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The paper deals with a detailed study of He-filled cavity ensemble development in ODS-

Eurofer steel implanted with 10 keV helium ions to a high peak concentration of 8.5×103 appm 

both with and without simultaneous irradiation with 4MeV gold ions, which allowed us to strongly 

vary the ratios of dpa/He introduction. The subsequent transmission electron microscopy 

examination reveals excellent radiation stability of He-implanted sample in the single-beam 

implantation mode. In contrast, after the simultaneous dual-beam irradiation the occurrence of a 

bubble-to-void transition was observed for bubbles that were associated with yttria nanoparticles. 

The relative importance of different He bubble families observed in the He-implanted samples for 

the swelling accumulation is quantitatively assessed, emphasizing the potential risks of abrupt 

swelling acceleration in the case of bubble-to-void transition launched by nanoparticles. A model 

of bubble-to-void transition for gas bubbles associated with spherical second-phase particles is 

developed and used to rationalize experimental observations. 
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1. Introduction 

One of the challenges for the development of future nuclear facilities, such as fusion and 

the next generation (GenIV) of fission reactors, is the selection of appropriate structural materials 

for their active zones. Radiation environment in these facilities is expected to be much more severe 

than in modern nuclear reactors owing to high operation temperatures (>650 ºC), high damage 

levels, as well as high rates of light gas accumulation [1]. Among promising candidates for the use 

in such conditions are reduced-activation ferritic-martensitic oxide-dispersion-strengthened 

(RAFM ODS) steels. Saturation of steel with high number densities of nanosize metal-oxide 

particles not only improves its high-temperature mechanical stability [2-4], but is also expected to 

improve radiation resistance [3,4]. 

The beneficial role of oxide nanoparticles is commonly attributed to their ability to act as 

nucleation centers for small helium bubbles [4,5]. An artificial increase of the bubble number 

density efficiently decreases the average bubble size and thus prevents or strongly postpones the 

conversion of bubbles into a population of freely growing vacancy voids that promote non-

saturable swelling at quite fast rates, of the order of percent per dpa [3,6]. In the context of the 

paper we differentiate between gas bubbles and voids in the sense suggested in Ref. [7], treating 

gas-filled cavitiesstabilized by their internal gas pressure as bubbles, while cavities which are 

primarily agglomerations of vacancies, even if they contain some number of gas atoms, as voids. 

While the common reasoning described above sound reasonable, the true efficiency of bubble 

nucleation on oxide particles as a method of swelling mitigation is not fully obvious.  

Indeed, the suppression of bubble-to-void conversion can be achieved in different ways, 

either by increasing the critical size that the bubbles should reach for such a transition, or by 

decreasing the sizes of helium bubbles themselves. On the one hand, the critical bubble size for 

the bubble-to-void transition is known to be inversely proportional to the effective vacancy 

supersaturation in the material [8], the latter being determined by the balance between irradiation 

intensity and the efficiency of point defect consumption at different sinks. An additional 

population of bubbles on oxide particles increases the total sink strength for point defects and thus 

contributes to the increase of the critical transition size. However, the relative importance of this 

increase is not evident because ODS steels are very complex materials with high densities of other 

possible point defect sinks. In the tempered ODS-Eurofer, in particular, these sinks include 

dislocations, grain boundaries and carbide precipitates (M23C6) [2,9-13]. On the other hand, while 

helium bubbles in ODS steels remain small even at quite high levels of accumulated helium, they 

are known to be associated not only with ODS particles, but with the other microstructural defects 

as well, and the bubble families on different microstructural defects can have different 

characteristic sizes [14-16]. Evidently, the bubble family with the largest typical size has the 
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largest chances to reach the critical size first. From this point of view, bubbles on second phase 

precipitates are in the group of risk because such bubbles require less gas atoms to reach any 

predefined diameter than bubbles in the bulk [17]. 

It remains an open question, whether the bubble-to-void transition is a potential issue for 

ODS steels in the next generation of fusion and fission facilities, but it is instructive to verify, 

whether one can procure sufficiently reasonable conditions to demonstrate the effect on the modern 

equipment. In the current literature one can find only a few reports [18,19] mentioning bubble-to-

void transition in ODS alloys PM2000 and 14YW that had accumulated more than a thousand 

appm He after neutron irradiation to >20 dpa at 500°C. Importantly, the large cavities, interpreted 

by the authors as voids, were always associated with nanoparticles, which motivates a more 

detailed study of the role of particles in the acceleration of swelling onset in ODS steels, the 

mechanisms involved in the effect, and the conditions required for its manifestation. 

A quest for bubble-to-void transition in ODS steels implies at least two conditions. First of 

all, one should accumulate sufficiently high concentrations of helium in order to force the bubbles 

to grow sufficiently large in spite of the higher bubble number densities and thus reduced bubbles 

sizes promoted by oxide particles in ODS ferritic-martensitic steels as compared to their non-ODS 

counterparts. The experiments observing bi-modal cavity distribution in non-ODS ferritic-

martensitic steels [20-24] indicate, however, that the critical diameter required for bubble 

conversion into voids is not very large (presumably ~4-5 nm) and so the required He content in 

steel should be achievable, even though quite high (at the level of at least thousands appm, as 

indicated by the above mentioned Refs. [18,19]). Second, one should decrease as low as possible 

the critical transition size, which can be achieved by using high point defect generation rates. The 

need to satisfy both demands simultaneously suggests ion implantation experiment as an attractive 

option. 

In this work, we report a detailed study of the He-filled cavity ensemble development in 

ODS-Eurofer steel implanted in a fast ion accelerator with helium ions to a very high peak 

concentration in two regimes, involving low and high ratios of dpa/He introduction. A 

considerable increase of the dpa/He ratio is achieved by simultaneous use of a secondary energetic 

gold ion beam. The results of subsequent transmission electron microscopy (TEM) examination, 

reported in sect. 3, demonstrate quite similar development of He-filled cavity ensembles in both 

irradiation modes with the only exception that bubble-to-void transition is observed for the mode 

with high dpa/He introduction ratio. A quantitative theoretical model of bubble-to-void transition 

for cavities on spherical second-phase particles is developed in sect. 4 and used to rationalize 

experimental observations in sect.5. 
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2. Experimental details 

2.1 Material and irradiation 

ODS-Eurofer used in this study is an oxide-dispersion strengthened ferritic-martensitic 

steel developed in Karlsruhe Institute of Technology (KIT) in cooperation with Plansee AG 

(Austria). The basic composition of ODS-Eurofer steel is 9Cr–1W–0.08Ta–0.2V–0.07C–0.4Mn–

0.3Y2O3 (wt.%). The steel was produced using powder metallurgy technique that included inert 

gas atomization of EUROFER 97, mechanical alloying in industrial ball mills of attritor type, 

followed by hot isostatic pressing and hot rolling in the austenitic temperature range. The 

investigated steel samples were supplied in the tempered condition, i.e. after finishing rolling at 

the temperature of 980 °C followed by tempering at 750 °C for 2 h [2]. 

Slices of ODS-Eurofer steel with the thickness of ~300 μm were cut out, mechanically 

grinded down to ~100 μm and, finally, the discs of 3 mm diameter were punched out from the 

slices. Prior to irradiation, the discs were electropolished in a StruersTenupol-5 unit with a 10% 

HClO4 + 90% CH3OH solution at –20 °C in order to remove any damage due to mechanical 

polishing (for samples used in single-beam implantation) or to prepare electron transparent 

samples for dual-beam in situ implantation. After electropolishing, the samples were cleaned from 

both sides by ion milling system PIPS 693 using a 3 eV ion beam and 5–6° etching angle for 2 

minutes.  

The irradiation of ODS-Eurofer steel was performed at the JANNuS-Orsay/SCALP facility 

of the IJCLab (Orsay, France) [25] at 823 K, using two regimes: 

(1) Dual-beam regime that involved simultaneous in situ dual beam irradiation (by means 

of coupling 190 kV ion implanter IRMA, 2 MV tandem accelerator ARAMIS and transmission 

electron microscope) of electron transparent 3 mm disk with 10 keV He+ ions with the flux of 

5×1011 cm-2s-1 to the fluence of 5×1015 cm-2, and 4 MeV Au2+ions with the flux of 4×1011 cm-2s-1 

to the fluence of 4.5×1015 cm-2;  

(2) Single beam regime that involved ex situ irradiation of 100 μm thick disk on ion 

implanter with 10 keV He+ ions with the flux of 5×1011 cm-2s-1 to the fluence of 5×1015 cm-2. 

As can be noticed, the He+ ion beam parameters were identical in both regimes, while the 

difference was in the presence of the gold ion beam that was used in order to strongly increase the 

efficiency of radiation damage production and, thus, the dpa/He introduction ratio. Due to the 

geometry of the facility, the thin foils were tilted off of the optical axis so that both the Au2+ and 

He+ ion beams made an angle of 23° with the sample surface normal direction. The energy of Au2+ 

ions was selected to be sufficiently high in order to minimize sputtering and the influence of 

injected interstitials on bubble nucleation in the region of interest (ROI) [26,27], which in our case 
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falls from the sample surface to the depth ~40-60 nm, i.e. the thickness transparent for TEM. The 

selected He+ ion energy of 10 keV was preliminary verified to produce relatively uniform cavity 

size distribution over ROI, while the cavity number density depth variation roughly followed the 

implanted helium profile with no visible influence of sample free surfaces. Unfortunately, no direct 

TEM observations during the ion implantation were possible because TEM objective lens had to 

be switched off during the in situ experiment in order to prevent deflection of low-energy He ions 

coming from the implanter beam line. Therefore, TEM observations in this implantation regime 

were done only when the irradiation was over. 

The damage and He concentration profiles for simultaneous in situ dual beam irradiation 

predicted by calculations with the code SRIM-2008 [28] are shown in Fig.1(a). The calculations 

assumed the matrix atom displacement energy of 40 eV and the full damage cascade calculation 

method. The predicted primary damage generation rate from both Au2+ and He+ ion beams in the 

peak region of He accumulation (~44 nm from the beam-facing surface) was predicted to equal 

2.4×10-3dpa/s, so that the total number of displacements during the whole irradiation reached ~26.9 

dpa. The helium accumulation rate was about 0.85 appm/s, so that the estimated He concentration 

in the peak by the end of irradiation reached ~8.5×103appm. Thus, the average ratio of dpa 

production to He accumulation in the region of interest was ~3×10-3 dpa/appm. 

<Fig.1> 

In the single beam regime, the sample of ODS-Eurofer steel was implanted with 10keV 

He+ ions falling normally to the sample surface. The damage and He concentration profiles for 

single beam irradiation predicted by SRIM based calculations are shown in Fig. 1(b). Since He+ 

ion flux and fluence were the same as for the dual beam implantation experiment, the same He 

accumulation rates and final He concentrations were achieved, but the predicted damage 

generation rate was only 3.9×10-5 dpa/s and the total number of displacements was 0.39 dpa. 

Hence, the average ratio of damage production to He accumulation was in this case only 5×10-5 

dpa/appm. 

2.2 TEM data accumulation and processing for swelling estimation 

After dual-beam irradiation, the sample of ODS-Eurofer was cleaned from both sides by 

ion milling system PIPS 693 using a 1 keV ion beam and 4–5°etching angle for 2 minutes and then 

directly used for transmission electron microscopy (TEM) investigations. After the single-beam 

irradiation, the samples were additionally thinned from the unirradiated side to the electron 

transparency using Tenupol-5 unit with the same electrolyte and thinning regime as those used 

prior to ion implantation. Electropolished samples were cleaned by ion beam etching in the same 

way as dual-beam irradiated samples. 
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TEM investigations were performed using a FEI Tecnai G2 microscope with LaB6 filament 

equipped with a Gatan image filter for EELS measurements. Among the three techniques typically 

used to produce cavity images, namely - the trough-focal series method in a conventional bright 

field (BF) TEM, scanning TEM in bright field (BF STEM) and annular dark-field (ADF or 

HAADF) modes [29] or Aberration-Corrected X-Ray Spectrum Imaging [30], we have selected 

BF TEM trough-focal series method as the most straightforward one that allows rapid processing 

of large data arrays. In order to estimate the number density of cavities, the local thickness of TEM 

samples was measured by EELS log-ratio approach, which causes an uncertainty of ±10% [31,32]. 

Transmission electron microscopy is a well-established technique for the swelling 

estimation based on the parameters of visible cavity populations. In the approach prescribed by 

ASTM standard [33], the swelling, SASTM, is defined in terms of the cumulative volume  of 

all cavities in the visible area,  

 
,  

where V is the volume of the visible area. However, in the case of He implantation into ODS steel, 

which results in several different cavity families associated with different microstructural 

components of the steel, this approach is insufficient because it doesn’t allow to figure out the 

contributions of each cavity family to the cumulative swelling. For this reason, here we evaluate 

the cumulative swelling, S, by an indirect approach as: 

 ,  

where  is the swelling value associated with a particular cavity family denoted 

with superscript k (e.g. k =V for cavities in the defect-free grain volume and k =D, GB, and P for 

cavities on dislocations, grain boundaries, and oxide particles, respectively), and are the 

average volume and number density of bubbles in the k-th family type.  

The average cavity volume for the cavities located in the grain matrix and associated with 

extended defects (dislocations and grain boundaries) is calculated as: 

 
 , (3.1) 

where  is the effective bubble diameter obtained from a statistical analysis of the bubbles 

associated with each microstructural component. 

The cavities attached to Y2O3 nanoparticles in ODS steels typically have a specific lens-

like shape [34], which is also true for the current study, see Fig. 2(a). So the cavity volume is 

noticeably less than that predicted by equation (3.1). For this reason, the volumes of cavities 

attached to oxide nanoparticles were calculated as: 
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, (3.2) 

where R is the cavity radius,  is the Y2O3 nanoparticle radius, and the angles a and b are as 

defined in Fig. 2(b).  

<Fig. 2> 

The wetting angle a for equilibrium cavities is determined by the surface tension on the 

interfaces that meet at the cavity rim [35],  

 , (3.3) 

wheregsm and gsc stand for the specific surface energies of substrate interfaces with the matrix and 

the vacuum, respectively, while g is the surface tension for the cavity-matrix interface. Parameter 

a is thus fully determined by material properties. The direct measurements on TEM images (such 

as that shown in Fig. 2(a)) has confirmed that in our case the wetting angle is practically insensitive 

to either the nanoparticle size or implantation conditions and equals to .The cosines 

entering equation (3.2) can be expressed in terms of R, , and a as (see Appendix): 

 
. (3.4) 

In order to estimate the contributions of different families of He filled cavities to overall 

swelling, one must know not only the average cavity sizes that are directly measurable in TEM 

images, but also the cavity number densities per unit volume. However, only the number density 

of cavities in the grain matrix can be estimated directly from TEM images. For cavities on extended 

defects, reliable estimates can be obtained only for specific bubble number densities, , such 

as the bubble number density per unit dislocation length or per unit grain boundary surface. In 

order to convert specific number densities into those normalized per unit sample volume, the 

following relation was used 

, 

where is the average density of relevant extended defects per unit material volume typical for 

the studied material. The average volumetric densities of dislocations can be taken from the earlier 

studies of non-irradiated ODS-Eurofer [2,9-13,36]. However, to the best of our knowledge, the 

volumetric density of grain boundaries required for the swelling calculations has not been reported 

in the literature. In this study, the density of grain boundaries was estimated using EBSD 

measurements on unirradiated samples using the Oxford Instruments CHANNEL 5 EBSD system 
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installed on EVO XVP SEM microscope. Only high angle grain boundaries with misorientation 

angle ˃ 10° were considered. Finally, for the bubbles on oxide particles we can rely on the 

observation that each oxide particle contains typically a single cavity, so that the volumetric 

number density of this cavity population coincides with the typical number density of yttria 

particles in ODS-Eurofer. The typical parameters for microstructural features used below to 

estimate the swelling contributions from different bubble families are summarized in Table 1. 

<Table 1> 

Strictly speaking, in addition to nanosize oxide particles, ODS-Eurofer contains also 

relatively large particles of M23C6 carbide that are also potentially able to promote He-filled cavity 

formation [37]. However, their number density is much lower than that of oxide particles and the 

electron transparent zones of the studied TEM samples contained no visible carbides. So, a 

potential contribution to swelling from bubbles located on carbide precipitates is not taken into 

account here. 

 
3. Experimental observations 

3.1 Microstructural analysis 

Typical BF TEM trough-focus images of different zones on ODS-Eurofer steel sample 

subjected to in situ simultaneous dual-beam He+ + Au 2+ irradiation and to single-beam He+ ion 

implantation at 823 K are shown in Figs.3(a,c) and 3(b,d), respectively.  

<Fig3> 

As can be noticed in Fig. 3, the qualitative patterns of helium filled cavity development are 

largely similar in both irradiation regimes. He filled cavities are met not only in the grain bulk, but 

decorate grain boundaries, dislocations, and yttria nanoparticles as well. In fact, all visible oxide 

nanoparticles are decorated with cavities, hosting mostly a single cavity per particle, or, in very 

rare cases, two cavities. As a result, cavities are non-uniformly distributed in space and follow 

local variations in associated microstructure. The dislocations themselves are not visible in the 

imaging conditions optimized for cavity observation. Within each of both irradiation regimes, 

populations of He-filled cavities located in the grain bulk and associated with extended defects 

(grain boundaries and dislocations) demonstrate quite similar bubble sizes, while the cavities 

attached to oxide nanoparticles are notably larger than those in the other bubble families. At the 

same time, the accelerated defect production provided by the secondary Au2+ beam results in the 

increase of the average cavity sizes for all described bubble families as compared to single-beam 

regime. Moreover, as can be noticed in Fig.3(c), after the dual beam irradiation some Y2O3 

nanoparticles are associated with cavities at least 3 times larger than cavities on other 

microstructural components. This effect was not observed after single-beam He+ implantation. For 

(a) (b) 
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a clearer view, BF TEM images of He cavities of different sizes attached to nano-oxides in ODS-

Eurofer sample after dual beam He++Au+ irradiation are shown in Fig.4 at a higher magnification.  

<Fig4> 

It has been found that the size of a cavity attached to an Y2O3 particle correlates with the 

size of the host particle in both irradiation regimes; the larger the oxide particle, the larger is the 

associated cavity. A similar effect has been reported in the literature for steels containing 

nanoparticles of other oxide compositions (e.g. ZrO2, HfO2 and Y2TiO7 [38,39]) and seems to be 

a general trend for He bubbles on oxide particles. To characterize the effect in quantitative terms, 

the measured diameters of cavities on oxide particles are plotted in Fig. 5 versus their host 

particle diameters along with appropriate power law trend lines. The above mentioned general 

trend is clearly visible for both the dual-beam He+ + Au2+ irradiation and the single-beam He+ 

implantation. 

<Fig5> 

As can be seen in Fig. 5, in the single-beam He+ implantation regime the data are nicely 

described by a power law of the form . The best fit line for this regime (blue trend 

line in Fig. 5) is achieved for the fitting parameters a = 1.55 and b = 0.66. The absolute majority 

of bubbles have smaller sizes than those of the host particles (R<Rp), falling in the area shaded 

gray in Fig. 5. 

In contrast, after the dual-beam irradiation the cavities on yttria particles fall into two 

different subfamilies. For the most part, the cavities are smaller or comparable in size with the host 

precipitates, like in the case of single-beam implantation. The trend line for this subfamily is 

described by the power low with the same value of b and with a slightly larger a = 1.67.  

But there is also a group of ‘large’ cavities that strongly deviate from the single-beam trend 

line, having the sizes well above that of the host oxide particle. Defining (rather arbitrarily) the 

‘large’ cavities as those with the diameter exceeding that of the host particle (i.e. ), the 

dependence  can be roughly fitted by the power law with a = 1.55 and b = 1.02 (red trend 

line in Fig. 5). 

If we define the average size of cavities on oxide particles as the value predicted by the 

best fit power law for the average particle size in the steel (in our case  = 12 nm, see Table 

1), then the average cavity size for single-beam He+ implantation, =8.1 nm, is only slightly 

smaller than that for ‘small’ cavity population in the dual-beam irradiation case,  = 8.7 nm. 
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But the average size for the ‘large’ cavity population formed during the dual-beam irradiation is 

noticeably larger,  = 19.5 nm. 

Summing up, a typical bi-dimensional cavity size distribution for the cavities attached to 

yttria particles is observed after dual-beam He++ Au+ irradiation. Such kind of size distribution is 

not uncommon for steels irradiated in conditions characterized by high dpa/He ratios and is usually 

interpreted as a result of the so called bubble-to-void transition [42]. This means that the cavities 

that have accumulated a certain critical number of gas atoms do not need more gas in order to 

grow, increasing their size in a void-like manner by directly collecting radiation-generated 

vacancies. Usually only a small part of the whole cavity population undergoes the bubble-to-void 

transition. If we accept that this effect is responsible for our observations, the ‘large’ cavities can 

be treated as ‘voids’ in the sense that their sizes are no more related to the number of gas atoms 

they contain, but are rather determined by the level of radiation damage created by irradiation. The 

remaining ‘small’ cavities can be treated as nearly equilibrium gas bubbles. As can be noticed in 

Fig. 5, the ‘void’ population is associated with relatively large particles. This observation gives 

indirect evidence in support of the bubble-to-void transition occurrence in our case, as will be 

discussed in sect.5 below. 

3.2 Estimated contributions of different bubble populations to the swelling of ODS-Eurofer steel 

In order to estimate the relative contributions of different cavity families to swelling and to 

clarify a potential modification of the role of bubble-associated cavities that have undergone a 

‘small’ to ‘large’ transition, we have collected quantitative estimates of the parameters of all cavity 

families and their contributions to expected swelling in Table 2. For clarity, the data are also drawn 

in Fig. 6 for single-beam and dual-beam regimes in parallel. 

<Table2> 

<Fig6> 

As can be seen, within each sample there is relatively little difference in size between 

helium filled cavities in the bulk, on dislocations and at the grain boundaries (within ~10-20%). In 

both samples, cavities on yttria particles are the largest ones. At the same time, in terms of 

volumetric number density, the largest shares of the whole cavity population in both irradiation 

regimes are for cavities in the bulk and at the grain boundaries, whereas dislocations and, 

especially, oxide nanoparticles provide lower contributions. 

A comparison between two irradiation regimes presented in Fig. 6 clearly shows that an 

additional damage production by Au2+ ions systematically reduces the number density and 

increases the average sizes of bubbles located in the bulk and on extended defects. However, if 

one does not take into account the large cavities on oxide particles, the differences between the 

p
cD
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dual-beam and single beam irradiations are quite moderate. The most strongly affected are grain 

boundaries, where the additional damage production results in the increase of the average bubble 

size to  =7.1 nm, as compared to  = 4.8 nm in the single-beam implantation regime. In 

fact, only the appearance of large cavities (voids) on yttria particles constitutes a remarkable 

qualitative difference between the dual-beam irradiation and the single-beam He implantation.  

In terms of swelling estimation, the presence of two populations of cavities on yttria 

particles in the dual-beam irradiation regime makes the estimates of their contributions to swelling 

uncertain because of the poor statistics of large cavities and the impossibility to find out which 

part of bubbles has undergone bubble-to-void transition. Therefore, in the subsequent analysis the 

swelling values associated with oxide nanoparticles are calculated for two limiting cases, either 

completely neglecting ‘large’ cavities, or assuming that all bubbles on oxide particles undergo the 

bubble-to-void transition. The latter assumption is obviously invalid in our conditions; it is used 

only to estimate the possible upper bound for swelling related to cavities on oxide particles.  

As can be seen, the addition of a secondary Au2+ beam increases contributions to swelling 

for all cavity populations, either in the bulk, or on microstructural defects. The magnitude of the 

increase is not very large, however, if one does not consider large cavities on oxide particles. The 

strongest effect is observed for He cavities in the bulk; their contribution to swelling increases 

approximately twice. Overall, if large voids on oxide particles are not taken into account, the effect 

of accelerated damage on swelling is very moderate and, among the microstructural defects, the 

largest contribution is provided by grain boundary cavity population, just as is the case in the 

single-beam helium implantation regime.  

However, the creation of large voids on oxide nanoparticles, if it indeed can be ascribed to 

the bubble-to-void-transition, changes the situation with swelling drastically, as illustrated in 

Fig.6(d). When neglecting the contribution of large voids, the swelling in the dual-beam irradiation 

case is only 1.7 times larger compared to the case of single-beam helium implantation. In case 

where all the bubbles associated with nanoparticles would undergo such a transition, their 

contribution to swelling would increase by an order of magnitude, to 3.3%, i.e. well above the 

contribution of any other cavity family. The expected cumulative swelling would then be higher 

than the single-beam He+ implantation relevant value by a factor of 6.65. In reality, the swelling 

value for dual-beam irradiation conditions falls somewhere between the two limiting values. But 

one should not forget that with the increase of irradiation dose the swelling contribution from the 

large voids grow much faster than could be provided by all He bubbles populations because the 

growth of large voids is no longer controlled by the number of helium atoms they retain. Therefore 

it is clear that bubble-to-void transition qualitatively changes steel resistance to swelling. 
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4The mechanism of bubble-to-void transition acceleration by oxide nanoparticles  

The results of dual-beam He++Au2+ ion irradiation demonstrate that steel saturation with 

ODS oxide particles results in the creation of large cavities that are not observed in the case of 

single-beam He irradiation. Having in mind that the main difference between these regimes is the 

much higher dpa/He introduction ratio in the case of double-beam irradiation, it has been assumed 

that the appearance of large cavities resulted from bubble-to-void transition, which is known to be 

simplified by the increase of vacancy supersaturation in the irradiated material [8]. A specific 

feature of the observed large cavities was their attachment to oxide nanoparticles, which indicates 

that oxide particles might trigger the bubble-to-void transition. The physical reasons for this may 

be twofold. First of all, a cavity-associated bubble has smaller volume as compared to a bubble of 

the same size in the bulk and thus requires less gas atoms to reach the pressure, needed for the 

transition. Second, it was experimentally observed that the effective diameters of bubbles on oxide 

particles are generally larger than those of bubbles in the bulk or bubbles associated with extended 

microstructural defects, such as dislocations or grain boundaries. This might also accelerate the 

achievement of a critical size for the bubble-to-void transition, provided the critical transition size 

for bubbles on particles is not too different from that for bubbles in the bulk. In this section we 

suggest a simple quantitative description of the bubble-to-void transition for He bubbles associated 

with spherical particles. Having in mind the experimental picture, we assume that a particle hosts 

only a single bubble. In addition, we assume that the cavity is formed on the matrix side of the 

particle/matrix interface and has approximately spherical form. The latter is not exactly true for 

the experimental observation above (the voids are typically faceted), but can be considered as a 

reasonable approximation to simplify the calculations without strongly distorting the expected 

trends. 

4.1 The basics of bubble-to-void transition theory 

Theoretical description of large-scale irradiation-induced effects in structural materials 

(such as swelling and irradiation creep) is commonly done in the framework of the so called kinetic 

rate theory [43,44], which is a version of the mean-field statistical description of a many body 

problem, involving multiple point defect sinks (voids and/or gas bubbles, precipitates, 

dislocations, grain boundaries) interacting via diffusional transport of point defects (vacancies and 

self-interstitials) created in materials by irradiation [45]. Within this formalism, the equation of 

cavity growth rate (that is the rate of cavity volume, V, change with time t) is commonly written 

down in the from [46], 

 , (4.1) ( )thv v v v i i i
dV Y D C C YDC
dt

é ù= - -ë û
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where Dm and Cm are the diffusion coefficients and the mean-field (‘average’) concentrations of 

point defects of type m (m = v or i for vacancies or interstitials, respectively),  is the equilibrium 

vacancy concentration at the cavity surface and Ym are numerical coefficients, commonly referred 

to as ‘bias factors’. By definition, bias factors of point-defect sinks are properties of sinks and are 

insensitive to the mean-field point defect concentrations [45]. In turn, the mean-field point defect 

concentrations are not sensitive to properties of individual point defect sinks, being determined by 

the balance between the efficiency of point defect generation by irradiation and the full point defect 

loss efficiency on the whole ensemble of point defect sinks present in the material. 

In the simplest case of a spherical cavity with radius R in the bulk, the cavity bias factors 

have a simple form, Yi = Yv = 4pR [43], but in more general cases, they can be quite complicated 

functions of both cavity size and additional parameters (see e.g. Ref. [47] and references therein). 

For example, when cavities contain noticeable amount of captured gas atoms, such additional 

parameters can include internal gas pressure and the elastic properties of point defects and material 

itself. When cavities are associated with other microstructural defects, such as dislocations, grain 

boundaries, or precipitates, the cavity bias factors can be additionally modified by the host 

structural defect assistance to the point defect transport to cavities and thus be very different for 

vacancies and interstitials. However, in order to explain the reasons for the bubble-to-void 

transition, it is sufficient to restrict ourselves to the simplest form of bias factors, as suggested in 

the original paper [8] that has introduced the concept of bubble-to-void transition. 

Equation (4.1) can be rewritten as  

 , (4.2) 

where D is the effective vacancy supersaturation, defined as  

 , (4.3) 

,  is the vacancy concentration in equilibrium with a flat 

material surface, - the vacancy formation energy in the bulk, kB – the Boltzmann constant and 

T – the absolute temperature. The growth or shrinkage of an individual cavity is thus determined 

by the relation between the effective vacancy supersaturation and . 

For the simplest case of a cavity without internal gas (i.e. void) it is generally true that its 

growth rate remains negative for all void sizes smaller than a certain critical value. For a spherical 

void, this statement can be reformulated so that, in order for a void to grow, its radius R should 

exceed a certain critical value, Rc. Then the void grows permanently, provided D does not fall 
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down with time. In order to demonstrate this, let us set , so that the effective vacancy 

supersaturation does not depend on void size, while is described by the Gibbs-Thomson 

equation, 

 , (4.4) 

where W is the atomic volume in the matrix and  is the surface traction that can be expressed in 

terms of specific free surface energy (surface tension), g, as  

 . (4.5) 

It can be easily verified, that the difference  monotonically increases as a function of R and 

is positive only provided  

 , (4.6) 

where Rs = 2gW/kBT and s = lnD. The case of R = Rc corresponds to an equilibrium (the void neither 

shrinks, no grows), but the equilibrium is an unstable one. 

A more complicated situation is met, when the material accumulates during irradiation a 

certain amount of gas (typically, helium) that is poorly soluble in the matrix and precipitates in the 

available empty spaces, including vacancies and small cavities (vacancy clusters). When helium 

is accumulated in a cavity, it prevents complete cavity dissolution. Hence, a gas-containing cavity 

(gas bubble) should have, in addition to Rc, one more equilibrium size, Rg, which answers the 

situation where the cavity surface tension is approximately counterbalanced by the gas pressure 

inside the bubble.  

The expression for the equilibrium radius Rc in the case of gas bubbles is given by a more 

complicated relation than equation (4.6), because the surface traction in equation (4.4) is now 

described as  

 , (4.7) 

where P is the internal gas pressure in the cavity, which is also sensitive to the bubble size. For a 

bubble containing a fixed number of gas atoms, ng, one has to use an appropriate equation of state 

(EOS) in order to relate pressure to the bubble volume. A typical equation of state can be written 

down as 

 , (4.8) 
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where x = ng/V is the gas density in the cavity, Vg - the gas atom 'volume', and F- some function 

of the gas density, which tends to unity, when x® 0. In the latter case, the equation of state 

transforms into the ideal gas equation. Assuming it for simplicity (in spite of the fact that for small 

gas bubbles the ideal gas approximation works poorly), the equation for the equilibrium bubble 

radii can be written down in the form  

 , (4.9) 

where we have introduced the notation 

 . (4.10) 

When treated as a function of R at a fixed value of ng, Q has a unique minimum at the void size  

  , (4.11) 

while the value of function Q in the minimum is 

 . (4.12) 

It is seen that equation (4.9) can be satisfied only provided Q(Rmin) £ 0, or 

 . (4.13) 

Otherwise, Q is positive for all R, meaning that bubbles of all sizes tend to grow. The limiting case 

for the existence of positive roots of Q corresponds to exact equality, when 

  (4.14) 

and the number of gas atoms in such cavity, according to eq. (4.11), equals to 

 . (4.15) 

It is convenient to use these R* and  values in order to introduce non-dimensional 

variables  and  as normalized bubble radius and normalized gas content in 

the bubble, respectively. In these variables, Q can be expressed in a very simple form,  

 . (4.16) 

Finally, when expressed in the dimensionless variables, equations (4.11) and (4.12) are reduced to  
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     and    . (4.17) 

The plot of Q as a function of normalized bubble radius r at different values of hg is shown in 

Fig.7.  

<Fig7> 

As can be seen, Q(r,hg) has two roots for hg< 1. The smaller one corresponds to stable 

equilibrium size Rg and the larger one – to the critical size for unlimited cavity growth, Ru. In 

practice, when insoluble gas is introduced into the matrix gradually, during either irradiation (e.g. 

via transmutation reactions) or ion implantation, the growth of cavities initially is only possible 

due to gas atom accumulation in vacancy clusters. Typically, in irradiation/implantation conditions 

the rate of vacancy production in metals is much higher than that of helium accumulation and the 

experimental temperatures are high enough to guarantee vacancy mobility. So, when a cavity 

captures a gas atom, its volume can accommodate to the new gas content, corresponding to the 

lower root of Q. However, this process continues only while the gas atom number in the cavity 

remains smaller than . When this limit is exceeded, the cavity does not need more gas atoms in 

order to grow and grows in a void-like mode, not caring about further accumulation of gas atoms 

(even if it continues). For this reason,  is usually referred to as the critical number of gas atoms 

for the bubble-to-void transition and R* - as the bubble-to-void transition radius. 

4.2 Gas bubble growth on second-phase particles 

Let us consider now a spherical bubble that grows on a spherical second-phase particle and 

thus has a shape shown in Fig. 2(b). The cavity growth law can still be described by equation (4.2), 

but the cavity bias factors are now given by more complicated expressions than for a cavity in the 

bulk. However, as far as there is no substantial difference between Yv and Yi, this is not important 

for the problem we consider. It is also not a priori evident how the expression for the factor  

should look like, but it can be easily shown that equation (4.4) remains applicable for a spherical 

cavity segment on a spherical substrate. 

Indeed, when the surface tension can differ on different segments of the cavity surface, S, 

the equilibrium vacancy concentration at the cavity/matrix interface can be obtained from the 

general requirement that the system free energy should be at minimum when the cavity is in 

equilibrium with a solution of vacancies in the environment. The change of the system free energy, 

dF, on adding one vacancy (i.e. a small volume dV = W) to the cavity can be written down as 
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 , (4.18) 

where µ is the chemical potential (per vacancy) of vacancies in the bulk and integration of surface 

tension is over the whole cavity surface. Having in mind that the average vacancy concentration 

in the bulk is extremely low even in the ion implantation conditions (simple estimates indicate that 

in our experimental conditions it does not exceed 10-9, one can use for µ the dilute solution 

approximation, namely [48] 

 .  

In equilibrium one has dF = 0, which immediately gives for the equilibrium concentration the 

relation 

 . (4.19) 

Since we assume that the cavity shape at a small change of the cavity volume quickly 

accommodates itself to the equilibrium one, being always represented by two spherical interfaces 

(one with the substrate and another with the matrix), then  

 , (4.20) 

where Vc it the volume of the cavity, Sc – the area of the cavity-matrix surface, and Ssc – the area 

of the cavity-substrate interface. Taking into account equation (3.3), this is reduced to 

 , (4.21) 

where DSc = Sc - Ssc cosa. 

In order to calculate the derivative dDSc/dVc, one needs explicit equations for the volume 

and surface area of a cavity that lies on a spherical particle with radius Rp. The volume is given by 

equation (3.2), while the segment surface areas are 

 , (4.22) 

where angles a and b are as defined in Fig. 2(b). Having in mind equation (3.4), the cosines in 

equation (4.22) can be written down in a compact form as  

 , 

where we have introduced new variables , , , 

and z = R/Rp. With these variables, one can write 
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  (4.23) 

and 

 
,  (4.24) 

so that the derivative dDSc/dVc, can be calculated as 

 
. 

The derivatives over z are obtained straightforwardly, 

 
    and    ,  

and hence  

 , (4.25) 

which has exactly the same form as for a cavity in the bulk. Thus, equation (4.21) is reduced to 

equation (4.4). 

The equation for the equilibrium bubble radii can then be written down in the form identical 

to equation (4.9), where function Q has the from (assuming the ideal gas law for the gas pressure 

in the cavity),  

 . (4.26) 

The only difference of equation (4.26) from equation (4.10) is that the volume of the cavity is now 

smaller than that for the cavity in the bulk.  

In a special case considered in Ref. [17], where cavity lies on a flat matrix-substrate 

interface (b = 0), the equation for the equilibrium bubble radii can be written down in terms of 

non-dimensional void radius and gas content as 

 . (4.27) 

The minimum of Q lies at the relative void size rmin, defined by equation 

  , (4.28) 
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 . (4.29) 

The bubble-to-void transition occurs when Q(rmin) = 0, that is at rmin = 1, exactly the same as for 

the bubble in the bulk. However, the critical number of gas atoms required to reach the transition 

radius differs, being equal to  

 . (4.30) 

Depending on a, the factor fl(a) varies as shown in Fig. 8, never exceeding unity. So in this 

particular limiting case the bubble-to-void transition radius R* for a spherical bubble segment does 

not change as compared to the bubble in the bulk, but the critical number of gas atoms decreases 

for all wetting angles a. 

<Fig8> 

Now let us consider a cavity located on a spherical particle with radius Rp. As can be 

noticed in equation (4.24), the cavity volume in this case is a function of the ratio z = R/Rp. The 

plot of normalized cavity volume  as a function of z is shown in Fig.9 for different 

values of wetting angle a. 

<Fig9> 

In non-dimensional variables r and hg, the equation for equilibrium cavity radii is reduced to 

 . (4.31) 

The location of the minimum of this function can be found from equation 

 , (4.32) 

while the value of the function in the minimum point is 

 , (4.33) 

where  and 

 . (4.34) 

It is worth mentioning that the minimum value of Q in the ideal gas approximation is insensitive 

to the number of gas atoms in the bubble.  
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The dependence of c on the void to particle radii ratio z is shown in Fig.10 for different 

values of the wetting angle. In the limiting cases of small and large z it is described, respectively, 

by the relations 

 . 

<Fig10> 

An implicit equation for the bubble-to-void transition radius  is obtained by equating to 

zero, which gives 

 , (4.35) 

Since  is a positive function for all possible arguments, the bubble-to-void transition radius for 

a cavity on a spherical particle is larger than for similar size bubbles in the bulk or on a flat 

substrate. But the increase of is relatively small for all particle sizes, especially when the 

wetting angle is not too close to zero. In a zero-order approximation we can get an analytical 

parametric dependence of  on the relative bubble size by setting  in the r.h.s. of equation 

(4.35), 

 . (4.36) 

The difference between the exact values of and the approximate ones obtained using this 

simplification is shown in Fig. 11(a). 

<Fig11> 

Substituting  into equation (4.33), one obtains the equation for the critical number of 

gas atoms, , required to reach the bubble-to-void transition size, 

 . (4.37) 

The dependence of  on the normalized particle size Rp/R* is shown in Fig. 11(b). The same 

figure shows also the approximate analytical dependences obtained by setting  in the first 

two terms in the r.h.s. of equation (4.37), namely 

 . (4.38) 

It can be seen that eq. (4.38) gives a reasonable approximation of the critical gas content in the 

bubble for wetting angles exceeding roughly 45°. 
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Finally, let us discuss how the predictions for the critical bubble size and gas content will 

change if we discard the ideal gas approximation. In this case the relation between the gas pressure 

and the gas density in the bubble is given by relation (4.8). Correspondingly, the equation 

determining the equilibrium bubble radii has the form  

 , (4.39) 

which can be rewritten in an equivalent form as 

 , (4.40) 

where 

 
 (4.41) 

and 

 . (4.42) 

The value rmin of cavity radius in the minimum of function Q is determined by the 

requirement of vanishing derivative of Q at rmin, which is equivalent to 

 . (4.43) 

Using now the fact that for a critical bubble both equations (4.40) and (4.43) should be satisfied 

simultaneously, the equations for the critical gas atom number  and critical radius  can be 

written down in the form closely resembling equations (4.32) and (4.35),  

  (4.44) 

and 

 , (4.45) 

where 

 . (4.46) 

These relations lead to some general conclusions even without specifying a particular form 

of EOS. First of all, whatever is the equation of state, one has F(0) = F1(0) = 1. Second, when the 

argument y (proportional to the number of gas atoms in the cavity) increases, the function F(y) 
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grows monotonically, tending to infinity as y® 1. Correspondingly, F1 (y® 1) ® 0. Thus, both 

F1(y) and F1/F vary within the interval [0,1]. Since 1-2c  also varies within the same limits (see 

Fig. 10), the account of EOS deviation from the ideal gas law results in the shift of critical bubble-

to-void radius from 1 closer to 1.5. For the critical number of gas atoms the trend is less clear and 

requires knowledge of the particular equation of state.  

Let us consider, for example, hard-sphere equation of state (HSEOS) in the Carnahan-

Starling approximation [49], which has the form of equation (4.8) with  

 . (4.46) 

In the case when the cavity filling gas is helium, the gas atom 'volume' Vg can be taken equal to 

5.42 Å3 [50]. Equations (4.44), (4.45) become now coupled and allow only numerical solution that 

depends on three parameters, namely α, Rp, and θ. The latter is defined in equation (4.41) and is 

directly proportional to the efficient vacancy supersaturation, θ@ 0.23s, where we have used the 

above-mentioned value of Vg and W = 11.8 Å3 for the atomic volume of iron. The calculated plots 

of  and  as functions of the particle radius are shown in Fig. 12 for different values of s and 

α. 

<Fig12> 

As can be seen, the normalized critical radii are predicted to be always larger than the 

corresponding values for the ideal gas approximation, while the normalized gas density in the 

bubble is lower. It is worth mentioning that the trend remains valid in the limiting case a → 180°, 

when the solution becomes formally equivalent to that for a spherical gas bubble in the bulk. The 

latter case was considered earlier in Ref. [7], where, having in mind the corrected presentation of 

calculated results given later in Ref. [42], exactly the same trend was predicted. 

5. Discussion  

As follows from the theoretical considerations in sect. 4, helium bubbles that grow on oxide 

particles require less gas atoms for the bubble-to-void transition as compared to bubbles in the 

bulk, in spite of slightly larger critical radius. Hence it is quite reasonable that the oxide particles 

serve as triggers for the bubble-to void-transition. It is interesting to estimate, however, how good 

the model can perform in describing the effect of dpa/He ratio increase on the onset of bubble-to-

void transition in quantitative terms.  

According to equation (4.14), the critical radius R* for the bubble-to-void transition is 

inversely proportional to the efficient vacancy supersaturation, which relates, in turn, to the 

average point defect concentrations in the matrix that are determined by the balance of point defect 
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generation rate by irradiation, G, and the strengths of internal sinks for point defects,  and , 

as 

 
.  

Using these relations, one can re-write s as 

 , (4.47) 

The sink strengths in this equation are total sink strengths that are calculated as the sums 

of strengths of all point defect sinks available in the material [51], 

 
, 

where j runs over all possible sinks. Four major groups of sinks are present in ODS-Eurofer steel, 

namely dislocations, grain boundaries, oxide particles and cavities, some of which are located in 

the bulk and some are attached to other structural defects. When estimating the sink strengths, we 

assume that the presence of cavities on dislocations and grain boundaries does not affect much the 

sink strengths of extended defects and estimate them according to standard relations. In particular, 

for dislocations we assume [51]:  

 , 

where  is the dislocation density and - the dislocation bias factors, determined as 

 
, 

where are the dislocation capture radii for point defects of type m. For numerical estimates the 

latter can be taken equal to  and , where b is the dislocation Burgers vector [52]. 

The grain boundary sink strength can be estimated as [53] 

 
, 

where dg is the effective grain diameter, which was estimated for the elongated grains of ODS-

Eurofer steel as the average of the mean grain length and width. Sink strength of He-filled cavities 

in the bulk is calculated as [51] 
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where rc and  are the average cavity radius and number density in the grain bulk. Finally, having 

in mind that all Y2O3 particles are covered with single cavities with the size comparable to that of 

the particle, the sink strength of such particle-bubble complexes can be roughly estimated as  

 
, 

where  is the effective radius of the oxide-cavity complex,  and are the 

average radii of oxide nanoparticles and the associated cavities, respectively, and  is the particle 

number density.  

Most of the input parameters necessary for the estimation of sink strengths can be found in 

Tables 1 and 2, while the resulting sink strengths are collected in Table 3 for both irradiation 

regimes used in the current study. Taking the self-diffusion coefficient equal to

 cm2/c [54] and assuming the temperature of 823 K, we get s@ 1.7 

for the single-beam helium implantation case (G = 4×10-5 dpa/s) and s@ 5.9 for the dual-beam 

irradiation (G = 2.4×10-3 dpa/s). In other words, the critical radius of bubble-to-void transition in 

the dual-beam irradiation case should be more than three times lower than in the case of single-

beam implantation, even if we take into account the correction due to the non-ideal helium EOS 

in the bubbles. Qualitatively, this can explain the experimental observation that the bubble-to-void 

transition has occurred only in the dual-beam irradiated sample. 

At the same time, the critical radii predicted by the theory are definitely too small. For the 

typical values g = 2 J/m2 and W = 11.8 Å3, we get Rc = 4.2 nm, which would mean the critical 

cavity diameter of 3.3 nm for single-beam irradiation, while for the dual-beam case it would be 

only ~ 1 nm. The account of the non-ideal helium behaviour in the bubbles increases these 

estimates, but no more than by 20-30 %. In reality it should be at least an order of magnitude larger 

because, judging from Fig. 5, the transition starts from the bubble diameter ~10 nm. It should be 

kept in mind, however, that a discrepancy in quantitative estimates of critical cavity size is quite 

common in the literature and can be due, in particular, to the neglect of the cavity size dependence 

of cavity bias factors, which is non-negligible for cavities in the nanometer size range [47].  

Finally, it is worth mentioning that, as can be noticed in Fig. 11(b), small particles (with 

Rp/R*<1) weakly affect the critical gas content  in particle-associated cavities, whatever is the 

wetting angle. Only particles with the size comparable or larger than the critical one in the bulk 

remarkably decrease the critical gas content in the bubble. In practical terms, this means that only 

sufficiently large second phase particles can be efficient triggers for the bubble-to-void transition, 

promoting the void swelling onset. This prediction is in agreement with both the current 
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experimental results and the earlier findings [18,19,22]. The effect is especially pronounced for 

moderate wetting angles, including that typical for cavities on yttria particles. 

6. Summary 

The most important findings of this study can be summarized as follows. 

(1) The qualitative patterns of bubble formation in ODS-Eurofer steel implanted at 823 K 

with 10keV He+ ions to ~8.5×103 appm He in either a single beam regime or simultaneously with 

a secondary 4MeV Au2+ ion beam are largely similar in spite of a strong increase of radiation 

damage production by the secondary beam. In both cases, one observes the partitioning of bubbles 

between the bulk and various microstructural defects - dislocations, grain boundaries and oxide 

nanoparticles. In quantitative terms, the effect of the damage generation rate increase is equivalent 

to the effective temperature shift towards higher temperatures, being manifested in the decrease of 

bubble number density and the increase of bubble average size for all bubble families. The only 

exception is the number density of bubbles on oxide nanoparticles, which remains in one-to-one 

correspondence with the particle number density.  

(2) The only important qualitative effect caused by strong acceleration of damage 

production with a secondary gold beam is the formation of large cavities on some oxide particles. 

The effect is interpreted as a manifestation of the bubble-to-void transition caused by the increase 

of the effective vacancy supersaturation in the dual-beam irradiated sample.  

(3) The estimated swelling due to visible He bubbles is increased by the dual-beam He+ + 

Au2+ irradiation as compared to single-beam He+ implantation, but, disregarding the contribution 

from large voids on oxide particles, the increase is quite moderate and can be rationalized in terms 

of the effective temperature shift associated with the increased damage production by the gold ion 

beam. However, the bubble-to-void transition, even though taking place on a minor part of oxide 

particles, bears potential risk of strongly accelerating swelling.  

(4) A theoretical model of bubble-to-void transition for gas bubbles on second-phase 

particles is developed. The model predicts that the critical radius for bubble-to-void transition for 

such bubbles increases (up to 50 %, depending on the bubble and particle parameters) as compared 

to that for bubbles in the bulk, but the critical number of gas atoms promoting the transition 

decreases. The effect is most pronounced for relatively large host particles, which are thus the most 

probable candidates to launch the bubble-to-void transition, which agrees well with the available 

experimental observations. 
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Appendix. Derivation of equations (3.4) 

Equations (3.4) can be easily derived if one notices that the intersection line of two spheres 

(a particle and a void) is a circle, whose radius r can be expressed as either  or 

, see Fig. 2(b). Hence 

 , (A.1) 

which is equivalent to  

 . 

This immediately gives the first of two formulae in equation (3.4), 

 , (A.2)

 where positive sign should be retained when angle b is defined as in Fig. 2(b). The second one is 

obtained combining equations (A.1) and (A.2) as 
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List of Tables 

 

Table 1. Typical microstructural parameters of ODS-Eurofer steel in tempered state 

Microstructural component Parameters Values Ref. 

Grain boundaries Mean grain length 0.7 μm  
Means grain width 0.3 μm  
Volume density 7.7×10-6 m-1  

Dislocations Density 1.3×1014 m-2 [12,13] 

Oxide nanoparticles  Average diameter 12.0 nm [34] 
Number density 10.0×1021m-3 [10] 

 

Table 2. Comparison of average sizes and volume number densities of cavities and swelling 

contributions for different cavity populations in the ODS-Eurofer steel sample after dual-beam 

He++Au 2+ and single-beam He+ irradiations 

Structural 
component  

Dual beam He++Au2+ irradiation Single beam He+ implantation 
Dc

k, nm NV
k, 

1022 m –3 
Sk ,% Dc

k, nm NV
k 

1022 m –3 
Sk , % 

Grain 
boundaries 

7.1±1.0 2.4±0.5 0.46±0.13 4.8±0.4 5.3±1.4 0.31±0.09 

Dislocations 6.2±0.8 1.5±0.2 0.19±0.05 4.7±0.2 2.0±0.2 0.11±0.01 

Y2O3 particles 8.7±0.9 
19.6±2.0* 

1.0±0.1 0.13±0.04 
3.28±1.04* 

8.1±0.8 1.0±0.1 0.10 ±0.03 

Volume 6.3±0.8 2.3±0.6 0.29±0.10 4.4±0.2 2.8±0.5 0.12±0.02 

Total 
 

7.2±2.0 1.07±0.36 
4.22±1.44* 

 11.1±3.0 0.63±0.22 

* Assuming that all the cavities associated with nano-oxides would constitute “void” population   
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Table 3. Estimated sink strengths for ODS-Eurofer steel samples after single-beam and dual-

beam irradiations. For cavities on oxide particles, the calculated effective diameters are also 

included.  

Sink type Parameter 

Estimated values 
in single-beam 

implanted 
sample 

in double-beam 
irradiated sample 

Grain boundaries Sink Strength, 1014 m-2 2.6 2.6 

Dislocations Sink Strength, 1014 m-2 2.1/2.7 a 2.1/2.7 a 

Cavities in the 
bulk 

Sink Strength, 1014 m-2 5.8 6.7 

Cavities on Y2O3 
particles 

Effective diameter, nm 14.5 14.8 (22.9 b) 
Sink Strength, 1014 m-2 9.10 9.3 (14.4 b) 

Total sink strengths, 1014 m-2 19.61 / 20.2 a 20.7/ 21.4 a 
25.8 / 26.5 a,b 

a The first number stands for vacancies and the second one - for interstitial atoms 
b In a case where all of the cavities associated with nano-oxides would transform into 
voids  
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Figure captions 

Fig. 1. Damage and implanted helium profiles for (a) simultaneous in situ dual beam irradiation 

regime with He+ and Au2+ ions, and (b) single beam irradiation regime with He+ ions only, as 

calculated using SRIM. The achieved total He content and irradiation dose are indicated in the 

legends. 

 

Fig. 2.(a) HRTEM image of a He filled cavity attached to yttria nanoparticle in ODS-Eurofer 

steel irradiated with a single He+ ion beam to ~ 8.5×103appm He. HRTEM imaging conditions: 

~0.3 μm underfocus. (b) Schematic representation of a lens-shaped cavity attached to spherical 

nanoparticle.  

 

Fig.3. Microstructure of ODS-Eurofer steel after irradiation at 823 K in (a,c) simultaneous dual-

beam regime with He+ and Au2+ ions and (b,d) single-beam regime with He+ ions. BF TEM 

imaging conditions: ~ 0.5 μm underfocus 

 

Fig.4. Affiliation of cavities with Y2O3 nanoparticles in ODS-Eurofer steel after simultaneous in 

situ dual beam implantation with He+ and Au2+ ions at 823 K. (a) A large cavity and (b) ordinary 

cavities. BF TEM imaging conditions: ~0.5 μm underfocus. 

 

Fig. 5.The observed bubble sizes on yttria nanoparticles vs. nanoparticle sizes in the ODS-

Eurofer steel sample after dual-beam He++Au2+ ion irradiation (filled triangles) and single-beam 

He+ ion implantation (open triangles). Error bars reflect 10% uncertainties associated with the 

size of the first Fresnel fringe on bubbles in underfocused images [40,41]. Also shown are the 

best power law fits for double-beam irradiation (red and black dot lines for ‘void’ and ‘bubble’ 

populations) and single-beam ion implantation (blue solid line). Gray shaded area corresponds to 

cavities with the size less than the size of host oxide particle ( ). 

 

Fig. 6. Comparison of (a) cavity mean sizes, (b) the volumetric number densities of cavities, and 

(c) the impact on swelling for different cavity families in ODS-EUROFER samples irradiated at 

823K in double beam (red bars) and single-beam (gray bars) regimes. Panel (d) compares the 

estimated cumulative swelling for the single-beam implanted sample and for two limiting cases 

(see main text) for the double-beam irradiated sample. 

p
c pD D£
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Fig. 7. The dependence of function Q on normalized cavity radius r at different values of 

normalized gas content in the cavity hg. (a) hg = 0; (b) hg = 0.1; (c) hg = 0.5; (d) hg = 1.0; (e) hg 

= 1.5. 

 

Fig. 8. Variation of the factor  as a function of wetting angle a. 

 

Fig. 9. The normalized bubble volume as a function of the cavity to particle size ratio z. 

Different curve colors correspond to different wetting angles as specified in the legend. 

 

Fig. 10. The dependence of c on the cavity to particle size ratio z. Different curve colours 

correspond to different wetting angles as specified in the legend. 

 

Fig. 11. The comparison of exact (solid lines) and approximate (dashed lines) values of (a)  

and (b)  as a function of the normalized particle size Rp/R* at different a. Curve colours in 

both panels are specified in the legend. 

 

Fig. 12. The critical parameters  (left column) and  (right column) as a function of the 

normalized particle size Rp/R* at different a (as indicated in the legends). Curves within each 

panel correspond either to the ideal gas law (solid) or to HSEOS with s = 1 (dash), 5 (das-dot) 

and 10 (dash-dot-dot). 
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