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We present a novel and remarkably simple formulation of degenerate higher-order scalar-
tensor (DHOST) theories whose Lagrangian is quadratic in second derivatives of some scalar
field. Using disformal transformations of the metric, we identify a special “frame” (or metric)
for which the Lagrangian of quadratic DHOST theories reduces to the usual Einstein-Hilbert
term plus a few terms that depend on simple geometric quantities characterizing the uniform
scalar field hypersurfaces. In particular, for quadratic DHOST theories in the physically in-
teresting class Ia, the Lagrangian simply consists of the Einstein-Hilbert term plus a term
proportional to the three-dimensional scalar curvature of the uniform scalar field hypersur-
faces. The classification of all quadratic DHOST theories becomes particularly transparent in
this geometric reformulation, which also applies to scalar-tensor theories that are degenerate
only in the unitary gauge.

I. INTRODUCTION

Scalar-tensor theories have attracted considerable attention as alternatives to General Relativity.
As ever more sophisticated models have been considered, special attention was recently devoted
to scalar-tensor Lagrangians that contain second order derivatives of the scalar field. A crucial
requirement for such theories to be physically relevant is the absence of the so-called Ostrogradski
ghost [1], in order to avoid disastrous instabilities (see [2, 3] and references therein). It was believed
for some time that the absence of an Ostrogradski ghost requires the Euler-Lagrange equations to
be at most second-order, which explains why the literature was limited, until a few years ago, to
the study of Horndeski’s theories [4], rediscovered in the guise of the so-called galileons [5–7]. But
the discovery of viable theories “beyond Horndeski” [8–10] possessing Euler-Lagrange equations of
order higher than two, challenged this preconception.

It was then realised, in [11, 12], that the absence of the Ostrogradski ghost is automatically
guaranteed in Lagrangians whose degeneracy entails constraints that eliminate the potentially
dangerous extra scalar degree of freedom, even if the associated Euler-Lagrange equations are
higher-order. This led to the systematic classification of Degenerate Higher-Order Scalar-Tensor
(DHOST) theories [11–16] (see [17] for a recent review).

Within the family of DHOST theories, one can use the correspondence between different actions
that transform into each other via a disformal transformation of the metric,

gµν −→ g̃µν ≡ A(φ,X)gµν +B(φ,X)φµφν , (1.1)

where A and B are functions of φ, φµ ≡ ∇µφ and X ≡ ∇µφ∇µφ. Provided this transformation
is invertible, the actions S̃[φ, g̃µν ] and S[φ, gµν ] ≡ S̃[φ,A(φ,X)gµν + B(φ,X)φµφν ] are physically
equivalent1. One is thus allowed to pick up one of these disformally related metrics g̃µν , or “frame”,
to write the corresponding theory in a convenient way.

1 Note that this is only true in absence of matter. Indeed, when matter is included (in the form of a field ψm), the
total actions Stot[gµν , φ, ψm] = S[gµν , φ] +Sm[gµν , ψm, ] and S̃tot[g̃µν , φ, ψm] = S̃[g̃µν , φ] +Sm[g̃µν , ψm] correspond
to different physical theories, since matter is minimally coupled to the metric gµν in the former case and to g̃µν in
the latter case.

http://arxiv.org/abs/2012.10218v1
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In this article, we identify a “frame” where the action of quadratic DHOST theories takes a
remarkably simple form, with a natural geometric interpretation based on the three-dimensional
hypersurface Σφ where the scalar field φ is constant. Remarkably, we find that all quadratic DHOST
theories in class Ia (see [15] for the classification), the most interesting for physical applications,
can always be mapped, via a disformal transformation, to the very simple form2

S[gµν , φ] =

∫

d4x
√−g

(

1

2
M2

P
(4)R+ λ1

(3)R

)

, (1.2)

where MP is the 4-dimensional Planck mass, (4)R the four-dimensional Ricci scalar, (3)R the three-
dimensional Ricci scalar of the hypersurfaces Σφ and λ1 an arbitrary function of X and φ.

More generally, all quadratic DHOST theories can be written in the form

S[gµν , φ] =

∫

d4x
√
−g

(

1

2
M2

P
(4)R+ λ1

(3)R+ λ2 εK
2 + λ3 a

2

)

, (1.3)

whereK is the trace of the extrinsic curvature of Σφ and a2 ≡ aµa
µ the square of the “acceleration”

vector of the unit vector normal to Σφ, ε is the sign3 of X, while λA are arbitrary functions of
φ and X. Interestingly, quadratic U-degenerate theories introduced in [20], which are degenerate
only in the unitary gauge, where the scalar field is a function of time only, can also be reformulated
in the form (1.3).

The formulations (1.2) and (1.3) can be seen as an analog of the “Einstein frame” for traditional
scalar-tensor theories, where the dynamical structure of the gravitational theory is governed by
the usual Einstein-Hilbert action with a constant Planck mass. The possibility to reformulate
degenerate theories, via disformal transformations, in this “geometric” frame is the main result of
this paper. We also show how the classification of quadratic DHOST theories becomes transparent
in this new formulation, as well as the reason behind the instability of several classes of DHOST
theories.

Note that three-dimensional quantities based on the uniform scalar field hypersurfaces have
already been used in several earlier works, for instance in the context of the EFT of inflation [21],
of Horava’s gravity and its extensions [22], in the study of the cosmology of Horndeski and Beyond
Horndeski theories [23, 24]. The novelty here is that we combine this three-dimensional formalism
with the systematic exploitation of disformal transformations, in order to simplify the description
of DHOST theories.

The paper is organized as follows. In the next section, we recall the definition of quadratic
DHOST, define the notion of “weakly degenerate” theories which are degenerate in the unitary
gauge (when ε = −1), as well as the parametrisations that have been introduced in previous works
to describe them. In Section III, we present the new formulation of quadratic DHOST and weakly
degenerate actions. In section IV, we revisit the classification of DHOST theories in this new
perspective. We also show how the action (1.3) is related to the very familiar Horndeski action
by computing explicitly the disformal transformation which links them. Finally, we present a very
simple argument based on this new formulation which proves that DHOST theories in the classes
II and III are plagued by instabilities (or do not propagate gravitational waves). We conclude in
section V with some perspectives. And we also provide some details and additional results in an
Appendix.

2 Notice that the action (1.3) is a special case of the so-called spatially covariant gravity actions introduced in [18]
and studied further in [19].

3 The sign ε can be absorbed into a redefinition of λ2 but we leave it here for later convenience.
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II. HIGHER-ORDER SCALAR-TENSOR THEORIES AND DEGENERACY

We consider scalar-tensor theories with a quadratic dependence on the second derivatives of the
scalar field. Quite generally, their Lagrangian can be written in the form

L = f(φ,X) (4)R+
5
∑

A=1

αA(φ,X)LA , (2.1)

where the elementary quadratic Lagrangians LA are defined by

L1 = φµνφ
µν , L2 = ✷φ2, L3 = φµφµνφ

ν
✷φ, L4 = (φµνφ

ν)2 , L5 = (φµφµνφ
ν)2 , (2.2)

where φµν ≡ ∇µ∇νφ. Note that one can add in the Lagrangian terms of lower order in φµν , which
can be written in the form P (φ,X) (order 0) and Q(φ,X)✷φ (order 1), but we will ignore them
here as they do not affect the degeneracy of the action.

If the six functions f and αA are arbitrary, one finds generically an extra scalar degree of
freedom which leads in general to an Ostrogradski instability. To avoid the presence of any extra
degree of freedom, one needs to impose degeneracy conditions, which define the DHOST theories.
For quadratic theories, the degeneracy imposes three conditions, derived in [11],

D0(X) = 0 , D1(X) = 0 , D2(X) = 0 , (2.3)

where the functions D0, D1 and D2 are given in Appendix C.
Instead of working directly with DHOST theories, it will be convenient at this stage to consider

a larger family of theories, which are degenerate in a weaker sense as we now explain. Assuming
that ε = sgn(X) = −1, one can introduce the so-called unitary gauge, where the scalar field is
spatially uniform and thus depends only on time. We will name weakly degenerate all the theories
that are degenerate in the unitary gauge. This includes obviously the DHOST theories, which
are degenerate in any gauge and thus a fortiori in the unitary gauge, but also theories that are
degenerate only in the unitary gauge, dubbed U-degenerate theories in [20]. Since U-degenerate
theories are not DHOST theories, they contain an extra degree of freedom, but this scalar mode
is not propagating in the unitary gauge, as it satisfies an elliptic partial differential equation.

Weakly degenerate theories have been classified in [20]. For quadratic theories, they satisfy
a single degeneracy condition (to be contrasted with the three conditions (2.3) obeyed by the
quadratic DHOST theories), which reads [11]

D0(X)−XD1(X) +X2D2(X) = 0 . (2.4)

Hence only five out of the six functions in (2.1) are independent. In [20], the unitary degeneracy
condition (2.4) was solved by expressing the five functions αA in terms of f and four independent
functions κ1, κ2, α and σ as follows

α1 = κ1 +
f

X
, α2 = κ2 −

f

X
, α3 =

2f − 4XfX
X2

+ 2σκ1 + 2

(

3σ − 1

X

)

κ2 , (2.5)

α4 = α+ 2
X(fX − κ1)− f

X2
, α5 =

2fX −Xα

X2
+ κ1

(

1

X2
+ 3σ2 − 2σ

X

)

+ κ2

(

3σ − 1

X

)2

.

Quadratic DHOST theories can be inferred from weakly degenerate theories by imposing two more
additional conditions (say D0 = 0 and D1 = 0) and therefore can be parametrised in terms of three
independent functions only. Quadratic DHOST theories contain several subclasses and the explicit
form of their parametrisation depends on the specific subclass considered [11].
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III. GEOMETRIC FORMULATION

A. Geometric Lagrangian

As emphasised in the introduction, the scalar field φ naturally induces a preferred slicing of
spacetime, which we are going to exploit. Let us first introduce various geometric tensors associated
with this slicing. The intrinsic geometry of any constant φ hypersurface Σφ is characterized by the
three-dimensional induced metric

hµν ≡ gµν − ε nµnν , nµ ≡ φµ
√

|X|
, (3.1)

where nµ is the unit vector orthogonal to Σφ. One can also introduce the Riemann tensor (3)Rµνρσ

associated with hµν , the extrinsic curvature tensor and the “acceleration” vector, the components
of the latter being respectively given by

Kµν ≡ hαµ h
β
ν ∇αnβ , aµ ≡ nν∇νnµ . (3.2)

By expressing these quantities explicitly in terms of the scalar field and of its derivatives, one notes
that both Kµν and aµ are linear in φµν as shown in (A3). This suggests to rewrite the quadratic
Lagrangian in terms of the square of these quantities. In the following, we will therefore examine
theories whose action reads

S[gµν , φ] =

∫

d4x
√−g

(

M2
P

2
(4)R+ Lφ

)

, (3.3)

with a Lagrangian term Lφ of the form

Lφ = λ1
(3)R+ λ2 εK

2 + λ3 a
2 + λ4 εKµνK

µν , (3.4)

where λA are arbitrary functions of φ and X. We have also included a dependence on the three-
dimensional scalar curvature of Σφ.

It turns out that using only the first three terms, i.e. choosing λ4 = 0, will be sufficient for our
purpose as we will explain later. The total action is thus

S[gµν , φ] =

∫

d4x
√−g

(

1

2
M2

P
(4)R+ λ1

(3)R+ λ2 εK
2 + λ3 a

2

)

, (3.5)

which, using the relations in Appendix A, yields a quadratic action of the form (2.1), plus lower
order terms also given in Appendix A which we do not discuss here, with the coefficients

f =
M2

P

2
+ λ1 , α1 =

λ1

X
, α2 =

λ2 − λ1

X
,

α3 =
2λ1 − 4Xλ1X − 2λ2

X2
, α4 =

4Xλ1X − 2λ1 + λ3

X2
, α5 =

λ2 − λ3

X3
. (3.6)

It is immediate to check that this quadratic Lagangian is indeed weakly degenerate, as it is of the
form (2.5) with

f =
M2

P

2
+ λ1 , κ1 = −M2

P

2X
, κ2 =

M2
P + 2λ2

2X
, σ = 0 , α =

λ3 + 2Xλ1X

X2
. (3.7)
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B. Disformal transformations

We now perform a disformal transformation (1.1) of the action (3.5), using the formulas derived
in [15] and recalled in Appendix D. The quadratic part of the new action is still weakly degenerate,
i.e. of the form (2.5) with the coefficients

σ =
AX

A
, κ1 = −M2

P

2X

A3/2

√
A+BX

, κ2 =
M2

P + 2λ2

2X

A3/2

√
A+BX

,

f =
M2

P + 2λ1

2

√

A(A+BX), α = A(λ1, λ3, A,B) ,

(3.8)

where we do not write explicity A as it is rather cumbersome (but it can be deduced from the
expression (3.9) given below4). Interestingly, the new theory (3.8) is parametrised by five inde-
pendent functions, as many functions as required to span the whole family of weakly degenerate
theories.

Conversely, given a weakly degenerate theory defined by the set of functions (f, κ1, κ2, σ, α),
one can successively invert the relations (3.8) and determine A from σ, B from κ1, λ2 from κ2 and
λ1 from f . The last relation yields λ3, which reads

λ3 =
2(Xα − 2fσ(2 +Xσ) + 2fX(1 + 4Xσ))X2κ31

M2A2(3κ1(Xσ − 1)− 2Xκ1X )2
. (3.9)

This proves that any weakly degenerate action can be obtained from a disformal transformation
of the action (3.5). As a conclusion, (3.5) provides us with a complete parametrization, up to
disformal transformations, of quadratic weakly degenerate theories.

Since the family of weakly degenerate theories is parametrised by five free functions and that dis-
formal transformations depend on two free functions, only three functions are needed to parametrise
the geometric frame5.

Finally, let us note that, although our intuitive reasoning was based on the unitary gauge, which
implicitly assumes that the hypersurfaces Σφ are spacelike, i.e. ε = −1, the relation between the
actions (2.1) with coefficients (2.5) and (3.5) can be obviously extended to the case ε = +1 even if
they can no longer be interpreted as weakly degenerate actions.

IV. GEOMETRIC FORMULATION OF DHOST THEORIES

All the subclasses of DHOST theories are stable under disformal transformations, as shown in
[15]. This implies that once the DHOST theories in the geometric frame have been classified, the
classification can immediately be extended to the whole family of DHOST theories, as they are all
generated by disformal transformations from the geometric frame actions.

4 Indeed, the expression of A can be obtained directly from (3.9) which gives

α =
M2A2(3κ1(Xσ − 1) − 2Xκ1X )2

2X3κ3
1

λ3 +
2fσ(2 +Xσ)− 2fX(1 + 4Xσ)

X
.

Then, one substitutes f , κ1 and σ by their expressions (3.8) in terms of A, B and λ1 to get A explicitly.
5 This is the reason why we chose λ4 = 0 in (3.4). Note that one could have made different choices to reduce
the number of free functions, e.g. one could impose λ2 = 0, λ1 = 0 or another linear relation between the four
functions λA. However, one would lose the remarkable simplicity of the geometric frame, specially in class I (4.1).
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A. DHOST theories in class I

Class I is characterized by the relation α1 = −α2, which is equivalent to λ2 = 0 according to
(3.6). Under this assumption, the first degeneracy condition D0 = 0 is automatically satisfied and
the two other conditions, remarkably, both reduce to λ3 = 0 (see Appendix C). DHOST theories
in class I, when expressed in the geometric frame, are thus of the very simple form

SI =

∫

d4x
√−g

(

1

2
M2

P
(4)R+ λ1

(3)R

)

(class I) . (4.1)

Within the class I, one finds the subclass Ib characterized by α1 = f/X. It is then clear from the
first relation in (3.6) that this subclass corresponds to the action (4.1) with MP = 0, i.e. a pure
three-dimensional curvature term, which does not contain tensor modes [15] .

Let us discuss further the subclass Ia, which is the most interesting from a physical point of
view. The simplest theory in the geometric frame is obviously General Relativity, with λ1 = 0. Via
disformal transformations, it generates a family of DHOST theories parametrised by two functions,
A and B. Let us stress that the speed cg of gravitational waves is modified via a disformal
transformation as the causal structure is modified. From an initial value c2g = 1 + 2λ1/M

2
P in the

geometric frame6, one gets after disformal transformation

c2g =

(

1 +
BX

A

)(

1 +
2λ1

M2
P

)

. (4.3)

As expected, only conformal transformations, i.e. with B = 0, leave cg invariant. Consequently,
theories Ia such that cg = c (for any solution) can be obtained from a theory with arbitrary λ1 in
the geometric frame (for which cg 6= c) via a disformal transformation that compensates the initial
detuning of cg from c so that the final DHOST theory verifies cg = c (which is equivalent to the
condition α1 = 0 in the original DHOST formulation [25–27]).

Note that the DHOST theories that can play the role of dark energy while satisfying both cg = c
and the GW decay constraint [28], as suggested by the GW170817 observation [29], correspond
to the theories generated via conformal transformations (B = 0) from General Relativity in the
geometric frame, i.e. with λ1 = 0. The cosmology of such theories has been explored in [30].
However, since the LIGO-Virgo measurements probe wavelengths many orders of magnitude smaller
than cosmological scales, these constraints do not necessarily apply on cosmological scales (see e.g.
[31]), leaving the other DHOST theories still relevant for cosmology [32].

In addition to the geometric frame introduced in the present work, another convenient frame
for the theories Ia, is the “Horndeski frame” where the corresponding action is of the Horndeski
form (up to lower order terms), i.e.

SH [gµν , φ] =

∫

d4x
√−g

(

F (4)R+ 2FX(L1 − L2)
)

. (4.4)

6 The quantity c2g is easily obtained from the coefficients of the time derivatives and spatial gradients of the tensor

modes in the action. In practice, using the Gauss-Codazzi identity (A5), we express (4)R in terms of (3)R and Kµν

so that the action (4.1) becomes

SI =
1

2
M2

P

∫

d4x
√
−g

[

(

1 + 2λ1/M
2
P

)

(3)R + ε
(

K2 −KµνK
µν

)

]

, (4.2)

and then we obtain c2g as the ratio of the coefficient of (3)R with the coefficient of −εKµνK
µν .
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It is thus interesting to derive explicity the disformal transformation that relates these two frames.
Given any (quadratic) Horndeski action, characterized by a function F (φ,X), one can define

λ1 = −M2
P

2
+

2

M2
P

F (F − 2XFX ) , (4.5)

and verify that the disformal transformation of (4.1) with A = sg(F − 2XFX ) ∈ {+1,−1} and

AB =
M4

P

4X(2XFX − F )2
− 1

X
, (4.6)

gives exactly (4.4). Note that we have necessarily 2XFX − F 6= 0 since we are not in the class Ib.

B. DHOST theories in the classes II and III

1. Classification

Let us first discuss DHOST theories in the class III, characterized by f = 0, i.e.

λ1 = −M2
P

2
(class III) . (4.7)

If MP 6= 0, the degeneracy conditions D1 = 0 and D2 = 0 then imply

λ3 = 0 (subclass IIIa) or λ2 = −M2
P

3
(subclass IIIb) , (4.8)

corresponding to the subclasses IIIa and IIIb respectively. Finally, the case MP = 0 and thus
λ1 = 0, with λ3 and λ2 free, corresponds to the subclass IIIc, which does not contain tensor modes.

Let us now turn to the class II, which contains the theories that are neither in class I or in class
III. From the degeneracy conditions (C3), one finds that the class IIa is characterized by

λ1 +
M2

P

2
= f(X) = ξ

√

|X| , λ3 = 0 , (subclass IIa) . (4.9)

where ξ is a constant. The class IIb is characterized by two free functions, λ1 and λ2, and the
conditions

MP = 0 , λ3 = 2
(λ1 − 2Xλ1X)2

λ1
(subclass IIb) . (4.10)

which solve the degeneracy conditions.
As a consequence, any DHOST theory in the class II can be described by the action

SII [gµν , φ] = ξ

∫

d4x
√

−g|X| (3)R− M2
P

2
ε

∫

d4x
√−g

(

KµνK
µν − (1− µ2)K

2
)

(4.11)

= ξ

∫

d4x
√

|h| (3)R− M2
P

2
ε

∫

d4x
√−g

(

KµνK
µν − (1− µ2)K

2
)

, (4.12)

where we used the relation (A10) between the determinants g and h and we introduced the di-
mensionless parameter µ2 ≡ 2λ2/M

2
P. Interestingly the three-dimensional Ricci term in this action

reduces exactly to the three-dimensional Einstein-Hilbert Lagrangian for the metric hµν but inte-
grated over the four-dimensional space-time.
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2. Instabilities

The geometric frame reformulation (4.12) of DHOST theories in class II is particularly conve-
nient to see that these theories are plagued by instabilities, as originally shown in [33]. Indeed,
if one considers solutions with ε = −1 in the unitary gauge, spatial gradients in the equations of
motion of the (scalar and tensor) fields can only originate from the (3)R term in the action.

Let us consider a homogeneous and isotropic background, with scale factor a(t) and scalar field
φ(t). In the unitary gauge, the perturbations about such a background are fully encoded in the
scalar perturbation ζ and the tensor perturbation γij of the three-dimensional metric hij ,

hij = a2(t)e2ζ(δij + γij) , (4.13)

where latin letters (i, j, · · · ) hold for spatial indices. When we substitute this expression into the
the (3)R term which appears in (4.12), we obtain at quadratic order in the perturbations

∫

d4x
√
h (3)R =

∫

d4x a

(

−1

4
∂kγij ∂

kγij + ∂iζ ∂
iζ + o(γ2, ζ2, γζ)

)

. (4.14)

Hence, we immediately see that the gradient term of the scalar mode ζ has an opposite sign
compared to the tensor modes and therefore there will be necessarily a gradient instability either
in the tensor sector or in the scalar sector7. Thus, we recover very easily the result that DHOST
theories in class II are unstable [33]. We see that this instability is closely related to the form (4.9)
of λ1 which is necessary to select a DHOST theory among weakly degenerate theories.

V. CONCLUSION

In this work, we have obtained a strikingly simple reformulation of quadratic DHOST the-
ories (and of weakly degenerate theories), based on a Lagrangian involving a few geometrical
terms associated with the three-dimensional constant φ hypersurfaces, in addition to the standard
Einstein-Hilbert term. This geometric frame action describes only a subset of DHOST theories but
the rest of the family can be “generated” from this subset via disformal transformations.

Moreover, since the various subclasses of DHOST theories are stable under disformal transfor-
mations, it is sufficient to classify the subset of theories in the geometric frame to automatically
generalise this classification to the whole family. A compelling illustration is given by the subclass
Ia, the most interesting class from a phenomenological perspective, which includes Horndeski’s
theories. In the original classification of DHOST theories, this subclass is parametrised by the
three functions f , α1 and α3, while the other functions are expressed in terms of these, with rather
ugly expressions for α4 and α5. By contrast, in this new geometric perspective, the subclass Ia
arises from an geometric frame action that depends on a single function λ1 multiplying the three-
dimensional curvature, all the other theories being obtained via disformal transformations. The
subclass Ia is thus parametrised by the three functions λ1, A and B. One can proceed similarly
for the other DHOST subclasses, as well as for all the quadratic weakly degenerate theories which
are also of the form (3.5).

7 In the case where ε = +1, one cannot take the unitary gauge anymore, but instead one could fix φ to be one of the
three spatial coordinates. Hence, a similar analysis would lead to a quadratic action of the form (4.14) with (i, j, k)
three-dimensional space-time indices while the terms with Kµν in (4.12) would involve now (space-like) gradients
of the fields only. Therefore, the only kinetic terms of the scalar field and of the tensor modes would be contained
in (4.14) and we clearly see that they have opposite signs, which means that there would be a ghost instability.
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As we have argued in this article, the geometric frame perspective is appealing to understand and
analyse the underlying dynamical structure of DHOST theories, similarly to the Einstein frame
in traditional scalar-tensor theories. However we should stress that, in the presence of matter,
it is much more convenient in general, from a practical point of view, to stick to the physical
frame where matter is minimally coupled to the metric rather than to move to the geometric
frame. Indeed, matter would be disformally coupled to geometric frame metric, with the functions
A and B usually defined only implicitly. This would make the calculations in this frame very
cumbersome. For concrete applications, it is thus more appropriate to work directly with the
original formulation and to add matter minimally coupled to the metric in (2.1). Scalar-tensor
theories that are disformally related thus correspond to physically distinct theories since matter is
minimally coupled to both theories.

By contrast, the geometric frame approach should be useful to get a better intuitive under-
standing of DHOST theories as well as for their classification, or to study their generic properties
invariant under disformal transformations, such as the instabilities in classes II and III. In this
respect, it would be interesting to extend the geometric frame description to include the cubic
DHOST theories, whose classification in the standard formulation is even more involved than for
the quadratic case. We plan to explore this question in a future work.
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Appendix A: Uniform scalar field hypersurfaces Σφ and the geometric frame

This section is devoted to recall useful geometrical properties of the uniform scalar field hyper-
surfaces Σφ and its consequences of the reformulation of DHOST and weakly degenerate theories.

1. Geometry of the hypersurfaces Σφ

The geometry of Σφ is fully characterized by the induced metric hµν and its four-dimensional
normal nµ (3.1),

hµν ≡ gµν − εnµnν , nµ ≡ φµ
√

|X|
, ε ≡ sg(X) . (A1)

From these two tensors one can construct the extrinsic curvature tensor and the “acceleration”
vector, their components being respectively given by

Kµν ≡ hαµ h
β
ν ∇αnβ , aµ ≡ nν∇νnµ . (A2)

Their explicit expressions in terms of φ, its first derivatives φµ and its second derivatives φµν

can be easily computed:

aµ = − 1

2|X|hµνX
ν , Kµν =

1
√

|X|

[

φµν +
φαXα

2X2
φµφν −

1

2X
(φµXν + φνXµ)

]

, (A3)

where Xµ ≡ ∂µX = 2φµνφ
ν .
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The induced three-dimensional Riemann tensor is also of great importance. It is given by

(3)Rµνρσ = hαµh
β
νh

γ
ρh

δ
σ
(4)Rαβγδ + ε(KµρKνσ −KνρKµσ) . (A4)

This relation enables us to compute the three-dimensional Ricci tensor and the Ricci scalar which
is given by the Gauss-Codazzi relation,

(3)R = (4)R− ε
[

K2 −KµνK
µν − 2∇µ(a

µ −Knµ)
]

. (A5)

To obtain a more explicit form, we can use the following equations,

εK2 =
1

X
L2 −

2

X2
L3 +

1

X3
L5 , (A6)

εKµνK
µν =

1

X
L1 −

2

X2
L4 +

1

X3
L5 , (A7)

a2 =
1

X2
L4 −

1

X3
L5 , (A8)

where LA are the elementary quadratic Lagrangians (2.2), together with the relation

ε

∫

d4x
√−g f ∇µ(a

µ −Knµ) =

∫

d4x
√−g

[

−2fX
X

L3 +
2fX
X

L4 +
fφ
X

(X✷φ − φµνφ
µφν)

]

,(A9)

where f is an arbitrary function of φ andX, fX its derivative with respect toX and fφ its derivative
with respect to φ.

Finally, one can express the determinant g of the metric gµν in terms of the determinant h of
hµν and X as follows

g =
1

24
ǫµ1ν1ρ1σ1ǫµ2ν2ρ2σ2gµ1µ2gν1ν2gρ1ρ2gσ1σ2

=
1

6X
ǫµ1ν1ρ1σ1ǫµ2ν2ρ2σ2hµ1µ2hν2ν2hρ1ρ2φσ1φσ2 =

h

X
, (A10)

which follows from the very definition of the determinant and ǫµνρσ is the fully antisymmetric
four-dimensional tensor.

2. DHOST theories in the geometric frame

As a consequence, the simplified action (1.3)

S[gµν , φ] =

∫

d4x
√−g

(

1

2
M2

P
(4)R+ λ1

(3)R+ λ2 εK
2 + λ3 a

2

)

, (A11)

can be reformulated as a sum of a quadratic action in the more usual form (2.1) with the coefficients,

f =
M2

P

2
+ λ1 , α1 =

λ1

X
, α2 =

λ2 − λ1

X
,

α3 =
2λ1 − 4Xλ1X − 2λ2

X2
, α4 =

4Xλ1X − 2λ1 + λ3

X2
, α5 =

λ2 − λ3

X3
, (A12)

supplemented with a k-essence and a cubic galileon action given by
∫

d4x
√−g

2λ1φ

X
(X✷φ− φµνφ

µφν) =

∫

d4x
√−g ((2XβX + β)✷φ+ βφX) , (A13)

with Xβ = λ1φ. The identity (A13) follows from the relation

2

∫

d4x
√−g βXφµνφ

µφν = −
∫

d4x
√−g (Xβφ + β✷φ) , (A14)

for any function β(φ,X).



11

3. Geometric formulation of the cubic Galileon

As we have shown that a quadratic DHOST action can be rewritten in a more geometrical way,
it is natural to look for a way to replace the cubic galileon term Q(φ,X)✷φ by a combination of
Kµν and aµ as well. The only combination of these objects that is linear in φ is the trace of Kµν .
Therefore, we now consider the action

S[gµν , φ] =

∫

d4x
√−g (ν0 + ν1K) , (A15)

where ν0 and ν1 are two arbitrary functions of X and φ. Using (A3), this action can be written as

S[gµν , φ] =

∫

d4x
√−g [ν0 + α(φµφνφµν −X✷φ)] , α ≡ − εν1

|X|3/2 . (A16)

Using (A14), we can show that, for any arbitrary function α(φ,X),
∫

d4x
√
−g α(φµφνφµν −X✷φ) = −1

2

∫

d4x
√
−g [XAφ + (A+ 2αX)✷φ] , (A17)

where A is such that AX = α. As a consequence, the action (A15) can be written as

S[gµν , φ] =
1

2

∫

d4x
√−g (2π −XAφ − (A+ 2αX)✷φ) . (A18)

One recovers the well-known k-essence and cubic galileon terms associated with the functions P
and Q given by,

P (φ,X) = ν0 −
X

2
Aφ , Q(φ,X) = −1

2
(A+ 2αX) . (A19)

If the quadratic action 1.3 is also taken into account, it gives a linear contribution given by A13.
One must therefore replace α in (A16) by

α = − εν1

|X|3/2 +
2λ1φ

X
. (A20)

Appendix B: Equations of motion in the geometric frame

The expression and geometrical interpretation of DHOST theories are much simpler in this
novel geometric frame than in the Horndeski frame. The equations of motion are also simpler and
can be formulated in geometrical terms which could help finding solutions.

In this appendix, we compute the equations of motion of the Class I action (4.1)

S =

∫

d4x
√−g

(

1

2
M2

P
(4)R+ λ1

(3)R+ ν1 K + ν0

)

, (B1)

to which we added (for purposes of generality) a k-essence term Sν0 associated with the function
ν0(φ,X) and a K-term Sν1 associated with the function ν1(φ,X) (A15). As we proved in the
appendix A, the K-term can be equivalently reformulated as a cubic Galileon up to k-essence
terms.

Using the formulae

δX = 2φµ∂µδφ− φµφνδgµν , (B2)

δhµν = δgµν +
δX

X2
φµφν −

φµ∂νδφ+ φν∂µδφ

X
, (B3)
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for the infinitesimal variations of X and hµν together with the relation h = Xg (A10) between the
determinants h = det(hµν) and g = det(gµν), we show by a direct calculation that the equation of
motion for the metric takes the standard form,

M2
P

2
(4)Gµν = T (λ1)

µν + T (ν1)
µν + T (ν0)

µν (B4)

where T
(ν0)
µν and T

(ν1)
µν are the usual stress-energy tensors associated to the actions Sν0 and Sν1

respectively,

T (ν0)
µν =

ν0
2
gµν − ν0Xφµφν , T (ν1)

µν =
1

2q
(ν1φ − 2ν1X✷φ)φµφν , (B5)

where q ≡ |X|1/2, while T
(λ1)
µν is the stress-tensor energy associated to the three-dimensional Ricci

term in (4.1)

T (λ1)
µν = −q

[

µ1
(3)Gµν + µ1X

(3)Rφµφν + (hµν
3
✷− 3∇µ

3∇ν)µ1

]

, (B6)

where 3∇µ is the 3-dimensional covariant derivative with respect to hµν and we introduced the
notation µ1 ≡ λ1/q for simplicity.

Even though the equation of motion for the scalar field is redundant as it can be deduced from
the previous one, it is nonetheless useful to give its expression which takes the form

∇µJ
µ +Φ = 0 , (B7)

where the curent Jµ and the source Φ are given by,

Jµ = Jµ
(λ1)

+ Jµ
(ν1)

+ Jµ
(ν0)

, Φ = Φ(λ1) +Φ(ν1) +Φ(ν0) , (B8)

and each components of Jµ and Φ are given by,

Jµ
(λ1)

= λ1X
(3)Rφµ , Jµ

(ν1)
=

1

2q
(2qν1XK − ν1φ)φ

µ + qν1Xaµ , Jµ
(ν0)

= ν0Xφµ , (B9)

Φ(λ1) = −λ1φ

2
(3)R , Φ(ν1) =

1

2q
[Xν1φφ + 2Xν1φX (✷φ− qK)] , Φ(ν0) = −ν0φ

2
. (B10)

If the theory is shift symmetric, i.e. the functions λ1, ν1 and ν0 do not depend on φ, we recover
the well-known fact that the equation of the scalar field reduces to a conservation equation for the
curent Jµ.

Notice that the equation for the metric involves third order derivatives of the scalar field and,
similarly, the equation for the scalar field involves third order derivatives of the metric components.
This is expected as the action is not formulated in the Horndeski frame. However, in the case where
ε = −1, these higher order terms are all spatial derivatives which is consistent with the fact that
there is no ghost propagating in the theory. These equations have a simple form compared to
Horndeski theories. This might help us in finding solutions.

Let us see how the conditions for having stealth solutions (see [34] for the first stealth solutions
in Horndeski theories) are formulated in the geometric frame. We assume that X is a constant X0.
Thus, the equations of motion simplify drastically and we have (for the metric only)

M2
P

(4)Gµν − ν0 gµν + 2q µ1
(3)Gµν + 2

(

q µ1X
(3)R+ ν0X +

ν1X
q

✷φ

)

φµφν = 0 . (B11)
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Now, we see that, when the theory satisfies the following conditions8,

µ1(X0) = 0 , µ1X(X0) = 0 , ν0X(X0) = 0 , ν1X(X0) = 0 , (B13)

it admits stealth solutions which satisfy the usual Einstein equation for general relativity,

(4)Gµν + Λgµν = 0 , M2
PΛ + ν0(X0) = 0 . (B14)

The conditions (B13) are sufficient but not necessary for the existence of stealth solutions. The
theory could admit stealth Schwarzschild solutions for instance without satisfying these conditions
as shown in [35] (and references therein) for instance .

Appendix C: Degeneracy conditions for quadratic DHOST theories

In this section, we recall the degeneracy conditions for quadratic DHOST theories derived in
[11], and then give their expression in terms of the parameters λ1, λ2 and λ3. The three degeneracy
conditions for the quadratic DHOST theories are

D0(X) = 0 , D1(X) = 0 , D2(X) = 0 , (C1)

with

D0(X) = −4(α1 + α2)
[

Xf(2α1 +Xα4 + 4fX)− 2f2 − 8X2f2
X

]

,

D1(X) = 4
[

X2α1(α1 + 3α2)− 2f2 − 4Xfα2

]

α4 + 4X2f(α1 + α2)α5

+ 8Xα3
1 − 4(f + 4XfX − 6Xα2)α

2
1 − 16(f + 5XfX)α1α2

+ 4X(3f − 4XfX)α1α3 −X2fα2
3 + 32fX(f + 2XfX)α2

− 16ffXα1 − 8f(f −XfX)α3 + 48ff2
X ,

D2(X) = 4
[

2f2 + 4Xfα2 −X2α1(α1 + 3α2)
]

α5 + 4α3
1 + 4(2α2 −Xα3 − 4fX)α2

1

+ 3X2α1α
2
3 − 4Xfα2

3 + 8(f +XfX)α1α3 − 32fXα1α2

+ 16f2
Xα1 + 32f2

Xα2 − 16ffXα3 .

(C2)

These expressions simplify quite a lot when they are written in term of λ1, λ2 and λ3, substi-
tuting (3.6):

D0(X) =
2λ2

X

[(

M2
P + 2λ1

) (

M2
P + 2λ1 − λ3 − 8Xλ1X

)

+ 16X2λ2
1X

]

,

D1(X) = −2M4
P

X2
λ3 +

2λ2

X2

[

8λ2
1 − 5M2

Pλ3 + 4λ1(2M
2
P − λ3 − 8Xλ1X) + 2(M2

P − 4Xλ1X )2
]

,

D2(X) = −2M4
P

X2
λ3 +

2λ2

X2

[

4λ2
1 − 4M2

Pλ3 + 2λ1(2M
2
P − λ3 − 8Xλ1X) + (M2

P − 4Xλ1X)2
]

.

(C3)

Weakly degenerate theories satisfy the single condition [11]

D0(X)−XD1(X) +X2D2(X) = 0 . (C4)

8 Notice that these conditions are consistent with those obtained in [35] for DHOST theories when their actions are
written in the usual form (2.1) (supplemented with a k-essence term and a cubic galileon term),

P + 2Λf = 0 , PX + Λ(4fX −Xα1X) = 0 , QX = 0 , α1 = 0 , α3 + 2α1X = 0 . (B12)

When we replace the coefficients αA by their expressions (3.6) in terms of λ1 and also, P and Q by their expressions
in terms of ν0 and ν1 (A19), we recover immediately the stealth conditions (B13). In particular, we show that
QX = ν1X/q, which immediately implies the equivalence between the conditions QX = 0 and ν1X = 0.
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Appendix D: Formulae for the disformal transformations

In this appendix, we recall how a quadratic higher-order scalar-tensor action transforms under
disformal transformations. Notations are based on those introduced in the paper [15]. Notice that
the importance of disformal transformations in higher-order scalar-tensor theories has been realized
first in [8].

We consider the quadratic higher-order scalar-tensor action

S̃[g̃µν , φ] =

∫

d4x
√

−g̃

(

f̃(X̃) (4)R+

5
∑

A=1

α̃A(X̃)LA

)

, (D1)

where LA are the elementary quadratic Lagrangians (2.1) and X̃ ≡ g̃µνφµφν . For simplicity, we
assume that the theory is shift-symmetric.

Disformal transformations of the metric 1.1 induce a disformal transformation of the action
according to

S̃[g̃µν , φ] −→ S[gµν , φ] = S̃[A(X)gµν +B(X)φµφν ] , (D2)

where the quadratic part of S[gµν , φ] is of the form,

∫

d4x
√−g

(

f(X) (4)R+
5
∑

A=1

αA(X)LA

)

, (D3)

with

X̃ =
X

A+BX
, (D4)

while the functions f and αA can be expressed in terms of f̃ and α̃A as follows,

f =
J

A
f̃ , α1 = −h+ JT11α̃1, α2 = h+ JT22α̃2,

α3 = 2hX + J(f̃ γ3 − 2f̃Xδ3 + T13α̃1 + T23α̃2 + T33α̃3),

α4 = −2hX + J(f̃γ4 − 2f̃Xδ4 + T14α̃1 + T44α̃4),

α5 = J(f̃γ5 − 2f̃Xδ5 + T15α̃1 + T25α̃2 + T35α̃3 + T45α̃4 + T55α̃5).

(D5)

We have introduced the notations,

J = A3/2
√
A+BX, h = − BJf̃

A(A+BX)
,
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T11 =
1

(A+BX)2
, T13 =

2AX

A(A+BX)2
,

T14 =
2
(

X (AX +XBX) 2 −A (2 (AX +XBX) +B)
)

A(A+BX)3
,

T15 =
3B2X2A2

X

A2(A+BX)4
− 2B2XAX

A(A+BX)4
+

B2

(A+BX)4
− 2BX3B2

X

A(A+BX)4
− X2B2

X

(A+BX)4

− 4BX2AXBX

A(A+BX)4
+

4BXA2
X

A(A+BX)4
− 2XAXBX

(A+BX)4
+

4BXBX

(A+BX)4
+

2A2
X

(A+BX)4
+

2ABX

(A+BX)4
,

T22 =
1

(A+BX)2
, T23 = −2 (A (−2AX +XBX +B)− 3BXAX)

A(A+BX)3

T25 =
(A (−2AX +XBX +B)− 3BXAX) 2

A2(A+BX)4
,

T33 =
A−X (AX +XBX)

(A+BX)4
,

T35 = −(A (−2AX +XBX +B)− 3BXAX) (A−X (AX +XBX))

A(A+BX)5
,

T44 =
(A−X (AX +XBX)) 2

A(A+BX)4
, T45 = −B (A−X (AX +XBX)) 2

A(A+BX)5
,

T55 =
(A−X (AX +XBX)) 2

(A+BX)6
,

γ3 = −B (BXAX +A (2AX +XBX +B))

A2(A+BX)2
,

γ4 =
A2
(

2BAX + 4XAXBX + 6A2
X +B2 +BXBX

)

+ 2B2X2A2
X +ABXAX (8AX + 4XBX +B)

A3(A+BX)2
,

γ5 = −2AX (BAX + 2ABX)

A3(A+BX)
,

δ3 =
B

A(A+BX)
, δ4 =

−4BXAX −A (6AX + 2XBX +B)

A2(A+BX)
, δ5 =

2 (2BAX +ABX)

A2(A+BX)
.

All functions are evaluated in X and not X̃ (and derivatives are with respect to X and not X̃).
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