbers.</p>
- ▶ It usually comes with a basis compatible with filtration so that each subspace $F_{\leq r}C_j$ is the span $\langle e_1^{(j)}, \ldots, e_{i_r}^{(j)} \rangle$, $e_i^{(j)} \in F_{\leq r_{ij}}$
- ► Chain complex is in "canonical form" in bases $\{ \tilde{e}_{i}^{(j)} \}_{j \in \{0,1,\ldots\}}^{i \in 1,\ldots,\dim_{F}C_{j}} \text{ if for any basis element } \tilde{e}_{i}^{(j)} \text{ either } \partial \tilde{e}_{i}^{(j)} = 0$ or $\partial \tilde{e}_{i}^{(j)} = \tilde{e}_{i'}^{(j-1)}$, and in the latter case, $\tilde{e}_{i}^{(j)} \neq \tilde{e}_{i_{1}}^{(j)}$ $\Rightarrow \partial \tilde{e}_{i}^{(j)} \neq \partial \tilde{e}_{i_{1}}^{(j)}.$
- ▶ This is the same as decomposition of the set of basis elements $S = S_{\text{birth}} \sqcup S_{\text{death}} \sqcup S_H$ such that $\partial \tilde{e}_i^{(j)} = \tilde{e}_{i'}^{(j-1)}$ for $\tilde{e}_i^{(j)} \in S_{\text{death}}$, $\tilde{e}_{i'}^{(j-1)} \in S_{\text{birth}}$, $\partial \tilde{e}_i^{(j)} = 0$ for $\tilde{e}_i^{(j)}$ from S_H .
- Theorem (SB, 1994) One can bring an R-filtered complex to canonical form by a linear change of basis *preserving the filtration*. The resulting canonical form filtered chain complex is unique.

Category of filtered complexes is semi-simple

- ▶ reformulation of the theorem: Any object in the category of ℝ-filtered complexes over field is isomorphic to a canonically defined sum of simple objects: 1-dimensional ℝ-filtered complex with trivial differential, $\partial \tilde{e}_i^{(j)} = 0$, $\langle \tilde{e}_i^{(j)} \rangle = F_{\leq r}$, $r \in \mathbb{R}$, and 2-dimensional ℝ-filtered complex with trivial homology $\partial \tilde{e}_{i_2}^{(j+1)} = \tilde{e}_{i_1}^{(j)}$, $\langle \tilde{e}_{i_1}^{(j)} \rangle = F_{\leq s_1}, \langle \tilde{e}_{i_1}^{(j)}, \tilde{e}_{i_2}^{(j+1)} \rangle = F_{\leq s_2}, s_1, s_2 \in \mathbb{R}$.
- Proof of the theorem: bring the complex to the required canonical form by induction, starting from the lowest generators of degrees 1, then 2 etc, the claim is that manipulating degree k generators does not destroy the canonical form in degree k - 1 and in lower critical values of degree k.
- This theorem is somewhat similar in spirit to the Poincare's definition of the torsion in homology groups.

Proof of the theorem

▶ Let for p = j and $m \le i$, or p < j and all m, $\partial e_m^{(p)}$ has the required form. Let's simplify $\partial e_{i+1}^{(j)}$

$$\partial e_{i+1}^{(j)} = \sum_{k} e_k^{(j-1)} \alpha_k. \tag{1}$$

- ► Move all the terms with $e_k^{(j-1)} = \partial e_q^j$, $q \le i$, from the right to the left in (1): $\partial (e_{i+1}^{(j)} \sum_{q \le i} e_q^{(j)} \alpha_{k(q)}) = \sum_k e_k^{(j-1)} \beta_k$
- ▶ If $\beta_k = 0$ for all k, let $\tilde{e}_{i+1}^{(j)} = e_{i+1}^{(j)} \sum_{q \le i} e_q^{(j)} \alpha_{k(q)}, \ \partial \tilde{e}_{i+1}^{(j)} = 0$ ▶ Otherwise let k_0 be the maximal k with $\beta_k \neq 0$:

$$\partial(e_{i+1}^{(j)} - \sum_{q \le i} e_q^{(j)} \alpha_{k(q)}) = e_{k_0}^{(j-1)} \beta_{k_0} + \sum_{k < k_0} e_k^{(j-1)} \beta_k, \ \beta_{k_0} \ne 0.$$

where $k_0 \neq k(q)$ for $q \leq i$. Define

$$\tilde{\mathbf{e}}_{i+1}^{(j)} = \frac{1}{\beta_{k_0}} \left(\mathbf{e}_{i+1}^{(j)} - \sum_{q \le i} \mathbf{e}_q^{(j)} \alpha_{k(q)} \right), \ \tilde{\mathbf{e}}_{k_0}^{(j-1)} = \mathbf{e}_{k_0}^{(j-1)} + \sum_{k < k_0} \mathbf{e}_k^{(j-1)} \frac{\beta_k}{\beta_{k_0}}$$

► Then $\partial \tilde{e}_{i+1}^{(j)} = \tilde{e}_{k_0}^{(j-1)}$, with $k_0 \neq k(q)$ for $q \leq i\square$.

Uniqueness of the "canonical form"

Let {a_i^(j)}, {b_i^(j) = ∑_{k≤i} a_k^(j) α_k}, be two bases of C_{*} for the two canonical forms. Assume that for all indexes p < j and all n, and p = j and n ≤ i the canonical forms agree. Let ∂a_{i+1}^(j) = a_m^(j-1) and ∂b_{i+1}^(j) = b_i^(j-1) with m > l.
 It follows that

$$\partial\left(\sum_{k\leq i+1}a_k^{(j)}\alpha_k\right)=\sum_{n\leq l}a_n^{(j-1)}\beta_n,$$

where $\alpha_{i+1} \neq 0$, $\beta_i \neq 0$. Therefore

$$\partial a_{i+1}^{(j)} = \sum_{n \leq l} a_n^{(j-1)} \beta_n / \alpha_{i+1} - \sum_{k \leq i} \partial a_k^{(j)} \alpha_k / \alpha_{i+1}.$$

On the other hand ∂a^(j)_{i+1} = a^(j-1)_m, with m > I, and ∂a^(j)_k for k ≤ i are either zero or some basis elements different from a^(j-1)_m. This gives a contradiction and the canonical forms agree for p = j and n = i + 1.
 Similarly if ∂b^(j)_{i+1} = 0, then ∂a^(j)_{i+1} = −∑_{k≤i}∂a^(j)_kα_k/α_{i+1}□

Homology $H_*(F_{\leq s}C_*)$

- From the "Canonical Form" one can immediately read the homology of any subcomplex H_∗ (F_{≤s}C_∗) as well as the images of H_i (F_{≤sj}C_∗) → H_i (F_{≤sk}C_∗)
- For each 2-dim piece, or pair ∂ẽ^(j)_{i2} = ẽ^(j-1)_{i1} in the "canonical form", with filtration indexes s₁, s₂ ∈ ℝ a new homology class of H_{*} (F_{≤s}C_{*}) is born at s₁ and dies at s₂.
- Similarly each 1-dim piece ∂ẽ_i^(j) = 0, e_i ∈ S_H, with filtration index r ∈ ℝ in the "canonical form", corresponds to a new homology class of H_{*} (F_{≤s}C_{*}) born at r which never dies.

"Canonical form" invariants ="Persistence Diagrams"

- This is precisely the definition of the persistence diagram:
- ▶ 2-dim pieces in canonical forms or pair $\partial \tilde{e}_{i_2}^{(j)} = \tilde{e}_{i_1}^{(j-1)}$ in the "canonical form", with filtration indexes s_1 , $s_2 \in \mathbb{R}$ are in 1-to 1 correspondence precisely with the points (s_1, s_2) in the persistent diagram
- 1-dim pieces ∂ẽ_i^(j) = 0, e_i ∈ S_H, with filtration index r ∈ ℝ in the "canonical form", are in 1-to-1 correspondence precisely with points (r, +∞) in the persistence diagram

"Canonical form" invariants ="Persistence Bar-codes"

There are three equivalent visualizations

of the same invariants. "Persistence Bar-codes"/"Persistence diagrams" were introduced in applied mathematics in the beginning of 2000s (H.Edelsbrunner, J.Harer, A.Zamorodian "Hierarchical **Morse complexes** for piecewise linear 2-manifolds" Proc. of Symp on Comput Geometry, June 2001, A.Zamorodian "Persistence and hierarchical **Morse complexes**, PhD Thesis, University of Illinois, 2001). There are several software packages for computing these invariants of a finite filtration. The principal algorithm is based on the bringing of the filtered complex to its canonical form by upper-triangular matrices from [SB1994]. Partition of critical values into pairs "birth-death" plus homological critical values ("births" paired with $+\infty$)

Arnold's problem on extension of smooth function inside a ball

- Given f ∈ C[∞] (∂Bⁿ × [-ε, ε]) → how many crtitical points of given index must a generic smooth extension of f inside the ball B have?
- Example: function on closed manifold and a ball containing all critical points of the function. Then a restriction of the function to the neighborhood of the boundary of this ball must contain information on the *Betti numbers of the manifold*.

Morse complex

 $f: M^n \to \mathbb{R}, f \in C^{\infty}$, generic, $\{x \mid f(x) \leq c\}$ -compact. Then p_{α} -critical points, $df \mid_{\mathcal{T}_{p_{\alpha}}} = 0$, are isolated, near $p_{\alpha}: f = \sum_{l=1}^{j} -(x^l)^2 + \sum_{l=j}^{n} (x^l)^2$. Let g is a generic metric. Then define

$$C_j = \bigoplus_{\operatorname{index}(p_{\alpha})=j} \left[p_{\alpha}, \operatorname{or}(T_{p_{\alpha}}) \right]$$

where $T_{p_{\alpha}} = T_{p_{\alpha}}^{-} \oplus T_{p_{\alpha}}^{+}$ is wrt $\partial^{2} f$ and g. The differential is

$$\partial_{j} \left[p_{\alpha}, \mathrm{or} \right] = \sum_{\mathrm{index}(p_{\beta})=j-1} \left[p_{\beta}, \mathrm{or} \right] \# \mathcal{M}(p_{\alpha}, p_{\beta})$$

$$\mathcal{M}(p_{\alpha}, p_{\beta}) = \left\{ \gamma : \mathbb{R} \to M^{n} \mid \\ \dot{\gamma} = -(\operatorname{grad}_{g} f)(\gamma(t)), \lim_{t \to -\infty} = p_{\alpha}, \lim_{t \to +\infty} = p_{\beta} \right\} / \mathbb{R}$$

What are the invariants of Morse complexes independent of metrics?

- The Morse complex is naturally filtered F_{≤s}C_{*} ⊂ F_{≤r}C_{*}, s < r, by the set {f(p_α)} ⊂ ℝ of critical values of f: [p_α] ∈ F_sC_{*}if f(p_α) ≤ s
- Claim: under generic perturbation of the metrics, the anti-gradient trajectory exceptionnaly goes from the critical point *p*_α to the critical point *p*_{α˜lower} with index(*p*_α) = index(*p*_{α˜lower})
- The change of the Morse complex is described then by the change of the basis: [p_α] → [p_α] ± [p_{α̃_{lower}].}
- What can be done with the complex using such upper-triangular change of bases?

"Canonical form" invariants of Morse complexes

- The Morse complex is naturally filtered by the set {f(p_α)} of critical values of f: [p_α, or] ∈ F_{≤s}C_{*} if f(p_α) ≤ s
- ► →canonical partition of the set of critical values $\{f(p_{\alpha})\}$ into pairs "birth-death", plus separate set giving a basis in $H_*(M, k)$ or "births" paired with $+\infty$
- Claim: the "canonical form" of Morse complex does not depend on the metrics: under generic perturbation of the metrics the complex changes via series of chage of bases: e^(j)_i → e^(j)_i ± e^(j)_{lower}
- when the function is deformed the "canonical form" invariant changes naturally in continuous way. This can be expressed in $\epsilon \delta$ language.

Partition of critical values into pairs "birth-death" plus homological critical values ("births" paired with $+\infty$)

Another comparison

This illustration is taken from the plenary talk "Persistent Homology: Theory and Practice." H. Edelsbrunner, D. Morozov, at the *European Congress of Mathematics*, 2012:

Point clouds and Čech Complex

f = distance to a set of points(point cloud), M = ℝⁿ, sublevel sets {x | f(x) ≤ d} are unions of balls, their intersections define the Čech complex for each d ∈ ℝ, increasing the distance d →more intersections → the filtered

complex.

- ► the "canonical form" invariants="persistence bar-codes/diagrams" of the filtered complex→main tool in the topological data analisys.
- these invariants permit to calculate the homology of the manifold which is approximated by the point cloud, since for some d the sublevel set of the distance is homotopically equivalent to this manifold.

Arnold's problem on extension of smooth function

- ► Given $f \in C^{\infty}(\partial B^n \times [-\varepsilon, \varepsilon])$ →how many are there crtitical points of generic smooth extension of f inside the ball B?
- ► Theorem (SB,1994) These pairs in "canonical form" f |_{∂Bⁿ} indicate the crititical points of certain index in Bⁿ:

Small eigenvalues of twisted Laplacian

These "canonical form" invariants were also applied in Le Peutrec D., Nier F., Viterbo C. "The Witten Laplacian and Morse–Barannikov Complex" [LNV2011] to find formulas for small eigenvalues of the Witten Laplacian of $d_{f,h} = hd + df$ and identification of critical points with eigenforms

$$\Delta_{f,h} = (d_{f,h} + d_{f,h}^*)^2 = d_{f,h}^* d_{f,h} + d_{f,h} d_{f,h}^* = \bigoplus_{p=0}^{\dim M} \Delta_{f,h}^{(p)}$$

There is a one to one correspondance j_{ρ} between $\mathcal{U}^{(\rho)}$ and the set of eigenvalues (counted with multiplicities) of $\Delta_{\ell,h}^{(\rho)}$ lying in $[0, h^{3/2})$ such that

$$j_{p}(U^{(p)}) = 0 \quad \text{if} \quad U^{(p)} \in \mathcal{U}_{H}^{(p)}$$

$$j_{p}(U^{(p)}) = \kappa^{2}(U^{(p+1)}) \frac{h}{\pi} \frac{|\lambda_{1}^{(p+1)} \dots \lambda_{p+1}^{(p)}|}{|\lambda_{1}^{(p)} \dots \lambda_{p}^{(p)}|} \frac{|\text{Hess}f(U^{(p)})|^{1/2}}{|\text{Hess}f(U^{(p+1)})|^{1/2}} (1 + \mathcal{O}(h))e^{-2\frac{f(U^{(p+1)}) - f(U^{(p)})}{h}}$$

$$j_{p}(U^{(p)}) = \kappa^{2}(U^{(p)}) \frac{h}{\pi} \frac{|\lambda_{1}^{(p)} \dots \lambda_{p}^{(p)}|}{|\lambda_{1}^{(p-1)} \dots \lambda_{p-1}^{(p)}|} \frac{|\text{Hess}f(U^{(p-1)})|^{1/2}}{|\text{Hess}f(U^{(p)})|^{1/2}} (1 + \mathcal{O}(h))e^{-2\frac{f(U^{(p)}) - f(U^{(p-1)})}{h}}$$

$$\text{if} \partial_{B} U^{(p)} = U^{(p-1)}$$

Here the λ 's denote the negative eigenvalues of the Hess *f* at the corresponding points.

[SB1994] S.Barannikov, "The Framed Morse complex and its invariants" volume 21 of Adv. Soviet Math., pages 93–115. Amer. Math. Soc., Providence, RI, 1994.

[EHZ2001] H.Edelsbrunner, J.Harer, A.Zamorodian "Hierarchical Morse complexes for piecewise linear 2-manifolds" Proc. of Symp on Comput Geometry, June 2001

[EM2012] H.Edelsbrunner, D. Morozov, "Persistent Homology: Theory and Practice." Proceedings of the European Congress of Mathematics, 2012.

[LNV2011] Le Peutrec, D., Nier, F., Viterbo, C. "Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse-Barannikov Complex" Ann. Henri Poincaré (2013) 14: 567.