See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348187065

Canonical forms=Persistence diagrams.

Presentation • April 2020
DOI: 10.13140/RG.2.2.29927.68003

CITATIONS
0

1 author:

Serguei Barannikov
Paris Diderot University
32 PUBLICATIONS 565 CITATIONS

SEE PROFILE

Canonical forms=Persistence diagrams

"Algebraic topology and its applications" seminar, NRU HSE Moscow

S.Barannikov (Skoltech, Sorbonne University)

24 April 2020

Chain complexes, filtrations and their invariants

- Let C_{*} is a chain complex over field k , a sequence of vector spaces with linear operators

$$
\rightarrow C_{j+1} \xrightarrow{\partial_{j+1}} C_{j} \xrightarrow{\partial_{j}} C_{j-1} \rightarrow \ldots \rightarrow C_{0}
$$

which satisfy

$$
\partial_{j} \circ \partial_{j+1}=0
$$

- An \mathbb{R}-filtration F is an increasing sequence of subcomplexes $F_{\leq s} C_{*} \subset F_{\leq r} C_{*}, s<r$, indexed by finite set of real numbers
$\rightarrow \rightarrow$ Canonical Form (C_{*}, F) introduced in ([SB1994],"The framed Morse complex and its invariants") combinatorial invariants of filtered complexes
- Canonical Form ($\left.C_{*}, F\right)=$ Persistence Diagrams $\left(C_{*}, F\right)$
- algorithm "bringing to Canonical Form" from loc.cit. = $=$ standard algorithm for Persistence Diagrams
- this gives a simple explanation for the latter algorithm \rightarrow generalizations of PD and of the algorithm for them

"Canonical form" of R-filtered complexes [SB1994]

- Let C_{*} / k is an \mathbb{R}-filtered chain complex, $F_{\leq s} C_{*} \subset F_{\leq r} C_{*}$, $s<r$, indexed by finite set of real numbers.
- It usually comes with a basis compatible with filtration so that each subspace $F_{\leq r} C_{j}$ is the span $\left\langle e_{1}^{(j)}, \ldots, e_{i_{r}}^{(j)}\right\rangle, e_{i}^{(j)} \in F_{\leq r_{i j}}$
- Chain complex is in "canonical form" in bases $\left\{\tilde{e}_{i}^{(j)}\right\}_{j \in\{0,1, \ldots, \ldots\}}^{i \in 1, \ldots, \operatorname{dim}_{F} C_{j}}$ if for any basis element $\tilde{e}_{i}^{(j)}$ either $\partial \tilde{e}_{i}^{(j)}=0$ or $\partial \tilde{e}_{i}^{(j)}=\tilde{e}_{i^{\prime}}^{(j-1)}$, and in the latter case, $\tilde{e}_{i}^{(j)} \neq \tilde{e}_{i_{1}}^{(j)}$
$\Rightarrow \partial \tilde{e}_{i}^{(j)} \neq \partial \tilde{e}_{i_{1}}^{(j)}$.
- This is the same as decomposition of the set of basis elements $S=S_{\text {birth }} \sqcup S_{\text {death }} \sqcup S_{H}$ such that $\partial \tilde{e}_{i}^{(j)}=\tilde{e}_{i^{\prime}}^{(j-1)}$ for $\tilde{e}_{i}^{(j)} \in S_{\text {death }}, \tilde{e}_{i^{\prime}}^{(j-1)} \in S_{\text {birth }}, \partial \tilde{e}_{i}^{(j)}=0$ for $\tilde{e}_{i}^{(j)}$ from S_{H}.
- Theorem (SB, 1994) One can bring an \mathbb{R}-filtered complex to canonical form by a linear change of basis preserving the filtration. The resulting canonical form filtered chain complex is unique.

Category of filtered complexes is semi-simple

- reformulation of the theorem: Any object in the category of \mathbb{R}-filtered complexes over field is isomorphic to a canonically defined sum of simple objects: 1-dimensional \mathbb{R}-filtered complex with trivial differential, $\partial \tilde{e}_{i}^{(j)}=0,\left\langle\tilde{e}_{i}^{(j)}\right\rangle=F_{\leq r}$, $r \in \mathbb{R}$, and 2-dimensional \mathbb{R}-filtered complex with trivial homology $\partial \tilde{e}_{i_{2}}^{(j+1)}=\tilde{e}_{i_{1}}^{(j)}$,
$\left\langle\tilde{e}_{i_{1}}^{(j)}\right\rangle=F_{\leq s_{1}},\left\langle\tilde{e}_{i_{1}}^{(j)}, \tilde{e}_{i_{2}}^{(j+1)}\right\rangle=F_{\leq s_{2}}, s_{1}, s_{2} \in \mathbb{R}$.
- Proof of the theorem: bring the complex to the required canonical form by induction, starting from the lowest generators of degrees 1 , then 2 etc, the claim is that manipulating degree k generators does not destroy the canonical form in degree $k-1$ and in lower critical values of degree k.
- This theorem is somewhat similar in spirit to the Poincare's definition of the torsion in homology groups.

Proof of the theorem

- Let for $p=j$ and $m \leq i$, or $p<j$ and all $m, \partial e_{m}^{(p)}$ has the required form. Let's simplify $\partial e_{i+1}^{(j)}$

$$
\begin{equation*}
\partial e_{i+1}^{(j)}=\sum_{k} e_{k}^{(j-1)} \alpha_{k} \tag{1}
\end{equation*}
$$

- Move all the terms with $e_{k}^{(j-1)}=\partial e_{q}^{j}, q \leq i$, from the right to the left in (1): $\partial\left(e_{i+1}^{(j)}-\sum_{q \leq i} e_{q}^{(j)} \alpha_{k(q)}\right)=\sum_{k} e_{k}^{(j-1)} \beta_{k}$
- If $\beta_{k}=0$ for all k, let $\tilde{e}_{i+1}^{(j)}=e_{i+1}^{(j)}-\sum_{q \leq i} e_{q}^{(j)} \alpha_{k(q)}, \partial \tilde{e}_{i+1}^{(j)}=0$
- Otherwise let k_{0} be the maximal k with $\beta_{k} \neq 0$:

$$
\partial\left(e_{i+1}^{(j)}-\sum_{q \leq i} e_{q}^{(j)} \alpha_{k(q)}\right)=e_{k_{0}}^{(j-1)} \beta_{k_{0}}+\sum_{k<k_{0}} e_{k}^{(j-1)} \beta_{k}, \beta_{k_{0}} \neq 0
$$

where $k_{0} \neq k(q)$ for $q \leq i$. Define

$$
\tilde{e}_{i+1}^{(j)}=\frac{1}{\beta_{k_{0}}}\left(e_{i+1}^{(j)}-\sum_{q \leq i} e_{q}^{(j)} \alpha_{k(q)}\right), \tilde{e}_{k_{0}}^{(j-1)}=e_{k_{0}}^{(j-1)}+\sum_{k<k_{0}} e_{k}^{(j-1)} \frac{\beta_{k}}{\beta_{k_{0}}}
$$

\triangleright Then $\partial \tilde{e}_{i+1}^{(j)}=\tilde{e}_{k_{0}}^{(j-1)}$, with $k_{0} \neq k(q)$ for $q \leq i \square$.

Uniqueness of the "canonical form"

- Let $\left\{a_{i}^{(j)}\right\},\left\{b_{i}^{(j)}=\sum_{k \leq i} a_{k}^{(j)} \alpha_{k}\right\}$, be two bases of C_{*} for the two canonical forms. Assume that for all indexes $p<j$ and all n, and $p=j$ and $n \leq i$ the canonical forms agree. Let $\partial a_{i+1}^{(j)}=a_{m}^{(j-1)}$ and $\partial b_{i+1}^{(j)}=b_{l}^{(j-1)}$ with $m>1$.
- It follows that

$$
\partial\left(\sum_{k \leq i+1} a_{k}^{(j)} \alpha_{k}\right)=\sum_{n \leq 1} a_{n}^{(j-1)} \beta_{n},
$$

where $\alpha_{i+1} \neq 0, \beta_{l} \neq 0$. Therefore

$$
\partial a_{i+1}^{(j)}=\sum_{n \leq 1} a_{n}^{(j-1)} \beta_{n} / \alpha_{i+1}-\sum_{k \leq i} \partial a_{k}^{(j)} \alpha_{k} / \alpha_{i+1} .
$$

- On the other hand $\partial a_{i+1}^{(j)}=a_{m}^{(j-1)}$, with $m>I$, and $\partial a_{k}^{(j)}$ for $k \leq i$ are either zero or some basis elements different from $a_{m}^{(j-1)}$. This gives a contradiction and the canonical forms agree for $p=j$ and $n=i+1$.
- Similarly if $\partial b_{i+1}^{(j)}=0$, then $\partial a_{i+1}^{(j)}=-\sum_{k \leq i} \partial a_{k}^{(j)} \alpha_{k} / \alpha_{i+1} \square$

Example of the canonical form

Homology $H_{*}\left(F_{\leq s} C_{*}\right)$

- From the "Canonical Form" one can immediately read the homology of any subcomplex $H_{*}\left(F_{\leq s} C_{*}\right)$ as well as the images of $H_{i}\left(F_{\leq s_{j}} C_{*}\right) \rightarrow H_{i}\left(F_{\leq s_{k}} C_{*}\right)$
- For each 2-dim piece, or pair $\partial \tilde{e}_{i_{2}}^{(j)}=\tilde{e}_{i_{1}}^{(j-1)}$ in the "canonical form", with filtration indexes $s_{1}, s_{2} \in \mathbb{R}$ a new homology class of $H_{*}\left(F_{\leq s} C_{*}\right)$ is born at s_{1} and dies at s_{2}.
- Similarly each 1-dim piece $\partial \tilde{e}_{i}^{(j)}=0, e_{i} \in S_{H}$, with filtration index $r \in \mathbb{R}$ in the "canonical form", corresponds to a new homology class of $H_{*}\left(F_{\leq s} C_{*}\right)$ born at r which never dies.

"Canonical form" invariants ="Persistence Diagrams"

- This is precisely the definition of the persistence diagram:
- 2-dim pieces in canonical forms or pair $\partial \tilde{e}_{i_{2}}^{(j)}=\tilde{e}_{i_{1}}^{(j-1)}$ in the "canonical form", with filtration indexes $s_{1}, s_{2} \in \mathbb{R}$ are in 1-to 1 correspondence precisely with the points (s_{1}, s_{2}) in the persistent diagram
- 1-dim pieces $\partial \tilde{e}_{i}^{(j)}=0, e_{i} \in S_{H}$, with filtration index $r \in \mathbb{R}$ in the "canonical form", are in 1-to-1 correspondence precisely with points $(r,+\infty)$ in the persistence diagram

"Canonical form" invariants ="Persistence Bar-codes"

There are three equivalent visualizations

of the same invariants. "Persistence Bar-codes"/'Persistence diagrams" were introduced in applied mathematics in the beginning of 2000s (H.Edelsbrunner, J.Harer, A.Zamorodian "Hierarchical Morse complexes for piecewise linear 2-manifolds" Proc. of Symp on Comput Geometry, June 2001, A.Zamorodian "Persistence and hierarchical Morse complexes, PhD Thesis, University of Illinois, 2001). There are several software packages for computing these invariants of a finite filtration. The principal algorithm is based on the bringing of the filtered complex to its canonical form by upper-triangular matrices from [SB1994].

Partition of critical values into pairs "birth-death" plus homological critical values ("births" paired with $+\infty$)

Arnold's problem on extension of smooth function inside a

 ball- Given $f \in C^{\infty}\left(\partial B^{n} \times[-\varepsilon, \varepsilon]\right) \rightarrow$ how many crtitical points of given index must a generic smooth extension of f inside the ball B have?
- Example: function on closed manifold and a ball containing all critical points of the function. Then a restriction of the function to the neighborhood of the boundary of this ball must contain information on the Betti numbers of the manifold.

Morse complex

$f: M^{n} \rightarrow \mathbb{R}, f \in C^{\infty}$, generic, $\{x \mid f(x) \leq c\}$-compact. Then p_{α}-critical points, $\left.d f\right|_{T_{p_{\alpha}}}=0$, are isolated, near
$p_{\alpha}: f=\sum_{l=1}^{j}-\left(x^{\prime}\right)^{2}+\sum_{l=j}^{n}\left(x^{\prime}\right)^{2}$. Let g is a generic metric. Then define

$$
C_{j}=\oplus_{\operatorname{index}\left(p_{\alpha}\right)=j}\left[p_{\alpha}, \operatorname{or}\left(T_{p_{\alpha}}^{-}\right)\right]
$$

where $T_{p_{\alpha}}=T_{p_{\alpha}}^{-} \oplus T_{p_{\alpha}}^{+}$is wrt $\partial^{2} f$ and g.
The differential is

$$
\partial_{j}\left[p_{\alpha}, \text { or }\right]=\sum_{\operatorname{index}\left(p_{\beta}\right)=j-1}\left[p_{\beta}, \text { or }\right] \# \mathcal{M}\left(p_{\alpha}, p_{\beta}\right)
$$

$$
\begin{aligned}
\mathcal{M}\left(p_{\alpha}, p_{\beta}\right) & =\left\{\gamma: \mathbb{R} \rightarrow M^{n} \mid\right. \\
\dot{\gamma} & \left.=-\left(\operatorname{grad}_{g} f\right)(\gamma(t)), \lim _{t \rightarrow-\infty}=p_{\alpha}, \lim _{t \rightarrow+\infty}=p_{\beta}\right\} / \mathbb{R}
\end{aligned}
$$

What are the invariants of Morse complexes independent of metrics?

- The Morse complex is naturally filtered $F_{\leq s} C_{*} \subset F_{\leq r} C_{*}$, $s<r$, by the set $\left\{f\left(p_{\alpha}\right)\right\} \subset \mathbb{R}$ of critical values of f : $\left[p_{\alpha}\right] \in F_{s} C_{*}$ if $f\left(p_{\alpha}\right) \leq s$
- Claim: under generic perturbation of the metrics, the anti-gradient trajectory exceptionnaly goes from the critical point p_{α} to the critical point $p_{\tilde{\alpha}_{\text {lower }}}$ with $\operatorname{index}\left(p_{\alpha}\right)=\operatorname{index}\left(p_{\tilde{\alpha}_{\text {lower }}}\right)$
- The change of the Morse complex is described then by the change of the basis: $\left[p_{\alpha}\right] \rightarrow\left[p_{\alpha}\right] \pm\left[p_{\tilde{\alpha}_{\text {lower }}}\right]$.
- What can be done with the complex using such upper-triangular change of bases?

"Canonical form" invariants of Morse complexes

- The Morse complex is naturally filtered by the set $\left\{f\left(p_{\alpha}\right)\right\}$ of critical values of $f:\left[p_{\alpha}\right.$, or $] \in F_{\leq s} C_{*}$ if $f\left(p_{\alpha}\right) \leq s$
- \rightarrow canonical partition of the set of critical values $\left\{f\left(p_{\alpha}\right)\right\}$ into pairs "birth-death", plus separate set giving a basis in $H_{*}(M, \mathrm{k})$ or "births" paired with $+\infty$
- Claim: the "canonical form" of Morse complex does not depend on the metrics: under generic perturbation of the metrics the complex changes via series of chage of bases: $e_{i}^{(j)} \rightarrow e_{i}^{(j)} \pm e_{\text {lower }}^{(j)}$
- when the function is deformed the "canonical form" invariant changes naturally in continuous way. This can be expressed in $\epsilon-\delta$ language.

Partition of critical values into pairs "birth-death" plus homological critical values ("births" paired with $+\infty$)

Another comparison

This illustration is taken from the plenary talk "Persistent Homology: Theory and Practice." H. Edelsbrunner, D. Morozov, at the European Congress of Mathematics, 2012:

Point clouds and Čech Complex

- $f=$ distance to a set of points(point cloud), $M=\mathbb{R}^{n}$, sublevel sets $\{x \mid f(x) \leq d\}$ are unions of balls, their intersections define the Čech complex for each $d \in \mathbb{R}$, increasing the distance $d \rightarrow$ more intersections \rightarrow the filtered

- the "canonical form" invariants="persistence bar-codes/diagrams" of the filtered complex \rightarrow main tool in the topological data analisys.
- these invariants permit to calculate the homology of the manifold which is approximated by the point cloud, since for some d the sublevel set of the distance is homotopically equivalent to this manifold.

Arnold's problem on extension of smooth function

- Given $f \in C^{\infty}\left(\partial B^{n} \times[-\varepsilon, \varepsilon]\right) \rightarrow$ how many are there crtitical points of generic smooth extension of f inside the ball B ?
- Theorem (SB,1994) These pairs in "canonical form" $\left.f\right|_{\partial B^{n}}$ indicate the crititical points of certain index in B^{n} :

They can cancell each other in certain configurations, details are in [SB1994].

Small eigenvalues of twisted Laplacian

These "canonical form" invariants were also applied in Le Peutrec D., Nier F., Viterbo C. "The Witten Laplacian and Morse-Barannikov Complex" [LNV2011] to find formulas for small eigenvalues of the Witten Laplacian of $d_{f, h}=h d+d f$ and identification of critical points with eigenforms

$$
\Delta_{f, h}=\left(d_{f, h}+d_{f, h}^{*}\right)^{2}=d_{f, h}^{*} d_{f, h}+d_{f, h} d_{f, h}^{*}=\bigoplus_{p=0}^{\operatorname{dim} M} \Delta_{f, h}^{(p)} .
$$

There is a one to one correspondance j_{p} between $\mathcal{U}^{(p)}$ and the set of eigenvalues (counted with multiplicities) of $\Delta_{f, h}^{(p)}$ lying in $\left[0, h^{3 / 2}\right.$) such that

$$
\begin{gathered}
j_{p}\left(U^{(p)}\right)=0 \quad \text { if } U^{(p)} \in \mathcal{U}_{H}^{(p)} \\
j_{p}\left(U^{(p)}\right)=\kappa^{2}\left(U^{(p+1)}\right) \frac{h}{\pi} \frac{h \lambda_{1}^{(p+1)} \ldots \lambda_{p+1}^{(p+1)} \mid}{\left|\lambda_{1}^{(p)} \ldots \lambda_{p}^{(p)}\right|} \frac{\left|H \operatorname{Hess} f\left(U^{(p)}\right)\right|^{1 / 2}}{\left|H \operatorname{Hess} f\left(U^{(p+1)}\right)\right|^{1 / 2}}(1+\mathcal{O}(h)) e^{-2 \frac{f\left(U^{(p+1)}\right)-f\left(U^{(p)}\right)}{h}} \\
\text { if } \partial_{B} U^{(p+1)}=U^{(p)} \\
j_{p}\left(U^{(p)}\right)=\kappa^{2}\left(U^{(p)}\right) \frac{h}{\pi} \frac{\left|\lambda_{1}^{(p)} \ldots \lambda_{p}^{(p)}\right|}{\left|\lambda_{1}^{(p-1)} \ldots \lambda_{p-1}^{(p-1)}\right|} \frac{\left|H \operatorname{Hess} f\left(U^{(p-1)}\right)\right|^{1 / 2}}{\left|\operatorname{Hess} f\left(U^{(p)}\right)\right|^{1 / 2}}(1+\mathcal{O}(h)) e^{-2 \frac{f\left(U^{(p)}\right)-f\left(U^{(p-1)}\right)}{h}} \\
\text { if } \partial_{B} U^{(p)}=U^{(p-1)}
\end{gathered}
$$

Here the λ 's denote the negative eigenvalues of the Hessf at the corresponding points.
[SB1994] S.Barannikov, "The Framed Morse complex and its invariants" volume 21 of Adv. Soviet Math., pages 93-115. Amer. Math. Soc., Providence, RI, 1994.
[EHZ2001] H.Edelsbrunner, J.Harer, A.Zamorodian "Hierarchical Morse complexes for piecewise linear 2-manifolds' Proc. of Symp on Comput Geometry, June 2001
[EM2012] H.Edelsbrunner, D. Morozov, "Persistent Homology: Theory and Practice." Proceedings of the European Congress of Mathematics, 2012.
[LNV2011] Le Peutrec, D., Nier, F., Viterbo, C. "Precise Arrhenius Law for p-forms: The Witten Laplacian and Morse-Barannikov Complex" Ann. Henri Poincaré (2013) 14: 567.

