Influence of French Cued Speech on consonant production in children with cochlear implants: an ultrasound study
Laura Machart, Anne Vilain, Hélène Loevenbruck, Lucie Ménard

To cite this version:
Laura Machart, Anne Vilain, Hélène Loevenbruck, Lucie Ménard. Influence of French Cued Speech on consonant production in children with cochlear implants: an ultrasound study. ISSP 2020 - 12th International Seminar on Speech Production, Haskins Laboratories, Dec 2020, Providence (virtual), United States. hal-03098745

HAL Id: hal-03098745
https://hal.science/hal-03098745
Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of French Cued Speech on consonant production in children with cochlear implants: an ultrasound study

Laura Machart1,2, Anne Vilain2, Hélène Lœvenbruck1, Lucie Ménard3

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
2Univ. Grenoble Alpes, Grenoble INP, CNRS, GIPSA-lab, 38000 Grenoble, France
3Laboratoire de Phonétique, UQAM, Montréal, Canada

Although cochlear implant improves deaf children’s speech intelligibility (Turgeon et al., 2017; Grandon et al., to be published), the auditory information it provides remains degraded (Colin et al., 2017) and the perception of some acoustic features can be altered (Bouton et al., 2015). These auditory limitations may impact oral language development and lead to persistent language disorders (Geers et al., 2015). Some acoustic studies have highlighted specific impairments in the speech production of CI children (Grandon, 2016; Reidy et al., 2016). Only a few studies have investigated how CI children use their articulators to produce speech (Turgeon et al., 2017). To compensate for the degraded acoustic input some people choose to use Cued French (CF) which supplements the auditory information with a manual cue (Hage & Leybaert, 2006). CF has been shown to improve auditory sentence processing in children with hearing aids (Périer et al., 1990, Leybaert et al., 2010) and to help children build more stable phonological representations (Charlier & Leybaert, 2000). Using CF enhances speech perception even in CI children (Hage & Leybaert, 2006; Leybaert et al., 2010) and in a noisy environment (Bayard et al., 2019). It has also been suggested that CF could improve sentence production (Hage & Leybaert, 2006).

The aim of the present study is to examine the influence of CF on articulatory precision in CI children. Ultrasound imaging of the sagittal profile of the tongue provides objective information on the degree of articulatory precision. As part of an ongoing project on speech development in French, we have collected speech data on 85 normal hearing children (NH) and 17 CI children (Machart et al., 2019). Based on preliminary data analysis, in the present ultrasound study we chose to focus on the 6 consonants /t/, /k/, /s/, /ʃ/, /n/, /ɲ/, which are frequently substituted by CI children, independently of voicing substitutions (Fig.1), and which can be distinguished by the horizontal and vertical position of the tongue. The lingual movements are recorded during the production of simple words (Picture-Naming task) each including one of the targeted consonants followed by vowel /a/. Stimuli have been chosen for their frequency and imageability: tapis /tapi/ carpet, carotte /kaʁɔt/ carrot, sapin /sapɛ̃/ fir tree, chapeau /ʃapo/ hat, narine /naʁin/ nostril, orignal /oʁiɲal/ moose. Three groups of children are examined: 10 typical NH children (NH), 9 CI children with a strictly oral education (CI) and 9 CI children who benefit from a CF education (Clcf). A secondary aim of the study is to test the impact of simultaneous speech and CF production on articulatory accuracy. The Clcf group is therefore split in two subgroups: children who are not able to use CF in production (group 1: 5 children) and children who can use CF when they speak (group 2: 4 children). Clcf children group 2 are asked to utter the words and cue simultaneously (US_CF condition). Acoustic data are transcribed using PRAAT (Boersma & Weenink) and ultrasound data are analyzed using SLURP (Laporte & Ménard, 2018). The tongue position index will be the location of the highest point of the tongue on the y axis (Ménard et al., 2013). The curvature index will be measured following the methods described in Dawson et al. (2015).

The hypotheses are that CI children have a better representation of speech sounds when they benefit from CF, which results in more precise articulation and lingual configurations comparable to those of children with typical development. (H1) We anticipate that Clcf children produce these contrasts more typically and more stably than CI children. More specifically, we expect accuracy scores, acoustic and articulatory parameters to be closer to the NH group in Clcf children than in CI children. (H2) Moreover, we think that using CF during production might improve articulatory control: using the hand will help in positioning the articulators resulting in higher accuracy scores, more typical acoustic parameters, and more typical lingual configurations.
REFERENCES


