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Abstract

A plane electromagnetic (em) wave, amplitude- and frequency-modulated as a

linear chirp, is incident on a dielectric sphere that hosts an eccentric, spherical,

pec (perfect electric conductor) inclusion. This radiation problem is solved in

the frequency domain by use of symmetry-dependent, spherical eigenvectors,

the end-result being a set of linear equations for the wave amplitudes of the fre-

quency spectrum of the electric field in every part of space. That set is solved by

truncation and matrix-inversion, separately for even- and odd-symmetry wave

amplitudes. The backscattered chirp is found by an inverse Fourier transform

that yields the time-dependent, monostatic, radar cross section (mrcs). A nu-

merical application manifests the possibility to detect a pec sphere concealed

in an acrylic sphere by use of a wide-band chirp that targets a morphology-

dependent resonance (mdr) of the composite body. Our theory and code are

validated by use of a commercial software.
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1. Introduction

Scattering of a modulated, plane, em wave by a non-spherical body is a ra-

diation problem that finds several important applications. Among them, of

current interest are: (a) non-destructive tests aimed at the detection of fabrica-

tion imperfections (e.g., cavities in artificial objects), (b) standoff detection of5

concealed items by microwaves (e.g., in security checkpoints), (c) non-invasive

diagnoses of anomalies in the human body (e.g., tumors, gallstones etc.), and

(d) real-time analysis of human breath gases by use of laser pulses.

“Non-spherical” [1] is a body that lacks spherical symmetry even though it

is defined by several spherical interfaces (e.g., an eccentrically layered sphere, an10

aggregate of spheres, and combinations thereof). Lorenz-Mie [2, 3, 4, 5] solutions

to scattering by non-spherical bodies have been formulated in the asymptotic

case of continuous-wave (cw) – i.e., time-harmonic – excitation by use of the

T-matrix method [6, 7, 8, 9, 10], IMM (indirect mode-matching) equations [11,

12, 13, 14, 15], and dyadic Green’s functions [16, 17, 18]. Numerical solutions15

are available [19], too, but they are beyond the interest of this paper.

Amplitude modulation of the incident wave has been considered by a few

researchers [20, 21, 22, 23] and by the first author in a previous paper [24]. The

latter dealt with a dielectric sphere containing an eccentric spherical cavity. De-

veloping that theory, we consider in this paper double modulation – amplitude20

and phase – of the incident wave in search of wide-band coupling to a non-

spherical body. We study a dielectric sphere with an eccentric, spherical, pec

inclusion exposed to a linear chirp having bandwidth-to-carrier ratio in excess

of 25%. Our frequency-domain analysis results in the frequency spectrum of

the backscattered electric field. The latter is subsequently used to determine25

the backscattered chirp that is associated with the time-dependent mrcs [25].

The envelope of the backscattered chirp is shown to carry wide-band informa-

tion about the scatterer, which can be used to reveal the presence of a metallic

inclusion in the host sphere.

2



2. Geometry and excitation30

The geometry (Fig. 1) is quite simple: a non-magnetic, dielectric sphere in free

space (region 0, wave-number k0 = ω
√
ǫ0µ0 ) accommodates a pec sphere.

The host (region 2, wave-number k2 = n2k0, radius a2) is centred at O. The

refractive index n2 may be a complex number to account for eventual losses

in the host. The inclusion (region 1, radius a1 < a2) is centred at O1. The35

coordinates of O1 in (O, rθφ) are r = d1 = |d1| , θ = Θ1, φ = Φ1. The inclusion

may be anywhere within the host. Hence, d1+a1 ≤ a2 or d1 ≤ d1,max = a2−a1.

A field point may be defined by reference to the system of spherical coordinates

(O; rθφ) or (O1; r1θ1φ1), attached severally to the host sphere or the inclusion.

The position vectors r and r1 are linked through r = d1 + r1.40

x

y

z

d
1

r

r
1

S
1

S
2

O
1

O

Φ
1

Θ
1

φ

θ

θ
1

φ
1

α
1

α
2

E
inc

H
inc

0

1
2

Figure 1: Non-spherical body: a number is assigned to each part of space: 0 (free-space), 1

(spherical pec inclusion), and 2 (dielectric host sphere).

Excitation is provided by a plane, em wave that is propagated in the direction

ẑ and polarised in the direction x̂ (the unit vectors along x, y, z are x̂, ŷ, ẑ). The

electric-field vector of the incident wave is Einc (r, t) = E(τ) exp {jωcτ} x̂ =

A(τ) exp {j [ωcτ +Ω(τ)]} x̂. The space-time variable τ = t − ẑ · r/c0 involves

the position vector r of a field point and the phase velocity c0 = 1√
ǫ0µ0

of em45
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waves in the unbounded free space around the scatterer.

Amplitude and phase modulations are defined by A(τ) = Π
(

τ−T/2
T

)

and

Ω(τ) = πB
T

(

τ − T
2

)2
. As Π

(

x−x0

X

)

= 1 or 0 for |x− x0| ≤ or > X/2, respec-

tively, E(τ) = A(τ) exp {jΩ(τ)} defines a unit-amplitude, baseband, linear chirp

that modulates the carrier wave (frequency fc). The instantaneous frequency50

f(τ) = 1
2π

d
dτ [ωcτ +Ω(τ)] = fc +

B
T

(

τ − T
2

)

varies linearly from fc − B/2 to

fc+B/2 over the time range [0, T ]. It may be useful to note that k0 = ω
c0

= 2πf
c0

involves the instantaneous frequency.

The spectrum of E (τ) is formulated by use of the Fresnel integrals C(v) =
∫ v

0
cos

(

π
2 τ

2
)

dτ , S(v) =
∫ v

0
sin

(

π
2 τ

2
)

dτ [26] as follows:55

E (f) =
T

√

2(BT )
[C(v1) + C(v2) + jS(v1)

+jS(v2)] exp

{

−jπ(BT )
f

B

(

1 +
f

B

)}

, (1)

where v1 =
√

BT
2

(

1− 2 f
B

)

, v2 =
√

BT
2

(

1 + 2 f
B

)

. The time-bandwidth prod-

uct BT is the cardinal feature of the chirp spectrum.

3. Frequency-domain analytical formulation

Pulsed excitation calls for Fourier-transform pairs x (t)↔ x (ω), linked through

the well-known equations x (ω) =
∫∞
−∞ x (t) exp {−jωt}dt and x (t) = 1

2π

∫∞
−∞60

x (ω) exp {jωt}dω. Thus, an em wave in region 0 is represented either by the

electric-field vector E0(r, t), which solves the homogeneous wave equation (∇2−
c−2
0 ∂2/∂t2)E0(r, t) = 0 [27], or by the frequency spectrum thereof E0(r, ω) =
∫∞
−∞E0(r, t) exp {−jωt}dt, which solves the homogeneous Helmholtz equation

(

∇2 + k20
)

E0(r, ω) = 0.65

Evidently, the very same steps that lead to the well-known time-domain

extended-Mie solution of this radiation problem with time-harmonic excitation

can lead to a frequency-domain solution in the case of pulsed excitation. The

frequency spectrum of the electric field can be formulated as a series of spherical
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eigenvectors M
(ι)
mn,s(kr) and N

(ι)
mn,s(kr) [28]. The symmetry index s is assigned70

the names e (even) or o (odd), the angular-momentum index n is assigned the

integers 1, 2, . . ., and the azimuthal quantum number m is assigned the integers

0, 1, . . . , n, if s = e, or 1, 2, . . . , n, if s = o. Even-symmetry spherical eigenvectors

M
(ι)
mn,e(kr), N

(ι)
mn,e(kr) are defined as follows:

M(ι)
mn,e(kr) = −θ̂z(ι)n (kr)τ (1)mn (θ)m sin(mφ)− φ̂z(ι)n (kr)τ (2)mn (θ) cos(mφ),

N(ι)
mn,e(kr) = r̂

n(n+ 1)

kr
z(ι)n (kr)Pm

n (cosθ)cos(mφ)

+θ̂η(ι)n (kr)τ (2)mn (θ) cos(mφ)− φ̂η(ι)n (kr)τ (1)mn (θ)m sin(mφ),

(2)

r̂, θ̂, φ̂ being unit vectors for r, θ, φ. Depending on the superscript ι, which is75

assigned the integers 1 or 2, the radial function z
(ι)
n (x) is either the spher-

ical Bessel function of the 1st kind jn(x) or the spherical Hankel function

of the 2nd kind h
(2)
n (x) [26]; η

(ι)
n (x) = 1

x
d
dx

[

xz
(ι)
n (x)

]

is the Riccati function

that corresponds to z
(ι)
n (x); Pm

n (cosθ) is an associated Legendre function of the

1st kind and τ
(1)
mn (θ) = 1

sin θP
m
n (cos θ), τ

(2)
mn (θ) = d

dθP
m
n (cos θ) are generalised80

Legendre functions [26, 29]. Odd-symmetry spherical eigenvectors M
(ι)
mn,o(kr),

N
(ι)
mn,o(kr) may be obtained from (2) by substitution of sin(mφ), cos(mφ) by

− cos(mφ), sin(mφ), respectively. The ensuing formulation can be made most

concise by use of the notation F
(ι)
α,mn,s (kr) for the spherical eigenvectors, thereby

introducing the type index α = {M,N}. Thus, F(ι)
M,mn,s = M

(ι)
mn,s and F

(ι)
N,mn,s =85

N
(ι)
mn,s.

The spectrum of the incident electric field is formulated as follows [30]:

Einc(r, ω) = −E(ω−ωc)
∑

s,nm,α

(δαMδso+jδαNδse)δm1cnF
(1)
α,mn,s(k0r), (3)

where cn = (−j)n 2n+1
n(n+1) and E(ω − ωc) is the (angular frequency) spectrum of

E(τ) shifted by the carrier (angular) frequency ωc = 2πfc. The Kronecker delta

– defined as δxy = 1, 0 severally for x = y, x 6= y – is used in (3) and extensively90
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throughout the ensuing analysis for conciseness. The spectrum of the scattered

electric field and that of the internal electric field, may be formulated likewise:

Esca(r,ω) = E(ω − ωc)
∑

s,nm,α

Aα,mn,sF
(2)
α,mn,s(k0r),

E2(r1, ω)=E(ω−ωc)
∑

s,nm,α

[

Bα,mn,sF
(1)
α,mn,s(k2r1)+Cα,mn,sF

(2)
α,mn,s(k2r1)

]

.(4)

The overall spectrum of the external electric field is E0(r,ω) = Einc(r,ω) +

Esca(r,ω). Both Einc(r,ω) and Esca(r,ω) are expressed in (O, rθφ). The incident

field is regular at the origin and the scattered field is regular at infinity. Region95

2 is confined by the spherical surfaces S1 and S2. The internal field consists of

two parts, both expressed in (O1, r1θ1φ1). Thus, the internal field is finite even

at O, which may be exposed if d1 > a1.

The wave amplitudes Aα,mn,s, Bα,mn,s, and Cα,mn,s are determined by en-

forcement of the boundary conditions on S1 and S2. This is done non-locally100

by use of the IMM equations [11, 14, 16]:

∮

S2

[E0 ×∇×Q−Q×∇×E0]·r̂ds2 =

∮

S2

[E2 ×∇×Q−Q×∇×E2]·r̂ds2,
∮

S1

Q×E2 · r̂1ds1 = 0. (5)

The auxiliary functionQmay be replaced by a spherical eigenvector F
(ι)
γ,µν,σ(k2r)

or F
(ι)
γ,µν,σ(k2r1), where γ ∈ {M,N}, ν ∈ [1,∞), µ ∈ [0, ν], and σ ∈ {e, o}.
The first of (5) results from the continuity of the tangential components of

electric and magnetic fields across S2. However, in order to apply the boundary105

condition on S2 we must reformulate E2(r, ω) so that only spherical eigenvectors

that are natural on S2 are used. This is done by use of the translational addition

theorem of spherical eigenvectors [31, 32, 33, 34], as formulated for the aforesaid

use [24]:

F(ι)
α,mn,s (k2r1) =

∑

s′,n′m′,α′

Wα,mn,s
α′,m′n′,s′ (−k2d1)F

(ι)
α′,m′n′,s′ (k2r) . (6)
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The coupling coefficients are concisely defined as follows:110

Wα,mn,s
α′,m′n′,s′ =

[

δse

(

δα′αÂmn
m′n′,1+δα′βB̂mn

m′n′,1

)

+δso
(

δα′αǍmn
m′n′,1+δα′βB̌mn

m′n′,1

)

]

(δs′e + jδs′o) (7)

in terms of Âmn
m′n′,1, B̂mn

m′n′,1 and Ǎmn
m′n′,1, B̌mn

m′n′,1, introduced in [24]. The primed

indices α′,m′, n′, s′ are assigned severally the same values/names as α,m, n, s.

The index β ∈ {M,N} is the opposite of α (e.g., if α = M, then β = N).

Thus, the spectrum of the internal electric field is formulated by use of spherical

eigenvectors defined in (O, rθφ):115

E2(r, ω)=E(ω − ωc)
∑

s,nm,α

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s (−k2d1)

[

Bα′,m′n′,s′F
(1)
α,mn,s(k2r)+Cα′,m′n′,s′F

(2)
α,mn,s (k2r)

]

. (8)

Setting Q = F
(ι)
γ,µν,σ(k2r) and by use of the formula:

∮

S

F(ι)
α,mn,s (kr)× F

(ι′)
α′,m′n′,s′ (k

′r) · r̂ds =

πa2(−1)δαNz(ι)α,n(ka)z
(ι′)
β,n(k

′a)
2n(n+ 1)

2n+ 1

(n+m)!

(n−m)!

δss′δnn′

[

δmm′ + (−1)δsoδm0

]

δβα′ , (9)

where z
(ι)
M,n(x) = z

(ι)
n (x) and z

(ι)
N,n(x) = η

(ι)
n (x), we arrive after some algebra at

the first IMM equation:

− (δαMδso + jδαNδse) δm1cnU
(1,ι)
α,n (k0, k2, a2)

+Aα,mn,sU
(2,ι)
α,n (k0, k2, a2)−

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s (−k2d1)

[

Bα′,m′n′,s′U
(1,ι)
α,n (k2, k2, a2) + Cα′,m′n′,s′U

(2,ι)
α,n (k2, k2, a2)

]

= 0.

(10)

The abbreviation U
(ι,ι′)
α,n (k, k′, a) is defined below:
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U
(ι,ι′)
M,n (k, k′, a) =

2n(n+ 1)

2n+ 1

[

k′z(ι)M,n(ka)z
(ι′)
N,n(k

′a)− kz
(ι)
N,n(ka)z

(ι′)
M,n(k

′a)
]

,

U
(ι,ι′)
N,n (k, k′, a) =

2n(n+ 1)

2n+ 1

[

kz
(ι)
M,n(ka)z

(ι′)
N,n(k

′a)− k′z(ι)N,n(ka)z
(ι′)
M,n(k

′a)
]

.

(11)

It may easily be verified that U
(ι,ι′)
M,n (k, k, a) = U

(ι,ι′)
N,n (k, k, a), U

(ι,ι′)
α,n (k, k′, a) =120

−U (ι′,ι)
α,n (k′, k, a), and therefore U

(ι,ι)
α,n (k, k, a) = 0.

The second of (5) results from the condition r̂1 × E2 = 0, which must be

imposed anywhere on S1. Hence, Q · [r̂1 ×E2] = 0 ⇒ [Q×E2] · r̂1 = 0 ⇒
∮

S1
Q × E2 · r̂1ds1 = 0. If Q = F

(ι)
γ,µν,σ(k2r1), we may apply (9) to arrive

at the second IMM equation, which is a simple relationship between the wave125

amplitudes Bα,mn,s, Cα,mn,s:

Bα,mn,s = −z
(2)
α,n(k2a1)

z
(1)
α,n(k2a1)

Cα,mn,s. (12)

The latter, if used in (10), yields:

− (δαMδso + jδαNδse) δm1cnU
(1,ι)
α,n (k0, k2, a2)

+Aα,mn,sU
(2,ι)
α,n (k0, k2, a2)−

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s (−k2d1)

Cα′,m′n′,s′

[

U (2,ι)
α,n (k2, k2, a2)−

z
(2)
α′,n′(k2a1)

z
(1)
α′,n′(k2a1)

U (1,ι)
α,n (k2, k2, a2)

]

= 0 (13)

and, by setting ι = 1 therein, we find Aα,mn,s in terms of Cα,mn,s:

Aα,mn,s = (δαMδso + jδαNδse) δm1cn
U

(1,1)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

+
U

(2,1)
α,n (k2, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s (−k2d1)Cα′,m′n′,s′ . (14)

Hence, Aα,mn,s can be eliminated from (13), thus arriving at a linear equation

for Cα,mn,s:130
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∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s (−k2d1)

[

U
(2,1)
α,n (k2, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

+
z
(2)
α′,n′(k2a1)

z
(1)
α′,n′(k2a1)

U
(1,2)
α,n (k2, k2, a2)

U
(2,2)
α,n (k0, k2, a2)

]

Cα′,m′n′,s′

= − (δαMδso+jδαNδse) δm1cn

[

U
(1,1)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

−U
(1,2)
α,n (k0, k2, a2)

U
(2,2)
α,n (k0, k2, a2)

]

. (15)

As α = M,N and s = e, o, the latter equation generates 2× 2 = 4 equations for

4 unknowns, the wave amplitudes CM,mn,e, CN,mn,e, CM,mn,o, CN,mn,o.

Actually, the index n is assigned the integers 1, 2, . . . , nmax and the trun-

cation number nmax is defined through a convergence criterion applied to a

far-field observable (e.g., the mrcs). Thus, (15) generates Le = nmax (nmax + 3)135

equations with s = e and Lo = nmax (nmax + 1) equations with s = o, which is

a total of L = Le + Lo = 2nmax (nmax + 2) equations. The actual number of

unknowns in (15) is also equal to L, because F
(ι)
α,0n,o (kr) = 0 and, therefore,

Aα,0n,o, Bα,0n,o, Cα,0n,o do not occur in (4).

However, the L × L set of linear equations for Cα,mn,s cannot be solved140

unless it is decomposed into an Le × Le set of linear equations for Cα,mn,e and

an Lo × Lo set of linear equations for Cα,mn,o. Proof of the fact that even-

symmetry wave amplitudes are decoupled from odd-symmetry ones is given in

Appendix A. Herein, it suffices to present the set of equations for Cα,mn,e:

∑

n′m′

[

Âm′n′

mn,1U
M,n′

M,n CM,m′n′,e + B̂m′n′

mn,1U
N,n′

M,nCN,m′n′,e

]

=0,

∑

n′m′

[

B̂m′n′

mn,1U
M,n′

N,n CM,m′n′,e + Âm′n′

mn,1U
N,n′

N,n CN,m′n′,e

]

=−jδm1cnUN,n,

n,n′=1,2,...,nmax m,m′=0,1,...,n (16)

and the set of equations for Cα,mn,o:145
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∑

n′m′

[

Ǎm′n′

mn,1U
M,n′

M,n CM,m′n′,o + B̌m′n′

mn,1U
N,n′

M,nCN,m′n′,o

]

=jδm1cnUM,n,

∑

n′m′

[

B̌m′n′

mn,1U
M,n′

N,n CM,m′n′,o + Ǎm′n′

mn,1U
N,n′

N,n CN,m′n′,o

]

=0.

n,n′=1,2,...,nmax m,m′=1,2,...,n (17)

The abbreviations Uα′,n′

α,n , Uα,n are defined in Appendix A.

Once Cα,mn,s are calculated from (16) and (17) by use of a computer, Aα,mn,s

and Bα,mn,s are determined, severally, by use of (14) and (12). It is necessary

to mention that (14) must be used under the condition s′ = s, which had had

to be imposed on (15), too, as proven in Appendix A.150

3.1. Concentric inclusion

If d1 = 0, it can be proven (see Appendix B) thatWα,mn,s
α′,m′n′,s′ = δαα′δmm′δnn′δss′ .

By substitution into (15) we determine Cα,mn,s analytically and then Aα,mn,s,

Bα,mn,s. The result is formulated as follows:

Aα,mn,s = (δαMδso + jδαNδse) δm1cn

U
(1,1)
α,n (k0, k2, a2)−

z(1)
α,n

(k2a1)

z
(2)
α,n(k2a1)

U
(1,2)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2)− z

(1)
α,n(k2a1)

z
(2)
α,n(k2a1)

U
(2,2)
α,n (k0, k2, a2)

,

Bα,mn,s = (δαMδso + jδαNδse) δm1cn
1

U
(1,2)
α,n (k2, k2, a2)

∣

∣

∣

∣

∣

∣

U
(1,1)
α,n (k0, k2, a2) U

(1,2)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2) U

(2,2)
α,n (k0, k2, a2)

∣

∣

∣

∣

∣

∣

U
(2,1)
α,n (k0, k2, a2)− z

(1)
α,n(k2a1)

z
(2)
α,n(k2a1)

U
(2,2)
α,n (k0, k2, a2)

,

Cα,mn,s = −z
(1)
α,n(k2a1)

z
(2)
α,n(k2a1)

Bα,mn,s. (18)

3.2. Transparent host155

If k2 = k0, the pec inclusion is actually free-standing. The above formulae for

the wave amplitudes simplify considerably:
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Aα,mn,s = (δαMδso + jδαNδse) δm1cn
z
(1)
α,n(k0a1)

z
(2)
α,n(k0a1)

,

Bα,mn,s = − (δαMδso + jδαNδse) δm1cn,

Cα,mn,s = Aα,mn,s. (19)

The first of (19) is the well-known result of the Lorenz-Mie theory of scattering

from a free-standing pec sphere [2, 3, 4, 25, 35, 5]. The last two of (19) manifest

that the internal field is, in this marginal case, the sum of incident and scattered160

waves, as should have been expected for region 2, if it had had the electrical

properties of free space.

3.3. Dielectric sphere without inclusion

In the absence of the inclusion, the second IMM equation is Cα,mn,s = 0, instead

of (12), and, thus, the first IMM equation is written as follows:165

− (δαMδso + jδαNδse) δm1cnU
(1,ι)
α,n (k0, k2, a2)

+Aα,mn,sU
(2,ι)
α,n (k0, k2, a2)−Bα,mn,sU

(1,ι)
α,n (k2, k2, a2) = 0. (20)

The wave amplitudes are obtained by setting ι = 1, 2 and the outcome is the

well-known Lorenz-Mie result for scattering by a dielectric sphere:

Aα,mn,s = (δαMδso + jδαNδse) δm1cn
U

(1,1)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

,

Bα,mn,s = (δαMδso + jδαNδse) δm1cn
∣

∣

∣

∣

∣

∣

U
(1,1)
α,n (k0, k2, a2) U

(1,2)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2) U

(2,2)
α,n (k0, k2, a2)

∣

∣

∣

∣

∣

∣

U
(1,2)
α,n (k2, k2, a2)U

(2,1)
α,n (k0, k2, a2)

. (21)

The same result can be derived from (18) in the limit
z(1)
α,n

(k2a1)

z
(2)
α,n(k2a1)

→ 0.
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3.4. Transparent dielectric sphere without inclusion

In this most marginal of cases there is no scatterer in the way of the incident170

wave. The above formulae yield by the substitution k2 = k0:

Aα,mn,s = 0,

Bα,mn,s = − (δαMδso + jδαNδse) δm1cn. (22)

Hence, there is no scattered wave and the internal field is just the incident wave.

4. Backscattered pulse

According to (4), Esca(r, ω) is formulated by use of spherical eigenvectors F
(2)
α,mn,s

(k0r) which incorporate z
(2)
n (k0r), η

(2)
n (k0r). Because of the approximations175

z
(2)
n (k0r) ≃ jη

(2)
n (k0r) ≃ jn+1 exp{−jk0r}

k0r
, which are valid in the far field (k0r >>

1) [26], the radial component of F
(2)
N,mn,s(k0r) decays as 1

(k0r)2
and, therefore,

can be omitted. Furthermore, we apply the formula τ
(1)
mnn(π) = −τ (2)mn(π) =

1
2 (−1)nn(n+1)δm1 to arrive, after some algebra, at the following result for the

frequency spectrum of the backscattered electric-field vector:180

Esca(−rẑ, ω) ≃
exp{−jωr/c0}

r
f(−ẑ, ω). (23)

The vector f(−ẑ, ω) is the frequency-domain equivalent of the backscattering

amplitude [25]:

f(−ẑ, ω)=
∑

n

(−j)nn(n+ 1)[fN,n(ω)x̂+ jfM,n(ω)ŷ], (24)

which is formulated by use of the abbreviations:

fα,n (ω) = c0
Aα,n (ω)

2ω
E (ω − ωc) ,

Aα,n (ω) = Aα,1n,e (ω)− jAβ,1n,o (ω) . (25)
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The radar observable related to backscattering is the mrcs, defined by σmo =

4πr2|Esca(−rẑ, t)|2 [25], where Esca(−rẑ, t) is the time-domain, electric-field185

vector of the backscattered wave. It can easily be proven by use of (23) that:

σmo = 4π|f (−ẑ, t− r/c0) |2 = 4π
∑

α

|fα (τ − 2r/c0)|2 , (26)

where:

fα (t) =
∑

n

(−j)nn(n+ 1)fα,n (t) (27)

and f (−ẑ, t) ↔ f (−ẑ, ω), fα,n (t) ↔ fα,n (ω) are Fourier-transform pairs. It

may be useful to point out that, as r = −rẑ, the space-time variable is τ =

t+ r/c0 and, therefore, t− r/c0 = τ − 2r/c0. The result of (26) manifests that190

(a) σmo is time-dependent and (b) the backscattered pulse at r = −rẑ is delayed

by 2r/c0 with respect to the incident pulse at the same point in space.

4.1. Continuous-wave excitation

The marginal case of cw excitation arises with Einc (r, t) = exp {jωct} x̂, which
implies that τ = t, E(τ) = 1, and E(ω) = δ(ω). Thus, (26) is simplified195

considerably:

σmo

πα2
2

=
1

x2
2

∑

α

∣

∣

∣

∣

∣

∑

n

(−j)nn(n+ 1)Aα,n(ωc)

∣

∣

∣

∣

∣

2

(28)

and σmo is, as expected, no longer dependent on the time variable. As σmo is

now referenced to the geometric cross section of the scattering body, which is

πa22 in this paper, the formula of (28) manifests the familiar dependence of the

normalized mrcs on the inverse second power of the normalized size x2 = ωc

c0
α2200

of the externally spherical body that gives rise to backscattering.
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Concentric inclusion - transparent host. If the host is transparent and the in-

clusion is centred at the origin of coordinates, it may easily be verified by use

of (19) that Aα,n(ωc) = −jδαNcn
(

z
(1)
M,n

(x1)

z
(2)
M,n

(x1)
− z

(1)
N,n

(x1)

z
(2)
N,n

(x1)

)

, where x1 = ωc

c0
a1 is

the normalized size of the pec sphere. Thus, we readily obtain from (28) the205

well-known result for a free-standing pec sphere [25, 35, 5]:

σmo

πα2
1

=
1

x2
1

∣

∣

∣

∣

∣

∑

n

(−1)n(2n+ 1)

(

z
(1)
M,n(x1)

z
(2)
M,nx1)

−
z
(1)
N,n(x1)

z
(2)
N,n(x1)

)
∣

∣

∣

∣

∣

2

. (29)

5. Outline of a Detection Scheme

The following steps are taken:

1. We plot σmo versus x2 (or x1) by use of (28) to find a convenient mdr (i.e.,

a backscattering peak) of the scattering body under cw excitation.210

2. We design a linear chirp (i.e., define fc, B, T ) that targets the afore-

said mdr and then calculate the backscattered pulse by use of (26). This

requires calculation of fα,n (ω) from (25) and use of the inverse FFT algo-

rithm to determine fα,n (t). Subsequently, we determine fα (t) from (27)

for substitution in (26).215

3. We synchronise and scale σmo (τ) for comparison with A(τ) = Π
(

τ−T/2
T

)

.

The presence of a pec inclusion within the dielectric host sphere is expected

to be imprinted on the shape of σmo (τ).

1

4 5

2

6

3

Figure 2: Dielectric sphere with pec inclusion (3-6). Marginal geometries 1,2 serve as reference.
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This scheme is firstly applied to a free-standing pec sphere, then to a pec sphere

placed at the center of a dielectric host sphere, and ultimately to a pec inclusion220

placed eccentrically within the host, as shown by Fig.2.

5.1. Free-standing pec sphere

We consider a pec sphere of radius a1 = 10mm in free space. We use (29),

derived from (28), to calculate the normalized mrcs – under cw excitation –

versus the normalized size (Fig. 3). We target the 2nd peak that culminates at225

x1 = 2.3512 and extends in the size range [1.7, 3]. The carrier frequency and

the frequency span of the incident chirp are defined so that 2πfc
c0

a1 = 2.3512

and 2πB
c0

a1 = 3 − 1.7 = 1.3. Thus, fc = 11.22GHz and B = 6.2GHz. The

spectrum of the incident chirp, shown by a blue-line plot in Fig. 3, engulfs the

entire targeted mdr if the time-bandwidth product is BT = 615, which sets the230

chirp duration to T = 99.2ns.

0 0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

Figure 3: Free-standing, pec sphere (cw excitation): σmo/πα2

1
versus x1 = 2πfa1

c0
(black line).

Also shown (properly scaled): psd of incident chirp targeting the 2nd mdr (blue line) and psd

of backscattered chirp (red line).

The time-domain mrcs σmo (τ), which is the response of the free-standing

pec sphere to the incident chirp, is shown by Fig. 4. This backscattered pulse,

synchronized to the incident chirp and properly scaled, bears remarkable resem-

blance to the shape of the targeted mdr. Hence, the expectation that a chirp235

could detect the shape of an mdr is confirmed in this simple case.

It may be realised from (26) that σmo/4π = |fM|2 + |fN|2. Hence, this radar

observable is actually the sum of the power carried by fM (τ) and fN (τ). As
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0

0.5

1

1.5

2

Figure 4: Free-standing, pec sphere (chirp excitation): σmo (τ) versus τ/T (red line) and

envelope of incident chirp (blue line). Plots scaled according to Fig. 3.

fM (τ) = 0 in the case of a free-standing pec sphere, the backscattered pulse

is simply fN (τ). The power spectral density (psd) of the latter is shown in240

Fig. 3 by a red-line plot. One might consider the blue-line plot as an input

spectrum, the red-line plot as the output spectrum, and the black-line plot –

the cw response of the free-standing pec sphere in the backscattering direction

– as the transfer function, which amounts to viewing the targeted mdr as a

band-pass filter.245

5.2. Dielectric sphere with concentric pec inclusion

Let the aforesaid pec sphere be placed at the center of an acrylic sphere (n2 =

1.61− j0.004) of radius a2 = 35mm, which is approximately the size of a tennis

ball. The wave amplitudes of the scattered wave are given by the 1st of (18)

and the mrcs is given by (26) or (28), depending on the excitation250

We compare case 3 to case 2 through Fig. 5. Black-line plots manifest the

dependence of σmo/πα
2
2 on the normalised size x2, the thinner line corresponding

to case 2. Red/green plots correspond to the psd of the backscattered pulse

in the presence/absence of the pec inclusion. We target the first peak of the

black-line plots. If the pec inclusion is present, the targeted mdr culminates255

at x2 = 1.3 and extends in the size range [1.0, 1.6]. The carrier frequency

and the frequency span of the incident chirp are determined by 2πfc
c0

a2 = 1.3,

2πB
c0

a2 = 1.6 − 1.0 = 0.6, and, thus, fc = 1.773GHz, B = 0.818GHz. The psd

16



of the incident chirp (not shown) engulfs the entire targeted mdr if the time-

bandwidth product is BT = 500, which sets the chirp duration to T = 611ns.260

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

Figure 5: Dielectric sphere with concentric, pec inclusion (cw excitation): psd of backscattered

chirp in the presence/absence (red/green line) of inclusion and plot of σmo/πα2

2
vs. x2 (black

lines). The incident chirp targets the 1st mdr. The psd plots are scaled to follow the black-line

plots.

-1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

Figure 6: Dielectric sphere with concentric, pec inclusion (chirp excitation): σmo (τ) vs. τ/T

in the presence/absence of inclusion (red/green line). Plots scaled according to Fig. 5.

The psd of fN – fM is absent in cases 1,2,3 – is also shown in Fig. 5, prop-

erly scaled and by use of the appropriate line color: red/green in the pres-

ence/absence of the inclusion. It is obvious that the psd follows the shape of

the corresponding black-line plot. So does the time-domain backscattered pulse

(Fig. 6), which proves that the inclusion can readily be detected, if the time-265

domain response of the dielectric sphere in the absence of the inclusion is known

beforehand.

An example of improper targeting of the chirp is given by Fig. 7. As the

incident chirp targets the 3rd mdr of the black-line plots in Fig. 5 , it is hardly
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Figure 7: As Fig. 6, but targeting the 3rd mdr of Fig. 5.

possible to tell whether the pec inclusion is present or not because the backscat-270

tered pulses that correspond to cases 2 and 3 are now similar in shape. The

reason is that the aforesaid, black-line plots are similar to each other in the size

range [2.5, 3.5].

5.3. Dielectric sphere with eccentric pec inclusion

Finally, we investigate the effect of eventual eccentricity between the dielectric275

host and the pec inclusion on the backscattered chirp. We start with a few

checks under cw excitation.

Figure 8: Dielectric sphere with eccentric, pec inclusion (Θ1 = 60o, and Φ1 = 75o): plots of

nmax versus x2. The eccentricity d1/d1,max increases from 0.1 to 0.9.

Results from a convergence check are shown in Fig. 8. Those plots are

obtained by calculations of σmo/πα
2
2 over the size range [0, 12] done with ever

increasing truncation number nmax. Once the eccentricity is set, iterations end280

when two consecutive values of the mrcs differ by less than 1%. Thus, we find

18



that the truncation number – the lowest integer nmax to achieve 1% convergence

– increases dramatically with the eccentricity. Convergence is impossible with

d1 = d1,max, unless x2 is negligible. The size limit for convergence is, severally,

x2,max = 5, 8, 10, if d1/d1,max = 0.9, 0.7, 0.5. The effect of eccentricity on the285

truncation number is symptomatic of the fact that a pec inclusion emerging

from deep within the host becomes electrically dominant over the surrounding

dielectric cover.

Figure 9: Dielectric sphere with shrinking, eccentric, pec inclusion (d1/d1,max = 0.5, Θ1 = 0o,

and Φ1 = 0o): plots of σmo/πα2

2
(cw excitation) versus x2. The radius a1 of the inclusion

decreases from 10mm to 0.

Figure 10: Dielectric sphere with diving, eccentric, pec inclusion (a1 = 10mm, Θ1 = 0o, and

Φ1 = 0o): plots of σmo/πα2

2
(cw excitation) versus x2. The eccentricity d1/d1,max decreases

from 0.9 to 0.

The computer code used for cw excitation and non-zero eccentricity is val-

idated through plots of σmo/πα
2
2 in the size range [0, 3.5]. Fig. 9 refers to a290

pec inclusion placed at d1 = 0.5d1,max, Θ1 = 0o, Φ1 = 0o and shrinking from

a1 = 10mm to 0, thus passing gradually from case 4 to case 2. Furthermore,
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Fig. 10 refers to a case-4 pec inclusion of nominal size (a1 = 10mm) which grad-

ually dives toward the center of the host, thus ending up with the case-3 plot.

The truncation number was set according to Fig. 8.295
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0
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Figure 11: Dielectric sphere with eccentric, pec inclusion (d1/d1,max = 0.7, nmax = 8): plots

of backscattered psd in the presence/absence (red/green line) of inclusion and σmo/πα2

2
(cw

excitation) versus x2 (black lines). Comparison of case 4 (top), 5 (middle), and 6 (bottom)

to case 2.

The final step is taken by consideration of chirp-excitation. The host (a2 =

35mm) accommodates a pec inclusion (a1 = 10mm) at d1 = 0.7d1,max, either on

the z-axis (cases 4,5) or on the x-axis (case 6). Plots of σmo/πα
2
2 (cw excitation)

versus x2 are shown by black lines in Fig. 11, the thinner line used for case 2,

which is the reference (i.e., absence of inclusion). The incident chirp (not shown)300
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targets the size range [2.3, 3]. Thus, we set fc = 3.615,GHz, B = 0.954GHz,

BT = 740, and T = 775.7ns. The backscattered psd is shown by a red/green

line in the presence/absence of the pec inclusion. It should be noted that the

red plot is the overall psd of the backscattered pulses fM(τ) and fN(τ), as both

are present because of non-zero eccentricity.305
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Figure 12: Plots of σmo (τ) vs. τ/T for dielectric sphere with eccentric, pec inclusion: com-

parison of case 4, 5, and 6 (red line) to case 2 (green line).

The backscattered pulse is shown in Fig. 12 and, once more, it is obvious

that the pulse shape is a replica of the black-line size plots (Fig. 11) within the

targeted range. Moreover, case 4 emerges as the best configuration with regard

to the detection of the pec inclusion. Yet, it is perhaps too soon to jump into
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Figure 13: Plots of psd of backscattered chirp versus x1 (top - case 1) or x2 (bottom - cases

2,3), as determined by CST and our theory/code. The CST spectra are shown in place,

whereas ours – copied from Figs. 3, 5 – are herein shifted to the right for easier inspection.

conclusions about the optimum detection scheme, as the numerical investigation310

of this paper is only intended to show the possibilities offered by the theory and

the computer code that implements the theory.

5.4. Comparison to a commercial software

Further validation of our code – written in Fortran – is made by use of CST [36],

a commercially available software. CST results are shown in Fig. 13, alongside315

ours, for a free-standing pec sphere (case 1), a dielectric sphere (case 2), and a

dielectric sphere with a concentric metallic inclusion (case 3). The CST spectra

were obtained by use of a time-domain approach based on the finite integration
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technique. The simulation volume – the scattering object and part of the free

space around it – was decomposed into small volume elements (up to about320

200,000 of them) and it was enclosed by perfect matched layers placed.

The CST spectra of Fig. 13 are practically identical to ours, which validates

both our theory and code. On closer scrutiny, the CST spectra look less smooth

than ours, because the former incorporate four times less points than the latter

in the size range [0, 3.5], actually 1000 against 4096 points.325

An interesting feature of this numerical application was our indirect way

of feeding CST with an entire set of excitation frequencies in a single time

simulation. If the frequency of the incident wave had been fixed, it would

have been possible to select an appropriate time Gaussian excitation, which is

a standard choice in the CST software. Yet, the incident chirp is actually a330

truncated sine wave, the frequency of which varies over a time window. Hence,

we calculated the amplitude of the incident wave at each time step externally by

Matlab [37] and then fed CST by those values. Because of this pre-processing

of the excitation, it was possible to reduce the time required by CST to produce

the entire psd of the backscattered chirp.335

The CST spectra of Fig. 13 were calculated on a desktop computer with

3.20GHz Intel c© Xeon c© 8-core processor in about 6′ each, which represents,

roughly, 0.5′ Matlab pre-processing and 5.5′ CST processing. The spectra ob-

tained by our theory/code were calculated on a laptop computer with 3.5GHz

Intel Core i7 processor in less than 1′′ each. Considering that our spectra con-340

tain four times more points than the CST spectra, we realise that our code is

at least 1440 times faster than CST.

6. Conclusions

The analytical formulation of this radiation problem is concise and somewhat

tutorial. Originality lies with the consideration of double modulation of the wave345

that is incident upon the composite non-spherical body. The analytical solution

successfully yields all marginal cases. The general case, implemented mainly
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by purpose-made Fortran code, provides the necessary basis for the detection

of a metallic object concealed in a dielectric host, both of spherical shape. It

is shown that the incident chirp can target an entire mdr of the composite350

body and imprint the shape of that mdr on the envelope of the backscattered

pulse. Moreover, the computer code yields the backscattered pulse in seconds,

which is essential for design flexibility. By proper design of the incident chirp

– an example is given in the numerical experiment – it is possible to detect a

concealed metallic inclusion, provided that the response of the host – without355

the inclusion – is known. The paper focusses on the analytical formulation. The

numerical application indicates the potentials of the theory and lays the way

for further research, focussed on a detection scheme.

Appendix A

The generic equation (15) for the wave amplitudes Cα,mn,s can be written con-360

cisely as follows:

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn,s Uα′,n′

α,n Cα′,m′n′,s′ = − (δαMδso+jδαNδse)δm1cnUα,n (30)

by use of the abbreviations:

Uα′,n′

α,n =
U

(2,1)
α,n (k2, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

+
z
(2)
α′,n′(k2a1)

z
(1)
α′,n′(k2a1)

U
(1,2)
α,n (k2, k2, a2)

U
(2,2)
α,n (k0, k2, a2)

,

Uα,n =
U

(1,1)
α,n (k0, k2, a2)

U
(2,1)
α,n (k0, k2, a2)

− U
(1,2)
α,n (k0, k2, a2)

U
(2,2)
α,n (k0, k2, a2)

. (31)

According to (7),Wα′,m′n′,s′

α,mn,s = (δse + jδso)Wα′,m′n′,s′

α,mn withWα′,m′n′,e
α,mn =δαα′Âm′n′

mn,1

+δαβ′ B̂m′n′

mn,1 and Wα′,m′n′,o
α,mn = δαα′Ǎm′n′

mn,1 + δαβ′ B̌m′n′

mn,1. Hence, we find:

(δse + jδso)
∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn Uα′,n′

α,n Cα′,m′n′,s′ = − (δαMδso + jδαNδse) δm1cnUα,n.

(32)

24



The outcome is:365

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn Uα′,n′

α,n Cα′,m′n′,s′ = −jδαNδm1cnUN,n, (33)

if s = e, and:

∑

s′,n′m′,α′

Wα′,m′n′,s′

α,mn Uα′,n′

α,n Cα′,m′n′,s′ = jδαMδm1cnUM,n, (34)

if s = o.

If s′ were allowed both names e, o in the left-hand sides of (33) and (34), the

result would have been −δαNUN,n = δαMUM,n or, equivalently, Uα,n = 0. As

the latter is wrong, so does the hypothesis that it is possible to consider s′ 6= s370

in (33) and (34). Hence, s′ = s = e in (33), whereas s′ = s = o in (34). The

end-result is:

∑

n′m′,α′

Wα′,m′n′,e
α,mn Uα′,n′

α,n Cα′,m′n′,e = −jδαNδm1cnUN,n,

∑

n′m′,α′

Wα′,m′n′,o
α,mn Uα′,n′

α,n Cα′,m′n′,o = jδαMδm1cnUM,n. (35)

The first of (35) yields (16) by setting α = M,N and, likewise, the second yields

(17).

Appendix B375

Spherical eigenvectors are usually defined through the scalar eigenfunction f
(ι)
mn

(kr) = z
(ι)
n (kr)Pm

n (cos θ)ejmφ. Thus, F
(ι)
M,mn (kr) = M

(ι)
mn (kr) = ∇×

(

rf
(ι)
mn(kr)

)

and F
(ι)
N,mn (kr) = N

(ι)
mn (kr) = k∇ × ∇ ×

(

rf
(ι)
mn(kr)

)

= kF
(ι)
M,mn (kr). Even-

and odd-symmetry spherical eigenvectors are obtained as follows:

F(ι)
α,mn,e (kr) =

1

2

[

F(ι)
α,mn (kr) + (−1)m (n+m)!

(n−m)!
F

(ι)
α,−mn (kr)

]

,

F(ι)
α,mn,o (kr) =

1

2j

[

F(ι)
α,mn (kr)− (−1)m (n+m)!

(n−m)!
F

(ι)
α,−mn (kr)

]

(36)
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and, evidently, F
(ι)
α,mn (kr) = F

(ι)
α,mn,e (kr) + jF

(ι)
α,mn,o (kr).380

Setting d1 = 0 into (7), we arrive at the following formula [24]:

Wα,mn,s
α′,m′n′,s′ =

1

2
δn′nδα′α

{

δse

[

δm′m+(−1)m
(n+m)!

(n−m)!
δm′,−m

]

− jδso

[

δm′m−(−1)m
(n+m)!

(n−m)!
δm′,−m

]}

(δs′e+jδs′o) .

By substitution into the right-hand side of (6), we obtain, because of (36), in

this marginal case:

∑

s′,n′m′,α′

Wα,mn,s
α′,m′n′,s′F

(ι)
α′,m′n′,s′ (k2r1) =

1

2

{

δse

[

F(ι)
α,mn (k2r1)+(−1)m

(n+m)!

(n−m)!
F

(ι)
α,−mn (k2r1)

]

− jδso

[

F(ι)
α,mn (k2r1)−(−1)m

(n+m)!

(n−m)!
F

(ι)
α,−mn (k2r1)

]}

=

δseF
(ι)
α,mn,e (k2r1) + δsoF

(ι)
α,mn,o (k2r1) =

F(ι)
α,mn,s (k2r1) ,

which is the left-hand side of (6). Hence, Wα,mn,s
α′,m′n′,s′ ≡ δαα′δmm′δnn′δss′ , if

d1 = 0.385
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