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1 Introduction

Holography is a conjectured property of quantum gravity. The claim is strongly substanti-
ated in spacetimes with a negative cosmological constant by the anti-de Sitter/conformal
field theory correspondence [1]. The strongest support for the duality has been gathered
in string theory backgrounds with extended supersymmetry. Observables that preserve
more supersymmetry are typically under better calculational control. In this paper we
concentrate on the holographic correspondence in three/two dimensions in a string theo-
retic framework. The string theory we study is exceptional in that all tree level higher
order curvature corrections in the inverse string tension expansion are under exact control.

One of our goals is to acquire a rigorous understanding of the Ramond-Ramond ground
states of the boundary conformal field theory, from the bulk path integral. Since we
compute a boundary partition function, the boundary manifold is a torus and we must
compute the bulk amplitude in thermal anti-de Sitter space.

To perform the calculation, we revisit the calculation of the free energy of bosonic string
theory in thermal three-dimensional anti-de Sitter space-time [2]. The spectrum of bosonic
string theory in AdS3 was determined in [3] and was confirmed through a path integral
calculation on thermal AdS3 [2]. We review the path integral calculation and confirm
the off-shell Hilbert space [3] more directly. We find a half-open bound on the allowed
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values of the quadratic Casimir of the discrete representations of the AdS3 isometry group.
Moreover, we extend the free energy calculation to superstring theory and then apply it
to the determination of all boundary Ramond-Ramond ground states. From the one-loop
amplitude dressed with fugacities corresponding to global charges, we prove positive energy
theorems and a BPS bound. Our calculation takes place in a thermally compactified global
anti-de Sitter space-time, with supersymmetric boundary conditions along the circle.

The path integral calculation proves that the spectrum of boundary chiral primaries
determined in [4, 5] is complete. Moreover, we perform the calculation in a manner that is
manifestly space-time supersymmetric. We also analyze the second quantized generating
function of boundary chiral primaries. We note that the gapped spectrum of chiral ring
elements leads to intriguing modular properties of the generating function. We find that
the second quantized partition function matches proposals for the dual conformal field
theory in the literature and argue that the second quantized partition function is the right
quantity to consider in the perturbative Neveu-Schwarz-Neveu-Schwarz string background.

The paper is structured as follows. We revisit the calculation of the one-loop vacuum
amplitude in Neveu-Schwarz-Neveu-Schwarz thermal AdS3 [2] in section 2. We extend the
calculation to the model with world sheet supersymmetry in section 3. Then, we apply
the knowledge gained to the AdS3 × S3 × T 4 solution in superstring theory in section 4
and to AdS3 × S3 × S3 × S1 in section 5. Section 6 is devoted to a thorough discussion
of the second quantized ground state partition function, including its modular properties.
We summarize our results and draw conclusions in section 7.

2 Thermal three-dimensional anti-de Sitter

In this section we review the calculation of the thermal AdS3 partition function in bosonic
string theory with Neveu-Schwarz-Neveu-Schwarz flux [2], and its relation to the spectrum
of string theory in AdS3 [3]. See e.g. [6] for earlier contributions. To the groundbreaking
analyses in [2, 3], we add the discussion of a feature that slightly modifies the description
of the discrete spectrum. We moreover draw attention to the fact that the treatment of
the descendant states in the continuum remains partial. We also provide an informative
off-shell description of the spectrum from the path integral perspective, reproducing the
analysis of [3]. This review with additions prepares the ground for the generalization to
the superstring in later sections.

2.1 The single string free energy

We work in a perturbative bosonic string background AdS3 × N with NSNS flux. The
AdS3 factor is described by a sl(2,R) Wess-Zumino-Witten conformal field theory on the
world sheet. The Wess-Zumino term represents the NSNS flux. We write the AdS3 metric
in the form:

ds2 = kbos
(
dφ2 + (dv + vdφ)(dv̄ + v̄dφ)

)
, (2.1)
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where we shall take the level kbos to be kbos = k+ 2.1 We are interested in calculating the
thermal free energy and as a consequence compactify the global time coordinate in AdS3.
In the coordinates at hand, this corresponds to the identification [2]:

φ ∼ φ+ β . (2.2)

It is possible to supplement the toroidal compactification of the boundary with a simultane-
ous twist of the phase of the coordinate v, which corresponds to introducing a complexified
temperature:

v ∼ eiµβv , v̄ e−iµβ v̄ . (2.3)

The parameter β is the inverse temperature and µ is the (imaginary) chemical potential for
the AdS3 angular momentum or boundary spin. From the point of view of the boundary
conformal field theory, these parameters are naturally encoded in the complex space-time
modular parameter τs.t.,

τs.t. = 1
2π (β µ+ iβ) . (2.4)

Our first goal is to compute the one loop amplitude for strings propagating on thermal
AdS3. Our calculation follows the original computation done in [2] and for some of the
details we refer to the original treatment. The path integral is weighed by the world sheet
Wess-Zumino-Witten action that includes the NSNS two form flux B(2):

S = kbos
π

∫
d2z

(
∂φ∂̄φ+ (∂v̄ + v̄∂φ)(∂̄v + v∂̄φ)

)
. (2.5)

We will consider the one-loop free energy in thermal AdS3 such that the world sheet con-
formal field theory lives on a torus as well. We denote the world sheet modular parameter
by τ . Because the thermal circle is topologically non-trivial, the embedding of the world-
sheet into spacetime is characterized by a pair of winding numbers (n,m). The thermal
identification implies that the worldsheet fields satisfy the boundary conditions:

φ(z + 2π) = φ(z) + βn , φ(z + 2πτ) = φ(z) + βm ,

v(z + 2π) = einµβv(z) , v(z + 2πτ) = eimµβv(z) .
(2.6)

It is important to note that the thermal circle is topologically non-trivial, while the an-
gular direction is not. The boundary conditions can be implemented by introducing the
function Φn,m,

Φn,m(z, τ) = i
4πτ2

(z(nτ̄ −m)− z̄(nτ −m)) , (2.7)

and defining the worldsheet fields

φ = φ̂+ βΦn,m , v = eiµβΦn,m v̂ , (2.8)

where the hatted fields are periodic on the world sheet. After substituting the fields (2.8)
into the action (2.5), we perform the path integral over the world sheet fields in the AdS3
factor:

Zsl(2)(β, µ, τ) =
∫
DφDvDv̄e−S . (2.9)

1The notation is convenient because starting from section 3, we will almost exclusively use the level k
of the supersymmetric generalization.
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The path integration follows the route laid out in [7, 8], and leads to the result [2]

Zsl(2)(β, µ, τ) = β
√
k

2π√τ2

∑
n,m

e
− (k+2)

4πτ2
β2|m−nτ |2+ 2π

τ2
(ImUn,m)2

|θ1(Un,m, τ)|2 . (2.10)

We used the notation θ1(ν, τ) for one of the Jacobi theta functions (see appendix A for
details) and the twist Un,m is a function of the thermal circle winding numbers (n,m) as
well as the spacetime modular parameter:

Un,m = τs.t.(nτ̄ −m) . (2.11)

The world sheet AdS3 partition function Zsl(2) is a crucial factor in the one loop vacuum
amplitude of bosonic string theory on the background AdS3 × N . We will choose our
background to be critical, such that the central charge cint corresponding to the internal
compact factor N equals cint = 26 − csl(2) = 23 − 6

k . The one loop vacuum amplitude
is calculated by integrating the thermal AdS3 partition function contribution, along with
the factors from the ghosts and the internal space, over the fundamental domain F0 of the
worldsheet modular parameter τ :

Z(β, µ) =
∫
F0

d2τ

τ2
2
Zsl(2)(β, µ, τ) ZghZint , (2.12)

where the contribution Zgh of the ghost sector and Zint of the internal conformal field
theory are:

Zgh = τ2 |η(τ)|4 , (2.13)

Zint = (qq̄)−
cint
24
∑
h

d(h, h̄) qhq̄h̄ . (2.14)

To perform the calculation, we use the unfolding trick of [9], in which the sum over the
winding number n in equation (2.10) is traded for a sum over copies of the fundamental
domain in the upper half plane strip between Re(τ) ∈

(
− 1

2 ,
1
2
]
[2]:

Z(β, µ) = β
√
k

2π

∫ ∞
0

dτ2

τ
3
2

2

∫ 1
2

− 1
2

dτ1

∞∑
m=1

e
− km

2β2
4πτ2

|η(τ)|4

|θ1(mτs.t., τ)|2 Zint . (2.15)

One of our goals is to confirm the on-shell spectrum of strings propagating on AdS3 [2].
This is made possible by identifying the one loop string partition function with the thermal
free energy of the spacetime theory [9]:

Z(β, µ) = −β F (β, µ) . (2.16)

We note that the free energy F consists of connected multi-particle contributions and can
be written as:

F (β, µ) = 1
β

∑
H1

log(1− e−βE+iβµJ) = −
∑
H1

∞∑
m=1

1
mβ

e−mβE+imβµJ = −
∑
m=1

f(mβ, µ) .

(2.17)
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Here H1 is the one-particle Hilbert space, and −f(β, µ) is the single string contribution to
the free energy [2]

f(β, µ) = 1
β

∑
H1

e−βE+iβµJ , (2.18)

where J is the spacetime spin operator. By comparing the equation (2.16) with the string
one loop vacuum amplitude (2.15), we obtain an expression for (minus) the single string
free energy f [2]:

f(β, µ) =
√
k

2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1/2

−1/2
dτ1 e

−k β2
4πτ2

|η(τ)|4

|θ1(τ, τs.t.)|2
Zint . (2.19)

Once the integral over the strip in the τ -plane is performed, one can read off the on-shell
spectrum of string theory in AdS3 ×N .

Here, we temporarily part ways with the analysis in [2]. Before we analyze the on-shell
content of the one-loop amplitude, we wish to determine an expression for the one loop
amplitude (or rather, the one loop integrand) in which we can identify the off-shell Hilbert
space of the theory. In order to perform this task, we import the technology developed
for the cigar sl(2,R)/u(1) coset conformal field theory [10]. To render the off-shell Hilbert
space manifest, it is useful to disentangle the dependence of the one loop amplitude on
the boundary modular parameter τs.t. from its dependence on the world sheet modular
parameter τ . To that end, we insert the following expression for the identity:

1 = τ2

∫ 1

0
d2s

∑
v,w∈Z

δ2(τs.t. − (s1 + w)τ + s2 + v) , (2.20)

where the holonomies si take values in the half-open interval [0, 1). We then use an integral
representation of the δ-function in order to isolate the exponential dependence on the
spacetime modular parameter:

δ(τs.t.−(s1τ−s2)−(wτ−v))=
∫
dλ1dλ2e

2πiλ1(Re(τs.t.)−(s1+w)τ1+s2+v)e2πiλ2(Im(τs.t.)−(s1+w)τ2)

=
∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2) .
(2.21)

Plugging in the expressions for the identity and the δ-function, and using the elliptic
properties of the θ1-function (see appendix A for details), we obtain another expression for
the single string free energy f(β, µ):

f(β, µ) =
√
k

2π

∫ ∞
0

dτ2

τ
1/2
2

∫ 1/2

−1/2
dτ1

∫ 1

0
d2si

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

e−(k+2)(2s1w+w2)πτ2e−kπτ2s
2
1

|η(τ)|4

|θ1(s1τ − s2, τ)|2 Zint .

(2.22)
We use the expansion of the inverse θ-function valid when |q| < |e2πiν | < 1 (see e.g. [11, 12])
to write

1
θ1(ν, τ) = i

z1/2

η(τ)3

∑
r∈Z

zrSr(q) , (2.23)
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where we introduced the fugacity z = e2πiν as well as the special series Sr:

Sr(q) =
∞∑
n=0

(−1)nq
n
2 (n+2r+1) . (2.24)

The single string free energy f reads:

f(β, µ)=
∫ ∞

0

dτ2√
τ2

∫ 1/2

−1/2
dτ1

∫ 1

0
ds1

∫ 1

0
ds2

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

√
k

2π|η(τ)|2 e
−(k+2)(2s1w+w2)πτ2−2πτ2s1−kπτ2s21

∑
r,r̄

e2πir(s1τ−s2) e−2πir̄(s1τ̄−s2) Sr Sr̄ Zint .

(2.25)

2.2 The off-shell Hilbert space

At this point there are two ways to proceed. One way is to undo some of the holonomy
integrals we introduced, and that route will rejoin paths with the calculation of the on-shell
single string free energies [2]. This will be the subject of subsection 2.3. However, from the
formula (2.25) we are also able to derive the off-shell Hilbert space of bosonic string theory
on AdS3 obtained in [3], but now by purely path integral methods. With this in mind we
introduce the Gaussian integral [10]

e−kπτ2s
2
1 =

√
τ2
k

∫
dc e−

πτ2
k
c2−2πicτ2s1 , (2.26)

to rewrite:

f(β, µ) =
∫ ∞

0

dτ2
2π

∫ 1/2

−1/2
dτ1

∫ 1

0
ds1

∫ 1

0
ds2

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

∫
dc e−

πτ2
k
c2−2πicτ2s1 e−(k+2)(2s1w+w2)πτ2−2πτ2s1

Zint
|η(τ)|2

∑
r,r̄

e2πir(s1τ−s2) e−2πir̄(s1τ̄−s2) Sr Sr̄ .

(2.27)
We first perform the sum over the integer v to obtain the Dirac comb:∑

v

e2πivλ =
∑
n∈Z

δ(λ1 − n) . (2.28)

The integral over the holonomy s2 gives the constraint λ1 = r − r̄ ∈ Z . Combined with
the Dirac comb (2.28), this leads to a trivial integral over the multiplier λ1. After these
three steps we are left with

f(β, µ) = 1
2π

∫ ∞
0

dτ2

∫ 1
2

− 1
2

dτ1

∫ 1

0
ds1

∑
w,r,r̄

∫
dλ2 e

2πi(r−r̄)(µβ2π−wτ1)e2πiλ2( β
2π−(s1+w)τ2)

∫
dc e−

πτ2
k
c2−2πicτ2s1 e−(k+2)(2s1w+w2)πτ2 Zint

|η(τ)|2 e
−2πτ2s1e−2πτ2s1(r+r̄) Sr Sr̄ .

(2.29)
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We perform the s1 holonomy integral:

∫ 1

0
ds1e

−2πτ2s1(iλ2+ic+(k+2)w+(1+r+r̄)) = − 1
2πτ2

e−2πτ2(iλ2+ic+(k+2)w+(1+r+r̄)) − 1
(iλ2 + ic+ (k + 2)w + (1 + r + r̄)) .

(2.30)
We therefore have

f(β, µ) = 1
2π

∫ ∞
0

dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

∫
dλ2 e

2πi(r−r̄)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2)

∫
dc

2π e
−πτ2

k
c2 e−(k+2)w2πτ2 (1− e−2πτ2(iλ2+ic+(k+2)w+(1+r+r̄)))

(iλ2 + ic+ (k + 2)w + (1 + r + r̄))
Zint
|η(τ)|2Sr Sr̄ .

(2.31)
Next, we relate the two terms that arose out of the s1 holonomy integration. Consider
the term proportional to the exponential and in particular factors that depend on the
integration variable c:

∫
dc

e−
πτ2
k
c2−2πiτ2c

(iλ2 + ic+ (k + 2)w + (1 + r + r̄)) = e−πkτ2
∫
dc

e−
πτ2
k

(c+ik)2

(iλ2 + ic+ (k + 2)w + (1 + r + r̄)) .

(2.32)
We shift the variable c → c − ik and as a result pick up poles in addition to the new line
integral over the variable c. These poles are located at

c = −λ2 + i(k + 2)w + i(1 + r + r̄) . (2.33)

From (analogous yet different) work on the coset theory [10], we surmise that the resulting
residues are the contributions from the discrete representations to the partition function.
These will soon be our primary focus.

2.2.1 The continuous representations

First however, we show that the shifted exponential term combines nicely with the “1”
term in (2.31) to give the contribution from the continuous spectrum of the theory, modulo
important subtleties. After shifting the integral, the expression for the single string free
energy takes the form:

f(β, µ) = 1
2π

∫ ∞
0

dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

∫
dλ2 e

2πi(r−r̄)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2)

∫
dc

2π e−
πτ2
k
c2

e−(k+2)w2πτ2

(
1

iλ2+ic+(k+2)w+(1+r+r̄)
− e−πkτ2e−2πτ2(iλ2+(k+2)w+(1+r+r̄))

iλ2+i(c−ik)+(k+2)w+(1+r+r̄)

)
Zint
|η(τ)|2Sr Sr̄ .

(2.34)

In the second term in parenthesis, we perform a shift in the integer parameters:

w → w − 1 , r → r + 1 , r̄ → r̄ + 1 . (2.35)
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This makes the denominator factor in the second term identical to that of the first. In
addition, most of the exponential factors get cancelled. After some algebra, we obtain

f(β, µ) = 1
2π

∫ ∞
0

dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

∫
dλ2 e

2πi(r−r̄)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2) (2.36)

∫
dc

2π
e−

πτ2
k
c2e−(k+2)w2πτ2

iλ2 + ic+ (k + 2)w + (1 + r + r̄)
Zint
|η(τ)|2

(
SrSr̄ − qr+1q̄r̄+1Sr+1Sr̄+1

)
.

We use the special series identities

qr+1Sr+1 = S−r−1 and Sr + S−r−1 = 1 , (2.37)

to write:

f(β, µ) = 1
2π

∫ ∞
0

dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

∫
dλ2 e

2πi(r−r̄)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2)

∫
dc

2π
e−

πτ2
k
c2e−(k+2)w2πτ2

iλ2 + ic+ (k + 2)w + (1 + r + r̄)
Zint
|η(τ)|2

(
1 + (Sr − 1) + (Sr̄ − 1)

)
.

(2.38)

In the context of the on-shell states (to be discussed shortly), it was suggested in [2] that the
two terms we analyzed should recombine into continuous representations, and a proposal
was made for the density of states in the continuum sector. See also [10] for a related
analysis in the cigar coset theory. We observe that while the two terms combine well for
the primary states (corresponding to the “1” term in the parenthesis in equation (2.38) for
r ≥ 0), this is not obvious for the descendant states, whose contributions are encoded in
the (Sr − 1) terms. A similar observation was made in previous work on the sl(2,R)/u(1)
coset theory [13], where an analysis of the continuous contributions was performed, and
track was kept of the degeneracy of descendant states, as we did here. We would like to
draw attention to the fact that the analysis of a discrete (alternating spin chain) model
of the cigar [14, 15] led to a spectral density of continuous representations that depends
on their descent. We see that this may well be relevant for the analytic analysis of the
continuum model. These issues are interesting and non-trivial — we refer to [15] for the
integrable state of the art — and they lie outside our main subject in this paper. We leave
them for future research. We concentrate on the pole contributions to the single string free
energy, namely on the discrete representations.

2.2.2 Contributions from the discrete spectrum

We focus on the contributions from the poles that lie in the locations (2.33). It is important
to remember that the shift in the c integral was by an amount −ik such that only the poles
in the strip Im(c) between 0 and −ik will be picked up. This is shown in figure 1. The
residue calculation gives

fdisc(β, µ) = 1
2π

∫
dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

e2πi(r−r̄)(µβ2π−wτ1)e−(k+2)w2πτ2

∫ ′
i dλ2

∑
poles(λ2,w,r,r̄)

e
πτ2
k

(iλ2+(k+2)w+1+r+r̄)2
e2πiλ2( β

2π−wτ2) Zint
|η(τ)|2 Sr Sr̄ .

(2.39)
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Re(c)

Im(c)

Im(c) = 0

Shifting contour by − i k

Im(c) = − k

Im(c) = ϵ

Im(c) = − k + ϵ

Figure 1. For a fixed value of the Casimir λ2 we show the discrete set of poles in the momentum
c-plane. When λ2 = 0, there is a pole along the contour of integration. To avoid the singularity
the contour in the c-plane is shifted by i ε. Upon shifting the c-contour by −i k, we see that a finite
number of poles is picked up.

We now Wick-rotate the λ2 integral onto the imaginary axis by replacing λ2 = iλ̃2 and then
shift the λ̃2 integral so as to get rid of the quadratic dependence on the (r, r̄) variables.
Moreover, we must pause to discuss an ambiguity in the discrete contribution. The variable
c is integrated over the real line which can contain a pole. The ambiguity lies in how we
treat the pole. This ambiguity is intrinsic to the spectrum of the theory. To explain this,
we run ahead of ourselves and preview that the variable c = −i(2j − 1) after the shift
acquires the interpretation of the spin in terms of sl(2,R) representation theory. We have
a continuum spectrum labelled by j = 1/2+ is and a positive momentum s ∈ R+

0 , touching
a spectrum j > 1/2 of discrete representations. The integration over the variable c is
akin to an (unfolded) integration over the variable s, and the integration bumps into the
non-normalizable mock discrete representation at j = 1/2.2 In the following, we choose
our integration contour such that we ensure that the discrete spectrum respects the bound
j > 1/2. In other words, we ban the possible pole contribution at j = 1/2 to the continuous
sector. To that end, we shift the initial c-contour up by ε as in figure 1 such that we do
not pick up the pole that lies on the final contour of integration. This choice influences
on the continuous contribution. At the end of these manipulations we find the discrete

2A related subtlety has been understood in the calculation of the cigar elliptic genus [16–18]. In that
context, the partition function is finite, and it becomes entirely manifest that there is a choice in how to
separate continuous from discrete representations. The choice leads to interesting subtleties in the state
space interpretation of the spectrum. See e.g. [19] for a discussion of the latter point.
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contribution to the single string partition function:

fdisc(β, µ) = 1
2π

∫
dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w,r,r̄

e2πi(r−r̄)(µβ2π−wτ1)e−(k+2)w2πτ2

∫
(0,k]

dλ̃2
∑

poles(λ2)
e
πτ2
k
λ̃2

2e−2π(λ̃2+(k+2)w+1+r+r̄)( β
2π−wτ2) Zint

|η(τ)|2 Sr Sr̄ .

(2.40)

We have indicated in the half-open integration region of λ̃2 that we exclude λ̃2 equal to
zero and include λ̃2 = k.

In this discrete sector, we can now render the off-shell Hilbert space of string theory
on AdS3 ×N manifest. We first summarize the contributions from the descendants of the
AdS3 factor, the internal conformal field theory on N and the ghost sector as:

Zint
|η(τ)|2 Sr Sr̄ = (qq̄)−

1
24 (1+cint) ∑

N,h,N̄,h̄

dr,h,N qh+N qh̄+N̄

= (e4πτ2)(1− 1
4k ) ∑

N,h,N̄,h̄

dr,h,N qh+N qh̄+N̄ .
(2.41)

To declutter the formulae we label the function that counts the degeneracy of states and
also the summation variables by only the unbarred variables. In addition we introduce the
spin j:

λ̃2 = 2j − 1 , (2.42)

and separate the τ2 and τ1 dependences in the exponent in the expression for the free
energy:

fdisc(β, µ) = 1
π

∫
dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑

w,r,h,N

dr,h,N e2πiτ1((N+h)−wr−(N̄+h̄)+wr̄)

∫
( 1

2 ,
k+1

2 ]
dj(e2πτ2)(k+2)w

2
2 + 2j(j−1)

k
+(2j+r+r̄)w−(N+h+N̄+h̄)+2 q

j+(k+2)w2 +r
s.t. q̄

j+(k+2)w2 +r̄
s,t. .

We have used the definition (2.4) of the modular parameter of the boundary torus τs.t. and
introduced the elliptic nome:

qs.t. = e2πiτs.t. = e−β+iµβ . (2.43)

Finally, we identify the so(2)⊕ so(2) ⊂ sl(2,R)⊕ sl(2,R) quantum numbers:

m = j + r , and m̄ = j + r̄ , (2.44)

which allows us to rewrite the discrete contribution to the single string free energy in the
expected form:

fdisc(β, µ) =
∫
dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑

w,r,h,N

dr,h,N

∫
( 1

2 ,
k+1

2 ]

dj

π
e2πiτ1(L0−L̄0) (e−2πτ2)L0+L̄0−2 q

j30
s.t.q̄

j̄30
s,t..

(2.45)
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The τ1-integral imposes the level-matching constraint and we have identified the coefficient
of −2πτ2 in the exponent with the zero mode of the worldsheet scaling operator L0 +L̄0−2,
which includes the conformal dimensions of the discrete series and their descendants, as
well as the contributions from the internal space [3]:

L0 = −j(j − 1)
k

− wm− (k + 2)w
2

4 +N + h , (2.46)

L̄0 = −j(j − 1)
k

− wm̄− (k + 2)w
2

4 + N̄ + h̄ . (2.47)

The exponent of the spacetime modular parameter instead is given by the zero mode of the
left and right moving so(2) currents j3 and j̄3 of sl(2,R). They measure the energy and
momentum in spacetime, or the left- and right-moving spacetime conformal dimensions.
Explicitly, the zero modes evaluate as [3]:

j3
0 = k + 2

2 w +m, j̄3
0 = k + 2

2 w + m̄ . (2.48)

A similar story holds in the sector of the continuous representations. Thus, we demon-
strated explicitly that the path integral of [2] codes the off-shell spectrum described in [3].

Finally, because we kept track of the degeneracy of the descendants states, we can
rewrite the single string contribution to the free energy entirely in terms of the worldsheet
characters in the discrete representation. The discrete characters χwj in the w spectrally
flowed representations are (see appendix B):

χwj (q, qs.t.) = q−
j(j−1)
k
−(k+2)w

2
4 −

1
4k q

(k+2)w2
s.t.

η3(τ)
∑
r

q−w(j+r) qr+js.t. Sr . (2.49)

Thus, the discrete contributions to the single string free energy are transparent:

fdisc(β, µ) =
∫ ∞

0

dτ2
τ2

2

∫ 1
2

− 1
2

dτ1
∑
w

∫
( 1

2 ,
k+1

2 ]

dj

π
χwj (q, qs.t.)χwj (q̄, q̄s.t.) Zgh Zint . (2.50)

We have refined and bridged the results of [2, 3]. We stress that we include all spectrally
flowed discrete representations D+,w

j , with j in the half-open range

1
2 < j ≤ k + 1

2 . (2.51)

Indeed, the spectral flow argument of [3] or equivalently, the joining of the two terms
in (2.31) through a spectral flow operation (2.35) naturally lead to a half-open interval for
the discrete spin. It also meshes well with the calculation of the cigar elliptic genus [16]
as well as the regularized cigar partition function [15]. Moreover, the boundary values
coincide with the unitarity bounds in the R-sector of the super string [20].

2.3 The free energy of the on-shell states

In this section, we review and update the derivation of the on-shell contribution to the
single string free energy [2]. Our main task is to efficiently perform the τ2-integral in
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equation (2.45). To that end, we return to our point of on-shell/off-shell bifurcation,
equation (2.25):

f(β, µ)=
∫ ∞

0

dτ2√
τ2

∫ 1
2

− 1
2

dτ1

∫ 1

0
ds1

∫ 1

0
ds2
∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

√
k

2π|η(τ)|2 e
−(k+2)(2s1w+w2)πτ2−2πτ2s1−kπτ2s21

∑
r,r̄

e2πir(s1τ−s2)e−2πir̄(s1τ̄−s2) Sr Sr̄ Zint .

(2.52)
We perform the s1 holonomy integral and the λ2 integration first. This leads to a delta-
function constraint for the variable s1:

τ2s1 = β

2π − wτ2 . (2.53)

The s1 variable is a U(1) holonomy variable on the torus [10]. Therefore, it is periodic.
It takes values in a half-open interval [0, 1). We note that the constraint (2.53) forces the
winding number w to be positive. The integration range of s1 also leads to a constraint on
the range of τ2 integration:

β

2π(w + 1) < τ2 ≤
β

2πw . (2.54)

The range
(
β
2π ,∞

)
is covered by the zero winding sector. Performing the s1 and λ2

integrals, we thus obtain

f(β, µ) =
∑

w≥0,r,r̄

√
k

2π

∫ β
2πw

β
2π(w+1)

dτ2

τ
3
2

2

∫ 1
2

− 1
2

dτ1

∫ 1

0
ds2

∫
dλ1

∑
v

e2πiλ1ve2πiλ1(µβ2π−wτ1)e2πis2(λ1−r+r̄)

e2πτ2w2−2wβe−2π( β2π−wτ2)(1+r+r̄) e
− kβ2

4πτ2
Zint
|η(τ)|2 Sr Sr̄ . (2.55)

We sum over the integer v, leading to a Dirac comb, and integrate over the variable s2.
That gives rise to the familiar constraint λ1 = r − r̄, which in term leads to a trivial
integration over the multiplier λ1. The result of these steps is:

f(β, µ) =
∑
w,r,r̄

√
k

2π

∫ β
2πw

β
2π(w+1)

dτ2

τ
3
2

2

∫ 1
2

− 1
2

dτ1e
2πi(r−r̄)(µβ2π−wτ1)

e2πτ2(w2+w(1+r+r̄))e−β(2w+1+r+r̄) e
− kβ2

4πτ2
Zint
|η(τ)|2 Sr Sr̄ . (2.56)

We use the shorthand (2.41) for the other sectors:
Zint
|η(τ)|2 Sr Sr̄ = (e4πτ2)(1− 1

4k ) ∑
N,h,N̄,h̄

dr,h,N qh+Nqh̄+N̄ , (2.57)

and obtain the single particle free energy:

f(β, µ) =
∑

w,r,h,N

dr,h,N

√
k

2π

∫ β
2πw

β
2π(w+1)

dτ2

τ
3
2

2

∫ 1
2

− 1
2

dτ1e
2πiτ1(h+N−rw−(h̄+N̄−r̄w))

e−2πτ2(h+N+h̄+N̄−(w2+w(1+r+r̄))+ 1
2k−2)eiµβ(r−r̄)−β(2w+1+r+r̄) e

− kβ2
4πτ2 . (2.58)
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We now parallel the analysis in [2]. We introduce the Gaussian integral:

e
− kβ2

4πτ2 = −8πi
β

(
τ2
k

) 3
2
∫

dc c e−
4πτ2
k

c2+2iβc , (2.59)

and obtain

f(β, µ) = 4
ikβ

∑
w,r,h,N

dr,h,N

∫ β
2πw

β
2π(w+1)

dτ2

∫ 1
2

− 1
2

dτ1e
2πiτ1(h+N−rw−(h̄+N̄−r̄w))

∫ ∞
−∞

dc c e−2πτ2(h+N+h̄+N̄−(w2+w(1+r+r̄))+ 4c2+1
2k −2)e2iβc+iµβ(r−r̄)−β(2w+1+r+r̄) .

(2.60)
The integral over τ1 imposes level-matching. As long as the τ2 range is finite, we can also
perform that integral [2]. In the winding zero sector, the range of the τ2 integral is half-
infinite. If the coefficient that multiplies −2πτ2 in the exponent is positive, the integral is
well-defined. If not, we shall define it by analytic continuation. However, we do wish to
avoid that the coefficient becomes zero, and therefore perform a Feynman regularization,
replacing c2 → c2 − iε. The τ2 integration can then be performed, and we end up with an
integral over the radial momentum c:

f(β, µ)= 1
πiβ

′∑
w,r,h,N

dr,h,N

∫ ∞
−∞

dc c
e2iβc+iµβ(r−r̄)−β(2w+1+r+r̄)(

c2 + 1
4 − iε

)
+ k

(
h+N − rw − 1

2(w2 + w)− 1
)

(
e−

β
w+1

(
2(h+(N−rw))−(w2+w)+ 4c2+1−4iε

2k −2
)
− e−

β
w

(
2(h+(N−rw))−(w2+w)+ 4c2+1−4iε

2k −2
))
.

(2.61)
As in the off-shell calculation, we wish to combine the two terms in the parenthesis and
associate the result to the continuous part of the spectrum [2]. To that end, we shift the
contour in the first term in the parenthesis upwards along the imaginary axis by k(w+1)

2
while the contour in the second term is shifted upwards by kw

2 . The shifted contours
combine and can be written in terms of the continuous representations, up to the issues
discussed in subsection 2.2.1.

We do need to address a new point. The summation over the winding w is only over
positive numbers w ≥ 0. Moreover, for the first term that depends on a denominator w+1
(in the exponent), the summation is from w = 0 to infinity, but the second term depending
on the denominator w is absent for w = 0. Recall that we shift the first term by a larger
amount than the second term. Thus, all poles that we pick up are cancelled in this contour
manipulation, except for the poles of the first term in the range where the imaginary part
of c is between k(w+ 1)/2 and kw/2. Thus, the discrete pole contributions are present for
all w ≥ 0. However after recombination and the shift w+ 1→ w in the first term, we only
sum over w ≥ 1 in the continuous sector. Thus, we have established what happens at the
boundary of the summation range for w.

Let us study in more detail the net set of poles that we pick up when we shift both
contours. The shift of the integrals lead to additional contributions from possible poles
that are located at

− c2 + iε = 1
4 + k

(
N − rw + h− 1− 1

2(w2 + w)
)
. (2.62)
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The Feynman regularization excludes poles at real c. In particular, we note that for zero
winding, it excludes a possible pole on the real axis (that will soon turn out to correpond
to the representation with spin j = 1/2). By the shift of the contours, only those poles are
included that satisfy the constraint:

kw

2 < Im(c) ≤ k(w + 1)
2 . (2.63)

Note that the right hand side of equation (2.62) is discrete for a compact manifold N and
that therefore the spectrum of on-shell poles we pick up is discrete.3 Finally, the sum
over residues gives the contribution of the discrete states in the on-shell free energy on
AdS3 ×M [3]:

fdisc(β, µ) = 1
β

′∑
w,r,h,N

dr,h,N e−β
(
−iµ(r−r̄)+(2w+1+r+r̄)+

√
1+4k(N+h−rw−1− 1

2 (w2+w))
)
.

(2.64)
Let us rewrite this in a more insightful manner [3]. The integration over the τ1 and τ2
variables imposed both the level matching and the on-shell condition. Using the explicit
form of the worldsheet Virasoro generators (2.46), this implies

− j(j − 1)
k

− w(r + j)− (k + 2)w
2

4 +N + h = 1 . (2.65)

Solving for the spin j, we find the relation

2j − 1 + kw =
√

1 + 4k
(
N + h− rw − 1− 1

2(w2 + w)
)
. (2.66)

Recognizing the square root as the one appearing in the exponents in the free energy, we
substitute this in the single string free energy to find

fdisc(β, µ) = 1
β

′∑
w,r,h,N

dr,h,N e−β
(
−iµ(r−r̄)+2j+(k+2)w+r+r̄

)

= 1
β

′∑
w,r,h,N

dr,h,N q
j+r+ (k+2)w

2
s.t. q̄

j+r̄+ (k+2)w
2

s.t.

= 1
β

′∑
w,r,h,N

dr,h,N q
j30
s.t.q̄

j̄30
s.t. .

(2.67)

The sum over is over the on-shell states. From the equation (2.66) for the spin as well
as the bound (2.63) on the imaginary part of the poles, we decide again that we have the
bound on spin:

1
2 < j ≤ k + 1

2 . (2.68)

3This contrasts with the off-shell calculation of subsection 2.2.
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2.4 The positivity of the spacetime energy

As a warm-up exercise for future analyses, we explicitly prove a stability theorem for
bosonic string theory on AdS3 × N . The stability needs to be taken with a grain of
salt because of the existence of the closed string tachyon (which generically lies below
the Breitenlohner-Freedman bound). We will prove that all excitations except the closed
string tachyon are positive energy excitations. Since the energy is the sum of left- and right-
moving conformal dimensions, it is stronger to prove that the latter are both positive. We
will concentrate on the discrete sector.

The spacetime left-moving conformal dimension H is given by the exponent of the
nome qs.t.:

H = j + r + k + 2
2 w . (2.69)

Using the on-shell condition L0 = 1 (see (2.65)) in combination with the above equation,
one can eliminate the quantum number r and obtain the following alternative expression
for the conformal dimension:

4kwH = 1− (2j − 1)2 + 4khint + k(k + 2)w2 − 4k . (2.70)

Multiplying by 4k the equation (2.69) and adding equation (2.70), we obtain:

4k(w + 1)H = 4(j − 1)(k − j) + 2k(k + 2)w + k(k + 2)w2 + 4k(hint + r) , (2.71)

where have denoted hint = h + N . For on-shell states we know that the winding w is
positive. Thus, the second and third terms in this expression are always non-negative. For
positive r the last term is also non-negative. We now make the point that even for r < 0,
there are no negative contributions to the internal conformal dimension hint arising from
the special series descendants Sr because of the identity Sr = q−rS−r. In fact, we obtain a
positive contribution at least equal to −r. Thus (hint + r) ≥ 0. Therefore the only source
of negativity comes from the first term, when j < 1. These are precisely the tachyonic
states that can lead to negative conformal dimensions when w = 0.

For zero winding, the easiest way to proceed is to revisit the starting point. We see
that the on-shell condition only allows solutions in the discrete sector when hint ≥ 1. The
lowest lying state is when hint = 1, j = 1 and we have r = −1. Indeed, the state j−−1|j〉 is
the only left-moving state with zero conformal dimension (with a similar story holding for
the right-movers) [3]. All other states have strictly positive energy.4 This concludes our
updated review of the thermal free energy calculation in three-dimensional anti-de Sitter
space-time with NSNS flux [3].

3 Supersymmetric thermal anti-de Sitter

In this section, we compute the free energy of a supersymmetric world sheet theory on the
thermal three-dimensional anti-de Sitter spacetime. This prepares the ground further for
the detailed analysis of superstring backgrounds in sections 4 and 5.

4For the continuum sector, assuming N + h ≥ 1 to exclude the tachyon, one easily proves that there are
no states with negative conformal dimension 1

2 (k + 2)w + m when the constraint L0 = 1 = 1
k

( 1
4 + s2) −

wm− 1
4 (k + 2)w2 + hint is satisfied.
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3.1 World sheet supersymmetry and the global twist

We generalize our analysis of the one loop vacuum energy in thermal AdS3 to the case
of the supersymmetric world sheet model. All AdS3 coordinate fields acquire a fermionic
superpartner. We fix the fermionic contribution to the world sheet partition function using
the following arguments. The AdS3 non-linear sigma-model is a Wess-Zumino-Witten
model. World sheet N = (1, 1) supersymmetry can be attained for any such model by
promoting the world sheet quantum fields to N = (1, 1) superfields. A crucial observation
is that the fermions that are thus added to the model can be rendered free through a field
redefinition [21]. Thus, we obtain the bosonic AdS3 sigma-model familiar from section 2
plus a model of three fermions transforming in the adjoint of sl(2,R)⊕ sl(2,R).

In the previous section, we saw that the world sheet bosons are twisted by a fugacity
Un,m (2.11) along the direction generated by the global symmetry j3

0 . In the supersymmet-
ric sigma-model, the relevant global symmetry is the symmetry generated by J3

0 = j3
0 +jF,30

that consists of both a bosonic j3
0 and a fermionic jF,30 contribution. Indeed, in superstring

theory, the symmetry generator J3
0 must commute with the string theory BRST charge

which contains a world sheet supercurrent piece and consequently coincides with the J3
0

charge in the supersymmetric Wess-Zumino-Witten model. The adjoint fermionic modes
have charges (0,+1,−1) under this symmetry. We conclude that the world sheet fermion
partition function undergoes the twist Un,m on the left and Ūn,m on the right with charges
(0,+1,−1) for the three fermions. Moreover, the twisted world sheet partition function for
the two charged fermions carries an exponential factor that renders it modular invariant:

Zcharged fermions = θi(Un,m, τ) θī(Ūn,m, τ̄)
|η|2

e
− 2π(ImUn,m)2

τ2 . (3.1)

In the supersymmetric model, this exponential cancels a factor that arises from the anoma-
lous chiral rotation of the bosons. The indices i and ī on the θ-functions indicate the
boundary condition and world sheet fermion number twist which can take the values
i, ī ∈ {NS, ÑS,R, R̃} = {3, 4, 2, 1} in a standard notation [22].

3.2 The one loop amplitude

The analysis of the one loop vacuum amplitude and the single string free energy proceeds
along the lines of the previous section. We unfold the one-loop integral and concentrate
on (minus) the single string contribution to the free energy. We thus obtain the starting
point of our analysis:

f īi (β, µ) = 1
2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke
− kβ2

4πτ2

|θ1(τs.t., τ)|2
θi(τs.t., τ)θī(τ̄s.t., τ̄)

|η|2
ZiMaj Zint Zsgh . (3.2)

Again, the internal world sheet conformal field theory N contributes a partition function
factor Zint, the bosonic and fermionic ghost contribution is Zsgh,5 and ZMaj is the contri-
bution from the third, uncharged Majorana fermion along the tangent space of AdS3:

Zsgh = |η(τ)|6

|θi(τ)|2 , ZiMaj =
∣∣∣∣θiη
∣∣∣∣ . (3.3)

5We have taken out a factor of τ2 from the bosonic ghost contribution.
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The ith fermion sector can equivalently be labelled by a pair of numbers (a, b), each taking
one of two values in the index set {0, 1/2}, with the four sectors {NS, ÑS,R, R̃} assigned
the pairs (0, 0), (0, 1/2), (1/2, 0) and (1/2, 1/2) respectively [22]. The corresponding Jacobi
theta functions are the contributions to the free energy from the worldsheet fermionic fields.
The further calculations proceed much as in section 2, and we will therefore provide a more
compact description.

In the first step we introduce the holonomy integrals and integers v, w by means of the
identities (2.20) and (2.21):

f āb̄ab (β, µ)=
∫ ∞

0

dτ2

τ
1/2
2

∫ 1
2

− 1
2

dτ1

∫ 1

0
ds1

∫ 1

0
ds2

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)+2πiλ2( β

2π−(s1+w)τ2)

√
k

2π e
−2πi(v(a−ā)+w(b−b̄)) e

−kπ(s1+w)2τ2

|η|2
θab (s1τ−s2, τ)θā

b̄
(s1τ̄−s2, τ̄)

|θ1(s1τ−s2, τ)|2 Za,bMaj Zint Zsgh .

(3.4)

We use the q-expansions for the θ-functions and the inverse θ-functions to obtain

f āb̄ab (β, µ)=
∫ ∞

0

dτ2

τ
1/2
2

∫ 1/2

−1/2
dτ1

∫ 1

0
ds1

∫ 1

0
ds2

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

√
k

2π
∑
r,r̄

e2πir(s1τ−s2) e−2πir̄(s1τ̄−s2)e−kπτ2s
2
1e−k(2s1w+w2)πτ2−2πτ2s1

1
|η(τ)|8

∑
f,f̄

e2πiτ (f+a)2
2 e2πi(s1τ−s2)(f+a)e−2πiτ̄ (f̄+ā)2

2 e−2πi(s1τ̄−s2)(f̄+ā)

e−2πi(v(a−ā)+w(b−b̄))e2πib(a+f)e−2πib̄(ā+f̄) Sr Sr̄ Z
a,b
Maj Zint Zsgh . (3.5)

The analysis bifurcates at this stage into an off-shell path and an on-shell description.

3.3 The off-shell Hilbert space

The off-shell description is obtained with the same initial steps as before. We introduce
the Gaussian integral, perform the sum over the integer v and the integral over the s2
holonomy. This leads to a delta function that fixes λ1 = r + f + a − r̄ − f̄ − ā, which is
the spacetime spin that couples to the fugacity µ. The resulting λ1-integral can be done
trivially once more, and we then perform the s1 integral to obtain:

f āb̄ab (β, µ) =
∫ ∞

0

dτ2
2πτ2|η(τ)|8

∫ 1/2

−1/2
dτ1

∑
w,r,r̄,f,f̄

∫
dλ2e

2πi(r+f+a−r̄−f̄−ā)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2)

∫
dc e−

πτ2
k
c2 e−kπτ2w

2 (1− e−2πτ2(ic+iλ2+kw+1+r+r̄+f+a+f̄+ā))
ic+ iλ2 + kw + 1 + r + r̄ + f + a+ f̄ + ā

e2πiτ (f+a)2
2 e−2πiτ̄ (f+a)2

2 e2πib(a+f−w)e−2πib̄(f̄+ā−w) Sr Sr̄ Z
a,b
Maj Zint Zsgh . (3.6)

3.3.1 Contributions from the continuum sector

The first and second terms in the c-integral can be combined and rewritten as a contribution
of the continuous representation of sl(2,R). In the second (exponential) term, we perform
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the shift of variables:

(c, w, r, r̄, f, f̄) −→ (c− ik,w − 1, r + 1, r̄ + 1, f − 1, f̄ − 1) . (3.7)

After a bit of algebra, one can check that, up to contributions from poles that are picked
up by the shift of the c-contour, we obtain

f āb̄ab,cont.(β, µ) =
∫ ∞

0

dτ2
2πτ2

∫ 1/2

−1/2
dτ1

∑
w,r,r̄,f,f̄

∫
dλ2 e

2πi(r+f+a−r̄−f̄−ā)(µβ2π−wτ1)e2πiλ2( β
2π−wτ2)

1
|η(τ)|8

∫
dc

2π
e−

πτ2
k
c2e−kπτ2w

2(1 + (Sr − 1) + (Sr̄ − 1)
)

(ic+ iλ2 + kw + 1 + r + r̄ + f + a+ f̄ + ā)

e2πiτ (f+a)2
2 e−2πiτ̄ (f̄+ā)2

2 e2πib(a+f−w)e−2πib̄(f̄+ā−w) Za,bMaj Zint Zsgh . (3.8)

We interpret this as a contribution from the continuous part of the spectrum, with the
same caveats as in subsection 2.2.1.

3.3.2 Contributions from the discrete sector

The poles give rise to the discrete part of the spectrum:

f āb̄ab,disc(β, µ) = 1
2π

∫
dτ2
τ2

∫ 1/2

−1/2
dτ1

∑
w,r,r̄,f,f̄

e2πi(r+f+a−r̄−f̄−ā)(µβ2π−wτ1)e−kπτ2w2

1
|η(τ)|8

∫
(0,k]

dλ2
∑

poles(λ2)
e
πτ2
k
λ2

2e−2π(λ2+kw+1+r+r̄+f+a+f̄+ā)( β
2π−wτ2)

e2πiτ (f+a)2
2 e−2πiτ̄ (f̄+ā)2

2 e2πib(f+a−w)e−2πib̄(f̄+ā−w)Sr Sr̄ Z
a,b
Maj Zint Zsgh . (3.9)

We write the contributions from the internal sector and the (super-)ghost sectors in
the form:

1
|η(τ)|8Sr Sr̄ Z

a,b
Maj Zint Zsgh = e4πτ2( 1

2−
1
4k ) ∑

h,h̄,N,N̄

dr,h,Nq
h+N q̄h̄+N̄ . (3.10)

We collect the exponents of τ1 and τ2 in order to identify the eigenvalues of the worldsheet
Virasoro generators:

f āb̄ab,disc(β, µ) =
∑

w,r,f,h,N

dr,h,N e2πib(f+a−w)e−2πib̄(f̄+ā−w)
∫

(0,k]

dλ2
2π∫ 1/2

−1/2
dτ1e

2πiτ1
(
h+ (f+a−w)2

2 +N−wr−h̄− (f̄+ā−w)2
2 −N̄+wr̄

)
∫
dτ2
τ2
e
−2πτ2

(
− kw

2
2 −

λ2
2−1
2k + (f+a−w)2

2 +h+N−wr+ (f̄+ā−w)2
2 +h̄+N̄−wr̄−w(1+w)−1

)
(e−β+iµβ)

(
λ2+1

2 + kw
2 +r+f+a

)
(e−β−iµβ)

(
λ2+1

2 + kw
2 +r̄+f̄+ā

)
.

(3.11)
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We shift the fermionic momentum (f, f̄) → (f + w, f̄ + w), which can be interpreted as
spectral flow acting on the fermions. One can then write the single string free energy in
the expected form:

f āb̄ab,disc(β, µ) =
∑

w,r,f,h,N

dr,h,N e2πib(f+a)e−2πib̄(f̄+ā)

∫
dτ2
τ2

∫ 1/2

−1/2
dτ1e

2πiτ1(L0−L̄0)
∫

( 1
2 ,
k+1

2 ]

dj

π
(e−2πτ2)L0+L̄0−1 qJ0

s.t.q̄
J̄0
s,t..

(3.12)

We make the same identifications of the parameters as in bosonic AdS3:

λ2 = 2j − 1 , m = j + r , and m̄ = j + r̄ . (3.13)

The world sheet scaling generators are given by

L0 = −j(j − 1)
k

− wm− (k + 2)w
2

4 +N + h+ (f + a)2

2 , (3.14)

L̄0 = −j(j − 1)
k

− wm̄− (k + 2)w
2

4 + N̄ + h̄+ (f̄ + ā)2

2 . (3.15)

The exponent of the spacetime modular parameter instead is given by the zero mode of
the left and right moving currents J3 and J̄3 of sl(2,R), as they are identified with linear
combinations of the energy and spin in spacetime. Their eigenvalues are

J3
0 = k + 2

2 w +m+ f + a , J̄3
0 = k + 2

2 w + m̄+ f̄ + ā . (3.16)

3.3.3 Character decomposition

A little more massaging provides a compact expression for the single string contribution
to the free energy:

f āb̄ab,disc(β, µ) =
∫ ∞

0

dτ2
τ2

∫ 1
2

− 1
2

dτ1
∑
w

∫
( 1

2 ,
k+1

2 ]

dj

π
χwj (q, qs.t.)χwj (q̄, q̄s.t.) (3.17)

×
θab (τ, τs.t.)θāb̄ (τ̄ , τ̄s.t.)

|η(τ)|2 Za,bMaj Zint Zsgh .

The final expression clearly exhibits the off-shell Hilbert space for superstrings in AdS3×N
and also follows immediately from the factorized nature of the one-loop vacuum amplitude
combined with the bosonic result of section 2. Proving the expression in our pedestrian
fashion provides insight into how spectral flow links up the bosons and fermions in the
sl(2,R) Wess-Zumino-Witten theory.

3.4 The free energy

We turn to the calculation of the free energy of the on-shell states. As before, we start
from equation (3.5) and perform the λ2-integral leading to the δ-function constraint that
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fixes s1. We then sum over the integer v and do the (s2, λ1) integrals. The result is an
integral over a finite region in the τ -plane:

f āb̄ab (β, µ) =
∑

w,r,r̄,f,f̄

√
k

2π

∫ β
2πw

β
2π(w+1)

dτ2

τ
3
2

2 |η(τ)|8

∫ 1/2

−1/2
dτ1e

2πi(r+f+a−r̄−f̄−ā)(µβ2π−wτ1)

e2πiτ (f+a)2
2 e−2πiτ̄ (f̄+ā)2

2 e2πib(f+a−w)e−2πib̄(f̄+ā−w)

e−2π( β
2π−wτ2)(r+r̄+f+f̄+a+ā+1) e

− kβ2
4πτ2 Sr Sr̄ Z

a,b
Maj Zint Zsgh .

(3.18)

We write down the contribution from the descendant states as in equation (3.10). Lastly
we introduce the same integral over the radial momentum as in (2.59) and, after a spectral
flow in the fermionic sectors (f, f̄)→ (f + w, f̄ + w), we obtain

f āb̄ab (β, µ) = 4
ikβ

∑
w,r,f,h,N

dr,h,N

∫ 1/2

−1/2
dτ1e

2πiτ1
(
h+ (f+a)2

2 +N−rw−h̄− (f̄+ā)2
2 −N+r̄w

)
∫ ∞
−∞

dc c

∫ β
2πw

β
2π(w+1)

dτ2e
−2πτ2

(
h+ (f+a)2

2 +N−rw+h̄+ (f̄+ā)2
2 +N̄−r̄w−w(1+w)+ 4c2+1

2k −1
)

e2πib(a+f)e−2πib̄(ā+f̄) eiµβ(r+f+a−r̄−f̄−ā)e−β(−2ic+r+r̄+f+f̄+a+ā+1+2w) .
(3.19)

The τ1 integral leads to level matching condition:

h+ (f + a)2

2 +N − rw = h̄+ (f̄ + ā)2

2 +N − r̄w . (3.20)

The τ2 integral gives rise to

f āb̄ab (β, µ) = 1
πiβ

′∑
w,r,f,h,N

dr,h,N e2πib(a+f)e−2πib̄(ā+f̄) eiµβ(r+f+a−r̄−f̄−ā) (3.21)

∫ ∞
−∞

dc c
e−β(−2ic+r+r̄+f+f̄+a+ā+1+2w)

h+ (f+a)2

2 +N − rw − 1
2w(1 + w) + 4c2+1

4k − 1
2(

e
− 2β
w+1

(
h+ (f+a)2

2 +N−rw− 1
2w(1+w)+ 4c2+1

4k −
1
2

)
− e
− 2β
w

(
h+ (f+a)2

2 +N−rw− 1
2w(1+w)+ 4c2+1

4k −
1
2

))
.

The prime indicates that level matching is imposed on the summation variables. As in
the bosonic avatar, one shifts the contour integral in the first term from Im(c) = 0 to
Im(c) = k(w+1)

2 and in the second term from Im(c) = 0 to Im(c) = kw
2 . We focus on the

contribution from the discrete sector that arises from the residues of the poles that are
picked up in the region:

kw

2 < Im(c) ≤ k(w + 1)
2 , (3.22)

as a result of the shifts in the contours. The poles are located at

−c2 = 1
4 + k

(
h+N − rw − 1

2w(1 + w) + (f + a)2

2 − 1
2

)
= 1

4(2j − 1 + kw)2 ,

(3.23)
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where we have used the on-shell condition appropriate for the superstring, L0 = 1
2 , with

the scaling operator L0 given by equation (3.14). This allows one to solve for the spin j:

2j − 1 + kw =
√

1 + 4k
(
h+ (f + a)2

2 +N − rw − 1
2w(1 + w)− 1

2

)
. (3.24)

Substituting for the square root into the expression for the single string free energy we
finally obtain

f āb̄ab,disc(β, µ)= 1
β

∑
w,r,f,h,N

dr,h,N e
2πib(a+f)e−2πib̄(ā+f̄)e−β

(
2j+(k+2)w+r+f+a+r̄+f̄+ā

)
eiβµ(r+f+a−r̄−f̄−ā)

= 1
β

∑
w,r,f,h,N

dr,h,N e2πib(a+f)e−2πib̄(ā+f̄)q
j+r+f+a+ (k+2)w

2
s.t. q̄

j+r̄+f̄+ā+ (k+2)w
2

s.t. (3.25)

= 1
β

∑
w,r,f,h,N

dr,h,N e2πib(a+f)e−2πib̄(ā+f̄) q
J3

0
s.t.q̄

J̄3
0

s.t. .

This is as expected for a partition function that is twisted by fermion number when b = 1/2.

3.5 The stability

We wish to prove the stability of the theory (up to the instability that arises from the closed
string tachyon). The exponent of the nome qs.t. which measures the spacetime left-moving
conformal dimension of the string states is:

H = j + r + f + a+ k + 2
2 w . (3.26)

The worldsheet Virasoro generator L0 is given by

L0 = −j(j − 1)
k

− w(j + r)− k + 2
4 w2 + hint + (f + a)2

2 . (3.27)

We use the on-shell condition L0 = 1
2 to eliminate the spin component r and we obtain

4kwH = −(2j − 1)2 + 4khint + 2k(f + a+ w)2 + k2w2 + 1− 2k . (3.28)

We add 4k times the expression (3.26) for the dimension H to obtain:

4k(w+ 1)H = 4j(k+ 1− j) + 2k(f +a+w+ 1)2 + 4k(hint + r) +k(kw2 + 2kw−4) . (3.29)

The first term on the right hand side is positive on account of the bound on the spin j while
the second term is manifestly positive. The third term on the right hand side is positive
irrespective of the sign of the spin component r. For r ≥ 0 this is obvious while for r < 0,
this follows from the property qrSr = S−r of the series Sr that encodes the degeneracies of
the sl(2) descendants.

Thus the only potential source of negativity is from the last term. One can check that
that for j ≥ 1, the dimension H is non-negative for all windings w. The only possibility for
negative dimension is for w = 0 and for 1

2 < j < 1. These correspond to tachyonic states.
In summary, we have extended the calculation of the thermal free energy of string theory
in three-dimensional anti-de Sitter spacetime with Neveu-Schwarz-Neveu-Schwarz flux to
include world sheet fermions.
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4 Superstrings in thermal AdS3 × S3 × T 4

In this section, we provide a first application of the general results obtained in sections 2
and 3 in the context of a supersymmetric compactification of string theory. We calculate
the partition function on the thermal AdS3×S3× T 4 background. The background arises
as the near brane limit of a system of k NS5-branes compactified on T 4 with a density
of fundamental strings spread on the four-torus. Since we consider a quotient of global
AdS3, we are in the NSNS sector in the boundary theory [23]. We compute the partition
function in the NSR formalism for the bulk world sheet string theory. We include fugacities
(and their complex conjugates) that keep track of the spacetime conformal dimension and
a spacetime u(1)R charge. We impose a periodicity in the compactified time direction that
is consistent with supersymmetry. In the course of our calculation, we also make contact
with a manifestly spacetime supersymmetric description of the background.

4.1 The one loop vacuum amplitude with fugacities

We consider type IIB superstrings propagating on AdS3×S3×T 4 and calculate the one-loop
vacuum amplitude. Because of the decoupling of fermions in supersymmetric Wess-Zumino-
Witten models, the integrand takes a factorized form, with separate bosonic factors and
eight free transverse fermions that are appropriately GSO projected [24]:

ZIIB = 1
2π

∫
F0

d2τ

τ2
ZAdS3 ZS3 Zbos

T 4 Zgh
1

4|η|8

∣∣∣∣∑
a,b

e2πi(a+b+2ab)(θab (τ))4
∣∣∣∣2 . (4.1)

The indices (a, b) take values in {0, 1
2}. The bosonic AdS3 partition function is described

by an sl(2,R) model at bosonic level kbos = k + 2; the bosonic level k − 2 three-sphere
partition function is given by a finite sum over su(2) characters (see appendix B):

ZS3 =
k−2

2∑
l=0
|χl(τ)|2 . (4.2)

The bosonic T 4 and ghost partition function are standard.
We dress the one-loop vacuum amplitude (4.1) with fugacities for spacetime symme-

tries, including the spacetime energy, the angular momentum and the spacetime R-charges.
We already added the fugacities (τs.t., τ̄s.t.) which couple to the left/right combinations of
the energy and angular momentum in sections 2 and 3. In addition we introduce the fu-
gacities (ν, ν̄) that couple to u(1) R-charges that correspond to left and right rotations on
the three-sphere respectively. We thus obtain the weighted one-loop amplitude:

ZIIB = 1
2π

∫
F0

d2τ

τ2
ZAdS3(τs.t., τ̄s.t., τ) ZS3(ν, ν̄, τ) Zbos

T 4 (τ) Zgh(τ)

1
4|η|8

∣∣∣∣∑
a,b

e2πi(a+b+2ab)θab (τs.t., τ)θab (ν, τ)θab (0, τ)θab (0, τ)
∣∣∣∣2 . (4.3)

The charged fermion that arose as a partner of the AdS3 bosons is twisted by the fugacity
τs.t. while the charged fermion that arises as a superpartner of three-sphere bosons is twisted
by the fugacity ν.
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4.2 The single particle free energy

Given the one loop string amplitude (4.3), we can follow the same steps as in section 3.
We unfold and then equate the one loop amplitude with the (twisted) thermal free energy.
We extract the single string contribution to the free energy in the GSO projected type IIB
theory:

f(β, µ) = 1
2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke
− kβ2

4πτ2

|θ1(τ, τs.t.)|2
|η|4 Zbos

T 4

(k−2)/2∑
l=0

|χl(ν, τ)|2

1
4|η|8

∣∣∣∣∑
a,b

e2πi(a+b+2ab)θab (τs.t., τ)θab (ν, τ)θab (0, τ)θab (0, τ)
∣∣∣∣2 .

(4.4)

To render space-time supersymmetry manifest, we make use of a Jacobi identity that is
rooted in so(8) triality. The abstruse identity reads [25]:

∑
a,b

e2πi(a+b+2ab)
4∏
i=1

θab (νi, τ) = −2
4∏
i=1

θ1(µi, τ) , (4.5)

where the variables νi map to the variables µi roughly as Cartan torus coordinates under
so(8) triality:

2ν1 = −µ1 + µ2 + µ3 + µ4

2ν2 = µ1 − µ2 + µ3 + µ4

2ν3 = µ1 + µ2 − µ3 + µ4

2ν4 = µ1 + µ2 + µ3 − µ4 .

(4.6)

In string theory, this identity often takes one from a NSR formalism to a Green-Schwarz
formalism in which spacetime supersymmetry becomes manifest. Applying this formula to
our twisted one loop amplitude we obtain∑

a,b

e2πi(a+b+2ab)θab (τs.t., τ)θab (ν, τ)θaba(0, τ)θab (0, τ)

= −2
(
θ1

(
τs.t. − ν

2 , τ

))2 (
θ1

(
τs.t. + ν

2 , τ

))2
. (4.7)

Furthermore, we spectral flow by half a unit in the boundary theory (for both the left and
right movers) in order to calculate in the Ramond-Ramond sector of the boundary theory:

ν −→ ν − τs.t. , ν̄ −→ ν̄ − τ̄s.t. . (4.8)

Including a standard normalization factor N = q
cs.t.
24

s.t. z
− cs.t.

6 depending on the background
space-time central charge cs.t., we find the free energy

f(β, µ) = N

2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke
− kβ2

4πτ2

|θ1(τs.t., τ)|2

k−2
2∑
l=0
|χl(ν − τs.t., τ)|2

1
|η|4

∣∣∣∣θ1

(
τs.t. −

ν

2 , τ
) ∣∣∣∣4∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q).

(4.9)
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As before, we introduce the holonomy integral that represents the δ-function:

f(β, µ)=N
∫ ∞

0

dτ2

τ
1/2
2

∫ 1/2

−1/2
dτ1

∫ 1

0
ds1

∫ 1

0
ds2

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β

2π−(s1+w)τ2)

|θ1(s1τ − s2 + wτ − v − ν
2 , τ)|4

|θ1(s1τ − s2 + wτ − v, τ)|2

k−2
2∑
l=0
|χl(ν − s1τ + s2 − wτ + v, τ)|2

e−πkτ2(s1+w)2
√
k

2π|η|4

∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) . (4.10)

We simplify the formula using the ellipticity properties of the theta functions as well as
the su(2) characters [26, 27]. In addition we use the q-expansion for the θ1-function and its
inverse, and the expansion for the su(2) character (see the appendices A and B for details)

χl(ν − s1τ + s2, τ) = q
l(l+1)
k
−
csu(2)

24
∑
r′

C lr′ e
2πir′(s1τ−s2−ν) , (4.11)

to write the single string free energy as:

f(β, µ) =
√
kN

2π

∫ ∞
0

dτ2

τ
1/2
2

∫ 1/2

−1/2
dτ1

∫ 1

0
d2si

∑
v,w

∫
d2λe2πiλ1(µβ2π−(s1+w)τ1+s2+v)e2πiλ2( β2π−(s1+w)τ2)

k−2
2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′

C lr′C̄
l
r̄′e

2πi(r+r′+f1+f2+1)(s1τ−s2) e−2πi(r̄+r̄′+f̄1+f̄2+1)(s1τ̄−s2) Sr Sr̄

e−2πτ2s1e−πkτ2s
2
1e2πiν

(
kw
2 −r

′− f1+f2+1
2

)
e
−2πiν̄

(
kw
2 −r̄

′− f̄1+f̄2+1
2

)
eπi(f1+f2−f̄1−f̄2)

1
|η|10 q

1
2
∑

i(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑

i(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24

∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) .

(4.12)

4.3 The off-shell Hilbert space

Once more, we first exhibit the off-shell Hilbert space and the expressions for the Virasoro
generators of the worldsheet theory. We repeat the same steps as in the earlier sections.
The sum over the integer v leads to a Dirac comb for the multiplier λ1. The subsequent s2
integration imposes:

λ1 = r + r′ + f1 + f2 − r̄ − r̄′ − f̄1 − f̄2 . (4.13)
We introduce the Gaussian c-integral and perform the s1-integral to obtain:

f(β, µ) =N

k−2
2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′

C lr′C̄
l
r̄′

∫ ∞
0

dτ2
2πτ2

∫ 1/2

−1/2
dτ1

∫
dλ2

∑
w

eπi(f1+f2−f̄1−f̄2)

∫
dc

2π e−
πτ2
k
c2 (1− e−2πτ2(iλ2+ic+r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3))

(iλ2+ic+r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3)
e2πiλ2( β

2π−wτ2)

e2πi(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)(µβ2π−wτ1) e2πiν
(
kw
2 −r

′− f1+f2+1
2

)
e−2πiν̄

(
kw
2 −r̄

′− f̄1+f̄2+1
2

)
q

1
2
∑

i(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑

i(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24
|θ1
(
ν
2 , τ

)
|4

|η|10 Zbos
T 4 (q) Sr Sr̄.

(4.14)
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4.3.1 Contributions from the continuous spectrum

We show that the two terms in the parentheses can be combined as for the bosonic case up
to a set of pole contributions. Let us consider the exponential term and make the following
redefinitions in the summation and integration variables:

(c, w, r, r̄, l, r′, r̄′, fi, f̄i)→
(
c− ik,w−1, r+1, r̄ + 1, k−2

2 − l, r′ − k−2
2 , r̄′ − k−2

2 , fi − 1, f̄i − 1
)
.

An identity satisfied by the function that captures the degeneracies of the descendant
states in the affine su(2) representations (see equation (B.14) in appendix B) turns out to
be useful:

C lr′ = qr
′−lC

k−2
2 −l

r′− k−2
2
. (4.15)

After some tedious algebra, the two terms in equation (4.14) combine:

f(β, µ) =N
k−2

2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′

C lr′C̄
l
r̄′ Sr Sr̄

∫ ∞
0

dτ2
2πτ2

∫ 1/2

−1/2
dτ1

∫
dλ2

∑
w

eπi(f1+f2−f̄1−f̄2)

∫
dc

2π e−
πτ2
k
c2 e2πiλ2( β

2π−wτ2)(1 + (Sr − 1) + (Sr̄ − 1))
(iλ2 + ic+ r + r′ + f1 + f2 + r̄ + r̄′ + f̄1 + f̄2 + 3)

e2πi(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)(µβ2π−wτ1) e2πiν
(
kw
2 −r

′− f1+f2+1
2

)
e
−2πiν̄

(
kw
2 −r̄

′− f̄1+f̄2+1
2

)
1
|η|10 q

1
2
∑

i(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑

i(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24

∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) .

(4.16)
The result is similar to the one obtained section 3 and the same caveats apply as in
subsection 2.2.1.

4.3.2 Contributions from the discrete spectrum

Our main interest is in the contribution from the discrete sector. The shift of the c-integral
in the second term of (4.14) by −ik is what allowed us to combine the two terms in the
manner shown above. The shift leads to additional contributions that arise from the poles
that are encountered in the process. The poles are located at

− ic = iλ2 + r + r′ + f1 + f2 + r̄ + r̄′ + f̄1 + f̄2 + 3 , (4.17)

and the sum of the residues at these poles gives the contribution from the discrete sector.
We Wick-rotate the λ2 integral onto the imaginary axis by replacing λ2 = iλ̃2. We further
shift the λ̃2 integral to get rid of the quadratic dependence on the (r, r′, fi) variables. At
the end of these manipulations we find the discrete contribution to the single string free
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energy:

fdisc(β, µ) =N
k−2

2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′

C lr′C̄
l
r̄′ Sr Sr̄

∫ ∞
0

dτ2
2πτ2

∫ 1/2

−1/2
dτ1

∑
w

eπi(f1+f2−f̄1−f̄2)

∫
(0,k]

dλ̃2 e
πτ2
k
λ̃2

2 e−2π(λ̃2+(r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3))( β
2π−wτ2)

e2πi(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)(µβ2π−wτ1) e2πiν
(
kw
2 −r

′− f1+f2+1
2

)
e
−2πiν̄

(
kw
2 −r̄

′− f̄1+f̄2+1
2

)
1
|η|10 q

1
2
∑

i(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑

i(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24

∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) .

(4.18)
The arguments that lead to the finite bound on the λ̃2-integral are the same as in the
bosonic case.

4.3.3 Free energy in terms of discrete characters

Our next goal is to package the expressions into characters of the various sectors. For this
purpose we observe that the fi-dependent terms can be recombined into θ1-functions:

∑
fi

eπi(fi+ 1
2 )q

1
2(fi+ 1

2)2
q−w(fi+ 1

2)(e−β+iµβ e−2πi ν2
)fi+ 1

2 = q−
w2
2 qws.t. e

−2πiν w2 θ1

(
τs.t. −

ν

2 , τ
)
.

(4.19)
We also introduce the spin variable j = 1

2(λ̃2 + 1):

fdisc(β, µ) =N
∫ ∞

0

dτ2
τ2

∫ 1/2

−1/2
dτ1

∑
w

∫
( 1

2 ,
k+1

2 ]

dj

π

k−2
2∑
l=0

∑
r,r̄,r′,r̄′

C lr′C̄
l
r̄′ Sr Sr̄ q

− j(j−1)
k
− 1

4k−w(j+r+r′)q̄−
j(j−1)
k
− 1

4k−w(j+r̄+r̄′)

(e−β+iµβ)(2w+j+r+r′)(e−β−iµβ)2w+j+r̄+r̄′)e2πiν
( (k−2)w

2 −r′
)
e−2πiν̄

( (k−2)w
2 −r̄′

)
1
|η|10 q

l(l+1)
k
−
csu(2)

24 −w2
q̄
l(l+1)
k
−
csu(2)

24 −w2
∣∣∣∣θ1

(
τs.t.−

ν

2 , τ
) ∣∣∣∣4∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) .

(4.20)
We recall the definition of the spacetime nome qs.t. = (e−β+iµβ) and of the exponentiated
fugacity z = e2πiν and separate out the contributions from the AdS3, S3 and T 4 factors of
spacetime:

fdisc(β, µ) =N
∫ ∞

0

dτ2
τ2

∫ 1/2

−1/2
dτ1

∫
( 1

2 ,
k+1

2 ]

dj

π

k−2
2∑
l=0

∑
w

1
|η|3

∑
r

q−
j(j−1)
k
− 1

4k−
(k+2)w2

4 q
w+ kw

2
s.t. (q−w qs.t.)j+r Sr

1
|η|3

∑
r̄

q̄−
j(j−1)
k
− 1

4k−
(k+2)w2

4 q̄
w+ kw

2
s.t. (q−w q̄s.t.)j+r Sr̄
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q
l(l+1)
k
−
csu(2)

24 + (k−2)w2
4 (qs.t.z

−1)−
(k−2)w

2
∑
r′

C lr′(q−wqs.t.z
−1)r′

q̄
l(l+1)
k
−
csu(2)

24 + (k−2)w2
4 (q̄s.t.z̄

−1)−
(k−2)w

2
∑
r̄′

C̄ lr̄′(q̄−wq̄s.t.z̄
−1)r̄′

1
|η|4

∣∣∣∣θ1

(
τs.t. −

ν

2 , τ
)∣∣∣∣4∣∣∣∣θ1

(
ν

2 , τ
) ∣∣∣∣4 Zbos

T 4 (q) (4.21)

In the second and third lines, one recognizes the spectral flowed sl(2,R) character. Simi-
larly, in the fourth and fifth lines, one identifies the spectral flowed flowed su(2)k−2 char-
acter (B.9):

χwl (ν, τ) = q
(k−2)w2

4 e−2πi (k−2)w
2 νχl(ν − wτ, τ) . (4.22)

As a consequence, the single string free energy can be written in the compact form:

fdisc(β, µ) =N
∫ ∞

0

dτ2
τ2

∫ 1/2

−1/2
dτ1

∫
( 1

2 ,
k+1

2 ]

dj

π

∑
w

χwj (τs.t., τ) χwj (τ̄s.t., τ̄)

k−2
2∑
l=0

χwl (ν − τs.t., τ) χwl (ν̄ − τ̄s.t., τ̄)
∣∣∣∣θ1

(
τs.t. −

ν

2 , τ
) ∣∣∣∣4

∣∣θ1
(
ν
2 , τ

) ∣∣4
|η|4

Zbos
T 4 (q) .

(4.23)
We note that both the sl(2,R) and the su(2) characters have been spectrally flowed by w
units. To identify the world sheet Virasoro generators that capture the off-shell spectrum,
we expand the θ-functions in (4.18), rewrite the integrals in terms of the spin j and collect
terms in the boundary modular parameter and fugacity (τs.t., ν) and also collect terms in
the worldsheet modular parameters (τ1, τ2). In addition we introduce a shorthand for the
degeneracies of the worldsheet primaries and descendants

(qq̄)−
csu(2)

24

|η|10 C lr′C̄
l
r̄′ Sr Sr̄ Z

bos
T 4 (q) = (qq̄)

1
2 + 1

4k
∑

h,N,h̄,N̄

dlr,r′,h,N q̄
h̄+N̄ , (4.24)

to finally obtain:

fdisc(β, µ) =N

k−2
2∑
l=0

∫
( 1

2 ,
k+1

2 ]

dj

π

∑
r,r′,fi,h,N

eπi
∑4

i=1(fi−f̄i) dlr,r′,fi,h,N∫ 1/2

−1/2
dτ1e

2πiτ1(L0−L̄0)
∫ ∞

0

dτ2
τ2
e−2πτ2(L0+L̄0−1) (4.25)

qj+r+r
′+f1+f2+1

s.t. q̄j+r̄+r̄
′+f1+f2+1

s.t. z
kw
2 −r

′+ f3+f4−f1−f2
2 z̄

kw
2 −r̄

′+ f̄3+f̄4−f̄1−f̄2
2 .
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We identify the left-moving worldsheet Virasoro generator:

L0 = −j(j − 1)
k

+ l(l + 1)
k

− w(j + r + r′ + f1 + f2 + 1) + h+N + 1
2

4∑
i=1

(
fi + 1

2

)2

=
[
−j(j − 1)

k
− w(j + r)− (k + 2)w2

4

]
+
[
l(l + 1)
k

− wr′ + (k − 2)w2

4

]

+ 1
2

2∑
i=1

(
fi − w + 1

2

)2
+ 1

2

4∑
i=3

(
fi + 1

2

)2

= (L0)sl(2,R)k+2 + (L0)su(2)k−2 + (L0)fermions ,
(4.26)

with a similar expression for the right-moving Virasoro generator L̄0 with barred variables.
We make a few remarks about the form of the result. The form of the Virasoro gen-

erator makes contact with the construction of vertex operators in [27] in which spectrally
flowed operators in the anti-de Sitter space, the three-sphere and the fermionic factors
are paired. The spacetime fermion number is counted by Fs =

∑4
i=1 fi − f̄i. We indeed

compute Tr(−1)Fs in the Ramond-Ramond sector of the boundary conformal field theory.
The phase factors eπi

∑4
i=1(fi−f̄i) in equation (4.25) make it clear that the oscillators with

odd fi correspond to spacetime fermions. We thus confirm that we obtained the partition
function in a manifestly spacetime supersymmetric (Green-Schwarz) form. This is a di-
rect consequence of applying the generalized Jacobi identity and so(8) triality. It would
be interesting to derive the partition function directly from a Green-Schwarz [28, 29], hy-
brid [30] or integrable supercoset approach [31]. We note that the switch in formalism for
the fermions in the AdS3 context was also performed in [32] where a spin chain description
of the Wess-Zumino-Witten model was constructed which linked up with the integrable
system description through the use of the abstruse Jacobi identity.

4.4 The free energy of on-shell states

Our second goal is to obtain the on-shell contribution to the single string free energy. We
revert to the earlier expression (4.12), perform the λ1 and s2 integral and expand the
θ-functions to end up with:

fdisc(β, µ) =
√
kN

2π

k−2
2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′

C lrC
l
r̄′

∫ ∞
0

dτ2

τ
1/2
2

∫ 1/2

−1/2
dτ1

∫ 1

0
ds1

∑
w

eπi
∑4

i=1(fi−f̄i)

∫
dλ2e

2πi(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)(µβ2π−wτ1)e2πiλ2( β
2π−(s1+w)τ2)

e−2πτ2s1(r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3)e2πiν
(
kw
2 −r

′+ f3+f4−f1−f2
2

)
e
−2πiν̄

(
kw
2 −r̄

′+ f̄3+f̄4−f̄1−f̄2
2

)
e−πkτ2s

2
1

|η|10 q
1
2
∑4

i=1(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑4

i=1(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24 Zbos
T 4 (q)Sr Sr̄. (4.27)

In familiar fashion, we perform the λ2-integral, leading to a δ-function constraint for the
s1-variable, which can be solved. After the combined integration, we obtain a sum over

– 28 –



J
H
E
P
0
4
(
2
0
2
1
)
0
0
7

only non-negative winding numbers w:

fdisc(β, µ) =
√
kN

2π

k−2
2∑
l=0

∑
r,r̄,fi,f̄i,r′,r̄′,w≥0

C lr′C̄
l
r̄′

∫ β
2πw

β
2π(w+1)

dτ2

τ
3/2
2

∫ 1/2

−1/2
dτ1e

πi
∑4

i=1(fi−f̄i)

e2πi(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)(µβ2π−wτ1)e2πiν
(
kw
2 −r

′+ f3+f4−f1−f2
2

)
e
−2πiν̄

(
kw
2 −r̄

′+ f̄3+f̄4−f̄1−f̄2
2

)
e−2π( β

2π−wτ2)(r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3) e
−πk
τ2

( β
2π−wτ2)

2

1
|η|10 q

1
2
∑4

i=1(fi+ 1
2)2+ l(l+1)

k
−
csu(2)

24 q̄
1
2
∑4

i=1(f̄i+ 1
2)2+ l(l+1)

k
−
csu(2)

24 Zbos
T 4 (q)Sr Sr̄ . (4.28)

We again code primaries and descendants as in equation (4.24) and collect the terms in
τ1, τ2, β, and ν in the exponent. The integral over τ1 imposes the level matching condition:

h+N+ 1
2

4∑
i=1

(
fi + 1

2

)2
−w(r+r′+f1 +f2) = h̄+N̄+ 1

2

4∑
i=1

(
f̄i + 1

2

)2
−w(r̄+ r̄′+ f̄1 + f̄2) ,

(4.29)
while (minus) the single string free energy takes the form

fdisc(β, µ)= 4N
iβk

k−2
2∑
l=0

′∑
r,r′,fi,h,N

dlr,r′,fi,h,N
∑
w

eπi
∑4

i=1
(fi−f̄i)z

kw
2 −r

′+ f3+f4−f1−f2
2 z̄

kw
2 −r̄

′+ f̄3+f̄4−f̄1−f̄2
2

∫
dc c

∫ β
2πw

β
2π(w+1)

dτ2e
−4πτ2

(
h+N+ 1

2

∑4
i=1(fi+ 1

2 )2+ kw2
4 −w(r+r′+f1+f2+ 3

2 )+ c2
k −

1
2 + 1

k (l+ 1
2 )2)

eiµβ(r+r′+f1+f2−r̄−r̄′−f̄1−f̄2)e−β(−2ic+r+r′+f1+f2+r̄+r̄′+f̄1+f̄2+3+kw) . (4.30)

The prime indicates that level matching is imposed on the summation variables. The
τ2-integral can be done:

4
iβk

∫ β
2πw

β
2π(w+1)

dτ2e
−4πτ2

(
h+N+ 1

2
∑4

i=1(fi+ 1
2)2+ kw2

4 −w(r+r′+f1+f2+ 3
2)+ c2

k
− 1

2 + 1
k (l+ 1

2)2
)

= 1
πiβk

e
− 2β
w+1

(
h+N+ 1

2
∑4

i=1(fi+ 1
2)2− kw

2
4 −w(r+r′+f1+f2+ 3

2)+ c2
k
− 1

2 + 1
k (l+ 1

2)2
)

c2
k
− 1

2 + 1
k (l+ 1

2)2
h+N+ 1

2
∑4

i=1(fi+ 1
2)2+ kw2

4 −w(r+r′+f1+f2+ 3
2)

−e
− 2β
w

(
h+N+ 1

2
∑4

i=1(fi+ 1
2)2+ kw2

4 −w(r+r′+f1+f2+ 3
2)+ c2

k
− 1

2 + 1
k (l+ 1

2)2
)

c2
k
− 1

2 + 1
k

(l+ 1
2 )2+h+N+ 1

2
∑4

i=1(fi+ 1
2)2+ kw2

4 −w(r+r′+f1+f2+ 3
2)

 .

(4.31)

Our focus is on the contribution from the discrete sector that arises from the residues of
the poles that are picked up in the region:

kw

2 < Im(c) ≤ k(w + 1)
2 , (4.32)
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as a result of the shifts in the contours. The poles are located at

−c2 = k

(
h+N+ 1

2

4∑
i=1

(
fi + 1

2

)2
+ kw2

4 − w

2 + 1
k

(
l + 1

2

)2
− w(r + r′+f1+f2+1)− 1

2

)

= 1
4(2j − 1 + kw)2 . (4.33)

where we have used the on-shell condition L0 = 1
2 to rewrite the right hand side in terms

of the spin j. The residues again represent the contribution of the contribution of the
on-shell discrete states to the single string free energy, which can be written in terms of
the spacetime fugacities, with the spin j determined by the on-shell condition:

fdisc(β, µ) = N

β

k−2
2∑
l=0

′∑
r,r′,fi,h,N

dlr,r′,fi,h,N
∑
w

eπi
∑4

i=1(fi−f̄i) (4.34)

qj+r+r
′+f1+f2+1

s.t. q̄j+r̄+r̄
′+f̄1+f̄2+1

s.t. z
kw
2 −r

′+ f3+f4−f1−f2
2 z̄

kw
2 −r̄

′+ f̄3+f̄4−f̄1−f̄2
2 .

4.5 A BPS bound

We derive a positivity bound for the left and right-moving conformal dimension of the
boundary theory (ignoring for simplicity the ubiquitous constant cs.t./24 in the Ramond-
Ramond sector). For future generalizations, it is instructive to first undo the spectral flow
in the su(2) sector. This is easily accomplished by using (4.22) in reverse and redoing the
subsequent steps. This essentially amounts to the shifts:

r′ −→ r′ + k − 2
2 w , f2 −→ f2 + w . (4.35)

The left-moving R-charge and conformal dimension take the form:

QRs.t. = −r′ + w

2 + 1
2(f3 + f4 − f1 − f2) , (4.36)

H = j + r + k

2w + f1 + f2 + 1 + r′ , (4.37)

while the associated worldsheet Virasoro generator is given by

L0 = −j(j−1)
k

− kw2

4 − w
(
j + r + f1 + 1

2

)
+ l(l + 1)

k
+ 1

2

4∑
i=1

(
fi + 1

2

)2
+ hint . (4.38)

In what follows we shall write the expression for the dimension H along with the Virasoro
generator L0 in tandem so as to keep in mind the on-shell constraint L0 = 1

2 that constrains
the spins and fermion numbers appearing in H. There is an additive structure to both H
and L0: there is a term from the sl(2) sector and the associated fermions, a contribution
from the compact su(2) sector and the associated fermions, and one from the internal
manifold and the various oscillators.

We first work with the sl(2) sector and restrict ourselves to the r ≥ 0 case. We will
find it useful to define a shifted spin in the sl(2) sector:

j̃ = j + kw

2 −
1
2 . (4.39)
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In terms of this spin we have

H = j̃ + 1
2 +

(
r + f1 + 1

2

)
+
(
r′ + f2 + 1

2

)
(4.40)

L0 = − j̃
2

k
− w(1 + r + f1) + 1

k

(
l + 1

2

)2
+ 1

2

4∑
i=1

(
fi + 1

2

)2
+ hint . (4.41)

Let us consider the contributions to the energy H and the level, namely the contribution
to the worldsheet conformal dimension above the conformal dimension of the primary (or
above the ground state energy 1/8 for the fermionic sectors). It is clear that the compact
and fermionic sectors contribute positively to the level. At fixed contribution to the level,
we wish to minimize the contribution to H. This leads to the conclusion that r, r′ and
fi are minimal at a fixed compact level. Put differently, at fixed compact contribution
to the dimension H, we must minimize the contribution of a state to the level. Indeed,
otherwise this leads to an increase in the non-compact contributions j̃, w, f1, which leads
to an increase in dimension H.

These considerations lead to the following conclusions: first of all we set

r = 0 , and f3 , f4 ∈ {0,−1}. (4.42)

Secondly the combination r′+f2 must be minimized at a given level for both the fermionic
f2 contribution and the bosonic contribution r′ to the spin. This is precisely the problem
that we address in appendix B.3 and we refer the reader to the appendix for details. What
we need to proceed is summarized in figure 2. The point in the (spin,level) plane marked
(s, hint) lies on the line segment that is part of the supersymmetric su(2) current algebra
module. For a given level we see that the minimal choice of spin is given by:

s = r′ + f2 + 1
2 = −

(
lcrit + 1

2

)
−∆l

= −l − kw̃

2 −
1
2 −∆l .

(4.43)

Here we have used the critical value lcrit that is derived in appendix B.3. It is the spin
value of the spectral flowed ground state that lies on the parabola that circumscribes the
weight diagram just below the level hint. This is expressed in terms of the spin l and an
arbitrary integer w̃ that is determined by the segment on which the point (s, hint) lies. We
have assumed that w̃ is even, else we use the mirror value of lcrit (see appendix B.3). The
oscillator contribution to the worldsheet conformal dimension can determined to be — see
appendix B.3 — :

hint = 1
k

((
lcrit + 1

2

)2
−
(
l + 1

2

)2 )
+ (w̃ + 1)∆l . (4.44)

So far we have parametrized the su(2) spin, fermion number and the oscillator contributions
in terms of (∆l, w̃). We have also set r = 0 and fixed all the fermion numbers except f1 to
minimize H. By inspection we can see that f1 = −1 minimizes H. Plugging all of these
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Level

Spin
l + 1

2−(l + 1
2 )

k − (2l + 1)

k + 2l + 1

Δl

−(lcrit + 1
2 )

(s, hint)

Figure 2. We drew the left quadrant of the weight diagram of an irreducible supersymmetric
su(2) current algebra module. The weight diagram is bounded by the blue line segments which are
circumscribed by a the purple parabola. Spectral flowed ground states (in red) are the only states
that lie on the parabola.

values into equations (4.40) and (4.41) we obtain:

Hmin = j̃ − l̃ −∆l (4.45)

L0 = − j̃
2

k
+ l̃2

k
+ (w̃ + 1)∆l + 1

2 . (4.46)

where we have defined
l̃ = l + kw̃

2 + 1
2 . (4.47)

Our final task is to understand how to choose (w̃,∆l, l) given j̃, w in order to obtain
the strongest bound on the dimension H. We eliminate j̃ using the on-shell condition
L0 = 1

2 and extremize the resulting expression with respect to ∆l. The ensuing formula for
H is precisely the distance of the segment from the parabola and this is minimized when
∆l = 0. The state of the su(2) affine module lies on the parabola. We summarize

Hmin = j̃ − l̃ (4.48)

L0 = − j̃
2

k
+ l̃2

k
+ 1

2 . (4.49)

The on-shell condition then leads to j̃ = l̃. Given the ranges of the spins j and l, this fixes
w̃ = w and we obtain the bound:

H ≥ 0 . (4.50)
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To close a final loophole, we briefly explain why the choice r = 0 versus r < 0 is optimal to
minimize the energy in the non-compact sector of a superstring compactification. Let us
start with r = 0, and see how the energy changes when r < 0. For r = 0, we schematically
denote the solution of the on-shell condition as j̃ =

√
kA. This fixes a winding number

w. We will analyze what happens when we keep all moving parts fixed, except for r and
the spin j̃. We turn on r < 0. We have that the energy term Hsub = j̃ + r seemingly
goes down (barring what happens to the spin j̃) and the world sheet scaling dimension L0
is augmented by (w + 1)(−r). We re-adjust the spin j̃ to satisfy the on-shell constraint
and find:

j̃ =
√
k(w + 1)(−r) + kA ,

Hsub = j̃ + r =
√
k(w + 1)(−r) + kA+ r .

(4.51)

We want to know the minimum of the energy Hsub, for r ≤ 0 in a certain range. From our
original assumption, we have that kA = j̃2 lies between (kw)2/4 < kA ≤

(
k(w + 1)

)2
/4.

We should study the values of r for which the formulas (4.51) are valid and analyze the
energy Hsub in that range. It can be shown that the resulting energy is always larger or
equal than the original energy

√
kA, namely that the choice r = 0 is optimal. Thus our

proof is complete.

4.6 The Ramond-Ramond sector ground states

Finally, let us systematically solve for the states that satisfy the extremal conditions H = 0
and H̄ = 0. These are the left and right moving Ramond sector ground states of the
boundary theory. A careful look at the proof of the bound demonstrates that ground state
quantum numbers appearing in (4.37) must satisfy:

j = l + 1 , r′ = −l − k − 2
2 w , f1 = −1 , f2 = −w − 1 . (4.52)

They enjoy a four-fold degeneracy captured by the fermion number values

f3 ∈ {−1, 0} and f4 ∈ {−1, 0} . (4.53)

One can check that for all these and only these values do we have H = 0. It is important
to note that the su(2) spin l can take k − 1 values. Thus there are 4(k − 1) RR sector
ground states. The boundary u(1) R-charge QRs.t. of these states (see (4.36)) is given by:

QRs.t. = kw

2 + j + f3 + f4
2 , (4.54)

and similarly for the right-movers. For the four left-moving ground states for a given
value of the spin j, the R-charges are given in table 1. We defined the handy combination
of quantum numbers n = 2j − 1 + kw.The (chiral,chiral) primaries have been described
explicitly in terms of vertex operators in the bulk string theory in [4, 27]. They fall into four
infinite families, labelled by a positive integer w ≥ 0 as well as an integer n = 2j − 1 + kw,
where 2j − 1 = 1, 2, . . . , k − 1. Thus, the floors n = 0, k, 2k, . . . are missing from the four
towers. These vertex operators map one-to-one to the Ramond-Ramond sector ground
states that we identified. Through path integral methods, we have not only confirmed this
list, but also proven that the classification is complete.
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(f3, f4) 2QRs.t.
(−1,−1) n− 1
(−1, 0) n

( 0,−1) n

( 0, 0) n+ 1

Table 1. The boundary R-charge of the Ramond ground states for a given value of n = 2j−1+kw

and the fermion numbers f3,4.

4.6.1 Summary
We have focused on the contribution of the discrete states to the single string free energy
of superstrings on AdS3 × S3 × T 4. From the single string free energy we could read off
the left/right conformal dimensions and R-charges of the discrete states in the Ramond-
Ramond sector of the boundary theory. We then went on to prove positivity bounds that
led to a complete classification of Ramond-Ramond ground states.

Let us highlight some of the features of our derivation. First of all our approach includes
manifest spacetime supersymmetry thanks to the use of the abstruse Jacobi identity. The
spectrum we obtained in the Ramond-Ramond sector is evidently made of supersymmetry
multiplets and the proof of the BPS bound proceeds rather straightforwardly on-shell.
Lastly, we stress that our approach is universal — it can be applied to any supersymmetric
superstring background of the form AdS3×N . This includes string scale compactifications
as well as non-Kähler compactification manifolds, as we illustrate in the next section.

5 Superstrings in thermal AdS3 × S3 × S3 × S1

In this section, we provide a second application of the calculation of the superstring free
energy in thermal AdS3. We consider a background AdS3 × S3 × S3 × S1 spacetime at
supersymmetric levels (k; k1, k2) where

1
k

= 1
k1

+ 1
k2

(5.1)

in order to have a critical superstring background. We analyze the off-shell and on-shell
single string free energy along the lines of previous sections. Since the intermediate steps
are familiar by now, we exclusively comment on the new features.

5.1 The free energy

We start out with the twisted single string contribution to the free energy in the GSO
projected NSR formalism:

f(β, µ) = 1
2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke
− kβ2

4πτ2

|θ1(τs.t., τ)|2 |η|
4

k1−2
2∑

l1=0
|χl1(ν1, τ)|2

k2−2
2∑

l2=0
|χl2(ν2, τ)|2 ZU(1)

1
4|η|8

∑
a,b

e2πi(a+b+2ab)θba(τs.t., τ)θba(ν1, τ)θba(ν2, τ)θba(0, τ)

∑
ā,b̄

e2πi(ā+b̄+2āb̄)θb̄ā(τ̄s.t., τ̄)θb̄ā(ν̄1τ̄)θb̄ā(ν̄2, τ̄)θb̄ā(0, τ̄) . (5.2)
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We have introduced twists ν1,2 with respect to the global symmetries of the two three-
spheres. We again use the Jacobi identity:∑
a,b

e2πi(a+b+2ab)θba(τs.t., τ)θba(ν1, τ)θba(ν2, τ)θba(0, τ)

= 2θ1

(
ν1 + ν2 − τs.t.

2 , τ

)
θ1

(
ν1 + ν2 + τs.t.

2 , τ

)
θ1

(
ν1 − ν2 − τs.t.

2 , τ

)
θ1

(
ν1 − ν2 + τs.t.

2 , τ

)
,

(5.3)

to go to a manifestly supersymmetric description. We identify the boundary R-
charge [5, 33]:

QRs.t. = γ(K3
0 )1 + (1− γ)(K3

0 )2 , (5.4)

where the parameter γ is determined in terms of the supersymmetric levels:

γ = k2
k1 + k2

. (5.5)

The charge (K3
0 )a is the zero mode of the third component of the su(2)ka super current

algebra. We restrict the pair (ν1, ν2) to the fugacity ν that couples to R-charge:

ν1 = γ ν , ν2 = (1− γ)ν . (5.6)

and similarly for the right-movers. For both the left and right movers we spectrally flow
by half a unit in the boundary theory so that we calculate the single string free energy in
the Ramond-Ramond sector of the boundary theory:

ν → ν − τs.t. , ν̄ −→ ν̄ − τ̄s.t. . (5.7)

As before this leads to a normalization constant N = q
cs.t.
24
s.t z−

cs.t.
6 up front and the single

string free energy takes the form:

f(β, µ) = N

2π|η|4

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke−

kβ2
4πτ2

|θ1(τs.t., τ)|2
k1−2

2∑
l1=0
|χl1(γ(τs.t. − ν), τ)|2

k2−2
2∑

l2−=0
|χl2((1− γ)(τs.t. − ν), τ)|2 ZU(1) (5.8)

∣∣∣∣θ1

(
ν

2 , τ
)∣∣∣∣2∣∣∣∣θ1

(
τs.t.−

ν

2 , τ
)∣∣∣∣2∣∣∣∣θ1

(
γτs.t.−

(
γ− 1

2

)
ν

)
, τ)
∣∣∣∣2∣∣∣∣θ1

(
(1−γ)τs.t.+

(
γ− 1

2

)
ν

)
, τ)
∣∣∣∣2.

5.1.1 The discrete sector

We proceed by introducing the integral over the holonomies, expanding the su(2) charac-
ters, the θ-functions et cetera and going through the same steps as in the previous sections.
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We skip all of the details and present the contribution of the discrete states to the free
energy as a sum over the off-shell states in the Hilbert space:6

fdisc(β, µ) =N

k1−2
2∑

l1=0

k2−2
2∑

l2=0

∑
r,r̄,fi,f̄i,r′a,r̄

′
a

eπi(
∑4

i=1(fi−f̄i)
∑

h,h̄,N,N̄

dlaN,h,r,fi,r′a

∑
w

∫
( 1

2 ,
k+1

2 ]

dj

π

∫ ∞
0

dτ2
τ2

∫ 1/2

−1/2
dτ1 e

2πiτ1(L0−L̄0) e−2πτ2(L0+L̄0−1)

q
j+ (k+2)w

2 +1+r+f1+γ(r′1+f3)+(1−γ)(r′2+f4)
s.t. q̄

j+ (k+2)w
2 +1+r̄+f̄1+γ(r̄′1+f̄3)+(1−γ)(r′2+f̄4)

s.t.

z−
1
2 (f1−f2)−γr′1−(1−γ)r′2−(γ− 1

2)(f3−f4) z̄−
1
2 (f̄1−f̄2)−γr̄′1−(1−γ)r̄′2−(γ− 1

2)(f̄3−f̄4) .
(5.10)

The worldsheet Virasoro generators are given by

L0 = −j(j − 1)
k

− (k + 2)w2

4 −w(j+r)+
2∑

a=1

la(la + 1)
ka

+ 1
2

4∑
i=1

(
fi + 1

2

)2
+h+N , (5.11)

and similarly for the right-movers, with the barred (r̄, f̄i, h̄, N̄) variables. One can clearly
identify the contribution to the worldsheet dimension from the spectral flowed spin j rep-
resentation in the bosonic sl(2,R)k sector, the spin la representation in the bosonic su(2)ka ,
the contribution from the four sets of fermions and lastly the contribution from the internal
space and the descendants.

One can perform the (τ1, τ2) integrals to write the free energy as a sum over on-shell
states:

fdisc(β, µ) = N

β

k−2
2∑
l=0

′∑
r,r′,fi,h,N

dN,r,r′a,fi(h, h̄)
∑
w≥0

eπi
∑4

i=1(fi−f̄i)

q
j+ (k+2)w

2 +1+r+f1+γ(r′1+f3)+(1−γ)(r′2+f4)
s.t. q̄

j+ (k+2)w
2 +1+r̄+f̄1+γ(r̄′1+f̄3)+(1−γ)(r′2+f̄4)

s.t.

z−
1
2 (f1−f2)−γr′1−(1−γ)r′2−(γ− 1

2)(f3−f4) z̄−
1
2 (f̄1−f̄2)−γr̄′1−(1−γ)r̄′2−(γ− 1

2)(f̄3−f̄4) .
(5.12)

The prime indicates the level-matching condition L0 = L̄0 and we note that the sum over
winding w is restricted to the non-negative integers. As before the exponents of the nome
qs.t. and z end up being the same in both the on-shell and off-shell cases, but one has to
keep in mind that the on-shell condition L0 = 1

2 imposes a constraint among the various
quantum numbers.

6In this formula the function dla
N,h,r,r′a

keeps track of the degeneracies of the descendants that are encoded
in the series Sr and Clara :

(qq̄)−
1
24

∑2
a=1

c
(a)
su(2)

|η(τ)|10 Cl1
r′1
C̄l1
r̄′1
Cl2
r′2
C̄l2
r̄′2
Sr Sr̄ ZU(1) = (qq̄)−

1
2 + 1

4k
∑

h,h̄,N,N̄

dla
N,h,r,r′a

qh+N q̄h̄+N̄ . (5.9)
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5.2 A BPS bound

From the on shell free energy one can read off the left moving conformal dimension to be

H = j + r + k + 2
2 w +

(1
2 + f1

)
+ γ

(
r′1 + f3 + 1

2

)
+ (1− γ)

(
r′2 + f4 + 1

2

)
. (5.13)

The spins are constrained by the on-shell condition L0 = 1
2 , with the left-moving Virasoro

generator given by:

L0 = −j(j − 1)
k

− (k + 2)w2

4 −w(j+r)+
2∑

a=1

la(la + 1)
ka

+ 1
2

4∑
i=1

(
fi + 1

2

)2
+h+N . (5.14)

Our goal is to obtain a BPS bound that leads to a minumum value for the dimension H.
We proceed along the same lines as in the AdS3 × S3 × T 4 case. We first consider the
sl(2) sector and by the same arguments find that the minimum value of the dimension H
is obtained by setting

r = 0 , f1 = −w − 1 . (5.15)

As explained in detail previously, the interplay between the dimension H and the worldsheet
Virasoro generator ensures that at a fixed compact contribution to H, we must minimize
the contribution to the level. As a consequence, the fermion number f2 is set to its ground
state values:

f2 ∈ {0,−1} . (5.16)

We next consider the supersymmetric su(2)a affine module and parametrize the spin,
fermion number and level in terms of (w̃a,∆la), where w̃a and ∆la measures its distance
from the special values of spin that intersect the parabola shown in figure 2. See also
appendix B.3.

sa = r′a + fa+2 + 1
2 = −la −

kaw̃a
2 − 1

2 −∆la (5.17)

hint,a = 1
ka

((
la,crit + 1

2

)2
−
(
la + 1

2

)2)
+ (w̃a + 1)∆la . (5.18)

Substituting these into the expressions for H and L0, we then extremize H with respect to
the free variables. We once again find that H is minimized when ∆la = 0. At these optimal
values, and after a bit of algebra, we obtain the following expressions for H and L0:

Hmin = j̃ − γl̃1 − (1− γ)l̃2 , L0 = − j̃
2

k
+ l̃21
k1

+ l̃22
k2

+ 1
2 . (5.19)

where we have defined:

l̃1 = l1 + k1w1
2 + 1

2 , l̃2 = l2 + k2w2
2 + 1

2 and j̃ = j + kw

2 −
1
2 . (5.20)

We use the on-shell condition to solve for the spin j̃ and substitute into the expression for
H to obtain

Hmin =
√
γl̃21 + (1− γ)l̃22 − γl̃1 − (1− γ)l̃2 . (5.21)
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Here we have used the relation between the levels k = γk1 = (1 − γ)k2. Extremizing this
expression with respect to the spectral flow parameters w̃a or effectively with respect to
the spin l̃a, we obtain the equalities

l̃1 = l̃2 = j̃ , (5.22)

and find that the minimal energy Hmin equals zero, as expected in the boundary Ramond-
Ramond sector, up to the constant shift by cs.t./24 . The final result agrees with [5].

5.3 The Ramond-Ramond sector ground states

Let us focus on the ground states of dimension H = 0. The boundary u(1) R-charge QRs.t.
of these states can be read off from the exponent of the fugacities z and z̄ in (5.9)

QRs.t. = −1
2(f1 − f2)− γr′1 − (1− γ)r′2 −

(
γ − 1

2

)
(f3 − f4)

= 1
2(f2 + f3 + f4 − f1)− γ(r′1 + f3)− (1− γ)(r′2 + f4) .

(5.23)

and similarly for the right-movers. Substituting the quantum numbers for the ground
states that we classified through our proof, we see first of all, that the allowed values of
f2 ∈ {0,−1} lead to a twofold degeneracy of states. Explicitly we obtain

QRs.t. = f2
2 + j̃ + δ

2 . (5.24)

where we have defined the shift δ = w −w1 −w2 which will turn out to take values in the
set {0, 1}. Importantly, from the equality (5.22) of spins, we conclude that 2j̃ takes values
in the strictly positive integers, but skips all multiples of both k1 and k2, namely we have
2j̃ ∈ Z>0 \ (k1Z ∪ k2Z).

A non-trivial Diophantine task remains: for each spin 2j̃ one needs to determine the
value of δ. Technically, this coincides with a calculation carried out in the NS/R formalism
in [5]. In the following reasoning, we crucially use the lemmas we state and prove in
appendix C. We will once again suppose that k ≥ 2. It is not hard to see that the shift δ
equals zero between 0 and k, since w = 0 = wa. Then, it becomes one at 2j̃−1 = k since w
jumps to 1 while wa remains zero. When 2j̃ − 1 hits a multiple of ka, wa is augmented by
one, and δ becomes zero again. These steps up and steps down essentially alternate with
exceptions proven in appendix C. The net effect is that we create gaps in the spectrum
at (the integer part of) the multiples of k while we close the gaps that used to exist at
multiples of ka. However, at an interval which corresponds to the case where k(w + 1) is
a common multiple of (k1, k2), we have that δ remains one throughout. Thus, this gap in
the original spectrum is simply filled. The net result is that we have gaps in the values of
2j̃ − 1 at multiples of k, except where these are multiples of the lowest common multiple
of (k1, k2). See also [5].

Thus, the integer combination m = 2j − 2 + kw + δ takes values in the set

m ∈ Z≥0 \
(
bkZc \ l.c.m.(k1, k2)Z

)
. (5.25)
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f2 2QRs.t.
−1 m

0 m+ 1

Table 2. The boundary R-charge of the Ramond ground states for a given value of integers (m, f2).
The pair of states form an N = 4 multiplet.

We made use of the floor function. We list below the left-moving ground states along with
their R-charges: It is important to note that our description is manifestly supersymmetric,
and proves that the classification performed in [5] is indeed complete. We note a new
phenomenon in this model, which is the contribution of a discrete representation at j =
(k + 1)/2. In section 2 we showed that a Feynman regularization of the radial momentum
integral indeed gives rise to such a state in the spectrum of positive energy states.

As a small check on this result, let us take the infinite level limit k2 → ∞. In this
limit, the parameter γ approaches one and the two other level match k1 = k ∈ Z≥2. The
background reduces to the large radius limit of AdS3×S3×T4. We note that the degeneracy
of the chiral primaries gets doubled as the fermion number f2 drops out of the expression
for the dimension H and it can then take the values {−1, 0}. We take the same limit on
the spectrum of Ramond ground states we obtained above. First of all we see that δ = 0
in this case, as the winding w2 can be set to zero and w1 = w. By taking a careful limit of
the floor function, we find that (m+ 1) = 2j − 1 + kw ∈ Z>0 \ kZ. This precisely matches
the gaps in the spectrum of ground states in the T 4 case.

6 The second quantized ground states

In this section we compute the second quantized Ramond-Ramond ground state partition
function, and analyze its modular properties. We discuss and compare our results to those
in the literature.

6.1 The second quantized theory

We wish to study multi-string contributions to the vacuum amplitude. We will concentrate
on the multi-string contributions that arise from the single string Ramond-Ramond ground
states. Recall that the one-loop vacuum amplitude ZT 2 in the thermal background is
identified with the spacetime free energy ZT 2 = −βF [2, 34]. Moreover, we note that the
free energy F consists of connected multi-particle contributions:

F (β, µ) = 1
β

∑
H1,b

log(1− e−βE+iβµJ)− 1
β

∑
H1,f

log(1 + e−βE+iβµJ) . (6.1)

where H1,b (H1,f ) is the bosonic (respectively fermionic) one-particle Hilbert space. The
generating function for the second quantized theory in which we allow for any number of
non-interacting and disconnected multi-particle loops is obtained by exponentiating the
vacuum amplitude:

eZT2 = e−βF =
∏
H1,f

(1 + e−βE+iβµJ)∏
H1,b

(1− e−βE+iβµJ) . (6.2)
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This is a sum over disconnected vacuum amplitudes of toroidal topology. The thermo-
dynamics that is described here is a grand canonical ensemble of non-interacting parti-
cles. In this section, we will apply this description to the single string Ramond-Ramond
ground states.

6.1.1 The grand canonical order
Before we exponentiate our single particle free energy for the example of AdS3 × S3 × T 4

on which we concentrate, we wish to enrich it further. In our single particle partition sum
f(β, ν, ν̄), we kept track of the left and right angular momenta as well as the spacetime
energy E. We propose to refine our single particle sum further by introducing an additional
fugacity σ that couples to the quantum number ni = 2ji − 1 + kwi of the ith single string
excitation. In other words, we track the part of the R-charge quantum number that is
universal in the sense that it does not depend on the compactification manifold M = T 4.

The fugacity that couples to this quantum number arises as follows. In the initial NSR
frame formula (4.3), we introduce an overall shift of the R-charge fugacity ν by 2σ as well
as a fugacity −σ in the first two theta-functions corresponding to the AdS3 × S3 factors.

After applying the Jacobi triality as well as spectral flow, we find the single string free
energy

f(β, µ, σ) = N

2π

∫ ∞
0

dτ2

τ
3/2
2

∫ 1
2

− 1
2

dτ1

√
ke
− kβ2

4πτ2

|θ1(τs.t., τ)|2Z
bos
T 4 (q)

k−2
2∑
l=0
|χl(ν − τs.t., τ)|2

1
|η|4

∣∣∣∣θ1

(
τs.t. −

ν

2 − σ, τ
) ∣∣∣∣4∣∣∣∣θ1

(
ν

2 , τ
)∣∣∣∣4 .

(6.3)

Tracing the fugacity σ through the calculation performed in section 4, and in particular
with regard to the Ramond-Ramond ground states, we conclude that the fugacity σ indeed
keeps track of the quantum number n = 2j− 1 + kw. We recall that this quantum number
takes the values n = 1, 2, . . . , k−1, k+1, k+2, . . . . There is a gap at every integer multiple
of the level k.

The left and right moving R-charges contain this quantum number and experience
an extra shift determined by the Dolbeault cohomology degrees of the complex manifold
M = T 4. This is clear from the R-charges listed in table 1 for this example, and it is
generically true. When we allow an arbitrary number of each of these one particle modes,
it is convenient to associate a creation oscillator αa,ā−n to each of them, where we denote the
charge that couples to the fugacity σ as a lower index n and the upper a, ā indices take
values in the Dolbeault cohomology and keep track of the Dolbeault degree (by abuse of
notation). If we denote the exponential of the fugacity σ as p = e2πiσ, we can write down
the second quantized partition function Pgapped for the Ramond-Ramond ground states for
the case of M = T 4:

Pgapped =
∏
n≥1
n 6=kZ

(
(1− z−1pn)(1− zpn)(1− z̄−1pn)(1− z̄pn)

)2

(1− z−1z̄−1pn)(1− zz̄pn)(1− zz̄−1pn)(1− z−1z̄pn)(1− pn)4 . (6.4)

We used the Hodge numbers of the four-torus and excluded the states that fell into the gap.
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6.1.2 The Hodge polynomial of Hilbert schemes

It is interesting to compare the second quantized partition function (6.4) to the generating
function of Hodge polynomials of Hilbert schemes of points on M [35, 36]. For a smooth
projective surface M , the set of Hodge polynomials associated to the Hilbert scheme of
points is generated by the following function [35, 36]:

P =
∑
N≥0

h(SN , z, z̄)tN =
∞∏
k=1

∏
a+ā odd(1 + za+k−1z̄ā+k−1tk)ha,ā∏
a+ā even(1− za+k−1z̄ā+k−1tk)ha,ā

, (6.5)

where h(SN , z, z̄) denotes the Hodge polynomial of the Hilbert scheme of N points on the
surface M , while ha,ā are the Hodge numbers of the surface M . The variable t keeps track
of the order of the SN orbifold group while the variables (z, z̄) are fugacities for the left
and right degrees in the Dolbeault cohomology of the Hilbert scheme. When we apply this
formula to a smooth projective complex connected surface M , we can simplify further since
the Hodge numbers satisfy the relations:

h1,0 = h0,1 = h1,2 = h2,1 , h2,0 = h0,2 , and h0,0 = h2,2 = 1 . (6.6)

For instance, for the four-torus M = T 4 we have h1,0 = 2, h2,0 = 1 and h1,1 = 4. The
generating function simplifies to:

P (ν, ν̄, σ) =
∏
n≥1

(
(1− z−1pn)(1− zpn)(1− z̄−1pn)(1− z̄pn)

)h1,0

(1− z−1z̄−1pn)(1− zz̄pn)
(
(1− zz̄−1pn)(1− z−1z̄pn)

)h2,0(1− pn)h1,1
.

(6.7)
We have defined p = zz̄t. From the definition of the generating function P , it follows that
the second quantized partition function Pgapped (6.4) can be written as a ratio of generating
functions:

Pgapped(ν, ν̄, σ) = P (ν, ν̄, σ)
P (ν, ν̄, kσ) . (6.8)

The division implements the gap in the spectrum. The second quantized partition function
is thus a ratio of symmetric orbifold generating functions.

6.1.3 The SW orbifold

There is another way in which to present the result for the second quantized partition func-
tion for Ramond-Ramond ground states which is illuminating and makes contact with [4].
Instead of introducing a fugacity for the quantum number n = 2j − 1 + kw, we introduce
a fugacity that keeps track of the winding number w only and write the second quantized
partition function as:

PWgapped =
∏

w=0,1,...

∏
s=1,2,...,k−1

∏
a+ā odd(1− za+s+kw−1z̄ā+s+kw−1p′kw)ha,ā∏
a+ā even(1− za+s+kw−1z̄ā+s+kw−1p′kw)ha,ā

. (6.9)

We will demonstrate that it agrees up to a p-independent factor with a symmetric orbifold
partition function of the w = 0 ground states. We start out with a seed superconformal
field theory of central charge 6k with a spectrum of R-charges (n+ a, n+ ā) where (a, ā) is
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the spectrum of R-charges of a central charge equal to six theory on the manifold M and
n = 1, 2, . . . , k − 1. The symmetric orbifold generating function for this seed theory reads:

P6k =
∞∏
m=1

k−1∏
s=1

∏
a+ā odd(1− za+s+m−1z̄ā+s+m−1p̃m)ha+s,ā+s∏
a+ā even(1− za+s+m−1z̄ā+s+m−1p̃m)ha+s,ā+s

. (6.10)

We equate the fugacities zz̄p̃ = qk and use ha+n,ā+n = ha,ā to find

P6k =
∞∏
m=1

k−1∏
s=1

∏
a+ā odd(1− za+s−1z̄ā+s−1qkm)ha,ā∏
a+ā even(1− za+s−1z̄ā+s−1qkm)ha,ā

. (6.11)

By identifying q = zz̄p′, we obtain

P6k =
∞∏
m=1

k−1∏
s=1

∏
a+ā odd(1− za+s+km−1z̄ā+s+km−1p′km)ha,ā∏
a+ā even(1− za+s+km−1z̄ā+s+km−1p′km)ha,ā

. (6.12)

We see that the symmetric orbifold generating function P6k in (6.12) indeed agrees with
the second quantized partition function PWgapped in (6.9) which tracks the winding number
of the Ramond-Ramond sector ground states. We discuss these formulas in due course.

6.2 Modular partition functions

First though, we slightly modify our generating functions in order to make it more manifest
that they exhibit interesting modular transformation properties. The generating function
P of Hodge polynomials of Hilbert schemes of points given in (6.7) can be written in terms
of theta- and eta-functions up to the following prefactors:

P (ν, ν̄, σ) = g(ν, ν̄) p
χ
24 P̃ (ν, ν̄, σ) , (6.13)

where χ is the Euler character of the Kähler manifold M and

P̃ (ν, ν̄, σ) =
(
θ1(ν, σ)
η(σ)

θ1(ν̄, σ)
η(σ)

)h1,0 η

θ(ν + ν̄, σ)

(
η

θ(ν − ν̄, σ)

)h2,0 1
(η(σ))h1,1

. (6.14)

We now propose to work with this modified generating function P̃ , in which we strip away
the p-independent factor g(ν, ν̄) and a factor of p

χ
24 from the generating function of Hodge

polynomials. The factor p
χ
24 may be familiar from the generating function of Euler numbers

of instanton moduli spaces that was defined in [37].7 The modified generating function P̃
has good modular and elliptic properties determined by those of its factors. For instance
we note that the function behaves under S-modular transformations as:

P̃

(
ν

σ
,
ν̄

σ
,− 1

σ

)
= (−iσ)−

h1,1
2 e−

πi
σ

(
(ν2+ν̄2)(h0,0−h1,0+h2,0)+2νν̄(h2,0−h0,0)

)
P̃ (ν, ν̄, σ) . (6.15)

It therefore behaves as a multivariable Jacobi form with matrix index determined by the
Hodge numbers of M . Given the relation between the second quantized partition function

7It may well have a similar origin in local curvature dependent terms that arise upon S-dualization. It
would also be interesting to analyze the origin of the twist dependent factor g.
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Pgapped and the generating function of Hodge polynomials P in equation (6.8), it is natural
to define a modified second quantized partition function of boundary Ramond-Ramond
ground states as follows:

P̃gapped := p
χ
24 (k−1)e

ZRR
T2 = P̃ (ν, ν̄, σ)

P̃ (ν, ν̄, kσ)
. (6.16)

We note that the p-independent factor g(ν, ν̄) cancels out once we take the ratio of generat-
ing functions of the modified Hodge polynomials. Thus, the relation between the previously
defined second quantized partition function and the modified one is simply a p-dependent
factor. The quantity (1− k)χ plays the role of a central charge, where k = N5 is the num-
ber of NS5 branes [37]. It is straightforward to check that the gapped partition function
P̃gapped transforms under modular S-transformations as a multivariable Jacobi form with
matrix index:

P̃gapped

(
ν

σ
,
ν̄

σ
− 1
σ

)
= N

h1,1
2

5 e−
k−1
k

πi
σ

(
(ν2+ν̄2)(h0,0−h1,0+h2,0)+2νν̄(h2,0−h0,0)

)
P̃gapped(ν, ν̄, σ) .

(6.17)
For the case of M = T 4 we note that the index is zero. The modular transformation
property with respect to the variable that keeps track of the orbifold order is intriguing.
There may be a hint in the fact that this fugacity mixes with the fugacity corresponding
to the spacetime modular parameter τs.t..

6.2.1 Other examples

When the compact manifoldM is a K3 manifold we propose the gapped partition function:

P̃K3
gapped = p

χ
24 (k−1) θ(ν + ν̄, kσ)θ(ν − ν̄, kσ)η18(kσ)

θ(ν + ν̄, σ)θ(ν − ν̄, σ)η18(σ) . (6.18)

Here we have used the Hodge numbers of K3 (h1,0 = 0, h1,1 = 20 and h2,0 = 1), in the
general formulas in (6.14) and (6.17). Its modular properties were already uncovered above.

For the AdS3 × S3 × S3 × S1 models discussed in section 5 there is the intriguing
phenomenon of a contribution from the edge of the continuum which indicates that an
unambiguous definition of the first and second quantized partition sum may include a
contribution from the continuous sector, as in the calculation of (completed mock modular)
non-compact elliptic genera [16]. Still, we can tentatively write down a second quantized
partition function based on the spectrum of R-charges we determined. We concentrate on
a very simple example in which we have k1 = 2k = k2 and a positive integer level k. Then
the spectrum simplifies to m ∈ Z≥0 \k(2Z+ 1). Taking into account the two-fold left/right
degeneracy, the second quantized partition sum then reads:

Pgapped =
∞∏

m∈Z≥0\k(2Z+1)

(1− z−1pm+1)(1− z̄−1pm+1)
(1− z−1z̄−1pm+1)(1− pm+1) . (6.19)

More intricate AdS3×S3×S3×S1 examples with generic levels lead to even more intriguing
expressions that we leave for future study.
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6.3 Discussion

We finish this section with some conceptual remarks on our formulas and their relation to
the literature. Indeed, there remain open questions associated to the various points of view
on the second quantized partition functions.

6.3.1 Fundamental strings are perturbative

There is a suggestion, based on an original observation on the cohomology of the moduli
spaces of instantons [38], that the boundary dual to N1 D1-branes embedded in N5 D5-
branes may correspond to a point in the moduli space of the symmetric orbifold conformal
field theory SymN (M) where N = N1N5 and the four-manifold M is orthogonal to the
D1-branes and parallel to the D5-branes. The central charge of the conformal field theory is
c = 6N1N5 (in the case ofM = T 4). By comparing our second quantized partition function
to the symmetric orbifold (or rather Hilbert scheme) generating function in subsection 6.1.2,
we used the conjecture as a point of reference.

Let us stress though that there are important differences between our NSNS back-
ground and the S-dual Ramond-Ramond background. We started out with an NSNS back-
ground that consists of N5 = k NS5-branes and N1 fundamental strings. The background
number N1 of fundamental strings is only visible in the NSNS background supergravity
solution through the attractor mechanism [39, 40]. The latter fixes the string coupling and
therefore the three-dimensional Newton coupling as a function of N1 (and N5). Through
the Brown-Henneaux central charge formula [41], the number N1 thus features in the space-
time central charge c = 6N1N5. This is the background central charge in the supergravity
background around which we choose to do perturbation theory. The background central
charge was computed in gravity in [41] and as a string theory one-point function in [42].
Importantly, the NSNS background has the unique feature of allowing for the addition
of perturbative fundamental strings that wind an angular direction in AdS3. These two-
dimensional fundamental string world sheets act as domain walls in the three-dimensional
anti-de Sitter spacetime and they separate regions with differing local cosmological con-
stant. The winding number w of the fundamental strings is a measure for the difference
in central charge on one or the other side of the wall: δc = 6N5δN1 = 6kw as com-
puted in [43, 44] from the string world sheet perspective. Thus, the central charge of the
holographic dual can change as function of the number of perturbative winding string ex-
citations. This is unique (in perturbation theory) to the NSNS background. Because we
are in a fundamental string picture in which the fundamental strings are light perturbative
excitations, there is no stringy exclusion principle [40] at work. This has as a consequence
that there is no bound on the central charge and that we therefore automatically obtain
a grand canonical partition function.8 Indeed, this perspective was already taken in the
calculation of the partition function of AdS3 string theory at string scale [46], namely at
level N5 = 1 = k. The fact that the bulk string theory allows for a change in the central

8Our perspective differs from the supergravity analysis of the elliptic genus, matched to the boundary
elliptic genus at infinite N [45].
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charge of the dual, via the scattering of long winding strings, yet is unitary, creates a puzzle
for the proper interpretation of the holographic dual. We refer to [46–48] for futher context
and discussion of this intriguing aspect of the Neveu-Schwarz-Neveu-Schwarz AdS3/CFT2
correspondence.

6.3.2 Further comparison to the literature

The analysis of the perturbative string spectrum [4] showed that the bulk string spectrum
has fewer chiral primary states than a supersymmetric SymN (M) symmetric orbifold con-
formal field theory. The AdS3×S3 string theory is obtained by descending down the throat
of NS5-branes, desingularized by a density of fundamental strings. The linear behaviour
of the dilaton down the throat of NS5-branes may no longer be singular, but it leaves its
mark on the spectrum of perturbative string excitations: the linear dilaton causes a gap
in world sheet conformal dimensions equal to h = 1/(4k) in perturbative string excitations
that is faithfully mirrored by the strings in the continuous representations of the AdS3
isometry group.9,10 (The slightest perturbation with a Ramond-Ramond flux closes off
the throat though and regenerates the symmetric orbifold spectrum [20, 51].) Thus, the
fundamental strings that would travel up or down the throat of NS5-branes are missing
from the spectrum of chiral primaries. In our description, they correspond to quantum
numbers n that are multiples of the number of NS5-branes k (of which the first one lies at
j = (k + 1)/2) [20]. To account for this fact, we worked with a ratio of Hodge polynomial
generating functions in subsection 6.1.2.

It should be remarked that the Hilbert scheme perspective in subsection 6.1.2 interprets
the terms 2j − 1 in the quantum number n = 2j − 1 + kw as representing a change in the
boundary spacetime central charge that is a fraction of (six times) the number of NS5-
branes k = N5. This attempt at interpretation remains to be substantiated.

Indeed, as we saw previously, changes in the boundary central charge come naturally
in units of 6k. This staircase structure is respected by the counting proposed in sub-
section 6.1.3, where we only keep track of the winding numbers wi of the single string
excitations. Their sum

∑
iwi = W is the total order of the SW orbifold. This way of cod-

ing the Ramond-Ramond ground states agrees with the point of view of [4] as well as [52].
Namely, it meshes well with a conjectured dual symmetric orbifold permuting fundamental
strings, here applied to the Ramond-Ramond ground states only. Note that as in [4], we
have a non-trivial bulk operator with trivial quantum numbers. It plays a crucial role
in the grand canonical partition function since it can trivially augment the order of the
orbifold. Thus there is a SL(2,C) invariant ground state at these curvature radii. This
agrees with the analysis in the Green-Schwarz formalism for the AdS3 × S3 × T 4 [32] and
AdS3 × S3 × S3 × S1 backgrounds [53].

9A related phenomenon is the decrease in the number of moduli in non-compact Gepner models compared
to local Calabi-Yau manifolds [49].

10One NS5-brane does not generate a throat visible to perturbative fundamental strings. In this case,
the bulk spectrum coincides with the symmetric orbifold spectrum [50].
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7 Conclusions

In this paper we have revisited the literature on thermal AdS3 partition functions in string
theory with NSNS flux [2, 3] and obtained a number of improvements. Firstly, we clarified
the bound on the spin in the discrete spectrum of the string. It takes values in a half-open
interval. This was appreciated in the literature on the cigar sl(2,R)/u(1) coset a while
back [16–18] and agrees with the analysis in integrable systems [15]. Moreover, we treated
the lower boundary of the winding number range carefully.

Secondly, by introducing the sl(2,R)/u(1) coset technology [10] into the analysis of the
thermal AdS3 partition function, we were able to confirm the proposed off-shell Hilbert
space of AdS3 string theory. This makes for a direct path integral bridge between the
arguments put forward in [3] and [2].

Thirdly, we extended the calculation of the thermal partition function to the case of
a supersymmetric world sheet AdS3 string theory, both in the off-shell and the on-shell
approach. This allows for the calculation of any thermal partition function on a super
string background of the form AdS3 ×N with NSNS flux.

Fourthly, we applied our technology to compute the one-loop contribution to the
boundary Ramond-Ramond twisted index for the AdS3×S3×T 4 and AdS3×S3×S3×S1

backgrounds. The application of a generalized Jacobi identity (or so(8) triality on the world
sheet spinor) led us to a Green-Schwarz formulation of the one-loop amplitude. This form
of the amplitude is bound to connect well with manifestly supersymmetric formulations of
AdS3 string theory.

In all these cases we established positivity bounds. In the case of the supersymmetric
string backgrounds, we determined all (boundary) Ramond-Ramond ground states satu-
rating the bound rigorously, thereby providing a complete classification. Our results are
in one to one correspondence with the spectrum of boundary chiral primaries proposed
in [4, 5].

We then constructed a second quantized partition function for the Ramond-Ramond
ground state excitations. Due to the gap in the spectrum generated by the NS5-branes,
the partition function takes an original form. We found that it can be written as a ratio of
generating functions of Hodge polynomials of Hilbert schemes, or as fitting the mold of a
winding string orbifold. We also made the intriguing observation that the second quantized
partition function has good modular properties with respect to the fugacity associated to
the universal part of the boundary R-charge.

There are a large number of avenues open for further investigation. It would be im-
portant to obtain the density of states for the continuous part of the spectrum including
descendants from the path integral. We would like to understand better the origin of the
modular properties of the second quantized partition function of the Ramond-Ramond
ground states. Relatedly, it would be useful to develop an S-dual, gauge theory picture for
the gapped spectrum (at strong coupling). Finally, understanding how the gapped states
fit into the topological AdS/CFT correspondence [54–58] will be worthwhile.
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A Theta and eta functions

In this appendix, we stipulate our conventions for the Dedekind eta-function and the Jacobi
theta-functions, and review their elliptic and modular properties. The Jacobi theta function
with characteristic (a, b) has the power series expansion:

θab (ν, τ) =
∑
f

q
(f+a)2

2 zf+ae2πib(f+a) . (A.1)

We introduced the notations q = e2πiτ and z = e2πiν . The power series expansion can be
used to derive the ellipticity properties of the θ-functions. For integer v, w ∈ Z, we have

θab (ν + wτ − v, τ) =
∑
f

q
(f+a)2

2 (zqwe−2πiv)f+ae2πib(f+a)

= e−2πiva∑
f

q
(f+a)2

2 +w(f+a)zf+ae2πib(f+a)

= q−
w2
2 z−we−2πi(va+wb)∑

f

q
(f+a+w)2

2 +wfzf+a+we2πib(f+a+w)

= q−
w2
2 z−we−2πi(va+wb)θab (ν, τ) .

(A.2)

For the twist ν = s1τ − s2 we obtain

θab (s1τ − s2 + wτ − v, τ) = q−
w2
2 e−2πiw(s1τ−s2)e−2πi(va+wb)θab (s1τ − s2, τ) . (A.3)

We denote the Jacobi theta function with characteristic a = 1
2 = b as θ1(ν, τ). We recall

its infinite product representation

θ1(ν, τ) = −2 sin πν q
1
8

∞∏
n=1

(1− qn)(1− zqn)(1− z−1qn) . (A.4)

The Dedekind η-function equals

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.5)

The modular S-transformation of these functions is:

θ1

(
ν

τ
,−1

τ

)
= (−iτ)

1
2 e

πiν2
τ θ1(ν, τ) , (A.6)

η

(
−1
τ

)
= (−iτ)

1
2 η(τ) . (A.7)
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B Affine characters

We briefly summarize a few properties of affine algebra characters.

B.1 Discrete affine sl(2,R) characters

We define the discrete characters of the sl(2,R) current algebra at level k + 2:

χj(q, z) = TrD+
j

(
qL0− c

24 zj
3
0
)
. (B.1)

The central charge c of the sl(2,R) Sugawara Virasoro algebra is c = 3 + 6
k . The character

is well studied, see e.g. [11] for details. It is explicitly given by:

χ+
j (q, z) = q−

j(j−1)
k
− 1

4k−
1
8 zj∏∞

n=1(1− qn)(1− zqn−1)(1− z−1qn)

= q−
j(j−1)
k
− 1

4k−
1
8 zj∏∞

m=1(1− qm)3

∑
r,n

zr(−1)nqn/2(n+2r+1)

= q−
j(j−1)
k
− 1

4k zj

η3(τ)
∑
r∈Z

zrSr ,

(B.2)

where we have defined the special series Sr labeled by an integer r:

Sr =
∞∑
n=0

(−1)nq
n
2 (n+2r+1) . (B.3)

The character for the spectrally flowed representation D+,w
j is similarly given by

χwj (q, z) = q−
j(j−1)
k
− 1

4k−
1
8 zj+(k+2)w2∏∞

m=1(1− qm)3

∑
r,n

q
(j+r)2
(k+2) −

(j+r+(k+2)w/2)2
(k+2) zr(−1)nq

n
2 (n+2r+1)

= q−
j(j−1)
k
− 1

4k−
1
8 zj+(k+2)w2∏∞

m=1(1− qm)3

∑
r

q
(j+r)2
(k+2) −

(j+r+(k+2)w/2)2
(k+2) zrSr

= q−
j(j−1)
k
−(k+2)w

2
4 −

1
4k−

1
8 z(k+2)w2∏∞

m=1(1− qm)3

∑
r,n

(zq−w)r+j(−1)nq
n
2 (n+2r+1)

= q−
j(j−1)
k
−(k+2)w

2
4 −

1
4k z(k+2)w2

η3(τ)
∑
r

(zq−w)r+jSr .

(B.4)

We list properties of the series Sr. It satisfies the equations:

qrSr = S−r , Sr + S−r−1 = 1 . (B.5)

We moreover have that the minimal surviving power in Sr for r ≥ 0 equals zero and, despite
appearances, it is q−r when r ≤ 0, by the first property recorded above. The series Sr also
appears in the power series expansion of the inverse θ1-function:

1
θ1(ν, τ) = i

z1/2

η(τ)3

∑
r

zrSr(q) , (B.6)

where z = e2πiν . A proof of these formulae can be found in [11, 12].
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B.2 Affine su(2) Characters

We discuss the su(2) affine characters and their properties. The level k − 2, spin l charac-
ter is:

χl(ν, τ) = Θ2l+1,k(ν, τ)−Θ−2l−1,k(ν, τ)
Θ1,2(ν, τ)−Θ−1,2(ν, τ) , (B.7)

where the spin l takes the values l = 0, 1
2 , . . .

k−2
2 . The level k Θ-functions are defined as:

Θm,k(ν, τ) =
∑

n∈Z+m
2k

qkn
2
zkn , (B.8)

with q = e2πiτ and z = e2πiν as before. Spectral flow by w units in the su(2) theory maps
to another spin l′ representation [26]:

q
(k−2)w2

4 e−2πiν (k−2)w
2 χl(ν − wτ, τ) =

χl(ν, τ) for w ∈ 2Z
χ k−2

2 −l
(ν, τ) for w ∈ 2Z + 1 .

(B.9)

For even spectral flow the spin is invariant, while for odd spectral flow the spin l is mapped
to its mirror, (k − 2)/2− l. We use the following expansion for the su(2) character:

χl(ν, τ) = q
l(l+1)
k
−
csu(2)

24
∑
r′

C lr′e
2πiνr′ , (B.10)

where we have defined the functions

C lr′ =
∑
n≥0

C lr′nq
n . (B.11)

Spectral flow by a single unit is equivalent to shifting the fugacity ν by the modular
parameter τ , and we obtain

q
(k−2)

4 e−2πiν (k−2)
2 χl(ν − τ, τ) = q

(k−2)
4 q

l(l+1)
k
−
csu(2)

24
∑
r′

q−r
′
C lr′e

2πiν(r′− k−2
2 ) . (B.12)

Let us consider the right hand side equation (B.9) for flow w = 1. We obtain

χ k−2
2 −l

(ν, τ) = q
l(l+1)
k

+ k−2
4 −l−

csu(2)
24

∑
r′′

C
k−2

2 −l
r′′,n e2πiνr′′ . (B.13)

By equating the two expressions and comparing the respective coefficients with r′′ = r′ −
k−2

2 , we find the useful relation:

qr
′−lC

k−2
2 −l

r′− k−2
2

= C lr′ . (B.14)

B.3 The shape of affine modules

In this section, we wish to understand better the shape of the weight diagram of an irre-
ducible su(2) affine module. The weight diagram is an approximation with line segments of
a parabola in the (spin,level) plane, with the level growing quadratically with the maximal
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Figure 3. The weight diagram of an irreducible su(2) current algebra module. The border of the
weight diagram is given by the (blue) straight lines. The circumscribing (purple) parabola touches
the weight diagram if and only if we are at a spectral flowed ground state, indicated by (red) dots.

spin. We denote the level of the bosonic current algebra by kbos. At level zero, we have
states of spin between −l and l for a current algebra of spin l. For a given su(2) spin that
arises in the irreducible module, we wish to put a lower bound on the level. Thus, for a
spin component below l, the bound on the level is zero. We can increase the spin at a
minimal cost in level by acting with the generator k+

−1. We can act kbos − 2l times before
annihilating the state. Thus, we have a straight line in the (spin, level) plane that goes
from (l, 0) to (kbos− l, kbos−2l), as well as its charge conjugate mirror. (See figure 3.) The
exploration of the boundaries of the weight space continues by acting with the operator
k+
−2 a maximal number of 2l times. Along the straight line with a larger slope, we reach

the point (kbos + l, kbos + 2l). We continue the production of the boundary line segments
of the weight space of the current algebra module by alternating the action of k+

−n for odd
n, kbos − 2l times and for even n, 2l times. This provides us with the precise shape of the
boundary of the weight diagram. The points that lie at the end of a line segment satisfy
the equation:

(spin)2 − l2 = kbosN (B.15)

and lie on a parabola. The spectral flowed ground states correspond — one to one — to
the ends of the line segments. This follows from the formulas:

k3
0(w) = k3

0 + kbos
2 w

L0 = l(l + 1)
kbos + 2 + wk3

0 + kbosw
2

4 , (B.16)
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Level

Spinl lcrit lmax

Nmin

Δl

Figure 4. We show the right quadrant of the weight diagram of an irreducible su(2) current
algebra module and indicate all the variables that appear in the various formulae.

as well as the initial extremal value |k3
0| = l at N = 0 = L0− l(l+1)

kbos+2 . Thus, at each integer
w, we have a spectrally flowed ground state that lies on the parabolic approximation to
the weight diagram. We will call the associated spins lcrit critical. Crucially, at levels other
than those parameterized by the integer spectral flow number w, the bound in the (spin,
level) plane is stricter.

The optimal bound is the one that interpolates linearly between the critical points.
Thus, suppose that we have a maximal spin of the form lmax at a given level N . This is
shown in figure 4. We associate an integer w to lmax that is provided by the critical spin
lcrit below or equal to lmax. We parameterize:

lmax = lcrit + ∆l (B.17)

where the positive quantity ∆l is the parameter that serves as the linear interpolation
parameter between critical spins. We then have the bound:

N ≥ Nmin = l2crit − l2

kbos
+ (w + 1)∆l , (B.18)

where we have shown the level that saturates the bound in figure 4. For reference, we
provide the explicit parameterization that depends on the parity of w. For even w, we have:

lmax = lcrit + ∆l = l + kbosw

2 + ∆l (B.19)

while for odd w the parameterization is:

lmax = lcrit + ∆l = −l + kbos(w + 1)
2 + ∆l . (B.20)
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B.3.1 The inclusion of fermions

Finally, we describe how the analysis of the bosonic current algebra module changes when
we include chiral Ramond fermion excitations transforming in the adjoint of su(2). Each
linear segment generated by the action of the bosonic generator k+

−n is lengthened by the
action of one fermionic generator ψ+

−n. The result is that the action of 2l generators is
replaced by 2l+1 generators, leading to the replacement l→ l+ 1

2 . Moreover, the action of
kbos− 2l generators is substituted for by the action of kbos− 2l+ 1 = (kbos + 2)− 2

(
l + 1

2

)
generators, making for a replacement kbos → k where k = kbos + 2 is the supersymmetric
level. Thus, the previous bounds are valid, taking into account the fact that the maximal
spin component is accounted for by the sum of bosonic and fermionic spin components, and
implementing the substitution (l, kbos) →

(
l + 1

2 , k
)
. Importantly, the final picture of the

combined bosonic-fermionic current algebra weight space remains of the shape of figure 3,
namely line segments inscribed in a parabola, touching the parabola at points determined
by simultaneously spectral flowed bosons and fermions.

C Diophantine harmonics

We consider k1, k2 ∈ Z>0 and let
1
k

= 1
k1

+ 1
k2

. (C.1)

We list three lemmas that prove statements made in appendix E of [5].

Lemma 1. (the big jump): No two multiples of k1 or k2 can fall in the interval(
kw, k(w + 1)

]
.

Proof. the equation (C.1) for positive integers ki implies that k < ka. This proves the
lemma.

Lemma 2. (two birds with one stone): When a multiple of k1 and a multiple of k2 both
lie in the interval (kw, k(w + 1)] then they are equal, as well as equal to k(w + 1). As a
consequence k(w + 1) is then a common multiple of (k1, k2) and a multiple of the lowest
common multiple of (k1, k2).

Proof. wk < m1k1 ≤ (w + 1)k implies 0 < m1k1 + (m1 − n)k2 ≤ k2. We also have the
equation with (1↔ 2) exchanged. Adding the two proves that w = m1 +m2− 1. Plugging
this into the original equation as well as its (1 ↔ 2) exchanged counterpart implies the
result.

Lemma 3. (horror vacui): When an interval (kw, k(w + 1)] contains neither a multiple
of k1 nor a multiple of k2, then kw is a multiple of the lowest common multiple of (k1, k2).

Proof. n1k1 ≤ kw and k(w + 1) < (n1 + 1)k1. We conclude that (k1 + k2)n1 ≤ k2w and
k2(w + 1) < (k1 + k2)(n1 + 1) as well as its (1 ↔ 2) counterpart. Combining these four
inequalities we prove that w = n1 + n2. From that we conclude, by using the original
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inequalities that k1n1 = k2n2. And from that we prove that kw is a multiple of both k1
and k2, equal to kana.

These three lemmas show also that in intervals (kw, k(w + 1)] that have no common
multiple of (k1, k2) at the boundary, there lies precisely one multiple of k1 or one multiple
of k2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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