Developments in the noncommutative Batalin-Vilkovisky formalism

Serguei Barannikov
ENS(Paris)
21/01/2010

The noncommutative Batalin-Vilkovisky equation

- The noncommutative Batalin-Vilkovisky equation (S.B.,2006a)

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$S \in \operatorname{Symm}\left(\Pi C^{\lambda}\right)[[h]]$ (even scalar product case), or $S \in \operatorname{Symm} C^{\lambda}[[h]]$ (odd inner product case),

$$
C^{\lambda}=\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

The noncommutative Batalin-Vilkovisky equation

- The noncommutative Batalin-Vilkovisky equation (S.B.,2006a)

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$S \in \operatorname{Symm}\left(\Pi C^{\lambda}\right)[[h]]$ (even scalar product case) , or $S \in \operatorname{Symm} C^{\lambda}[[h]]$ (odd inner product case),

$$
C^{\lambda}=\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

- $S=\sum_{g \geq 0} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in S y m m^{i}$,

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

$S_{0,1^{-}} \quad A_{\infty}$-algebra with (even/odd) scalar product, so S-multiloop, higher genus generalization of A_{∞}-algebra.

The noncommutative Batalin-Vilkovisky equation

- The noncommutative Batalin-Vilkovisky equation (S.B.,2006a)

$$
\hbar \Delta S+\frac{1}{2}\{S, S\}=0
$$

$S \in \operatorname{Symm}\left(\Pi C^{\lambda}\right)[[h]]$ (even scalar product case) , or $S \in \operatorname{Symm} C^{\lambda}[[h]]$ (odd inner product case),

$$
C^{\lambda}=\left(\oplus_{j=1}^{\infty} \operatorname{Hom}\left(\left(\Pi V^{\otimes j}\right), k\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

- $S=\sum_{g \geq 0} \hbar^{2 g-1+i} S_{g, i}, \quad S_{g, i} \in S y m m^{i}$,

$$
\left\{S_{0,1}, S_{0,1}\right\}=0
$$

$S_{0,1^{-}} \quad A_{\infty}$-algebra with (even/odd) scalar product, so S-multiloop, higher genus generalization of A_{∞}-algebra.

$$
\Longleftrightarrow \Delta\left(\exp \frac{1}{h} S\right)=0
$$

Main features of noncommutative Batalin-Vilkovisky formalism

- framework for writing noncommutative topological lagrangians in physics like nc-analogs of Chern-Simons, of σ-models, of Yang-Mills...(S.B.2006b,2009b)

Main features of noncommutative Batalin-Vilkovisky formalism

- framework for writing noncommutative topological lagrangians in physics like nc-analogs of Chern-Simons, of σ-models,of Yang-Mills...(S.B.2006b,2009b)
- counting of higher genus curves with boundaries, in symplectic geometry (open GW) gives solutions to nc-Batalin-Vilkovisky equation

Main features of noncommutative Batalin-Vilkovisky formalism

- framework for writing noncommutative topological lagrangians in physics like nc-analogs of Chern-Simons, of σ-models,of Yang-Mills...(S.B.2006b,2009b)
- counting of higher genus curves with boundaries, in symplectic geometry (open GW) gives solutions to nc-Batalin-Vilkovisky equation
- solutions to nc BV-equation have characteristic homology classes in $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)(S . B ., 2006 a)$; this answers questions of M.K: find algebraic structure extending invariants of A_{∞}-algebras in $H_{*}\left(\mathcal{M}_{g, n}\right)$ to $H_{*}\left(\overline{\mathcal{M}}_{g, n}\right)$, and E.Witten: find nice combinatorial model for compactification of $\mathcal{M}_{g, n}$

Main features of noncommutative Batalin-Vilkovisky formalism

- framework for writing noncommutative topological lagrangians in physics like nc-analogs of Chern-Simons, of σ-models, of Yang-Mills...(S.B.2006b, 2009b)
- counting of higher genus curves with boundaries, in symplectic geometry (open GW) gives solutions to nc-Batalin-Vilkovisky equation
- solutions to nc BV-equation have characteristic homology classes in $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)($ S.B.,2006a $)$; this answers questions of M.K: find algebraic structure extending invariants of A_{∞}-algebras in $H_{*}\left(\mathcal{M}_{g, n}\right)$ to $H_{*}\left(\overline{\mathcal{M}}_{g, n}\right)$, and E.Witten: find nice combinatorial model for compactification of $\mathcal{M}_{g, n}$
- gives framework in order to find nice higher genus analogue for the theory of variations of (nc-)Hodge structures (of CY-type), (recall (S.B., 2000), A_{∞}-periods:

$$
n c-\text { VHS } \quad\left(H C_{t}^{-} \subset H P\right) \rightarrow\left(H_{*}\left(\overline{\mathcal{M}}_{0, n}\right)-\text { action }\right) \text { on } H H
$$

also with exponential (nc-)Hodge

Main features of noncommutative Batalin-Vilkovisky formalism (cont'd)

- nc-BV formalism is related with summation over graphs in a similar way that A_{∞}-structures are related with summation over trees (it is in fact an example of Kapranov-Getzler's Feynman transform of "modular operad")

Main features of noncommutative Batalin-Vilkovisky formalism (cont'd)

- nc-BV formalism is related with summation over graphs in a similar way that A_{∞}-structures are related with summation over trees (it is in fact an example of Kapranov-Getzler's Feynman transform of "modular operad")
- Related on fundamental level with supersymmetric simple associative superalgebras: odd general linear algebra $q(N)$ of Bernstein-Leites, and with $g l(N \mid N)$, via invariant calculus on $q(N) \otimes \Pi V, g l(N \mid N) \otimes \Pi V$.

Main features of noncommutative Batalin-Vilkovisky formalism (cont'd)

- nc-BV formalism is related with summation over graphs in a similar way that A_{∞}-structures are related with summation over trees (it is in fact an example of Kapranov-Getzler's Feynman transform of "modular operad")
- Related on fundamental level with supersymmetric simple associative superalgebras: odd general linear algebra $q(N)$ of Bernstein-Leites, and with $g l(N \mid N)$, via invariant calculus on $q(N) \otimes \Pi V, g l(N \mid N) \otimes \Pi V$.
- (S.B.,2006b) "SUPER-SYMMETRIC MATRIX INTEGRALS" integration theory (super-invariant w.r.t $q(N)$ and $g l(N \mid N)$) in the non-commutative setting with finite-dimensional integrals, $\Delta \leftrightarrow d_{D R}$

Main features of noncommutative Batalin-Vilkovisky formalism (cont'd)

- nc-BV formalism is related with summation over graphs in a similar way that A_{∞}-structures are related with summation over trees (it is in fact an example of Kapranov-Getzler's Feynman transform of "modular operad")
- Related on fundamental level with supersymmetric simple associative superalgebras: odd general linear algebra $q(N)$ of Bernstein-Leites, and with $g l(N \mid N)$, via invariant calculus on $q(N) \otimes \Pi V, g l(N \mid N) \otimes \Pi V$.
- (S.B.,2006b) "SUPER-SYMMETRIC MATRIX INTEGRALS" integration theory (super-invariant w.r.t $q(N)$ and $g l(N \mid N)$) in the non-commutative setting with finite-dimensional integrals, $\Delta \leftrightarrow d_{D R}$
- ...

Noncommutative Batalin-Vilkovisky differential (even inner product)

- Let $V=V_{0} \oplus V_{1}, \beta: V^{\otimes 2} \rightarrow k$ be an even symmetric inner product on V :

$$
\beta(x, y)=(-1)^{\overline{x y}} \beta(y, x)
$$

Noncommutative Batalin-Vilkovisky differential (even inner product)

- Let $V=V_{0} \oplus V_{1}, \beta: V^{\otimes 2} \rightarrow k$ be an even symmetric inner product on V :

$$
\beta(x, y)=(-1)^{\overline{x y}} \beta(y, x)
$$

$$
F=\operatorname{Symm}\left(\oplus_{j=1}^{\infty} \Pi\left(\Pi V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
$$

Noncommutative Batalin-Vilkovisky differential (even inner product)

- Let $V=V_{0} \oplus V_{1}, \beta: V^{\otimes 2} \rightarrow k$ be an even symmetric inner product on V :

$$
\begin{gathered}
\beta(x, y)=(-1)^{\overline{x y}} \beta(y, x) \\
F=\operatorname{Symm}\left(\oplus_{j=1}^{\infty} \Pi\left(\Pi V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)
\end{gathered}
$$

- Define the noncommutative BV differential on F via

$$
\begin{aligned}
& \begin{array}{l}
\Delta\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda}= \\
\quad=\sum_{p, q}(-1)^{\varepsilon} \beta_{\rho_{p} \tau_{q}}\left(a_{\rho_{1}} \ldots a_{\rho_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{q-1}} a_{\rho_{p+1}} \ldots a_{\rho_{r}}\right)^{\lambda}+ \\
\sum_{p \pm 1 \neq q}(-1)^{\widetilde{\varepsilon}} \beta_{\rho_{p} \rho_{q}}\left(a_{\rho_{1}} \ldots a_{\rho_{p-1}} a_{\rho_{q+1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\rho_{p+1}} \ldots a_{\rho_{q-1}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{t}}\right)^{\lambda} \\
\sum_{p \pm 1 \neq q}(-1)^{\widetilde{\varepsilon}} \beta_{\tau_{p} \tau_{q}}\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}\left(a_{\tau_{1}} \ldots a_{\tau_{p-1}} a_{\tau_{q+1}} \ldots a_{\tau_{t}}\right)^{\lambda}\left(a_{\tau_{p+1}} \ldots a_{\tau_{q-1}}\right)^{\lambda}
\end{array} .
\end{aligned}
$$

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$
- Odd inner product: $\widetilde{F}=\operatorname{Symm}\left(\oplus_{j=1}^{\infty}\left(V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, and $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=\sum \overline{a_{\rho_{i}}}, a_{i} \in V$.

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$
- Odd inner product: $\widetilde{F}=\operatorname{Symm}\left(\oplus_{j=1}^{\infty}\left(V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, and $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=\sum \overline{a_{i}}, a_{i} \in V$.
- $\Delta=\Delta_{1}+\Delta_{2}$,

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$
- Odd inner product: $\widetilde{F}=\operatorname{Symm}\left(\oplus_{j=1}^{\infty}\left(V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, and $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=\sum \overline{a_{i}}, a_{i} \in V$.
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-Lie algebra differential (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992))

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$
- Odd inner product: $\widetilde{F}=\operatorname{Symm}\left(\oplus_{j=1}^{\infty}\left(V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, and $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=\sum \overline{a_{i}}, a_{i} \in V$.
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-Lie algebra differential (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992))
- $\Delta_{1}+\hbar \Delta_{2} \rightarrow$ non-commutative Batalin-Vilkovisky geometry, stable ribbon graphs, compactified moduli spaces $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)($ S.B.,2006a)

Noncommutative Batalin-Vilkovisky differential cont'd

- signs are the standard Koszul signs taking into account that $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=1+\sum \overline{a_{i}}, a_{i} \in \Pi V$.
- $\Delta^{2}=0$
- Odd inner product: $\widetilde{F}=\operatorname{Symm}\left(\oplus_{j=1}^{\infty}\left(V^{\otimes j}\right)^{\mathbb{Z} / j \mathbb{Z}}\right)$, and $\overline{\left(a_{\rho_{1}} \ldots a_{\rho_{r}}\right)^{\lambda}}=\sum \overline{a_{i}}, a_{i} \in V$.
- $\Delta=\Delta_{1}+\Delta_{2}$,
- Δ_{1}-Lie algebra differential (\rightarrow non-commutative symplectic geometry, ribbon graph complex, open moduli space $H_{*}\left(\mathcal{M}_{g, n}\right)($ M.K.,1992))
- $\Delta_{1}+\hbar \Delta_{2} \rightarrow$ non-commutative Batalin-Vilkovisky geometry, stable ribbon graphs, compactified moduli spaces $H_{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)($ S.B.,2006a)
- Theorem (S.B.,2009b) $\operatorname{Ker} \Delta_{1}+\Delta_{2}=\operatorname{Im} \Delta_{1}+\Delta_{2}$ (\sim ?related with Madsen-Weiss)...

Solutions (A-model).

- Conjecture (S.B,2006a). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow(M$, $\left.\coprod L_{i}, \oplus H_{*}\left(L_{i} \bigcap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the nc-BV equations.

Solutions (A-model).

- Conjecture (S.B,2006a). Counting of holomorphic curves $\left(\Sigma, \partial \Sigma, p_{i}\right) \rightarrow(M$, $\left.\coprod L_{i}, \oplus H_{*}\left(L_{i} \bigcap L_{j}\right)\right)$, with $\mathbb{Z} / 2 \mathbb{Z}$-graded local systems, gives solution to the nc-BV equations.
- subtleties:

$$
\begin{aligned}
& \frac{1}{2} \operatorname{dim}_{R} M-\text { even } \Longrightarrow F=\Lambda\left(C^{\lambda}\right) \\
& \frac{1}{2} \operatorname{dim}_{R} M-\text { odd } \Rightarrow F=S\left(C^{\lambda}\right)
\end{aligned}
$$

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem (S.B,2009a) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem (S.B,2009a) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem (S.B,2009a) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem (S.B,2009a) This is the generating function for products of tautological classes $c_{1}\left(T_{i}\right)$.

Bernstein-Leites algebra with odd trace and tautological classes.

- A- associative, odd scalar product
- Assume: I - an odd derivation acting on V, preserving the scalar product: , in general $I^{2} \neq 0(!), \exists \widetilde{I}, \quad[I, \widetilde{I}]=1, \operatorname{str}([a, \cdot])=0$ for any $a \in A$.
- Theorem (S.B,2009a) This data \rightarrow Cohomology classes in $H^{*}\left(\overline{\mathcal{M}}_{g, n}^{K}\right)$
- Example $q(N), q(N)=\{[X, \pi]=0 \mid X \in g I(N \mid N)\}$, where π-odd involution, $q(N)$ has odd trace otr, $I=[\Xi, \cdot], \quad \Xi$ - odd element $\Xi=\left(0 \quad \mid \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right),\left(I^{2} \neq 0(!)\right)$
- Theorem (S.B,2009a) This is the generating function for products of tautological classes $c_{1}\left(T_{i}\right)$.
- Similarly, with even scalar product and an odd derivation, with, in general $I^{2} \neq 0$.

References:

(1) (S.B.2006a) Modular operads and Batalin-Vilkovisky geometry. IMRN, Vol. 2007, article ID rnm075. Preprint Max Planck Institute for Mathematics 2006-48 (25/04/2006),
(2) (S.B.2006b) Noncommutative Batalin-Vilkovisky geometry and matrix integrals. «Comptes rendus Mathematique» of the French Academy of Sciences, presented for publication by Academy member M.Kontsevich on 20/05/2009, arXiv:0912.5484;; Preprint NI06043 Isaac Newton Institute for Mathematical Sciences (09/2006), Preprint Hal, the electronic CNRS archive, hal-00102085 (09/2006)
(3.B.,2009a) Supersymmetry and cohomology of graph complexes. Preprint hal-00429963; (11/2009).

- (S.B.,2009b) Matrix De Rham complex and quantum A-infinity algebras. arXiv:1001.5264, Preprint hal-00378776; (04/2009).
(3.B. 2000) Quantum periods - I. Semi-infinite variations of Hodge structures. Preprint ENS DMA-00-19. arXiv:math/0006193 (06/2000), Intern. Math. Res. Notices. 2001, No. 23

