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ABSTRACT

Strong gravitational lensing provides a wealth of astrophysical information on the baryonic and dark matter content of galaxies. It
also serves as a valuable cosmological probe by allowing us to measure the Hubble constant independently of other methods. These
applications all require the difficult task of inverting the lens equation and simultaneously reconstructing the mass profile of the lens
along with the original light profile of the unlensed source. As there is no reason for either the lens or the source to be simple,
we need methods that both invert the lens equation with a large number of degrees of freedom and also enforce a well-controlled
regularisation that avoids the appearance of spurious structures. This can be beautifully accomplished by representing signals in
wavelet space. Building on the Sparse Lens Inversion Technique (SLIT), we present an improved sparsity-based method that describes
lensed sources using wavelets and optimises over the parameters given an analytical lens mass profile. We applied our technique on
simulated HST and E-ELT data, as well as on real HST images of lenses from the Sloan Lens ACS sample, assuming a lens model.
We show that wavelets allowed us to reconstruct lensed sources containing detailed substructures when using both present-day data
and very high-resolution images expected from future thirty-metre-class telescopes. In the latter case, wavelets moreover provide a
much more tractable solution in terms of quality and computation time compared to using a source model that combines smooth
analytical profiles and shapelets. Requiring very little human interaction, our flexible pixel-based technique fits into the ongoing effort
to devise automated modelling schemes. It can be incorporated in the standard workflow of sampling analytical lens model parameters
while modelling the source on a pixelated grid. The method, which we call SLITronomy, is freely available as a new plug-in to the
modelling software Lenstronomy.

Key words. gravitation – gravitational lensing: strong – methods: data analysis – techniques: image processing –
galaxies: high-redshift – galaxies: structure

1. Introduction

Gravitational lensing offers a window into the nature of many
fundamental properties of our Universe. The fortuitous align-
ment of a distant luminous object (i.e. source) and a mas-
sive foreground structure (i.e. lens) along the line of sight
can produce striking visual distortions that allow us to con-
strain both astrophysical and cosmological parameters. By mag-
nifying the distant source, strong lensing can reveal detailed
structures that would otherwise be unresolvable. Cluster-scale
lenses allow us to study the large-scale distribution of mass and
the hierarchical evolution of dark matter halos (Natarajan et al.
2007; Bhattacharya et al. 2013; Han et al. 2015). Galaxy-scale
lenses give insights into smaller scales, such as a substructure
within the main deflector (e.g. Amara et al. 2006; Vegetti et al.
2010; Hezaveh et al. 2016; Birrer et al. 2017; Ritondale et al.
2019; Gilman et al. 2020), as well as population-level proper-
ties of galaxies when large samples can be uniformly selected
(Bolton et al. 2006; Brownstein et al. 2012; Gavazzi et al. 2012).
Strongly lensed quasars are particularly useful to constrain black
hole evolution over a wide range of redshifts (e.g. Ding et al.
2021) and to derive high-precision constraints on the Hub-
ble constant (Wong et al. 2020; Shajib et al. 2020a; Birrer et al.
2020, now referred as the TDCOSMO collaboration).

All of the above applications require lens modelling tools.
If the underlying cosmology needed to compute distances
to the lens and source is not exactly known, models are
subject to degeneracies, to modelling assumptions (Xu et al.
2016; Sonnenfeld 2018; Blum et al. 2020), and/or to the
inherent geometry and physics of the problem (Saha 2000;
Schneider & Sluse 2013). As a result, for any given rescaling
of the lens mass, there exists a corresponding rescaling of the
lensed source that leads to identical lensing observables apart
from the time delays. These degeneracies disappear if the under-
lying cosmology is known, but even in this case, lens modelling
tools must, in practice, address several key points to work effi-
ciently: (1) reliable reconstruction of the lens mass and light, (2)
reliable reconstruction (de-lensing) of the source light, and (3)
efficient deblending of the lens and source light.

In this work, we focus on the second point, namely source
light reconstruction. Various techniques to model the light of the
background source have been developed over the years. There
are two main families of techniques, which we distinguish as
‘analytic’ and ‘pixel-based’ methods. While the former assumes
a set of analytic functions through which the source is repre-
sented, the latter uses pixels directly to describe surface galaxy
light distribution. We do not use the term ‘free-form techniques’
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for pixel-based methods, as a pixelated surface brightness is
already a constraining assumption compared to the continuous
truth (e.g. Tagore & Jackson 2016).

There are many public software packages that imple-
ment analytic methods for strong lens analysis. For exam-
ple, lenstool (Kneib et al. 2011) and glafic (Oguri 2010)
provide specialised tools for cluster-scale lenses. For galaxy-
galaxy lenses, dedicated software has been developed, such as
gravlens (Keeton 2001), PixeLens (Williams & Saha 2004),
AutoLens (Nightingale et al. 2018), and Lenstronomy
(Birrer & Amara 2018). Typical analytic functions include vari-
ations of power-law or cored profiles for the lensing mass,
while more elaborate ensembles of basis functions like shapelets
(Bernstein & Jarvis 2002; Refregier 2003; Tagore & Keeton
2014; Birrer et al. 2015) can be used to capture the wider
dynamic range of features often exhibited by high-redshift galax-
ies, especially when they are star-forming. While analytical
methods are fast, they have two main disadvantages. First, com-
plex light distributions like galaxies with resolved small-scale
features or mergers are poorly modelled. Second, it requires lots
of trial and error to infer the initial parameters describing the
source shape, hence making it hard to automate these techniques.

Recent developments in deep learning have enabled neural
networks, which can be seen as a collection of nested ana-
lytic functions of many (sometimes millions of) parameters,
to become a viable tool for strong lens modelling. The
work of Hezaveh et al. (2017) (and follow-up papers
Perreault Levasseur et al. 2017; Morningstar et al. 2018, 2019),
along with Pearson et al. (2019), have shown promising initial
results on simulated data. Coupled with GPUs for training,
neural networks can offer vast speed improvements compared to
other techniques, although their applicability in practice hinges
crucially on the quality of the training data. A key to modern
neural network optimisation is automatic differentiation, which
also facilitates the creation of fully differentiable pipelines
capable of efficiently exploring the large parameter space of
strong lens models (Chianese et al. 2020).

Within the family of pixel-based techniques, to which this
work belongs, Kochanek & Narayan (1992) described one of the
first methods, which is based on the clean algorithm widely
used for processing radio astronomy data (Högbom 1974). Later,
Warren & Dye (2003) established the popular semi-linear inver-
sion (SLI) formalism, where the (under-constrained) source
surface brightness is optimised through regularised inversion.
Its update to include adaptive gridding (Dye & Warren 2005)
solved several issues inherent to the SLI method. Suyu et al.
(2006) brought further improvements to the method using the
Bayesian formalism to objectively find hyper-parameters that
are required for the lens inversion (GLEE modelling code,
Suyu & Halkola 2010). Various adaptive pixel grids have been
tested to mitigate biases that can arise when inferring lens
model parameters while still maintaining a tractable computa-
tion time. For instance, the algorithm by Vegetti & Koopmans
(2009) uses a Delaunay tessellation, combined with an iter-
ative scheme, to find deviations from a smooth gravitational
potential, and Nightingale & Dye (2015) uses randomly ini-
tialised h-means clustering to define the adaptive grid. More
recently, Rizzo et al. (2018) and Powell et al. (2021) improved
the technique of Vegetti & Koopmans (2009) with the joint mod-
elling of resolved kinematics and application to interferometry
data.

The above-mentioned methods all primarily differ from each
other in their constraints on the galaxy surface brightness dis-
tribution, independent of the imaging data. These constraints

restrict the large parameter space common to pixel-based meth-
ods, thus reducing degeneracies and improving convergence of
the algorithm. However, they often lack a clear physical interpre-
tation motivated by light distributions of real galaxies. Addition-
ally, they introduce new hyper-parameters, whose optimal values
can vary significantly depending on the data and are hence com-
plex to handle.

Drawing from standard concepts in the field of image
processing, Joseph et al. (2019, hereafter J19) – introduced
improved assumptions on light distributions through a technique
based on sparsity and wavelets called the Sparse Linear Inver-
sion Technique (SLIT), which mitigates both issues mentioned
above. The present paper introduces an updated and expanded
open-source implementation of SLIT, which serves as a plug-in
to the modelling software Lenstronomy. All codes described
here are publicly available, and data along with python note-
books used to generate results and figures of this paper are avail-
able online1.

As a validation of the algorithm, we reconstruct high-
resolution source galaxies from of the Sloan Lens Advanced
Camera for Surveys (SLACS) sample of strong galaxy-galaxy
lenses (Bolton et al. 2006). This dataset has been extensively
studied for constraining population-level properties of massive
elliptical galaxies. However, little discussion has focused on the
quality of source reconstructions, as it is commonly assumed
that constraining deflector properties to the percent level can be
achieved without high-fidelity source reconstructions. Based on
the recent (re)modelling of a subset of the SLACS sample by
Shajib et al. (2020b), we compare for the first time source recon-
structions from analytical and pixel-based methods on this chal-
lenging dataset, consistently in the same modelling environment.

We further apply our modelling method to simulated data
that is representative of the quality achievable by future thirty-
meter-class telescopes. We show that our method is particularly
well-suited to such extremely high resolution imaging data and
that modelling the source light profile analytically quickly leads
to an intractable problem in practice.

Our paper is organised as follows. We first review some
basics of the strong gravitational lensing formalism and its linear
approximation in Sect. 2. In Sect. 3 we give an overview of the
method and theory behind the original SLIT method. We dis-
cuss key improvements in Sect. 4 and describe our new code
implementation, which we call SLITronomy. In Sect. 5, we
apply our technique to source reconstruction problems: first on
simulated data, and then on a subset of SLACS lenses. We con-
sistently compare the results in both cases with reconstructions
using shapelets. To demonstrate the feasibility of the approach,
we show sampled posteriors over lens model parameters. In
Sect. 6, we proceed similarly on E-ELT simulated data and show
how sparse reconstruction is suited to such high-resolution data.
Finally we summarise and conclude in Sect. 7.

2. Theoretical aspects of strong gravitational lens
inversion

2.1. Strong gravitational lensing

Gravitational lensing arises when a massive foreground object
lies on or near the line-of-sight connecting an observer and a
distant luminous source. The lensing effect is considered strong
when the lens galaxy (or cluster of galaxies) is so massive that

1 https://github.com/aymgal/SLITronomy-papers/tree/
master/paper_I
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it produces high order deformations, possibly leading to several
images, of the background source2. In this case, the source light
rays are deflected from their original paths, and the lens equation
(see below) displays several solutions.

In the following we write the redshift of the lensed source as
zs and the redshift of the lensing galaxy, also called the deflector,
as zd. We introduce the lensing potential ψ(θ), obtained by rescal-
ing and projecting the three-dimensional gravitational potential
on the lens plane, then evaluated at angular position θ on the
coordinate grid. Light rays from the source are deflected by the
deflection angle field α, which is directly related to the projected
potential through its first derivatives: α = ∇ψ. The lens equa-
tion gives the angular coordinates of deflected light rays from a
source at position β for every position θ:

β = θ − α(θ). (1)

The second derivatives of the potential give the dimensionless
surface mass density, κ = ∇2ψ/2, of the deflector, also called the
convergence.

Importantly, we note that Eq. (1) is, for most choices of
deflection field α, non-linear with respect to the two coordinate
variables of θ, even when the source position and gravitational
potential are known. As a consequence, no root-finder algorithm
is guaranteed to find a complete set of solutions if not initialised
close to a suitable location in parameter space.

2.2. Linear approximation

Equation (1) allows us to determine the true (i.e. unlensed) posi-
tion of a source given its lensed image and a model of the lensing
mass. This inverse operation, however, requires solving an equa-
tion that may not have a general closed-form solution. Moreover,
in the strong lensing regime, the equation is likely to have multi-
ple solutions corresponding to duplicate and magnified images.
For this reason, efficient modelling methods do not typically
solve the lens equation for θ, but rather evaluate analytical pro-
files on a grid transformed by Eq. (1) or instead describe sur-
face brightness directly on a grid in the source plane. The latter
option is made possible with the linear framework developed in
Warren & Dye (2003).

The lensing phenomenon smoothly defined by Eq. (1) can
be formulated as a linear lensing operator F acting on an image
s of source intensity values. In this formulation, s is a flattened
vector of the underlying two-dimensional image. The action of
F on s results in a lensed version of s. We note that while the
mapping between the image and source planes is formulated as
an algebraic linear operation, the intrinsic non-linear nature of
lensing (i.e. image multiplicity) is retained. Additional observed
features, such as light from the deflector, instrumental blurring,
and other contaminants along the line of sight, can be straightfor-
wardly included in a linear fashion. We can thus write a model y
for strong lens imaging data as

y = H
(
F s + g + other components

)
+ noise, (2)

where g is the surface brightness of the lens galaxy (as a flat-
tened vector), and H accounts for seeing effects and/or blurring
by the instrumental point spread function (PSF). Other com-
ponents of the model can include, for instance, the multiple
images of a background quasar or satellite galaxies near the main
deflector. Several pixel-based methods to model strong lenses are

2 Image multiplicity is sometimes viewed as a necessary condition for
the lensing effect to be considered strong.

based on Eq. (2), such as the semi-linear inversion method (SLI,
Warren & Dye 2003) and the works of Vegetti & Koopmans
(2009) and Tagore & Keeton (2014). Software implementations
can be found in GLEE (Suyu & Halkola 2010) and AutoLens
(Nightingale et al. 2018). The present work relies on an indepen-
dent implementation of the pixel-based formalism. Furthermore,
our primary focus is on the source reconstruction problem at
fixed lens model (i.e. fixed lensing operator F). The task of opti-
mising F – ideally using a similarly flexible method – along with
light components requires several iterations, as the lens model
behaves non-linearly. We give in Sect. 5.3, however, an exam-
ple of computing the lens model using the standard approach of
sampling analytical parameters, solving the pixel-based source
reconstruction at each iteration.

We note that an additional hyper-parameter3 is implicitly
assumed in Eq. (2), due the pixelated nature of the linear approx-
imation: the choice of source plane resolution, or alternatively
the ratio of data to source resolution. For clarity, we introduce
rpix as

rpix ≡
source pixel size
image pixel size

· (3)

As noted in Suyu et al. (2006), the source pixel size can be
roughly related to the average lensing magnification. As it will
be introduced later in the section, a large rpix introduces more
degrees of freedom in the model, which may not be constrained
by the data alone. The choice of external constraints informed
by the properties of the source light distribution allow for larger
rpix values while keeping the modelling accurate. The technique
introduced in J19 and the further improvements we provide in
this work have been designed to allow for exactly this.

2.3. An underconstrained problem

Given an observation ỹ, our goal is to solve Eq. (2) by finding
the most suitable s and g – ignoring any other luminous com-
ponents – for a known H in the presence of noise. This amounts
to minimising the difference between the data and our model y,
commonly quantified by the function

L (ỹ, s, g) =
1
2
‖ỹ − y‖2 , (4)

where ‖ · ‖ is the Euclidean norm. Being strictly convex and dif-
ferentiable, this norm is useful as a data fidelity term in optimi-
sation algorithms.

Although mathematically simple, the linear formulation as
described in Sect. 2.2 leads to a highly underconstrained prob-
lem. Data pixel coordinates mapped to the source plane accord-
ing to Eq. (1) do not coincide anymore with a cartesian coordi-
nate grid. The choice of how to discretise the source plane can
introduce errors on the reconstruction. A common technique to
reduce such errors, which we adopt, is to increase the resolu-
tion of the grid on which we reconstruct the source galaxy (i.e.
increase rpix). Combined with constraints that promote smooth-
ness (see Sect. 2.4), this allows for more accurate conservation
of surface brightness but also introduces more unconstrained
degrees of freedom, as a subset of source pixels may not be
mapped to any data pixel.

To solve the underconstrained problem, it is therefore nec-
essary to somehow restrict the space of possible solutions. We

3 Depending on the method, other hyper-parameters can be introduced
(e.g. controlling the mapping when using adaptive gridding strategies).
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can do this by leveraging independent knowledge regarding the
unknowns that is complementary to the imaging data itself.
External knowledge of this sort serves to regularise the problem,
and we denote the restrictive action of regularisation on a model
component as P ( · ). The augmented minimisation problem can
then be written

arg mins, g
[
L (ỹ, s, g) + P (s) + P (g)

]
. (5)

Equation (5) can also be understood in a Bayesian context, with
L corresponding to the log-likelihood distribution and P corre-
sponding to log-prior probabilities based on, for example, phys-
ical arguments or a previous solution to the problem.

2.4. Regularisation strategies

Numerous strategies to regularise source galaxy reconstruction
have been explored in the literature. A fundamental regulari-
sation shared by all pixel-based techniques arises implicitly, as
noted by Tagore & Jackson (2016), in choosing to express sur-
face brightness on a pixelated grid rather than continuously.
However, for complex sources, such as star-forming galaxies,
still further regularisation is required.

The maximum entropy regularisation method (MEM) was
used in Wallington et al. (1996) to recover astronomical sources
from noisy images. The goal of MEM is to maximise the total
Shannon-Jaynes entropy P (s) ∝

∑
k sk ln sk of the source pix-

els s = {sk}. This constraint accommodates incomplete data and
ensures positivity of the solution, but it finds its minimum when
all pixels sk share the same value. This contradicts the goal of
accurately reconstructing sources that show a large dynamical
range, which is often the case in practice. In addition, the inver-
sion problem becomes non-linear. To retain linearity, the simi-
lar `2 norm regularisation, that is to say P (s) ∝

∑
k s2

k , is often
used (e.g. Warren & Dye 2003; Suyu et al. 2006), although non-
negativity is no longer guaranteed.

Higher-order choices such as gradient and curvature regular-
isations are designed to penalise large first and second spatial
derivatives, respectively, of the reconstructed image (Suyu et al.
2006). The smoothness of the solution increases with increas-
ing regularisation order. Methods based on (irregular) adap-
tive grids have used algorithm-specific forms for P (s) (e.g.
Vegetti & Koopmans 2009; Nightingale & Dye 2015), and still
other families of regularisation have been applied in a Bayesian
framework (Brewer & Lewis 2006).

Machine learning techniques, such as neural networks, are
also effective regularisation methods. More specifically, given
a suitable dataset of galaxies that are close enough to real
observations, supervised learning techniques are expected to
extract complex structural information about the light distri-
bution, which subsequently regularises the model (see e.g.
Morningstar et al. 2019; Pearson et al. 2019; Chianese et al.
2020).

Each method has its advantages and disadvantages, and one
may be more suitable than another depending on the quality of
the data, the intrinsic morphology of the source and the science
case. As simple convex functions, MEM and `2 norm regularisa-
tions have analytic derivatives that are useful in gradient descent
algorithms but may overfit the data. Higher-order expressions
reduce the risk of overfitting but may be time-consuming to
compute and fail to properly account for local variations in
the source. Moreover, regularisation from deep learning can be
severely limited by the realism of training datasets. We describe
our choice of regularisation in detail in Sect. 3.2.

3. The Sparse Linear Inversion Technique (SLIT)

This work aims to improve and expand the source inver-
sion framework introduced in J19, which pioneered the use
of wavelets and sparse regularisation in strong lens modelling.
Here we review and update the original problem and solution
as implemented by, putting the regularisation method more into
context.

3.1. Data model

The original Sparse Linear Inversion Technique (SLIT) algo-
rithm introduced the following linear problem to solve (J19):

y = H F s + gH + n, (6)

where y,H,F4, and s retain their meanings from Eq. (2), ignor-
ing other components. Here gH ≡ Hg is the galaxy lens light
convolved with the instrumental PSF. Solving for gH instead
of the deconvolved g removes a potentially costly step in the
modelling process and is anyway not needed for many scientific
applications. We take n to be white Gaussian noise, although it
is possible to treat additive Poisson noise as well. For a fixed
lens mass model, that is, known F, the task is to jointly solve
for the deconvolved and denoised source surface brightness in
the source plane s and the convolved lens surface brightness in
the image plane gH. The algorithm can also optimise for s alone
when the lens light has been subtracted beforehand.

The original paper distinguished two versions of the algo-
rithm: SLIT when solving only for s and SLIT_MCA when solv-
ing for both s and gH. The latter is based on the framework
of morphological component analysis (MCA) developed for
blind source separation (Starck et al. 2005; Bobin et al. 2008;
Joseph et al. 2016). The technique seeks to disentangle super-
imposed signals based on their morphological properties when
represented in a certain basis. This is relevant in strong lensing,
as the deformed source galaxy light is often blended to some
extent with the lens galaxy light. In SLIT_MCA, it is assumed that
s and gH can each be more sparsely represented in their respec-
tive planes by a particular wavelet transform, allowing the two
components to be separated.

In this paper, we do not explicitly distinguish between the
two algorithms. This is to emphasise that the new implementa-
tion is a single tool that adapts to the intended use. Where appro-
priate, we simply specify whether we solve for the source galaxy
alone, for both the source and lens galaxies, or for the source
galaxy and point sources (see Fig. 2 and Sect. 4.6 for details of
point source modelling).

3.2. Sparsity and starlet regularisation

As summarised in Sect. 2.4, recent pixel-based reconstruction
techniques make use of some variation of an adaptive grid for
the source plane. In our work, we choose not to use an adaptive
gridding scheme but instead a uniform source grid with resolu-
tion much higher than that of the data. This is for two main rea-
sons: (1) our regularisation method is intrinsically multi-scale as
we work in the wavelet space; (2) pixelated lensing operations
and wavelet transforms are faster when applied on a uniform
grid. We further allow the source plane grid to have the minimal
size it can have given the data size, lens model, and (optionally)
masking strategy.
4 We have dropped “κ” from the original notation Fκ in J19, since we
do not build the lensing operator from the convergence map κ, but rather
via deflection angles through ray-tracing.
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Fig. 1. Multiscale decomposition using the starlet transform. Left panel: original image, similar to source galaxies in Sects. 5 and 6. Middle
panels: scales of the starlet decomposition using 6 spatial scales, and normalised (max = 1) to enhance the contrast. In such a decomposition, a
feature of a given scale is “brighter” in the corresponding image in the decomposition. Hence, keeping only highest pixels in each starlet scale
filters out any insignificant signal over a large spectrum of spatial extents. All scale images have the same dimensions as the input image. Right
panel: reconstructed image from all the decomposition scales, through co-addition of all decomposition scales. (https://github.com/aymgal/
SLITronomy-papers/blob/master/paper_I/visualize_starlet_transform.ipynb.)

Most regularisation strategies share the common difficulty of
deciding how to set the strength of regularisation. The strength
is controlled by a Lagrange parameter λ within P that bal-
ances its importance relative to the data fidelity term L (cf.
Eqs. (5) and (7)). A further complication is that λ changes
the effective number of degrees of freedom in a way that is
difficult to quantify. This issue has motivated numerous uses
of Bayesian arguments to objectively set λ (Suyu et al. 2006;
Brewer & Lewis 2006; Dye et al. 2008; Vegetti & Koopmans
2009). Except for simple forms of regularisation, however, such
as quadratic expressions, computing the Bayesian evidence often
incurs significant computational overhead, as it requires integrals
over a large parameter space volume.

We rely instead on sparsity in the wavelet domain to mean-
ingfully set λ based on noise properties of the data. Sparse image
reconstruction is a well-studied framework that has been used in
a wide variety of astrophysical applications, such as the process-
ing of weak-lensing (e.g. Lanusse et al. 2016; Peel et al. 2017)
and radio interferometric data (e.g Pratley et al. 2018), blind
source separation of optical and radio sources (e.g. Joseph et al.
2016; Jiang et al. 2017), and recently in combination with deep
learning (e.g Sureau et al. 2020).

The success of wavelets in such applications stems from their
multi-resolution property via the wavelet transform. Similarly
to the way a signal is decomposed into its component frequen-
cies by a Fourier transform, a wavelet transform decomposes a
signal into both its frequency and spatial components. Figure 1
illustrates the multi-resolution decomposition of an image of a
galaxy. A wavelet transform is defined by its basic functional
wavelet form, which must obey certain mathematical properties.
The particular choice of wavelet depends on the problem at hand.
In this work we use the starlet transform (Starck et al. 2007),
which is isotropic and undecimated, and has been shown to be
suitable for treating astronomical images.

The starlet transform of an image returns J new images of
equal size, each corresponding to a convolution of the orig-
inal by a filtering kernel of a different scale. The jth kernel
j ∈ {1, . . . , J − 1} amplifies features of the image on scales of
2 j pixels (see decomposition scales panels in Fig. 1) while pre-
serving spatial locations. The final image in the decomposition
corresponds to coarse-grained smoothing similar to a Gaussian
filtering (see coarse scale panel in Fig. 1). One sets the number
of scales in the transform by hand, the maximum value being
limited by the number of pixels npix on the side of the image:
Jmax = blog2 npixc. We note that the number of decomposition

scales might also be optimised further for a specific system. We
may explore this possibility in future work. Following standard
notation (and that of J19), we write the linear starlet transform
operator as5 Φ> and its inverse as Φ. The starlet transform of an
image x yields coefficients αx = Φ>x, and x is recovered with
x = Φαx.

We regularise the reconstruction of both lens and source
galaxies by applying a sparsity constraint on their starlet coef-
ficients. This is motivated by the observation that astronomical
images, including the light and mass distributions of galaxies,
can be expressed with high fidelity using only a small number of
coefficients in starlet space (e.g Lanusse et al. 2016; Joseph et al.
2016; Peel et al. 2017). This property therefore defines a suit-
able regularisation for the underconstrained problem described
by Eq. (5) in a model-independent way. The sparsity of a signal
is enforced by minimising its `0 or `1 norm, in our case in the
starlet domain. The former is generally preferred but difficult to
use in practice, because it is not convex. SLIT uses the `1 norm,
as it still promotes sparsity and being convex, guarantees con-
vergence. We can now write the final expression of our priors
as

P (x) = λ
∥∥∥Wx � Φ>x

∥∥∥ + ı≥0 (x), (7)

where x stands for either s or gH. We have introduced weights Wx
that adjust the starlet coefficients via an element-wise product �.
This is necessary because the `1 norm (unlike the `0 norm) is
known to bias the amplitude of the reconstructed signal, but this
can be mitigated by an appropriate reweighting (Candes et al.
2007). We give more details in Appendix C on the implemen-
tation of the `1-reweighting step. To avoid unphysical solutions,
such as those containing negative pixels, we include as well the
positivity constraint ı≥0( · ), which goes to +∞ if any coefficient
of its argument is negative, set to zero otherwise, and is self-
consistently folded in during optimisation.

Solving the convex minimisation problem of Eq. (5) subject
to the constraints given by Eq. (7) is a difficult task because
the `0 and `1 norm are not differentiable everywhere. A large

5 Formally one should write Φ>
{s,gH}

and Φ{s,gH}, where the subscript in
Φ>
{s,gH}

indicates if the operator is meant to be applied on the source or
lens galaxy, with the corresponding number of scales J{s,gH}. To avoid
cluttered expressions, we drop this subscript, and depending on which
component the operator is applied on (s or gH), the operator is the star-
let operator whose number of decomposition is scales Js or JgH , respec-
tively. That is, Φ>s ≡ Φ>s s and Φ>gH ≡ Φ>gH

gH.
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family of methods to solve such minimisation problems rely
on splitting the different constraints and applying them through
more tractable mathematical operators. These are called prox-
imal operators associated with each constraint and which can
offer convergence guarantees depending on the algorithm and
number of constraints. The proximal operator of the `1 norm
is the soft-thresholding operation. The proximal operator of the
ı≥0( · ) corresponds to setting to zero all negative values. These
operators are often applied after the step corresponding to a gra-
dient descent update, which is the case in our algorithm.

As described above, the starlet transform gives a multi-
resolution decomposition of the source being modelled. It
encodes the spatial locations of features across many scales
simultaneously. This is another advantage compared to classical
regularisation strategies, like those introduced in Sect. 2.4. On
one hand, classical strategies are “global” in that every image
pixel contributes equally to the regularisation (through summa-
tion over the pixels), whereas starlet regularisation retains spatial
locations. On the other hand, while MEM and the `2 norm are
single-pixel measures, and gradient and curvature correlate flux
over a few pixels, starlet regularisation incorporates correlations
over a much wider range of scales, resulting in a higher fidelity
reconstruction (see Fig. 1).

3.3. Regularisation strength

The value of the Lagrange parameter λ generically regulates the
importance of regularisation compared to accuracy in reproduc-
ing the observation. A higher λ favours a smoother reconstruc-
tion at the cost of a worse fit to the data, whereas a lower λ
gives more flexibility in matching the data at the pixel level
but increases overfitting. In the context of sparse regularisation
through the `0 or `1 norm, λ also has a clear interpretation: it
effectively sets the statistical significance of the reconstruction
in units of the noise, provided that the noise covariance is known
and properly propagated to the starlet domain. We denote the
propagated noise as σΦ (see J19, for its computation), hence
λ ≡ λ′σΦ for a positive scalar λ′. For instance, λ′ = 3 leads to
a reconstruction at “3σ significance”. This understanding limits
the range of interest for λ′ values to typically ≥3. In the algo-
rithm, we start with a large λ′ – automatically estimated from σΦ

– and reduce it at each iteration until it reaches the target value.
It is then held fixed for a small number of remaining iterations
(typically 5).

We set λ′ = 3 throughout this paper, as we have found it
generally gives the smallest image plane residuals in our exper-
iments, with no sign of overfitting. We also allow for a larger
threshold applied specifically to the smallest starlet decompo-
sition scale, to prevent spurious isolated pixels from entering
the solution. As detailed in Sect. 3.2, the first starlet scale con-
tains features with a spatial extent of (2 j) j=0 = 1 source pixel,
which are likely to be noise. As a consequence, we set λ′ = 5
for the smallest starlet scale only. We note that alternative solu-
tions may exist, such as replacing the first starlet scale by a
more suitable wavelet transform chosen such that isolated pixels
are more penalised by the sparsity constraint (e.g. Lanusse et al.
2016, using a hybrid Battle-Lemarié+starlet transform).

A careful handling of the noise in the context of sparse
modelling thus gives a simple way to choose the regularisation
strength according to the desired reconstruction significance.
A systematic comparison of the Bayesian evidence (Suyu et al.
2006; Dye et al. 2008; Vegetti & Koopmans 2009) is not neces-
sary in our framework, which saves considerable computation
time when solving the full SLIT problem (Eq. (8)). We refer to

J19 for further details concerning the computation of noise levels
and their propagation through SLIT operations.

4. From SLIT to SLITronomy

The original SLIT algorithm presented in J19 is available as an
open-source python code6, packaged with example scripts for
illustrating its different features. There are two main difficulties
with the code that we have sought to improve in this work. The
first is that the computation time required for source reconstruc-
tions, and consequently joint source-lens reconstructions, is too
large for tractable applications to real data. The second is that
it is not practical to initialise the algorithm with results from
the literature (e.g. lens model parameters), due to differences in
coordinate systems and conventions. This is true for using the
algorithm as a standalone tool, as well as in a workflow where
model parameters first get optimised through analytical methods,
then further refined using the SLIT algorithm.

We address these issues by introducing SLITronomy7, our
revamped implementation of the SLIT algorithm that is signif-
icantly more efficient than its predecessor. It can be used as
a plug-in to the open-source gravitational lens modelling soft-
ware Lenstronomy8 (Birrer & Amara 2018). The framework
of Lenstronomy allows us to access a number of practical and
tested features that we exploit in our new development. The sup-
port of our code within Lenstronomy allows our sparse lens
inversion method to be easily used by people already familiar
with this software.

In the rest of this section, we describe a subset of key
improvements and new features that we have brought to the orig-
inal SLIT package. We note that not all features described in the
following subsections are required for the results presented in
Sects. 5 and 6.

4.1. Analysis and synthesis formulations

One can rewrite the general minimisation problem of Eq. (5)
with the SLIT model from Eq. (6), and the regularisation strat-
egy defined by Eq. (7). At this stage, there are two ways to
solve the problem, depending on which variables one chooses to
optimise. The ‘synthesis’ formulation solves the problem in the
transformed domain, meaning that the actual variables are star-
let coefficients of the source αs and lens galaxies αg. The output
source and lens images, s and gH, are then obtained by applying
a final inverse starlet transform. In this case, one tries to find the
sparsest solution as measured in starlet space. On the other hand,
the ‘analysis’ formulation of the problem solves for s and gH in
direct space. In this case, one seeks a solution in the data space
that simultaneously has a sparse representation in starlet space9.

In the original SLIT implementation, the model of Eq. (6) is
optimised using the synthesis formulation. The main advantage
of the synthesis formulation relies in the fact that the proximal
operator of ‖αx‖, where αx are starlet coefficients of an image
x, is exactly the soft-thresholding operator. This enables the use
of simple and efficient algorithm such as the forward-backward
algorithm (Combettes & Wajs 2005), without any approxima-
tion. In our implementation, we chose to solve the problem in

6 https://github.com/herjy/SLIT
7 https://github.com/aymgal/SLITronomy
8 https://github.com/sibirrer/lenstronomy
9 We note that the analysis and synthesis formulations are strictly
equivalent only if Φ>Φ is the identity. As the starlet functions form an
overcomplete basis, this condition is not met for the starlet transform.
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Fig. 2. Integration of SLITronomy into Lenstronomy. The global architecture of Lenstronomy is left unchanged. When the
‘SLIT_STARLETS’ profile is used (for modelling source or lens surface brightness), the image likelihood is computed through the sparse solver of
SLITronomy, instead of the usual solver. Changes in Lenstronomy are indicated in red: a new light profile ‘SLIT_STARLETS’ has been intro-
duced; linear amplitudes (originally defined for analytical profiles) are replaced by a sparse optimisation of individual coefficients in starlet space;
source grid coordinate offsets are added as non-linear parameters, jointly optimised with, for example, lens model parameters. The integration of
point source modelling is also illustrated. See Sect. 4 for details.

the analysis formulation. The problem of Eq. (5) is then written
explicitly as:

arg mins, gH

1
2
‖ỹ − H F s − gH‖

2 + ı≥0 (s) + ı≥0 (gH)

+ λ
∥∥∥Ws � Φ>s

∥∥∥ + λ
∥∥∥Wg � Φ>gH

∥∥∥ , (8)

where � stands for the element-wise product, and we recall λ ≡
λ′σΦ.

The difference with the synthesis formulation is that the vari-
ables are now s and gH, that is, galaxy images in direct space.
First, the number of effective free parameters (before regularisa-
tion is applied) is largely reduced when solving in direct space:
it is simply the number of pixels N2 as opposed to J × N2 for
J decomposition scales. In this regard, optimisation in the anal-
ysis formulation is simpler and more stable. Second, the pos-
itivity constraint is simple to apply in direct space, because it
does not require sub-iterations like in transformed space. Third,
some specific features, such as a those similar to a dirac func-
tion, are better represented in direct space, whereas they may
require many more coefficients in transformed space. One draw-
back of the analysis formulation is that the sparsity constraint
is not mathematically described by the exact soft-thresholding
operation, compared to the synthesis formulation. In practice,
however, the process of sequentially applying the starlet trans-
form, the soft-thresholding operation, and then the inverse starlet
transform does not prevent the algorithm from converging. There
exist algorithms capable of solving Eq. (8) without this approxi-
mation (e.g. Cong Vu 2011), but their implementation is left for a
future version. As an additional improvement to the overall com-
putation time, we use an optimised implementation of the star-
let transform through the python package pySAP10 (Farrens et al.
2020).

10 https://github.com/CEA-COSMIC/pysap

4.2. Lensing operator

In SLITronomy, the implementation of the lensing operator (F
in Eq. (6)) has been improved for efficiency. When represented
as a matrix, this operator is known to be extremely sparse, typi-
cally containing fewer than 1% of non-zero entries. In the origi-
nal implementation, only non-zero entries were saved in memory
to carry out lensing operations. In our new implementation, we
use a faster and more memory efficient technique to build the
operator based on its matrix representation and provided by the
scipy.sparse11 python package. In addition to storage opti-
misation, the matrix representation allows us to carry out the
F s operation and its inverse as plain matrix-vector products,
which is considerably faster. We give quantitative measures of
improved computation times in Table 1 corresponding to a con-
figuration of 100 × 100 data pixels with twice the resolution in
the source plane on a recent personal computer. This setup is
typical, for example, of imaging data in the WCF3/F160W band
of HST. To give an idea of the total computation time needed to
solve problem (8), we also compare solving for s and s + gH for
the same configuration.

These speed improvements become crucial as soon as one
wants to solve the more general problem of optimising the
lens model in addition to the source reconstruction for fixed
lens model (see Sect. 5.3). It is also highly beneficial for the
more difficult problem of deblending and modelling both the
source and lens galaxies. More detailed benchmarks are shown in
Appendix F for various settings of the algorithm and data sizes.

4.3. Pixelated source surface brightness

The lens equation (Eq. (1)) gives the mapping between image
plane coordinates and source plane coordinates, provided the

11 https://www.scipy.org
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Table 1. Speed up improvements of the new SLITronomy implemen-
tation, compared to the original SLIT code.

Operation SLIT SLITronomy Speedup

Computation of the
lensing operator, F

1.7 s 6 ms 300

Lensing of an image, Fx 200 ms 450 µs 4500
Delensing of an image,
F>y

400 ms 120 µs 3500

Solve for source light, s ∼16 min ∼1 s 1000
Solve for source and
lens light, s + gH

∼2 h ∼30 s 240

Notes. These numbers are valid for a the typical configuration of 100 ×
100 data pixels, with rpix = 2 for source resolution, and Js = 6 starlet
scales. It can be for instance the modelling of a strong lens system
imaged by HST in F160W band.

deflection angles are known. When considering the surface
brightness of galaxies as an ensemble of pixels, the lens equa-
tion is discretised, and one defines grids of pixels for the image
plane and source planes. These grids need not necessarily be
rectangular, but we only consider regular Cartesian grids in this
work. When ray-tracing image plane pixels to the source plane
through Eq. (1), the resulting coordinate is not necessarily cen-
tred on a source plane pixel. A simple way to deal with this while
keeping a Cartesian coordinates for both planes is to interpo-
late over neighbouring source pixels to compute the values of
the ray-traced image pixels. In our formalism, we consider this
interpolation step as included in the lensing operator F.

In the original SLIT, a nearest-neighbour interpolation
scheme was chosen for its simplicity of implementation, rely-
ing entirely on the regularisation (Eq. (8)) to fill unconstrained
pixels. With Lenstronomy’s new implementation of the lens-
ing operator as described above, more complex interpolation
schemes now do not significantly increase the time required to
build the matrix F. We have thus implemented a bilinear inter-
polation over source plane pixels similar to the one described in
Treu & Koopmans (2004). In order to demonstrate visually the
advantage of bilinear interpolation, we show in Fig. 3 the dif-
ference between the two types of interpolation for two different
source plane resolutions. The bilinear interpolation leads to a
much smoother light distribution that is closer to the true profile
computed from analytical ray-tracing.

Another interesting observation is worth noting in Fig. 3.
When the source plane resolution is significantly higher than the
data resolution (twice, in this example), one can see “holes” in
the source light after applying the de-lensing operator. This is
typical of the linear approach to strong lensing on regular grids:
not all source plane pixels get mapped to by an image plane
pixel. This further illustrates the need for regularisation to solve
the linear problem of Eq. (5), since it is intrinsically undercon-
strained. A regularisation based on wavelets is expected to be
very efficient at filling these holes in the source plane, because
wavelets provide a multi-resolution representation of the light
distribution.

4.4. Lens model optimisation

The fact that SLITronomy is embedded in the Lenstronomy
framework makes it convenient to use optimisation and sampling
tools for lens model optimisation, in addition to the pixel-based
reconstructions. For example, it is now simple to run a non-linear

optimisation or Markov chain Monte Carlo (MCMC) sampling
over lens model parameters with a call to the SLITronomy
solver for each proposed sample. As mentioned in Sect. 4.2,
the runtime of a SLITronomy reconstruction with a fixed mass
model for a typical HST cutout image is ∼1 s when solving only
for the source, and ∼30 s when solving for the source and lens
light together. While solving for the source at each iteration of
an MCMC process is still tractable (see Sect. 5.3) solving for
both components would be difficult given current computation
speeds. Consequently, we see several possibilities to deal with
this difficulty. First, by implementing further speed improve-
ments of the s + gH solver. Deep learning techniques would
likely accelerate the algorithm by replacing steps considered as
bottlenecks (see e.g. Meinhardt et al. 2017; Sureau et al. 2020).
Second, by using other non-linear solutions to explore the lens
model parameter space. An interesting direction to explore is
free-likelihood techniques with extreme data compression (see
e.g. Alsing et al. 2019). And third, by pre-optimising the lens
model using faster modelling techniques (analytical methods),
so a smaller number of refinement steps are needed using starlet
regularisation.

An extensive study of lens model parameter optimisation is
dedicated to a future paper. We see the present work as one of
the key steps needed to develop a full model for both the light
and mass components.

4.5. Offset to source grid alignment

A difficulty shared by any pixel-based source reconstruction
method is related to the definition of the source-plane coor-
dinate grid. In particular, the alignment between image plane
coordinates and source plane coordinates can be arbitrary and
potentially lead to biases in lens model parameters depending
on the choices made to address the problem. This is sometimes
referred to as the “discretisation bias”, and several methods have
been suggested to mitigate its effect, such as randomising the
source plane initialisation (Nightingale & Dye 2015) or as an
additional error term in image plane12. Mitigation strategies typ-
ically depend on the algorithm-specific implementation and its
assumptions. Analytical methods are, in essence, not subject to
the discretisation bias.

Our method does not involve an adaptive gridding strategy
for source plane coordinates. Hence the remaining degrees of
freedom left for altering its alignment with image plane coordi-
nates are constant offsets along both main axes. We introduce
two additional non-linear parameters, δs,x and δs,y, that char-
acterise deviations from perfect alignment between the image-
plane and source-plane coordinate grids. These two parameters
are included in the set of non-linear parameters defined by
other model components. Best-fit values and posterior distribu-
tions are therefore consistently estimated during optimisation or
sampling.

4.6. Point source modelling

In the context of lensed point sources, the multiple images
of background quasars are often seen as just the imprint of
the PSF superimposed on the light of their host galaxy. There
are two ways to model these features. One way is to increase
the image plane resolution to the point that it is possible to

12 We also performed source reconstructions with the “regridding error”
term of Suyu et al. (2009), but found it leads to prominent features in the
residuals due to overfitting.
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Fig. 3. Illustration of a pixelated mapping between source and image planes, as implemented in SLITronomy. Top row, left to right: nearest-
neighbour interpolation of source surface brightness for two grid resolutions (same as image plane or doubled), bilinear interpolation of surface
brightness for the same resolutions, and parametric “groundtruth” using Lenstronomy. Bottom row, left to right: source plane corresponding to
the top row panels, for different data pixel size to source pixel ratio rpix. Dark isolated pixels in source plane are not mapped to any image plane
pixel, hence not constrained by imaging data. Our reconstruction technique is able to fill these “missing pixels”, through sparse regularisation and
multiresolution property of wavelets (https://github.com/aymgal/SLITronomy-papers/blob/master/paper_I/visualize_lensing_
operator.ipynb).

resolve each quasar image, but this leads to extremely large
numbers of source-plane pixels and quickly becomes intractable.
Another simpler, faster and more effective method is to shift
and scale – that is (de)magnify – the pixelated PSF at the
position of each image. This is the solution implemented in
Lenstronomy13, and other methods use the same procedure
as well (Suyu & Halkola 2010; Auger et al. 2011). Our model
of Eq. (6) can be straightforwardly extended to support point-
source modelling:

yps = H F s + gH +
∑

i

AiK + n, (9)

where AiK represents the interpolated and amplitude-scaled PSF
kernel at the location of the ith image. An iterative approach can
be employed to solve for the three unknown components s, gH and
{Ki}, removing from the data two out of the three components to
estimate the third one in sub-iterations, until convergence.

5. Current data with HST

In this section, we focus on imaging data corresponding to typi-
cal images obtained with the Hubble Space Telescope (HST). We
first simulate realistic HST data to perform a detailed comparison
between our pixel-based reconstruction technique and state-of-
the-art analytical reconstructions. We also propose an automated
process for refining the source model using both methods. We then
reconstruct the source galaxy in a subset of Sloan Lens Advanced
Camera for Surveys (SLACS) strong lens samples.

5.1. Source reconstruction on simulated data

5.1.1. Simulation setup

We use as sources the preprocessed high-resolution galaxies that
were employed to generate the simulations of Time Delay Lens
Modelling Challenge (TDLMC, see Ding et al. 2018, 2020).
These sources consist of high-resolution cropped images of

13 Given an accurate model for the source surface brightness, the pixe-
lated PSF can further be refined iteratively.
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Fig. 4. Simulated HST data. The lens light is assumed to be perfectly
subtracted. The resolution and noise covariance mimic those of real
observations with the WCF3/F160W instrument. First row: simulation
using a single galaxy. Second row: more complex configuration with a
composite of three close-by galaxies in the source plane. Source objects
are projected on a finer grid, to match the resolution of our recon-
struction technique (https://github.com/aymgal/SLITronomy-
papers/blob/master/paper_I/mock_source_reconstruction.
ipynb).

nearby spiral galaxies from the Hubble Legacy Archive14, on
which isolated stars and objects in the field have been removed
and the background has been subtracted. Doing so ensures that
a negligible amount of noise is propagated to the image plane,
the presence of which can potentially lead to biases in the source
reconstruction and recovered lens model parameters. We create
two types of source: either a single galaxy or two close-by galax-
ies simulating a merging pair, that we place at redshift zs = 1.2.
Source galaxy images are shown in the right column of Fig. 4.

14 https://hla.stsci.edu/hlaview.html
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Once the source galaxy has been selected, we use
Lenstronomy and a built-in light profile that performs spline
interpolation of the (high-resolution) source image. We then sim-
ulate the lensing effect through ray-tracing on the interpolated
image, based on an analytical model for the lens galaxy mass.
The main deflector is described by a singular isothermal ellip-
soid (SIE) placed at redshift zd = 0.3 with a central veloc-
ity dispersion of σv = 260 km s−1 and axis ratio qm = 0.8.
In addition, it is embedded in an external shear with moderate
strength γext = 0.03, misaligned by π/4 rad upwards, counter-
clockwise, with respect to the lens galaxy, to simulate the influ-
ence of nearby perturbers. After ray-tracing to compute extended
lens arcs, we convolve the image with the HST PSF kernel
for the near-infrared F160W band, simulated with the TinyTim
software (Krist et al. 2011). We choose the F160W band,
because it usually gives a higher signal-to-noise for the lensed
arcs, as well as better contrast between source and lens galax-
ies (although we ignore the lens light in this case). Typical
measurement noise is then added in the form of a background
Gaussian component and a Poisson component based on instru-
mental properties and exposure time, combined per pixel i as

σ2
i = σ2

bkg + σ2
Poisson. (10)

We assume uncorrelated noise in the above equation, as this
approximation is common to CCD data. In general, correlated
noise can be incorporated as well, as long as the correlations are
known or properly estimated (the propagation of noise to wavelet
space is left unchanged). Other instrumental settings (e.g. zero-
point magnitude, read noise, etc.) are based on real HST observa-
tions. Final simulated images are shown in Fig. 4. We summarise
in Table A.1 the instrumental settings and in Table A.2 the values
of the lens model parameters used in our simulations.

5.1.2. Starlet source reconstruction

We demonstrate the source reconstruction capabilities of our
starlet regularisation on the simulated data described above. As
detailed in Sect. 3, the regularisation strength is defined by the
detection threshold we wish to obtain in the source plane, in units
of the noise. We set λ′ = 3 (i.e. 3σ significance for the source
reconstruction) for all our models. We find that this permissive
value leads to a good fit to the data for all applications in this
work. We show in Appendix E that the number of scales has
small impact on the source modelling at the level required for
this work, but has substantial impact on the computation time.
We fix the number of decomposition scales to Js = 6, giving
reasonable computation time. We set the ratio of data pixel size
to source pixel size to rpix = 3. As we focus on the source
reconstruction, lens model parameters are held fixed to their
input values.

We show in the first row of Figs. 5 and 6 results of our
sparse reconstruction technique using starlets. We show the
image model along with image plane normalised residuals, and
the source model along with source plane residuals. The reduced
chi-square values, χ2

ν , are computed considering the number of
(un-masked) pixels i as the number of effective degrees of free-
dom ν:

χ2
ν =

1
ν

∑
i

(
fmodel, i − fdata, i

)2

σ2
i

, (11)

where σ2
i is noise variance of pixel i (Eq. (10)).

In the source plane, we assess the quality of the reconstruc-
tion by computing the source distortion ratio (SDR, as defined

in J19):

SDR = 10 log10

(
‖strue‖

‖s − strue‖

)
(12)

where strue is the true light distribution of the source. With such
a definition, the higher the SDR, the better the reconstruction.

Both image plane and source metrics are shown in Figs. 5
and 6. The imaging data is modelled almost to the noise level, as
one can expect from the assumed knowledge of the lens model,
noise covariance and PSF. Despite small artefacts incorrectly
filtered out by the starlet regularisation (similar features were
noticed in J19), the global shape of the reconstructed source
galaxy is in good agreement with the truth. One can distinguish
smaller scale features such as the most prominent spiral arms,
even though the deconvoluton of the source (jointly performed
by the algorithm) is limited by the fairly large FWHM of the
F160W PSF.

It is worth pointing out that although we use parts of the
same software to generate and to model the data, the actual
algorithms used in each process are importantly different. The
lensed sources were simulated using analytical ray-tracing from
a spline-interpolated image with much higher resolution than
that of the final data. In contrast, the source modelling was per-
formed by a different approach, both when using starlets (via the
lensing operator and bilinear interpolation) and shapelets (via
analytical evaluation of basis functions). We therefore avoid the
logical inconsistency of attempting to model the simulated data
using the same algorithm that produced it. This also means that
we cannot expect a perfect reconstruction, even assuming the
true lens model.

5.1.3. Comparison with analytical shapelets

We next perform the same exercise with the analytical, yet
flexible, modelling method using shapelet basis functions
(Bernstein & Jarvis 2002; Refregier 2003; Birrer et al. 2015).
While shapelets can potentially produce biases for shape mea-
surements (e.g. Melchior et al. 2010, in the context of weak lens-
ing), they have been successfully employed in strong lens mod-
elling. Shapelets are Gauss-Hermite polynomials that form a
complete and orthonormal basis set. To ensure a tractable opti-
misation of shapelet coefficients, only a limited number nmax of
polynomials are considered to model the light distribution. A
shapelet basis set is thus defined by three free non-linear param-
eters aside the fixed nmax: the two coordinates of the basis centre
and the reference scale β. The total number of basis functions
(linear amplitudes) is ntot = (nmax + 1)(nmax + 2)/2. The poly-
nomial order and the reference scale set the minimal and max-
imal scales that can be resolved βmin = β (1 + nmax)−1/2 and
βmax = β (1 + nmax)1/2, respectively.

There are two ways of modelling the source with shapelet
basis functions. They can on one hand be employed as
a standalone light profile (e.g. Birrer et al. 2015, 2017;
Tagore & Jackson 2016). Alternatively, they can be considered
as small-scale corrections to an underlying large-scale light pro-
file, commonly taken to be an elliptical Sérsic profile whose cen-
troid coincides with the shapelets centroid (Birrer et al. 2019;
Shajib et al. 2019, 2020a). For completeness we compare our
reconstruction technique with both approaches, which we term
“shapelets” and “shapelets+Sérsic”, respectively. We set the
maximal polynomial order nmax as the lowest value required to
obtain image plane residuals down to the noise, based on visual
inspection.
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s

Fig. 5. Source modelling of the simulated data with a single source galaxy (Fig. 4). Top to bottom: sparse model with starlets (rpix = 3), analytical
model with shapelets (nmax = 18), analytical model with shapelets+Sérsic profile (nmax = 8). Left to right: image model, image normalised
residuals and reduced chi-square, source model, source residuals and SDR. The SDR is computed only in the region indicated by the grey box, to
avoid pixels with no flux to bias its value. All source reconstructions are shown at the supersampled resolution corresponding to the chosen rpix.
Dark grey areas in model panels correspond to non-positive pixel values (which can be negative with shapelets, https://github.com/aymgal/
SLITronomy-papers/blob/master/paper_I/mock_source_reconstruction.ipynb).

We optimise the non-linear parameters of the shapelet
basis (scale and basis centre) using the Particle Swarm
Optimiser (PSO, Kennedy & Eberhart 2001) implemented in
Lenstronomy, which is particularly suited for finding global
minima in large parameter spaces15.

We show in Fig. 5 both the “shapelets” and “shapelets+
Sérsic” reconstructions, for direct comparison with the “starlets”
reconstruction. One notices that both analytical and pixel-based
methods display artefacts in source plane, although not at the
same level. While starlets only introduce low significance false
detections due to noise propagation from image plane, shapelets
introduce prominent concentric rings that attempt to compensate
small scale features in the source structure, such as the cuspy
bright core of the spiral source.

We emphasise that starlets are able to represent the large
dynamic range of source features on their own, while shapelets are
not. By adding a Sérsic profile – or any other smooth profile – to the
shapelet functions, one can split the modelling of small- and large-
scale features. Indeed, the Sérsic profile acts as a low-pass filter,
with shapelet functions capturing the remaining high frequencies
and requiring a lower maximal order compared to shapelets alone.
The global shape of the source is retained with shapelets+Sérsic,
even though the boundaries of the light distribution are sharper
than with starlets (the truth seems to lie in between). For small-

15 We also used the Nelder-Mead simplex algorithm (from the scipy
library), but found that it quickly fails at exploring the parameter space
once more complex light profiles such as shapelets+Sérsic or large
shapelet basis are being optimised, given the constraints of HST images.

scale features, starlets show more fidelity to the true underlying
surface brightness. Such features, when revealed with shapelets,
need to be interpreted with care, since they may not be real, but
rather artefacts from their limited flexibility.

While the starlet model provides slightly better normalised
residuals and a smoother, more realistic source, the resulting χ2

ν
is very close to the one obtained with the shapelets+Sérsic
model. To reach this value with the analytical model, additional
constraints through the Sérsic profile are required, which are not
accounted for in the χ2

ν . We therefore believe our model performs
better, but this is not well captured by the small difference in χ2

ν .
In contrast to just the likelihood value, a metric based on the pos-
terior value – which has to be carefully designed so that it takes
into account intrinsic differences between the methods – should
be preferred, but this is beyond the scope of this work.

Similar observations can be made for the case of a
source composed of multiple complex components. For the
shapelets+Sérsic reconstruction, a single shapelet basis is not
sufficient to obtain residuals down to the noise, requiring an nmax
so large that it negatively affects the convergence efficiency of
the optimisation and introduces significant artefacts in source
plane (similar to the middle panel in Fig. 5). Only after care-
fully optimising multiple shapelets+Sérsic pairs at the location
of each individual sub-component in source plane can the resid-
uals be reduced to a satisfactory level. The initial location of
these analytical profiles is crucial to prevent strong degeneracies
from appearing during optimisation. If one is interested in mod-
elling only a few strong lens systems, the initialisation can be
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Fig. 6. Source modelling of the simulated lensed galaxy group (bottom panel of Fig. 4). Top to bottom: sparse model with starlets (rpix = 3),
analytical model shapelets+Sérsic (nmax = 8), and starlets-refined shapelets+Sérsic model (nmax = {3, 3, 9}). Left to right: image model, image
normalised residuals and reduced chi-square, source model, source residuals and SDR. The SDR is computed only in the region indicated by the
grey box. All source reconstructions are shown at the supersampled resolution corresponding to the chosen rpix. Dark grey areas in model panels
correspond to non-positive pixel values (which can be negative with shapelets). We emphasise that the iterative refinement process, uses the model
in first row to automatically setup the low-complexity model in second row, and further refine it until the reconstruction shown in last row (see Fig. 7
and Appendix B), https://github.com/aymgal/SLITronomy-papers/blob/master/paper_I/mock_source_reconstruction.ipynb.

set manually by the investigator, based on model residuals. For
batch modelling of large datasets, however, this is not a viable
solution.

To tackle this limitation, we design a workflow motivated by
the advantages of both analytical and pixel-based reconstruction
methods. While the former offers a considerable gain in speed –
mostly when solving for a large number of non-linear parameters
from lens and source models jointly – the latter does not require
any choice of light profiles, nor a good set of initial parame-
ter values for initialisation. Hence, analytical methods are better
suited to rapidly explore the initial, potentially large, parame-
ter space, and to provide a starting point for further refinement
steps. These refinement steps can then be exclusively pixel-based
or, as we propose here, use an intermediate solution between
pixel-based and analytical. The goal of such a hybrid approach
is to retain timing efficiency, while substantially reducing human
choices by including pixel-based flexibility.

The proposed workflow can be summarised in four steps,
illustrated in Fig. 7: based on a pre-optimised lens model
obtained through a faster, fully-analytical modelling step, (1)
the sparse starlet technique is used to obtain a high-resolution
model of the source; (2) the number and location of each sub-
component of the source are automatically detected on the star-
let model; (3) individual pairs of shapelets+Sérsic are assigned
to sub-components and their centres properly initialised with
low polynomial order (typically nmax = 2); (4) the polyno-
mial order of each shapelet basis is iteratively refined based on

image plane residuals that are specific to the individual sub-
components. Finally, a full lens model optimisation can be per-
formed, either with the updated analytical or pixel-based source
model, depending on the specific goal and requirements (e.g.
flexibility, computation time). We refer to Appendix B for more
details. We note that although the initial lens model estimation
needs to be good enough to discard or detect multiple source
components, the pixel-based starlet reconstruction can be used
to quickly assess of the reliability of the lens model (in addition
to model residuals).

The result of this automated refinement is shown in the bot-
tom row of Fig. 6. The final source model consists of three
shapelets+Sérsic pairs with joint centroids and maximal poly-
nomial orders of {3, 3, 9}. The higher order of the third shapelet
basis is necessary to model the most prominent spiral arm. As
expected, residuals are drastically improved by this automated
procedure, reaching a similar level as the starlet reconstruction in
image plane. In source plane, the SDR is slightly better than with
the pixel-based approach, showing visually similar residuals
when compared to the true source. The flexibility and simplicity
of sparse modelling is directly used to improve the large set of
analytical profiles, still driven by the imaging data itself. Some
works have already attempted to minimise investigator time for
batch modelling of strong lens systems (e.g. Nightingale et al.
2018; Shajib et al. 2019, 2020b). One can imagine the proce-
dure developed here to be part of a larger automated modelling
pipeline in the future.
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Fig. 7. Workflow for using the starlet model as an automatic refinement of the analytical model. From a first estimation of the lens model, model
residuals are assessed through visual inspection and/or goodness-of-fit statistics. If the current source model is insufficient, the lens model is fixed
and the source is reconstructed using sparse optimisation with starlets. Potential sub-components of the source are located in source plane through
special filtering followed by local maxima detection. A pair of profiles shapelets+Sérsic is assigned to each sub-components, with low complexity
(shapelet order nmax = 2). An iterative process is engaged for refining individual shapelet orders based on residuals in pixels corresponding to their
sub-component (see Appendix B for details). Once refined orders are sufficient, a full model optimisation can be performed.

5.2. Source reconstruction of SLACS lenses

We now apply SLITronomy to real data, focusing on a subset
of lenses from the Sloan Lens Advanced Camera for Surveys
sample (SLACS, Bolton et al. 2006). This sample of 80 galaxy-
galaxy lenses has been well studied and used, in combination
with spectroscopy, to infer statistical properties of lens galax-
ies such as their dark matter and baryonic mass distributions,
their location in the fundamental plane, as well as their selection
functions (e.g. Gavazzi et al. 2007; Auger et al. 2010). However,
little focus has been given to the quality of the source recon-
structions. It has also been shown that some properties of source
galaxies can be recovered to sufficient precision without using
pixel-level modelling (e.g. for deriving AGN mass-luminosity
relation, Ding et al. 2021). However, for certain applications that
require insights on small-scale features in source galaxies, such
as the study of star-forming regions (e.g. James et al. 2018)
or galaxy morphologies, more flexible methods are required to
reconstruct complex sources.

In our analysis, we assume that the lens mass model has been
optimised beforehand. We use the recent work of Shajib et al.
(2020b), which uniformly modelled 23 of the SLACS lenses to
put constraints on the mass profile and content of large elliptical
galaxies. These models were also used as an external dataset in
the hierarchical Bayesian analysis for time-delay cosmography
introduced by Birrer et al. (2020). Here we briefly summarise
the modelling choices and fitting procedure used to optimise
the lens model parameters (implemented in the dolphin pack-
age, a wrapper around Lenstronomy16), and refer the reader
to Shajib et al. (2020b) for more details. The mass profile of
the lens is a power-law ellipsoidal mass distribution (PEMD),
embedded in an external shear. The lens light (although masked
for some systems) is modelled with a double elliptical Sérsic
profile. The source light is modelled with a shapelet function
basis plus an elliptical Sérsic profile. For an individual SLACS
system, the adopted fitting recipe consists in a series of parti-
cle swarm optimisation (PSO) runs, each time altering specific
degrees of freedom in the model: (1) the PEMD slope and exter-

16 https://github.com/ajshajib/dolphin

nal shear are fixed; (2) the flux from lensed arcs is masked for
fitting of lens light; (3) all mass and light parameters for the
deflector are fixed for fitting the source light, with fixed shapelet
scale; (4) the PEMD parameters are relaxed for jointly optimis-
ing the source and mass profile parameters; (5) the shapelet scale
is relaxed for further refinement of the source; (6) steps 2–5 are
repeated with current best-fit values; (7) the PEMD slope and
external shear are relaxed for a final MCMC sampling of all
parameters together.

The modelling of Shajib et al. (2020b) has been performed
with Lenstronomy, hence lens models are given in a format
usable by our SLITronomy implementation with minimal pre-
processing. Among the 23 lenses in the modelled sample,
we first select one “simple” system, SDSS J1627−0053, that
exhibits no particularly complex features (it is an almost perfect
Einstein ring), and from which lens light can be removed prop-
erly. Three additional systems, intentionally selected for their
higher complexity, are added to our subset of lenses, based on
inspection of residuals from the analytical model and source
reconstruction (shapelets+Sérsic). They are SDSS J1250+0523,
SDSS J1630−4520 and SDSS J0959−0410. We use HST data
obtained with the ACS instrument in the F555W band for all four
systems. We note that all of these systems have been considered
to have good quality models by Shajib et al. (2020b), although
the main goal of their work was to obtain reliable lens model pos-
terior distributions. We then take their best-fit lens model param-
eters17 and apply our starlet reconstruction technique directly on
the same imaging data cutouts, using the same PSF kernel as
Shajib et al. (2020b) for the joint deconvolution. We use rpix = 3
for source plane resolution.

Figure 8 shows source reconstructions of the four systems.
From left to right are the lens-subtracted imaging data, the
residuals and shapelets+Sérsic model of Shajib et al. (2020b),
followed by the residuals and model obtained with starlets.
Reduced chi-square metrics are also indicated. Similarly to the
simulated data of Sect. 5.1, we notice that shapelet reconstruc-
tions for these systems display ring-like or wave-like features
that do not likely represent the true source surface brightness.
17 Private communication.
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Fig. 8. Source reconstruction of SLACS lenses, assuming analytical mass and lens light models from Shajib et al. (2020b). Left to right: imaging
data with lens-light subtracted, normalised residuals with shapelet model, shapelet source model, normalised residuals with starlet model, starlet
source model (rpix = 3). The maximal polynomial order nmax used for shapelet models are, from top to bottom: 6, 15, 12, 15. We refer to the text
for more details, specifically concerning the case of SDSS J0959−0410. Dark grey areas in model panels correspond to non-positive pixel values
(which can be negative with shapelets). All source reconstructions are shown at the supersampled resolution corresponding to the chosen rpix.
Colour maps for flux and residuals retain their meaning from Fig. 6 (https://github.com/aymgal/SLITronomy-papers/blob/master/
paper_I/SLACS_source_reconstruction.ipynb).

Additionally, the modelled light profile contains unphysical neg-
ative values, especially in the case of SDSS J1630−4520.

We observe a significant decrease in the residuals when using
the sparse source reconstruction, compared to the original resid-
uals obtained with the analytical model. While this may seem
expected at first sight – as the former model is much more
flexible – it should not be overlooked. Since we perform the
pixel-based reconstruction at fixed mass in this case, it hints
that lens model parameters that would be favoured by the sparse
reconstruction are compatible with those obtained from analyt-
ical optimisation. If this were not the case, residuals would, on
the contrary, have been worse than previously obtained, because
the sparse reconstruction would have favoured another loca-
tion in parameter space. Under the assumption that shapelet
source reconstruction does not lead to biased lens model param-
eters (which is supported by previous works Birrer et al. 2015;
Tagore & Jackson 2016), this is a reassuring result.

Specifically in the case of SDSS J0959−0410, we observe
small-scale artefacts in the form of an array of low-amplitude
spots that are clearly non-physical. They are a consequence of
the pixel-based nature of our modelling technique, for which
we identify three reasons. First, the source object – likely to
be two or more nearby galaxies – extends over a region much

larger than the caustics where the lens mapping tends to suf-
fer more from the pixelated approximation. Second, the analyt-
ical lens light model is particularly inaccurate due to prominent
overlapping of the lens and lensed arcs, in addition to a likely
dust absorption lane (visible before lens light subtraction) that
cannot be modelled well with smooth profiles only. Third, the
mask defined to exclude pixels affected by the imperfect lens
light subtraction causes an artificial discontinuity between the
lensed arcs and the masked region, which is propagated to the
source plane at the location of the artefacts. These three effects
lead to inaccuracies in the noise estimation and cause source pix-
els at these locations to not be properly regularised when apply-
ing the sparsity constraint. We investigate these points further in
Appendix D.

Pixel-based methods tend to be subject to over-fitting, which
can artificially improve residuals. However, we argue this is
not the case here, as one can easily identify features in the
residuals that still persist after the starlet reconstruction of the
source. Overall, no overfitting features clearly stand out from
the residual maps. Our method’s careful handling of noise lev-
els, namely their propagation to starlet space and the sub-
sequent application of sparsity constraints, all help to avoid
overfitting.
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Fig. 9. Posterior distributions for lens model (SIE + external shear) and
source grid offset parameters (see Sect. 4.5 for details), for the simulated
HST data shown in Fig. 4 (first row). We show individual posteriors
for different values of rpix (thin colored contours), and the marginalised
posteriors (thick grey contours) have been obtained by combination
with equal weights. Two-dimensional contours show 68% and 95% of
the distribution volume, and true values are indicated by dashed lines
(https://github.com/aymgal/SLITronomy-papers/blob/
master/paper_I/mass_sampling/corner_plot_mass_
sampling.ipynb).

5.3. Optimisation of the analytical mass model

Although our primary focus is on the problem of source recon-
struction, estimating deflector mass parameters is also of inter-
est for many strong lensing applications. As an example of how
this can be done in our framework, we use MCMC18 to sample
the lens model parameter space of our simulated HST data in
the single source galaxy case (top row of Fig. 4). The resulting
posterior distributions for SIE and external shear parameters are
shown in Fig. 9. We have checked the MCMC chains for conver-
gence and verified that a sufficient number of samples has been
discarded (we kept the last 35 000 samples each chain). By com-
paring the maximum a posteriori values to the true input values,
we observe that the source pixel size (controlled through rpix)
acts as the main source of systematic errors. This is consistent
with what has been observed from other pixelated source recon-
struction methods (see e.g. Fig. 3 from Suyu et al. 2013).

In order to ensure robustness of the posterior and prevent
underestimating error bars, we also marginalise over the differ-
ent choices of rpix. As there is no natural choice for this param-
eter, we apply equal weights to the individual distributions tp
obtain marginalise posteriors. The resulting posteriors are all sta-
tistically consistent with the true parameter values. This demon-
strates that our source regularisation method is suited to lens
model parameter estimation as long as we properly account for
the choice of source pixel size. We note that using a source pixel
size equal to that of the data (i.e. rpix = 1) induces large pixela-

18 The MCMC is performed using Lenstronomy, which runs rou-
tines from the python package emcee (https://github.com/dfm/
emcee).

tion effects and does not lead to an acceptable fit to the data (see
Fig. 3).

We have shown that a hybrid procedure of estimating the
source on a pixelated grid while describing the lens mass through
analytical functions does provide consistent results on simulated
data. This can be extrapolated to real data only if real lens galax-
ies are indeed described accurately by simple analytical func-
tions. However, if lens galaxies contain substantial complexity,
such as non-elliptical mass distributions and dark substructure
within the lens or along the line-of-sight, mass models must
incorporate more flexibility to account for potential deviations
from simple analytical distributions. Moreover, if the source
model has significantly more flexibility than the lens model,
part of mass complexity can be absorbed in the source recon-
struction, leading to biased lens model parameters (Vernardos &
Koopmans, in prep.).

6. Data in the era of ELTs

Current observing facilities, such as HST and ground-based
instruments with adaptive optics (e.g. VLT and Keck), allow us
to constrain many galaxy properties due to their high-resolution
imaging. Future thirty-meter-class telescopes will push image
quality even higher, and our modelling techniques must be robust
enough to accommodate such improved data. In this section, we
simulate strong lensing images from a thirty-meter-class tele-
scope and, similar to Sect. 5, we compare our sparse source
reconstruction technique to an analytical strategy.

6.1. Simulated E-ELT data

Data such as those to be obtained with the future 39 m European
Extremely Large Telescope (E-ELT) are an obvious target for
SLITronomy. The E-ELT will be equipped with, among other
instruments, the near-infrared Imaging Camera for Deep Obser-
vations (MICADO, Davies et al. 2016). It is designed to observe
at the diffraction limit, either in Single Conjugate Adaptive
Optics (SCAO) mode, or in Multi-conjugate Adaptive Optics
mode (MCAO) powered by the MAORY facility (Diolaiti 2010).
This instrument is representative of the future generation of
ultra-sharp imagers mounted on 30 m class telescopes.

In the following we use the same high-resolution source
galaxy as in Sect. 5.1.1 (top right panel of Fig. 4), and the same
lensing configuration (see Table A.2). We choose to render the
image in the H band of the MICADO imager, as it is the clos-
est to the WCF3/F160W band of HST. The pixel scale is 4 mas,
or twenty times smaller than the HST pixel size in the corre-
sponding filter. We use the Exposure Time Calculator for the E-
ELT imager to obtain typical settings for the MICADO/MAORY
instrument in the H band. We found that a single exposure of
1200 s corresponds to a typical setting for the type of object we
are interested in. After ray-tracing, the seeing is simulated by
convolving the image with the H-band MCAO PSF provided
by the MAORY consortium through the package SimCADO19

(Leschinski et al. 2016). Finally, a mix of Gaussian and Poisson
noise is added, consistently with the chosen setup. All simula-
tion settings are summarised in Table A.1. The lens and source
properties are identical to the HST simulation of Sect. 5.1, and
are summarised in Table A.2.

We show in Fig. 10 the simulated E-ELT strong lens system.
The final square cutout is 2000 × 2000 pixels, which is a chal-
lenging size for many of the modelling tools currently in use.
This is true not only in terms of computation time, but also in
19 https://github.com/astronomyk/SimCADO
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Fig. 10. Simulated E-ELT data. The lens light is assumed to be perfectly
subtracted. The seeing conditions and noise covariance are based on
simulated observations in the H-band of the MICADO/MOARY instru-
ment. The source galaxy is the same as the one in the top right panel of
Fig. 4.

terms of numerical pixel-level accuracy. One could reduce the
effective data size by extracting smaller cutouts from the origi-
nal image and modelling each of them individually along with
a joint mass model. However, modelling the entire system at
once is simpler, requires potentially less human interaction, and
is expected to give much more constraining power as every pixel
will contribute to the model. It also avoids the edge effects inher-
ent to some lens inversion codes.

6.2. Source reconstruction with E-ELT data

We follow Sect. 5 and apply the SLITronomy algorithm to our
simulated E-ELT data. We set the pixel scale of the source to
half that of the data pixel, that is rpix = 2, which differs from
the HST case. With E-ELT data, we find that the resolution is
already high enough that going to smaller scales only increases
the computation time considerably without improving the qual-
ity of the source reconstruction. This is due to the smaller data
pixel size combined with the E-ELT PSF that is much better sam-
pled than the HST PSF. We also exclude a large fraction of pixels
that contain no flux from the lensed source by defining a circu-
lar mask of 6.4 arcsec in diameter, centred on the deflector. This
is to avoid the large number of pixels that contain no flux from
biasing the reduced chi-squared metric by artificially driving it
to low values.

We show source reconstructions in Fig. 11. In the first row is
the starlet model. In the image plane the reconstruction is down
to the noise, although a few isolated pixels (not visible on the
plot) appear above 6σ level. The resolution and signal-to-noise
of the E-ELT data, coupled with the multi-resolution property of
our regularisation method, allows us to model the source galaxy
at high fidelity. We are able to recover most of the features at all
spatial scales simultaneously, which emphasises the advantage
of using a genuine multi-scale reconstruction technique. As a
result, small star-forming regions, larger-scale spiral arms and
bulges, and even larger-scale luminous halos are equally well
reconstructed.

Unlike with HST data, we expect an analytical model com-
posed of shapelet basis functions superimposed on a smooth Sér-
sic profile to show limitations in terms of source reconstruction,
because shapelets cannot capture a broad range of spatial scales
simultaneously. In the second row of Fig. 11 we show such
a reconstruction with a shapelets+Sérsic model obtained with

nmax = 20. Even with very high number of shapelet functions
(ntot = 231), the source cannot be modelled to the level allowed
by the imaging data, both in the image and source planes.

Because of the high number of pixels in the source models,
it can be difficult to visualise details. For this reason we show in
Fig. 12 a zoomed-in view of both reconstructions, along with
the ground truth. The two reconstructions differ considerably,
and we observe how the limited number of shapelet basis func-
tions affects the minimal and maximal scales that can be recov-
ered (which are fixed by the pair of parameters {nmax, β}). Star-
forming regions and smaller spiral arms cannot be modelled,
nor the larger-scale halo (despite the Sérsic profile included).
However, comparing the starlet reconstruction to the true source
shows the level of detail that can be recovered thanks to sparsity
and starlet constraints.

It is interesting to compare the computation time required
by both methods, in this particular setting. In order to limit the
number of calls to the loss function, we use the Nelder-Mead
simplex minimiser to optimise the analytical model (with maxi-
mum number of iterations fixed to 50). While PSO is more effi-
cient and better at finding the global minimum, it runs longer on
average20. By using the former, one therefore gets an approxi-
mate lower bound on the computation time. The SLITronomy
algorithm takes about 7 min to perform the reconstruction with
rpix = 2, whereas the analytical reconstruction requires about
2.8 h to optimise all shapelet basis functions and Sérsic param-
eters. As the number of shapelet functions in the basis scales
as O(n2

max), further increasing the maximal polynomial order
drastically increases computation time.

We have noticed that going to a higher number of analytical
basis functions – in combination to such a large number of data
pixels – implies to allocate and invert a very large matrix, that
caused memory issues. This limitation can be partially addressed
by performing the source reconstruction from a down-scaled ver-
sion of the original data. This trade-off between data resolu-
tion and number of basis functions in the model constitutes an
alternative choice to the standard shapelets+Sérsic model dis-
cussed above. We also note that for a large number of basis func-
tions, the computation time of the linear inversion step starts to
dominate over the optimisation of non-linear parameters, such
that in practice, suitable estimates of non-linear parameters are
required.

While analytical methods have so far been efficient and accu-
rate enough for many strong-lensing applications, they also have
limitations. Where galaxies (lens or source) display small-scale
and complex features, as can already be seen in current imag-
ing data and will become the standard with upcoming thirty-
meter-class telescopes, these techniques lack the flexibility to
provide accurate source reconstructions. Moreover, their need
for fine-tuning at the level of individual systems (in order to, for
example, accurately recover sub-components of the lens) means
increasingly more human time spent on modelling. Our model-
independent sparse reconstruction technique alleviates these
problems by being both highly flexible and efficient enough to
handle high-resolution and morphologically complex data.

7. Conclusion

In this work we have introduced a novel implementation of the
Sparse Linear Inversion Technique (SLIT) of J19, improved in

20 We note that in Lenstronomy, other non-linear (e.g. lens model)
are optimised jointly with shapelet parameters, so the computation time
does not scale linearly in such a case.
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Fig. 11. Source modelling of the simulated E-ELT data of Fig. 10. Top to bottom: sparse model with starlets (rpix = 2), analytical model with
shapelets (nmax = 20). Left to right: image model, image-normalised residuals and reduced chi-square, source model, source residuals and SDR.
The SDR is computed only in the region indicated by the grey box, to avoid pixels with no flux to bias its value (https://github.com/aymgal/
SLITronomy-papers/blob/master/paper_I/mock_source_reconstruction.ipynb).

starlets model
(de-lensed, unconvolved)

shapelets+Sersic model
(de-lensed, unconvolved)

true source

Fig. 12. Zoom of the source reconstructions shown in Fig. 11, from the modelling of simulated E-ELT data. From left to right: source reconstruction
with starlets (rpix = 2), source reconstruction with shapelets+Sérsic profile (nmax = 20), true source. We note that images are 2000 pixels on-a-side.
The colour scaling is the same across to the panels. All source reconstructions are shown at the supersampled resolution corresponding to the
chosen rpix (https://github.com/aymgal/SLITronomy-papers/blob/master/paper_I/mock_source_reconstruction.ipynb).

many aspects. Our SLITronomy plugin is fully compatible with
the modelling software Lenstronomy (Birrer & Amara 2018)
and adds efficient pixel-based reconstruction capabilities relying
on sparsity and wavelets to be used jointly with analytical tech-
niques. We demonstrated the quality of source reconstruction on
various cases using mock HST data, real strong lenses from the
SLACS sample, and simulated E-ELT imaging data.

We can summarise this paper as follows. Firstly, we use
starlets, a specific type of wavelets, to represent the surface
brightness of galaxies. Starlets are well suited to model complex
sources without any need to choose an arbitrary number of ana-
lytical profiles to be stacked at arbitrary positions. No human
intervention is required with wavelets, which is a genuine multi-
scale decomposition of the data. Secondly, the multi-scale prop-
erty of the starlet transform allows us to use smaller source pixels
without a large decrease in the quality of the source reconstruc-
tion. Sparse regularisation enforces the trade-off between the
reconstruction of high frequency signals in the source and noise
removal. Thirdly, for future high-resolution observations, like

those obtained with thirty-meter-class telescopes, pixel-based
methods may be the only viable option, as illustrated with sim-
ulated but realistic E-ELT data. Fourthly, pixel-based methods
may be limited by their higher computation time compared to
analytical methods, as long as the number of pixels used to rep-
resent the source remains modest, like with HST data. However,
with increasing numbers of pixels per resolution element, as is
the case with E-ELT data, the trend is in fact inverted, and pixel-
based methods such as SLITronomy become faster than ana-
lytical methods.

We see the present work as a first step towards building
a full wavelet-based strong lensing method where all the ele-
ments to be modelled are described with wavelets. The cur-
rent SLITronomy implementation allows us to optimise for the
deflector mass within the modelling software Lenstronomy,
jointly reconstructing the source using starlets. However, this
implementation is currently limited by the use of analytical lens
mass profiles, potentially lacking of flexibility to capture com-
plex mass distributions such as large scale twists in the mass
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profile. Sparsity, combined with wavelets, is a powerful tool to
reconstruct mass distributions in a model-independent way. It
has been applied successfully in the context of weak lensing. Our
future work in strong lensing will be focused on applying spar-
sity constraints for the deflector mass and light, hence leading to
similar levels of flexibility in the modelling of both the source
light and the lens mass and light. In doing so, it will be cru-
cial to link the lens mass reconstruction to its kinematics, as the
latter plays a vital role in alleviating the degeneracies inherent
to the lensing data alone. Consequently, a full sparse modelling
tool should also support the description of 2D or even 3D stellar
kinematics in any complex potential well.

Acknowledgements. AG would like to thank the referee for their comments
and suggestions that improved the content of the paper. AG warmly thanks
S. Birrer for useful feedback related to the integration of SLITronomy into
the Lenstronomy interface, and feedback and ideas on the paper. AG thanks
G. Vernardos and M. Millon for insightful discussions. AG thanks X. Ding
for providing the pre-processed HST images used for simulated source galax-
ies (used in Ding et al. 2020). AG thanks A.J. Shajib for providing the lens
models for SLACS lenses (see Shajib et al. 2020b). This programme is sup-
ported by the Swiss National Science Foundation (SNSF) and by the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (COSMICLENS: grant agreement No 787886). This
research made use of Lenstronomy (Birrer et al. 2015; Birrer & Amara 2018),
SciPy (Virtanen et al. 2020), NumPy (Oliphant 2006; Van Der Walt et al. 2011),
Matplotlib (Hunter 2007), scikit-image (van der Walt et al. 2014), Astropy
(Astropy Collaboration 2013, 2018) and Jupyter (Kluyver et al. 2016).

References
Alsing, J., Charnock, T., Feeney, S., & Wand elt, B. 2019, MNRAS, 488, 4440
Amara, A., Metcalf, R. B., Cox, T. J., & Ostriker, J. P. 2006, MNRAS, 367,

1367
Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123
Auger, M. W., Treu, T., Bolton, A. S., et al. 2010, ApJ, 724, 511
Auger, M. W., Treu, T., Brewer, B. J., & Marshall, P. J. 2011, MNRAS, 411, L6
Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583
Bhattacharya, S., Habib, S., Heitmann, K., & Vikhlinin, A. 2013, ApJ, 766, 32
Birrer, S., & Amara, A. 2018, Phys. Dark Univ., 22, 189
Birrer, S., Amara, A., & Refregier, A. 2015, ApJ, 813, 102
Birrer, S., Amara, A., & Refregier, A. 2017, J. Cosmol. Astropart. Phys., 2017,

037
Birrer, S., Treu, T., Rusu, C. E., et al. 2019, MNRAS, 484, 4726
Birrer, S., Shajib, A. J., Galan, A., et al. 2020, A&A, 643, A165
Blum, K., Castorina, E., & Simonović, M. 2020, ApJ, 892, L27
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Appendix A: Properties of simulated HST and
E-ELT data

Table A.1. Instrumental and observational settings used for HST
and E-ELT simulated data (https://github.com/aymgal/
SLITronomy-papers/blob/master/paper_I/fixed_param.py).

HST E-ELT

Instrument/filter WCF3/F160W MICADO/H-band
Pixel size [mas] 80 4
Single-exposure time [s] 500 1200
Number of exposures 4 1
Zero-point [mag] 27 34
Sky brightness [mag arcsec−2] / 25
Read noise [e−] / 3
CCD gain [e−/ADU] 2.5 1
Background noise [e−] 0.05 /

PSF kernel (simulated) TinyTim SimCADO

Table A.2. Model choices and parameters used for both HST and E-ELT
mock data simulations.

Deflector, zd = 0.3

Singular isothermal ellipsoid (SIE)
Velocity dispersion, σv 260 km s−1

Ellipticity, qm 0.8
Orientation, φm 0
Position, (RA = x0, Dec = y0) [arcsec] (0, 0)
External shear
Strength, γext 0.03
Orientation, φext π/4
Source, zs = 1.2
Source 1: NGC 3982
Position, (RA, Dec) [arcsec] (0.05, 0.05)
Magnitude 22
Source 2: ESO498G5
Position, (RA, Dec) [arcsec] (−0.8, −0.6)
Magnitude 22
Source 3: NGC 3259
Position, (RA, Dec) [arcsec] (0.3, 0.8)
Magnitude 23

Notes. The coordinates are oriented such as north is up and east
is right. The orientation is zero when aligned with the horizontal
axis and increases anti-clockwise. Images of the source galaxies were
obtained from the HST archival database. “Source 1” is the main source
component in all simulations in this paper, whereas “Source 2” and
“Source 3” are only used as member of the simulated galaxy group
of Fig. 6 (https://github.com/aymgal/SLITronomy-papers/
blob/master/paper_I/fixed_param.py).

In this section we summarise all fixed parameters that define the
simulations used for source reconstructions in Sects. 5 and 6.
They can be separated into two categories. Instrumental settings
that control the resolution, seeing and signal-to-noise of the data
are shown in Table A.1. Model parameters including redshifts,
mass distributions of the deflector and positions of the source
galaxy(-ies) are specified in Table A.2.

HST instrumental settings are inspired by typical near-
infrared imaging data required for time delay cosmography after
drizzling. E-ELT data settings are inspired by Meng et al. (2015,
although for the Thirty Meter Telescope) and Deep et al. (2011,

limiting magnitudes), and the E-ELT Exposure Time Calcula-
tor21.

Lens model parameters were picked to be fairly representa-
tive of an average strong lens system. The mass distribution is
described by the singular isothermal ellipsoid (SIE), sustained
in a moderate external shear field, and slightly misaligned with
the SIE orientation.

We use the SimulationAPI module of Lenstronomy to
generate realistic imaging data based on instrumental and model
parameters above.

Appendix B: Hybrid approach for automated
modelling

In Sect. 5.1.3 we compare source reconstructions obtained with
starlet and shapelet models on simulated HST data. For a com-
plex source, the flexibility of a pixel-based approach outper-
formed the default analytical profile. However, analytical mod-
elling has the advantage of being faster, and thus is better suited
to batch automated modelling. Furthermore, for lower resolu-
tion large datasets like future surveys will deliver, the quality of
analytical source reconstructions is often sufficient for reliable
population-level lens model optimisation.

For these reasons, we propose a workflow using both pixel-
based and analytical methods to refine in an automated man-
ner an initially poor source model. Figure 7 illustrates the deci-
sion flow. Here we give a description of each step, assuming an
approximation of the lens model has been previously obtained,
for example through optimisation with a simple source profile:
1. if current model residuals display features that are likely

to come from the limiting source profile (e.g. after visual
inspection or chi-square) we perform a pixel-based source
reconstruction using sparse modelling;

2. the reconstructed map of source surface brightness is
smoothed using a Laplacian-of-Gaussian filter, to enhance
individual source sub-components. A local maxima detec-
tion algorithm is applied on the fltered map to find the loca-
tion of each sub-component;

3. an analytical model is initialised as one joint
shapelets+Sérsic pair centred on each sub-component i.
Shapelet maximal orders are set to a low nmax, i = 2;

4. the source is re-optimised, and the quality of image plane
residuals at the location of each lensed sub-component are
used to iteratively refine the maximal order of each shapelet
basis independently;

5. once localised residuals are below a given threshold, a final
full optimisation (mass+source) can be performed.

The step refining individual shapelet polynomial orders requires
establishing a suitable update rule to allow a smooth increase in
model complexity without introducing too many degrees of free-
dom that may not be supported by the data. We found quite suc-
cessful the following update rule: given a reduced χ2

ν, i based on
residuals restricted to the location of the lensed sub-component
i, the shapelet order is updated according to

nnew
max, i =

 nold
max, i + max

(
1, 10 ×

⌊
χ2
ν, i − 1.1

⌋)
if χ2

ν, i > 1.1,
nold

max, i if χ2
ν, i ≤ 1.1.

(B.1)

21 http://www.eso.org/observing/etc/bin/gen/form?INS.
NAME=ELT+INS.MODE=swimaging
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Additionally, we set an overall maximal value of nmax = 14 to
prevent the procedure above from leading to an intractable num-
ber of basis functions.

We see the procedure described in Fig. 7 as a potential com-
ponent of a larger pipeline for automatised modelling of strong
lens systems. Various pipelines are currently in development
based on recent works like the uniform modelling strategies pro-
posed in Shajib et al. (2019, 2020b), the automatic differentiable
pipeline of Chianese et al. (2020), and workflows developed by
the teams that took part in the Time Delay Lens Modelling Chal-
lenge (Ding et al. 2020).

Appendix C: Threshold refinement for sparsity
constraint

As shown in Eq. (8) we enforce sparsity on reconstructed surface
brightness maps by minimising their `1 norm in starlet space.
Sparsity can also be enforced through the `0 norm instead, but
it is not convex like the `1 norm and tends to produce in prac-
tice more artefacts in the presence of noise. However, enforcing
minimal `1 norm in the presence of noise has a greater depen-
dence on the amplitude of each pixel, which can potentially bias
the reconstruction. We employ a similar solution as proposed
by Candes et al. (2007) by iteratively correcting for this bias
through additional “reweighting” steps. Once the solution of the
original unweighted problem has been found (W0

x = 1), the min-
imisation is performed a second time with threshold per pixel per
starlet scale updated according to the following rule, for a given
iteration n

Wn
x =


1 if n = 0 ,

1
1 + exp

[
10 ×

(
Φ>xn−1 − λ

)] if n > 0 , (C.1)

where xn−1 stands either for the source or lens light at the pre-
vious iteration, and λ is the regularisation strength in units of
noise per pixel in starlet space, λ ≡ λ′σΦ, after proper propaga-
tion through appropriate operators of Eq. (6). In practice, a single
additional optimisation loop with the weights updated according
to the above equation already improve the source reconstruc-
tion significantly, as better residuals and lower chi-squared are
obtained. Analogous to J19, we found that the update rule of
Eq. (C.1) is suitable for our lens modelling application. The spe-
cific form of the reweighting scheme is not unique, however it
has to decrease the effective threshold for specific starlet coeffi-
cients that are significant enough, from previous iterations, rela-
tive to the noise.

Appendix D: Artefacts in source model of
SDSS J0959−0410

In Sect. 8, we briefly discuss reasons for the artefacts visible in
the SDSS J0959−0410 source reconstruction with starlets. These
artefacts are in part due to the pixelated approximation inherent
to pixel-based modelling techniques, but mostly due to the com-
plexity of the system and the difficulty of correctly modelling
both the source and lens light distributions. To illustrate this,
we create a realistic mock of the system SDSS J0959−0410 by
simulating lensed arcs based on our starlets source reconstruc-
tion, after downsampling it to the data resolution for removing
the artefacts. We take the same PSF, exposure time, and back-
ground noise levels as in the real data. By construction, this also
ensures no contamination by the lens light. We then perform a

mock
SDSSJ0959+0410

starlet model
with mask

starlet model
without mask

10 2

10 1

flu
x

Fig. D.1. Origin of the artefacts seen in the starlet model of
the SLACS system SDSS J0959−0410. Left: mock imaging data,
with mask region covering the real lens light indicated in red.
Middle: starlet reconstruction obtained with a mask on the cen-
tral region (same as in Fig. 8), where artefacts from inaccurate
lens light modelling are clearly visible. Right: starlet reconstruc-
tion without masking the central region, which suppresses the arte-
facts (https://github.com/aymgal/SLITronomy-papers/blob/
master/paper_I/SLACS_source_reconstruction.ipynb).

starlet reconstruction from the mock, with and without the cen-
tral region at the location of the lens. We show both reconstruc-
tions side by side in Fig. D.1. We observe no artefacts in the
reconstruction when not masking the central region, which con-
firms that these artefacts are primarily due to limitations of the
analytical lens light modelling, followed by an inaccurate mask-
ing of the residual light.

Appendix E: Effect of the number of starlet scales

6

8

10

12

14

SD
R

rpix = 2 3 4

3 4 5 6 7 8
starlet scales, Js

0.90

0.95

1.00

1.05

1.10

2

Fig. E.1. Effect of the choice of starlet decomposition scales, Js, on the
modelling quality, assessed by the two metrics introduced in Sect. 5.1.2
The value Js = 6 chosen throughout this work is indicated by the
grey circle (https://github.com/aymgal/SLITronomy-papers/
blob/master/paper_I/mock_source_reconstruction.ipynb).

In the implementation of our source reconstruction algorithm,
which represents the surface brightness on a pixelated grid, we
are subject to the choice of the source pixel size. In this work we
introduce rpix as the ratio between image and source pixel sizes.
It is known that the choice of rpix can impact the accuracy of lens
model parameters (see Sect. 5.3). Here we assume a lens model
that has been estimated accurately enough, for instance, using
the scheme shown on Fig. 7.

The additional parameter specifically introduced by the star-
let transform is the number of decomposition scales Js and Jg for
source and lens light, respectively. We show in Fig. E.1 image
plane (χ2

ν) and source plane (SDR) metrics to assess the mod-
elling quality for different Js values. We take the source recon-
struction of the single-component simulated HST data (top row
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of Fig. 4) as a test case. The number of decomposition scales
has a small impact on the quality of the reconstruction, and we
choose Js = 6 for reconstructions performed in this work. The
number of decomposition scales can also simply be set to its
maximal value, defined by the size of the region being regu-
larised. For instance, if the source plane is defined on a grid of
npix pixels on a side, the maximum number of scales allowed by
the wavelet transform is Js,max = blog2 npixc.

The choice of number of decomposition scale also affects
the computation time considerably, as we show in Appendix F
below.

Appendix F: SLITronomy benchmarks

In the current implementation of SLITronomy, lens model
parameters can be optimised through different engines supported
by Lenstronomy. This requires solving the sparse reconstruc-
tion problem for a given set of lens model parameters, computing
the likelihood based on comparing the model with the imaging
data, finally proposing a new set of lens model parameters, and
so on. The total computation time required to find the best-fit
lens model obviously depends heavily on the amount time nec-
essary to solve Eq. (6), as it will be solved at each iteration. To
have a rough approximation of the computation time necessary
to solve the sparse source reconstruction (s in Eq. (6)), we give in
Fig. F.1 computation times for various settings of the algorithm
and data sizes.

When not explicitly mentioned in the panels, the baseline
choice is similar to our HST reconstructions in Sect. 5: the sim-
ulated image is 100 × 100 pixels, with an image to source reso-
lution rpix = 3 and starlet scales Js = 6.

In the top row we show timings for a subset of steps required
for our algorithm to start, hence they are computed only once
for a given lens model. They are shown in units of milliseconds.
The top left panel shows the computation of the noise per pixel,
propagated from image to source plane, including PSF effects
and transformed in starlet space. This allows for a proper set-
ting of the regularisation strength (see Sect. 3 for details). The
top central and right panels show the computation of the lensing
operator F for various numbers of image pixels and their corre-
sponding number of source pixels through the choice of rpix.

In the bottom row we consider the total time required to
optimise the source light given a lens model. The first panel
shows the runtime as a function of the number of source pix-
els, which can be automatically set to a minimal value when,
for instance, using a mask in the image plane (e.g. in Fig. 11).
The masked region, once mapped back to source plane, defines
a much smaller angular region on which the pixelated source
light is defined, hence reducing the computation time con-
siderably for both the lensing operator and subsequent map-
ping operations. The two following panels show the influence
of the resolution factor rpix, the number of image pixels, and
the number of decomposition scales Js on the computation
time.
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Fig. F.1. Runtimes for various settings of the sparse source solver of SLITronomy. Top left: propagation of the noise to transformed starlet space,
for different source to image resolution rpix. Top centre: computation of the lensing operator F for different rpix. Top right: computation of F for
total number of data pixels. Bottom left: optimisation of the source light s for different choices of the minimum allowed total number of source
pixels. Bottom centre: optimisation of s for different rpix and number of source starlet scales Js. Bottom right: optimisation of s for varying total
number of data pixels. We refer to the text for more details (https://github.com/aymgal/SLITronomy-papers/blob/master/paper_I/
benchmarks.ipynb).
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