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A plane electromagnetic (em) wave, amplitude-and frequency-modulated as a linear chirp, is incident on a dielectric sphere that hosts an eccentric, spherical, pec (perfect electric conductor) inclusion. This radiation problem is solved in the frequency domain by use of symmetry-dependent, spherical eigenvectors, the end-result being a set of linear equations for the wave amplitudes of the frequency spectrum of the electric field in every part of space. That set is solved by truncation and matrix-inversion, separately for even-and odd-symmetry wave amplitudes. The backscattered chirp is found by an inverse Fourier transform that yields the time-dependent, monostatic, radar cross section (mrcs). A numerical application manifests the possibility to detect a pec sphere concealed in an acrylic sphere by use of a wide-band chirp that targets a morphologydependent resonance (mdr) of the composite body. Our theory and code are validated by use of a commercial software.

Introduction

Scattering of a modulated, plane, em wave by a non-spherical body is a radiation problem that finds several important applications. Among them, of current interest are: (a) non-destructive tests aimed at the detection of fabrication imperfections (e.g., cavities in artificial objects), (b) standoff detection of concealed items by microwaves (e.g., in security checkpoints), (c) non-invasive diagnoses of anomalies in the human body (e.g., tumors, gallstones etc.), and (d) real-time analysis of human breath gases by use of laser pulses.

"Non-spherical" [START_REF]Light scattering by nonspherical particles[END_REF] is a body that lacks spherical symmetry even though it is defined by several spherical interfaces (e.g., an eccentrically layered sphere, an aggregate of spheres, and combinations thereof). Lorenz-Mie [START_REF] Lorenz | Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle[END_REF][START_REF] Lorenz | Sur la lumière réfléchie et réfractée par une sphere transparente[END_REF][START_REF] Mie | Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[END_REF][START_REF]The Mie theory[END_REF] solutions to scattering by non-spherical bodies have been formulated in the asymptotic case of continuous-wave (cw) -i.e., time-harmonic -excitation by use of the T-matrix method [START_REF] Fikioris | Scattering from an eccentrically stratified dielectric sphere[END_REF][START_REF] Borghese | Sindoni Optical properties of spheres containing a spherical eccentric inclusion[END_REF][START_REF] Borghese | Optical properties of spheres containing several spherical inclusions[END_REF][START_REF] Roumeliotis | Scattering from a sphere of small radius embedded into a dielectric one[END_REF][START_REF] Miu | Scattering Analysis for Eccentric-Sphere Model of Single-Nuclear Cell[END_REF], IMM (indirect mode-matching) equations [START_REF] Skaropoulos | Indirect modematching solution to scattering from a dielectric sphere with an eccentric inclusion[END_REF][START_REF] Ioannidou | Study of interactive scattering by clusters of spheres[END_REF][START_REF] Skaropoulos | Induced EM field in a layered eccentric spheres model of the head: plane-wave and localized source exposure[END_REF][START_REF] Ioannidou | Electromagnetic-wave scattering by a sphere with multiple spherical inclusions[END_REF][START_REF] Moneda | Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[END_REF], and dyadic Green's functions [START_REF] Moneda | Dyadic Green's function of a sphere with an eccentric spherical inclusion[END_REF][START_REF] Moneda | Dyadic Green's function of a cluster of spheres[END_REF][START_REF] Moneda | Dyadic Green's function of an eccentrically stratified sphere[END_REF]. Numerical solutions are available [START_REF] Kahnert | Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review[END_REF], too, but they are beyond the interest of this paper. Amplitude modulation of the incident wave has been considered by a few researchers [START_REF] Khaled | Temporal behavior of short optical pulses scattered by small particles[END_REF][START_REF] Gouesbet | Generic formulation of a generalized Lorenz-Mie theory for a particle illuminated by laser pulses[END_REF][START_REF] Han | Far scattered field from a spheroid under a femtosecond pulsed illumination in a generalized Lorenz-Mie theory framework[END_REF][START_REF] Méès | Transient internal and scattered fields from a multi-layered sphere illuminated by a pulsed laser[END_REF] and by the first author in a previous paper [START_REF] Vervelidou | Scattering of a pulsed wave by a sphere with an eccentric spherical inclusion[END_REF]. The latter dealt with a dielectric sphere containing an eccentric spherical cavity. Developing that theory, we consider in this paper double modulation -amplitude and phase -of the incident wave in search of wide-band coupling to a nonspherical body. We study a dielectric sphere with an eccentric, spherical, pec inclusion exposed to a linear chirp having bandwidth-to-carrier ratio in excess of 25%. Our frequency-domain analysis results in the frequency spectrum of the backscattered electric field. The latter is subsequently used to determine the backscattered chirp that is associated with the time-dependent mrcs [START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF].

The envelope of the backscattered chirp is shown to carry wide-band information about the scatterer, which can be used to reveal the presence of a metallic inclusion in the host sphere.

Geometry and excitation

The geometry (Fig. 1) is quite simple: a non-magnetic, dielectric sphere in free space (region 0, wave-number k 0 = ω √ ǫ 0 µ 0 ) accommodates a pec sphere.

The host (region 2, wave-number k 2 = n 2 k 0 , radius a 2 ) is centred at O. The refractive index n 2 may be a complex number to account for eventual losses in the host. The inclusion (region 1, radius a 1 < a 2 ) is centred at O 1 . The

coordinates of O 1 in (O, rθφ) are r = d 1 = |d 1 | , θ = Θ 1 , φ = Φ 1 .
The inclusion may be anywhere within the host. Hence,

d 1 + a 1 ≤ a 2 or d 1 ≤ d 1,max = a 2 -a 1 .
A field point may be defined by reference to the system of spherical coordinates (O; rθφ) or (O 1 ; r 1 θ 1 φ 1 ), attached severally to the host sphere or the inclusion.

The position vectors r and r 1 are linked through r = d 1 + r 1 .
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Figure 1: Non-spherical body: a number is assigned to each part of space: 0 (free-space), 1

(spherical pec inclusion), and 2 (dielectric host sphere).

Excitation is provided by a plane, em wave that is propagated in the direction ẑ and polarised in the direction x (the unit vectors along x, y, z are x, ŷ, ẑ). The electric-field vector of the incident wave is

E inc (r, t) = E(τ ) exp {jω c τ } x = A(τ ) exp {j [ω c τ + Ω(τ )]} x. The space-time variable τ = t -ẑ • r/c 0 involves
the position vector r of a field point and the phase velocity c 0 = 1 √ ǫ0µ0 of em waves in the unbounded free space around the scatterer.

Amplitude and phase modulations are defined by

A(τ ) = Π τ -T /2 T and Ω(τ ) = π B T τ -T 2 2 . As Π x-x0 X = 1 or 0 for |x -x 0 | ≤ or > X/2, respec-
tively, E(τ ) = A(τ ) exp {jΩ(τ )} defines a unit-amplitude, baseband, linear chirp that modulates the carrier wave (frequency f c ). The instantaneous frequency

f (τ ) = 1 2π d dτ [ω c τ + Ω(τ )] = f c + B T τ -T 2 varies linearly from f c -B/2 to f c + B/2 over the time range [0, T ]. It may be useful to note that k 0 = ω c0 = 2πf c0
involves the instantaneous frequency.

The spectrum of E (τ ) is formulated by use of the Fresnel integrals [START_REF] Abramowitz | Handbook of mathematical functions[END_REF] as follows:

C(v) = v 0 cos π 2 τ 2 dτ , S(v) = v 0 sin π 2 τ 2 dτ
E (f ) = T 2(BT ) [C(v 1 ) + C(v 2 ) + jS(v 1 ) +jS(v 2 )] exp -jπ(BT ) f B 1 + f B , (1) 
where

v 1 = BT 2 1 -2 f B , v 2 = BT 2 1 + 2 f B .
The time-bandwidth product BT is the cardinal feature of the chirp spectrum.

Frequency-domain analytical formulation

Pulsed excitation calls for Fourier-transform pairs x (t) ↔ x (ω), linked through the well-known equations

x (ω) = ∞ -∞ x (t) exp {-jωt}dt and x (t) = 1 2π ∞ -∞
x (ω) exp {jωt}dω. Thus, an em wave in region 0 is represented either by the electric-field vector E 0 (r, t), which solves the homogeneous wave equation

(∇ 2 - c -2 0 ∂ 2 /∂t 2 )E 0 (r, t) = 0 [27], or by the frequency spectrum thereof E 0 (r, ω) = ∞ -∞ E 0 (r, t) exp {-jωt}dt, which solves the homogeneous Helmholtz equation ∇ 2 + k 2 0 E 0 (r, ω) = 0.
Evidently, the very same steps that lead to the well-known time-domain extended-Mie solution of this radiation problem with time-harmonic excitation can lead to a frequency-domain solution in the case of pulsed excitation. The frequency spectrum of the electric field can be formulated as a series of spherical eigenvectors M (ι) mn,s (kr) and N (ι) mn,s (kr) [START_REF] Morse | Methods of theoretical physics, part II[END_REF]. The symmetry index s is assigned the names e (even) or o (odd), the angular-momentum index n is assigned the integers 1, 2, . . ., and the azimuthal quantum number m is assigned the integers 0, 1, . . . , n, if s = e, or 1, 2, . . . , n, if s = o. Even-symmetry spherical eigenvectors

M (ι)
mn,e (kr), N

mn,e (kr) are defined as follows:

M (ι)
mn,e (kr) = -θz (ι) n (kr)τ (1) mn (θ) m sin(mφ) -φz (ι) n (kr)τ (2) mn (θ) cos(mφ),

N (ι) mn,e (kr) = r n(n + 1) kr z (ι) n (kr)P m n (cosθ)cos(mφ) + θη (ι) n (kr)τ (2) mn (θ) cos(mφ) -φη (ι) n (kr)τ (1) mn (θ) m sin(mφ), (2) 
r, θ, φ being unit vectors for r, θ, φ. Depending on the superscript ι, which is assigned the integers 1 or 2, the radial function z 

mn (θ) = 1 sin θ P m n (cos θ), τ (2) 
mn (θ) = d dθ P m n (cos θ) are generalised

Legendre functions [START_REF] Abramowitz | Handbook of mathematical functions[END_REF][START_REF] Gradshteyn | Table of integrals, series and products[END_REF]. Odd-symmetry spherical eigenvectors M The spectrum of the incident electric field is formulated as follows [START_REF] Jackson | Classical electrodynamics[END_REF]:

E inc (r, ω) = -E(ω-ω c ) s,nm,α (δ αM δ so +jδ αN δ se )δ m1 c n F (1) α,mn,s (k 0 r), (3) 
where c n = (-j) n 2n+1 n(n+1) and E(ω -ω c ) is the (angular frequency) spectrum of E(τ ) shifted by the carrier (angular) frequency ω c = 2πf c . The Kronecker delta -defined as δ xy = 1, 0 severally for x = y, x = y -is used in (3) and extensively throughout the ensuing analysis for conciseness. The spectrum of the scattered electric field and that of the internal electric field, may be formulated likewise:

E sca (r,ω) = E(ω -ω c ) s,nm,α
A α,mn,s F (2) α,mn,s (k 0 r),

E 2 (r 1 , ω)=E(ω-ω c ) s,nm,α
B α,mn,s F (1) α,mn,s (k 2 r 1 )+C α,mn,s F (2) α,mn,s (k 2 r 1 ) .( 4)

The overall spectrum of the external electric field is E 0 (r,ω) = E inc (r,ω) + E sca (r,ω). Both E inc (r,ω) and E sca (r,ω) are expressed in (O, rθφ). The incident field is regular at the origin and the scattered field is regular at infinity. Region 2 is confined by the spherical surfaces S 1 and S 2 . The internal field consists of two parts, both expressed in (O 1 , r 1 θ 1 φ 1 ). Thus, the internal field is finite even at O, which may be exposed if

d 1 > a 1 .
The wave amplitudes A α,mn,s , B α,mn,s , and C α,mn,s are determined by enforcement of the boundary conditions on S 1 and S 2 . This is done non-locally by use of the IMM equations [START_REF] Skaropoulos | Indirect modematching solution to scattering from a dielectric sphere with an eccentric inclusion[END_REF][START_REF] Ioannidou | Electromagnetic-wave scattering by a sphere with multiple spherical inclusions[END_REF][START_REF] Moneda | Dyadic Green's function of a sphere with an eccentric spherical inclusion[END_REF]:

S2 [E 0 × ∇ × Q -Q × ∇ × E 0 ]• rds 2 = S2 [E 2 × ∇ × Q -Q × ∇ × E 2 ]• rds 2 , S1 Q × E 2 • r1 ds 1 = 0. ( 5 
)
The auxiliary function Q may be replaced by a spherical eigenvector

F (ι) γ,µν,σ (k 2 r) or F (ι) γ,µν,σ (k 2 r 1 ), where γ ∈ {M, N}, ν ∈ [1, ∞), µ ∈ [0, ν],
and σ ∈ {e, o}. The first of (5) results from the continuity of the tangential components of electric and magnetic fields across S 2 . However, in order to apply the boundary condition on S 2 we must reformulate E 2 (r, ω) so that only spherical eigenvectors that are natural on S 2 are used. This is done by use of the translational addition theorem of spherical eigenvectors [START_REF] Stein | Addition theorems for spherical vector wave functions[END_REF][START_REF] Cruzan | Translational addition theorems for spherical vector wave functions[END_REF][START_REF] Kanellopoulos | Resonant frequencies in an electromagnetic eccentric spherical cavity[END_REF][START_REF] Xu | Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories[END_REF], as formulated for the aforesaid use [START_REF] Vervelidou | Scattering of a pulsed wave by a sphere with an eccentric spherical inclusion[END_REF]:

F (ι) α,mn,s (k 2 r 1 ) = s ′ ,n ′ m ′ ,α ′ W α,mn,s α ′ ,m ′ n ′ ,s ′ (-k 2 d 1 ) F (ι) α ′ ,m ′ n ′ ,s ′ (k 2 r) . (6) 
The coupling coefficients are concisely defined as follows:

W α,mn,s α ′ ,m ′ n ′ ,s ′ = δ se δ α ′ α Âmn m ′ n ′ ,1 +δ α ′ β Bmn m ′ n ′ ,1 +δ so δ α ′ α Ǎmn m ′ n ′ ,1 +δ α ′ β Bmn m ′ n ′ ,1 (δ s ′ e + jδ s ′ o ) (7) in terms of Âmn m ′ n ′ ,1 , Bmn m ′ n ′ ,1 and Ǎmn m ′ n ′ ,1 , Bmn m ′ n ′ ,1 , introduced in [24]
. The primed indices α ′ , m ′ , n ′ , s ′ are assigned severally the same values/names as α, m, n, s.

The index β ∈ {M, N} is the opposite of α (e.g., if α = M, then β = N).

Thus, the spectrum of the internal electric field is formulated by use of spherical eigenvectors defined in (O, rθφ):

115 E 2 (r, ω) = E(ω -ω c ) s,nm,α s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s (-k 2 d 1 ) B α ′ ,m ′ n ′ ,s ′ F (1) α,mn,s (k 2 r)+C α ′ ,m ′ n ′ ,s ′ F (2) α,mn,s (k 2 r) . (8) 
Setting

Q = F (ι) γ,µν,σ (k 2 r
) and by use of the formula:

S F (ι) α,mn,s (kr) × F (ι ′ ) α ′ ,m ′ n ′ ,s ′ (k ′ r) • rds = πa 2 (-1) δαN z (ι) α,n (ka)z (ι ′ ) β,n (k ′ a) 2n(n + 1) 2n + 1 (n + m)! (n -m)! δ ss ′ δ nn ′ δ mm ′ + (-1) δso δ m0 δ βα ′ , (9) 
where z

(ι) M,n (x) = z (ι) n (x) and z (ι) N,n (x) = η (ι)
n (x), we arrive after some algebra at the first IMM equation:

-(δ αM δ so + jδ αN δ se ) δ m1 c n U (1,ι) α,n (k 0 , k 2 , a 2 ) +A α,mn,s U (2,ι) α,n (k 0 , k 2 , a 2 ) - s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s (-k 2 d 1 ) B α ′ ,m ′ n ′ ,s ′ U (1,ι) α,n (k 2 , k 2 , a 2 ) + C α ′ ,m ′ n ′ ,s ′ U (2,ι) α,n (k 2 , k 2 , a 2 ) = 0. ( 10 
)
The abbreviation

U (ι,ι ′ ) α,n (k, k ′ , a) is defined below: U (ι,ι ′ ) M,n (k, k ′ , a) = 2n(n + 1) 2n + 1 k ′ z (ι) M,n (ka)z (ι ′ ) N,n (k ′ a) -kz (ι) N,n (ka)z (ι ′ ) M,n (k ′ a) , U (ι,ι ′ ) N,n (k, k ′ , a) = 2n(n + 1) 2n + 1 kz (ι) M,n (ka)z (ι ′ ) N,n (k ′ a) -k ′ z (ι) N,n (ka)z (ι ′ ) M,n (k ′ a) . (11) 
It may easily be verified that U

(ι,ι ′ ) M,n (k, k, a) = U (ι,ι ′ ) N,n (k, k, a), U (ι,ι ′ ) α,n (k, k ′ , a) = -U (ι ′ ,ι) α,n (k ′ , k, a), and therefore U (ι,ι) α,n (k, k, a) = 0.
The second of ( 5) results from the condition r1 × E 2 = 0, which must be imposed anywhere on

S 1 . Hence, Q • [r 1 × E 2 ] = 0 ⇒ [Q × E 2 ] • r1 = 0 ⇒ S1 Q × E 2 • r1 ds 1 = 0. If Q = F (ι)
γ,µν,σ (k 2 r 1 ), we may apply ( 9) to arrive at the second IMM equation, which is a simple relationship between the wave amplitudes B α,mn,s , C α,mn,s :

B α,mn,s = - z (2) α,n (k 2 a 1 ) z (1) α,n (k 2 a 1 ) C α,mn,s . (12) 
The latter, if used in [START_REF] Miu | Scattering Analysis for Eccentric-Sphere Model of Single-Nuclear Cell[END_REF], yields:

-(δ αM δ so + jδ αN δ se ) δ m1 c n U (1,ι) α,n (k 0 , k 2 , a 2 ) +A α,mn,s U (2,ι) α,n (k 0 , k 2 , a 2 ) - s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s (-k 2 d 1 ) C α ′ ,m ′ n ′ ,s ′ U (2,ι) α,n (k 2 , k 2 , a 2 ) - z (2) α ′ ,n ′ (k 2 a 1 ) z (1) α ′ ,n ′ (k 2 a 1 ) U (1,ι) α,n (k 2 , k 2 , a 2 ) = 0 (13)
and, by setting ι = 1 therein, we find A α,mn,s in terms of C α,mn,s :

A α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n U (1,1) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) + U (2,1) α,n (k 2 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s (-k 2 d 1 ) C α ′ ,m ′ n ′ ,s ′ . ( 14 
)
Hence, A α,mn,s can be eliminated from [START_REF] Skaropoulos | Induced EM field in a layered eccentric spheres model of the head: plane-wave and localized source exposure[END_REF], thus arriving at a linear equation for C α,mn,s :

s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s (-k 2 d 1 ) U (2,1) α,n (k 2 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) + z (2) α ′ ,n ′ (k 2 a 1 ) z (1) α ′ ,n ′ (k 2 a 1 ) U (1,2) α,n (k 2 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ) C α ′ ,m ′ n ′ ,s ′ = -(δ αM δ so +jδ αN δ se ) δ m1 c n U (1,1) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) - U (1,2) α,n (k 0 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ) . ( 15 
)
As α = M, N and s = e, o, the latter equation generates 2 × 2 = 4 equations for 4 unknowns, the wave amplitudes C M,mn,e , C N,mn,e , C M,mn,o , C N,mn,o .

Actually, the index n is assigned the integers 1, 2, . . . , n max and the truncation number n max is defined through a convergence criterion applied to a far-field observable (e.g., the mrcs). Thus, [START_REF] Moneda | Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[END_REF] generates L e = n max (n max + 3) However, the L × L set of linear equations for C α,mn,s cannot be solved unless it is decomposed into an L e × L e set of linear equations for C α,mn,e and an L o × L o set of linear equations for C α,mn,o . Proof of the fact that evensymmetry wave amplitudes are decoupled from odd-symmetry ones is given in Appendix A. Herein, it suffices to present the set of equations for C α,mn,e :

equations
n ′ m ′ Âm ′ n ′ mn,1 U M,n ′ M,n C M,m ′ n ′ ,e + Bm ′ n ′ mn,1 U N,n ′ M,n C N,m ′ n ′ ,e = 0, n ′ m ′ Bm ′ n ′ mn,1 U M,n ′ N,n C M,m ′ n ′ ,e + Âm ′ n ′ mn,1 U N,n ′ N,n C N,m ′ n ′ ,e =-jδ m1 c n U N,n , n,n ′ =1,2,...,nmax m,m ′ =0,1,...,n (16) 
and the set of equations for C α,mn,o :

n ′ m ′ Ǎm ′ n ′ mn,1 U M,n ′ M,n C M,m ′ n ′ ,o + Bm ′ n ′ mn,1 U N,n ′ M,n C N,m ′ n ′ ,o = jδ m1 c n U M,n , n ′ m ′ Bm ′ n ′ mn,1 U M,n ′ N,n C M,m ′ n ′ ,o + Ǎm ′ n ′ mn,1 U N,n ′ N,n C N,m ′ n ′ ,o = 0. n,n ′ =1,2,...,nmax m,m ′ =1,2,...,n (17) 
The abbreviations U α ′ ,n ′ α,n , U α,n are defined in Appendix A. Once C α,mn,s are calculated from ( 16) and ( 17) by use of a computer, A α,mn,s and B α,mn,s are determined, severally, by use of ( 14) and [START_REF] Ioannidou | Study of interactive scattering by clusters of spheres[END_REF]. It is necessary to mention that ( 14) must be used under the condition s ′ = s, which had had to be imposed on [START_REF] Moneda | Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[END_REF], too, as proven in Appendix A. [START_REF] Moneda | Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs[END_REF] we determine C α,mn,s analytically and then A α,mn,s , B α,mn,s . The result is formulated as follows:

Concentric inclusion

If d 1 = 0, it can be proven (see Appendix B) that W α,mn,s α ′ ,m ′ n ′ ,s ′ = δ αα ′ δ mm ′ δ nn ′ δ ss ′ . By substitution into
A α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n U (1,1) α,n (k 0 , k 2 , a 2 ) - z (1) α,n (k2a1) z (2) α,n (k2a1) U (1,2) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) - z (1) α,n (k2a1) z (2) α,n (k2a1) U (2,2) α,n (k 0 , k 2 , a 2 ) , B α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n 1 U (1,2) α,n (k 2 , k 2 , a 2 ) U (1,1) α,n (k 0 , k 2 , a 2 ) U (1,2) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) - z (1) α,n (k2a1) z (2) α,n (k2a1) U (2,2) α,n (k 0 , k 2 , a 2 ) , C α,mn,s = - z (1) α,n (k 2 a 1 ) z (2) α,n (k 2 a 1 )
B α,mn,s .

(18)

Transparent host 155

If k 2 = k 0 , the pec inclusion is actually free-standing. The above formulae for the wave amplitudes simplify considerably:

A α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n z

(1)

α,n (k 0 a 1 ) z (2) α,n (k 0 a 1 ) , B α,mn,s = -(δ αM δ so + jδ αN δ se ) δ m1 c n , C α,mn,s = A α,mn,s . (19) 
The first of ( 19) is the well-known result of the Lorenz-Mie theory of scattering from a free-standing pec sphere [START_REF] Lorenz | Lysbevaegelsen i og uden for en af plane Lysbolger belyst Kugle[END_REF][START_REF] Lorenz | Sur la lumière réfléchie et réfractée par une sphere transparente[END_REF][START_REF] Mie | Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[END_REF][START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF][START_REF] Bohren | Absorption and scattering of light by small particles[END_REF][START_REF]The Mie theory[END_REF]. The last two of ( 19) manifest that the internal field is, in this marginal case, the sum of incident and scattered 160 waves, as should have been expected for region 2, if it had had the electrical properties of free space.

Dielectric sphere without inclusion

In the absence of the inclusion, the second IMM equation is C α,mn,s = 0, instead of ( 12), and, thus, the first IMM equation is written as follows:

165

-(δ αM δ so + jδ αN δ se ) δ m1 c n U (1,ι) α,n (k 0 , k 2 , a 2 ) +A α,mn,s U (2,ι) α,n (k 0 , k 2 , a 2 ) -B α,mn,s U (1,ι) α,n (k 2 , k 2 , a 2 ) = 0. ( 20 
)
The wave amplitudes are obtained by setting ι = 1, 2 and the outcome is the well-known Lorenz-Mie result for scattering by a dielectric sphere:

A α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n U (1,1) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) , B α,mn,s = (δ αM δ so + jδ αN δ se ) δ m1 c n U (1,1) α,n (k 0 , k 2 , a 2 ) U (1,2) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ) U (1,2) α,n (k 2 , k 2 , a 2 )U (2,1) α,n (k 0 , k 2 , a 2 ) . ( 21 
)
The same result can be derived from (18) in the limit

z (1) α,n (k2a1) z (2) α,n (k2a1) → 0.

Transparent dielectric sphere without inclusion

In this most marginal of cases there is no scatterer in the way of the incident wave. The above formulae yield by the substitution k 2 = k 0 :

A α,mn,s = 0, B α,mn,s = -(δ αM δ so + jδ αN δ se ) δ m1 c n . (22) 
Hence, there is no scattered wave and the internal field is just the incident wave.

Backscattered pulse

According to ( 4), E sca (r, ω) is formulated by use of spherical eigenvectors F

(2) α,mn,s

(k 0 r) which incorporate z (2) 
n (k 0 r), η (2) 
n (k 0 r). Because of the approximations

z (2) n (k 0 r) ≃ jη (2) 
n (k 0 r) ≃ j n+1 exp{-jk0r} k0r 
, which are valid in the far field (k 0 r >> 1) [START_REF] Abramowitz | Handbook of mathematical functions[END_REF], the radial component of F

N,mn,s (k 0 r) decays as 1 (k0r) 2 and, therefore, can be omitted. Furthermore, we apply the formula τ 

mnn (π) = -τ (2)
mn (π) = 1 2 (-1) n n(n + 1)δ m1 to arrive, after some algebra, at the following result for the frequency spectrum of the backscattered electric-field vector:

E sca (-rẑ, ω) ≃ exp{-jωr/c 0 } r f (-ẑ, ω). (23) 
The vector f (-ẑ, ω) is the frequency-domain equivalent of the backscattering amplitude [START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF]:

f (-ẑ, ω)= n (-j) n n(n + 1)[f N,n (ω)x + jf M,n (ω)ŷ], (24) 
which is formulated by use of the abbreviations:

f α,n (ω) = c 0 A α,n (ω) 2ω E (ω -ω c ) , A α,n (ω) = A α,1n,e (ω) -jA β,1n,o (ω) . (25) 
The radar observable related to backscattering is the mrcs, defined by σ mo = 4πr 2 |E sca (-rẑ, t)| 2 [START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF], where E sca (-rẑ, t) is the time-domain, electric-field vector of the backscattered wave. It can easily be proven by use of ( 23) that:

σ mo = 4π|f (-ẑ, t -r/c 0 ) | 2 = 4π α |f α (τ -2r/c 0 )| 2 , (26) 
where:

f α (t) = n (-j) n n(n + 1)f α,n (t) (27) 
and f (-ẑ, t) ↔ f (-ẑ, ω), f α,n (t) ↔ f α,n (ω) are Fourier-transform pairs. It may be useful to point out that, as r = -rẑ, the space-time variable is τ = t + r/c 0 and, therefore, t -r/c 0 = τ -2r/c 0 . The result of (26) manifests that (a) σ mo is time-dependent and (b) the backscattered pulse at r = -rẑ is delayed by 2r/c 0 with respect to the incident pulse at the same point in space.

Continuous-wave excitation

The marginal case of cw excitation arises with E inc (r, t) = exp {jω c t} x, which implies that τ = t, E(τ ) = 1, and E(ω) = δ(ω). Thus, ( 26) is simplified considerably:

σ mo πα 2 2 = 1 x 2 2 α n (-j) n n(n + 1)A α,n (ω c ) 2 (28) 
and σ mo is, as expected, no longer dependent on the time variable. As σ mo is now referenced to the geometric cross section of the scattering body, which is πa 2 2 in this paper, the formula of (28) manifests the familiar dependence of the normalized mrcs on the inverse second power of the normalized size x 2 = ωc c0 α 2 of the externally spherical body that gives rise to backscattering.

Concentric inclusion -transparent host.

If the host is transparent and the inclusion is centred at the origin of coordinates, it may easily be verified by use

of (19) that A α,n (ω c ) = -jδ αN c n z (1) M,n (x1) z (2) M,n (x1) - z (1) N,n (x1) z (2) N,n (x1)
, where x 1 = ωc c0 a 1 is the normalized size of the pec sphere. Thus, we readily obtain from (28) the well-known result for a free-standing pec sphere [START_REF] Ishimaru | Wave propagation and scattering in random media[END_REF][START_REF] Bohren | Absorption and scattering of light by small particles[END_REF][START_REF]The Mie theory[END_REF]:

σ mo πα 2 1 = 1 x 2 1 n (-1) n (2n + 1) z (1) M,n (x 1 ) z (2) M,n x 1 ) - z (1) N,n (x 1 ) z (2) N,n (x 1 ) 2 . ( 29 
)

Outline of a Detection Scheme

The following steps are taken:

1. We plot σ mo versus x 2 (or x 1 ) by use of ( 28) to find a convenient mdr (i.e., a backscattering peak) of the scattering body under cw excitation.

2. We design a linear chirp (i.e., define f c , B, T ) that targets the aforesaid mdr and then calculate the backscattered pulse by use of ( 26). This requires calculation of f α,n (ω) from ( 25) and use of the inverse FFT algorithm to determine f α,n (t). Subsequently, we determine f α (t) from [START_REF] Stratton | Electromagnetic theory[END_REF] for substitution in [START_REF] Abramowitz | Handbook of mathematical functions[END_REF].

3. We synchronise and scale σ mo (τ ) for comparison with A(τ

) = Π τ -T /2 T .
The presence of a pec inclusion within the dielectric host sphere is expected to be imprinted on the shape of σ mo (τ ). This scheme is firstly applied to a free-standing pec sphere, then to a pec sphere placed at the center of a dielectric host sphere, and ultimately to a pec inclusion placed eccentrically within the host, as shown by Fig. 2.

Free-standing pec sphere

We consider a pec sphere of radius a 1 = 10mm in free space. We use [START_REF] Gradshteyn | Table of integrals, series and products[END_REF], derived from [START_REF] Morse | Methods of theoretical physics, part II[END_REF], to calculate the normalized mrcs -under cw excitationversus the normalized size (Fig. 3). We target the 2nd peak that culminates at

x 1 = 2.3512 and extends in the size range [1.7, 3]. The carrier frequency and the frequency span of the incident chirp are defined so that 2πfc c0 a 1 = 2.3512 and 2πB c0 a 1 = 3 -1.7 = 1.3. Thus, f c = 11.22GHz and B = 6.2GHz. The spectrum of the incident chirp, shown by a blue-line plot in Fig. 3, engulfs the entire targeted mdr if the time-bandwidth product is BT = 615, which sets the chirp duration to T = 99.2ns. The time-domain mrcs σ mo (τ ), which is the response of the free-standing pec sphere to the incident chirp, is shown by Fig. 4. This backscattered pulse, synchronized to the incident chirp and properly scaled, bears remarkable resemblance to the shape of the targeted mdr. Hence, the expectation that a chirp could detect the shape of an mdr is confirmed in this simple case.

It may be realised from ( 26) that

σ mo /4π = |f M | 2 + |f N | 2 .
Hence, this radar observable is actually the sum of the power carried by f M (τ ) and f N (τ ). As f M (τ ) = 0 in the case of a free-standing pec sphere, the backscattered pulse is simply f N (τ ). The power spectral density (psd) of the latter is shown in Fig. 3 by a red-line plot. One might consider the blue-line plot as an input spectrum, the red-line plot as the output spectrum, and the black-line plotthe cw response of the free-standing pec sphere in the backscattering direction -as the transfer function, which amounts to viewing the targeted mdr as a band-pass filter.

Dielectric sphere with concentric pec inclusion

Let the aforesaid pec sphere be placed at the center of an acrylic sphere (n 2 = 1.61 -j0.004) of radius a 2 = 35mm, which is approximately the size of a tennis ball. The wave amplitudes of the scattered wave are given by the 1st of [START_REF] Moneda | Dyadic Green's function of an eccentrically stratified sphere[END_REF] and the mrcs is given by ( 26) or [START_REF] Morse | Methods of theoretical physics, part II[END_REF], depending on the excitation

We compare case 3 to case 2 through Fig. 5. Black-line plots manifest the dependence of σ mo /πα 2 2 on the normalised size x 2 , the thinner line corresponding to case 2. Red/green plots correspond to the psd of the backscattered pulse in the presence/absence of the pec inclusion. We target the first peak of the black-line plots. If the pec inclusion is present, the targeted mdr culminates The psd of f N -f M is absent in cases 1,2,3 -is also shown in Fig. 5, properly scaled and by use of the appropriate line color: red/green in the presence/absence of the inclusion. It is obvious that the psd follows the shape of the corresponding black-line plot. So does the time-domain backscattered pulse (Fig. 6), which proves that the inclusion can readily be detected, if the time-265 domain response of the dielectric sphere in the absence of the inclusion is known beforehand.

An example of improper targeting of the chirp is given by Fig. 7. As the incident chirp targets the 3rd mdr of the black-line plots in Fig. 5 , it is hardly

-4 -3 -2 -1 0 1 0 0.5 1 1.5 2 2.5 
Figure 7: As Fig. 6, but targeting the 3rd mdr of Fig. 5.

possible to tell whether the pec inclusion is present or not because the backscattered pulses that correspond to cases 2 and 3 are now similar in shape. The reason is that the aforesaid, black-line plots are similar to each other in the size range [2.5, 3.5].

Dielectric sphere with eccentric pec inclusion

Finally, we investigate the effect of eventual eccentricity between the dielectric host and the pec inclusion on the backscattered chirp. We start with a few checks under cw excitation. Results from a convergence check are shown in Fig. 8. Those plots are obtained by calculations of σ mo /πα 2 2 over the size range [0, 12] done with ever increasing truncation number n max . Once the eccentricity is set, iterations end when two consecutive values of the mrcs differ by less than 1%. Thus, we find that the truncation number -the lowest integer n max to achieve 1% convergence -increases dramatically with the eccentricity. Convergence is impossible with

d 1 = d 1,max ,
unless x 2 is negligible. The size limit for convergence is, severally, x 2,max = 5, 8, 10, if d 1 /d 1,max = 0.9, 0.7, 0.5. The effect of eccentricity on the truncation number is symptomatic of the fact that a pec inclusion emerging from deep within the host becomes electrically dominant over the surrounding dielectric cover. The backscattered pulse is shown in Fig. 12 and, once more, it is obvious that the pulse shape is a replica of the black-line size plots (Fig. 11) within the targeted range. Moreover, case 4 emerges as the best configuration with regard to the detection of the pec inclusion. Yet, it is perhaps too soon to jump into conclusions about the optimum detection scheme, as the numerical investigation 310 of this paper is only intended to show the possibilities offered by the theory and the computer code that implements the theory.

Comparison to a commercial software

Further validation of our code -written in Fortran -is made by use of CST [36],

a commercially available software. CST results are shown in Fig. 13, alongside 315 ours, for a free-standing pec sphere (case 1), a dielectric sphere (case 2), and a dielectric sphere with a concentric metallic inclusion (case 3). The CST spectra were obtained by use of a time-domain approach based on the finite integration technique. The simulation volume -the scattering object and part of the free space around it -was decomposed into small volume elements (up to about 200,000 of them) and it was enclosed by perfect matched layers placed.

The CST spectra of Fig. 13 are practically identical to ours, which validates both our theory and code. On closer scrutiny, the CST spectra look less smooth than ours, because the former incorporate four times less points than the latter in the size range [0, 3.5], actually 1000 against 4096 points.

An interesting feature of this numerical application was our indirect way of feeding CST with an entire set of excitation frequencies in a single time simulation. If the frequency of the incident wave had been fixed, it would have been possible to select an appropriate time Gaussian excitation, which is a standard choice in the CST software. Yet, the incident chirp is actually a truncated sine wave, the frequency of which varies over a time window. Hence, we calculated the amplitude of the incident wave at each time step externally by Matlab [START_REF]MATLAB Optimization Toolbox (R2017b[END_REF] and then fed CST by those values. Because of this pre-processing of the excitation, it was possible to reduce the time required by CST to produce the entire psd of the backscattered chirp.

The CST spectra of Fig. 13 were calculated on a desktop computer with 3.20GHz Intel c Xeon c 8-core processor in about 6 ′ each, which represents, roughly, 0.5 ′ Matlab pre-processing and 5.5 ′ CST processing. The spectra obtained by our theory/code were calculated on a laptop computer with 3.5GHz

Intel Core i7 processor in less than 1 ′′ each. Considering that our spectra contain four times more points than the CST spectra, we realise that our code is at least 1440 times faster than CST.

Conclusions

The analytical formulation of this radiation problem is concise and somewhat tutorial. Originality lies with the consideration of double modulation of the wave that is incident upon the composite non-spherical body. The analytical solution successfully yields all marginal cases. The general case, implemented mainly by purpose-made Fortran code, provides the necessary basis for the detection of a metallic object concealed in a dielectric host, both of spherical shape. It is shown that the incident chirp can target an entire mdr of the composite body and imprint the shape of that mdr on the envelope of the backscattered pulse. Moreover, the computer code yields the backscattered pulse in seconds, which is essential for design flexibility. By proper design of the incident chirp -an example is given in the numerical experiment -it is possible to detect a concealed metallic inclusion, provided that the response of the host -without the inclusion -is known. The paper focusses on the analytical formulation. The numerical application indicates the potentials of the theory and lays the way for further research, focussed on a detection scheme.

Appendix A

The generic equation ( 15) for the wave amplitudes C α,mn,s can be written concisely as follows:

s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn,s U α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,s ′ = -(δ αM δ so +jδ αN δ se )δ m1 c n U α,n (30) 
by use of the abbreviations:

U α ′ ,n ′ α,n = U (2,1) α,n (k 2 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) + z (2) 
α ′ ,n ′ (k 2 a 1 ) z 

According to [START_REF] Borghese | Sindoni Optical properties of spheres containing a spherical eccentric inclusion[END_REF], W α ′ ,m ′ n ′ ,s ′ α,mn,s = (δ se + jδ so ) W α ′ ,m ′ n ′ ,s ′ α,mn with W α ′ ,m ′ n ′ ,e α,mn =δ αα ′ Âm ′ n ′ mn,1 +δ αβ ′ Bm ′ n ′ mn,1 and W α ′ ,m ′ n ′ ,o α,mn = δ αα ′ Ǎm ′ n ′ mn,1 + δ αβ ′ Bm ′ n ′ mn,1 . Hence, we find:

(δ se + jδ so )

s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn U α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,s ′ = -(δ αM δ so + jδ αN δ se ) δ m1 c n U α,n . (32) 
The outcome is:

s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn U α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,s ′ = -jδ αN δ m1 c n U N,n , (33) 
if s = e, and:

s ′ ,n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,s ′ α,mn U α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,s ′ = jδ αM δ m1 c n U M,n , (34) 
if s = o.

If s ′ were allowed both names e, o in the left-hand sides of ( 33) and ( 34), the result would have been -δ αN U N,n = δ αM U M,n or, equivalently, U α,n = 0. As the latter is wrong, so does the hypothesis that it is possible to consider s ′ = s in ( 33) and ( 34). Hence, s ′ = s = e in [START_REF] Kanellopoulos | Resonant frequencies in an electromagnetic eccentric spherical cavity[END_REF], whereas s ′ = s = o in [START_REF] Xu | Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories[END_REF]. The end-result is: 

n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,
The first of ( 35) yields ( 16) by setting α = M, N and, likewise, the second yields [START_REF] Moneda | Dyadic Green's function of a cluster of spheres[END_REF].

Appendix B

Spherical eigenvectors are usually defined through the scalar eigenfunction f Setting d 1 = 0 into [START_REF] Borghese | Sindoni Optical properties of spheres containing a spherical eccentric inclusion[END_REF], we arrive at the following formula [START_REF] Vervelidou | Scattering of a pulsed wave by a sphere with an eccentric spherical inclusion[END_REF]: By substitution into the right-hand side of (6), we obtain, because of (36), in this marginal case:

W α,
s ′ ,n ′ m ′ ,α ′ W α,mn,s α ′ ,m ′ n ′ ,s ′ F (ι) α ′ ,m ′ n ′ ,s ′ (k 2 r 1 ) = 1 2 δ se F (ι) α,mn (k 2 r 1 )+(-1) m (n + m)! (n -m)! F (ι)
α,-mn (k 2 r 1 )

-jδ so F (ι) α,mn (k 2 r 1 )-(-1) m (n + m)! (n -m)! F (ι) α,-mn (k 2 r 1 ) = δ se F (ι) α,mn,e (k 2 r 1 ) + δ so F (ι) α,mn,o (k 2 r 1 ) = F (ι) α,mn,s (k 2 r 1 ) , which is the left-hand side of (6). Hence, W α,mn,s α ′ ,m ′ n ′ ,s ′ ≡ δ αα ′ δ mm ′ δ nn ′ δ ss ′ , if d 1 = 0.

n

  (x) is either the spherical Bessel function of the 1 st kind j n (x) or the spherical Hankel function of the 2 nd kind h

n

  (x) is the Riccati function that corresponds to z (ι) n (x); P m n (cosθ) is an associated Legendre function of the 1 st kind and τ

  (kr) may be obtained from (2) by substitution of sin(mφ), cos(mφ) by -cos(mφ), sin(mφ), respectively. The ensuing formulation can be made most concise by use of the notation F (ι) α,mn,s (kr) for the spherical eigenvectors, thereby introducing the type index α = {M, N}. Thus, F

  with s = e and L o = n max (n max + 1) equations with s = o, which is a total of L = L e + L o = 2n max (n max + 2) equations. The actual number of unknowns in (15) is also equal to L, because F (ι) α,0n,o (kr) = 0 and, therefore, A α,0n,o , B α,0n,o , C α,0n,o do not occur in (4).
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Figure 2 :

 2 Figure 2: Dielectric sphere with pec inclusion (3-6). Marginal geometries 1,2 serve as reference.

Figure 3 :

 3 Figure 3: Free-standing, pec sphere (cw excitation): σmo/πα 2 1 versus x 1 = 2πf a 1 c 0 (black line). Also shown (properly scaled): psd of incident chirp targeting the 2nd mdr (blue line) and psd of backscattered chirp (red line).

Figure 4 :

 4 Figure 4: Free-standing, pec sphere (chirp excitation): σmo (τ ) versus τ /T (red line) and envelope of incident chirp (blue line). Plots scaled according to Fig. 3.

at x 2

 2 = 1.3 and extends in the size range [1.0, 1.6]. The carrier frequency and the frequency span of the incident chirp are determined by 2πfc c0 a 2 = 1.3, 2πB c0 a 2 = 1.6 -1.0 = 0.6, and, thus, f c = 1.773GHz, B = 0.818GHz. The psd of the incident chirp (not shown) engulfs the entire targeted mdr if the timebandwidth product is BT = 500, which sets the chirp duration to T = 611ns.

Figure 5 :

 5 Figure 5: Dielectric sphere with concentric, pec inclusion (cw excitation): psd of backscattered chirp in the presence/absence (red/green line) of inclusion and plot of σmo/πα 2 2 vs. x 2 (black lines). The incident chirp targets the 1st mdr. The psd plots are scaled to follow the black-line plots.

Figure 6 :

 6 Figure 6: Dielectric sphere with concentric, pec inclusion (chirp excitation): σmo (τ ) vs. τ /T in the presence/absence of inclusion (red/green line). Plots scaled according to Fig. 5.

Figure 8 :

 8 Figure 8: Dielectric sphere with eccentric, pec inclusion (Θ 1 = 60 o , and Φ 1 = 75 o ): plots of nmax versus x 2 . The eccentricity d 1 /d 1,max increases from 0.1 to 0.9.

Figure 9 :

 9 Figure 9: Dielectric sphere with shrinking, eccentric, pec inclusion (d 1 /d 1,max = 0.5, Θ 1 = 0 o , and Φ 1 = 0 o ): plots of σmo/πα 2 2 (cw excitation) versus x 2 . The radius a 1 of the inclusion decreases from 10mm to 0.

Figure 10 :Figure 11 :Figure 12 :

 101112 Figure 10: Dielectric sphere with diving, eccentric, pec inclusion (a 1 = 10mm, Θ 1 = 0 o , and Φ 1 = 0 o ): plots of σmo/πα 2 2 (cw excitation) versus x 2 . The eccentricity d 1 /d 1,max decreases from 0.9 to 0.

Figure 13 :

 13 Figure 13: Plots of psd of backscattered chirp versus x 1 (top -case 1) or x 2 (bottom -cases 2,3), as determined by CST and our theory/code. The CST spectra are shown in place, whereas ours -copied from Figs. 3, 5 -are herein shifted to the right for easier inspection.

( 1 )

 1 α ′ ,n ′ (k 2 a 1 ) U (1,2) α,n (k 2 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ) , U α,n = U (1,1) α,n (k 0 , k 2 , a 2 ) U (2,1) α,n (k 0 , k 2 , a 2 ) -U (1,2) α,n (k 0 , k 2 , a 2 ) U (2,2) α,n (k 0 , k 2 , a 2 ).

  e α,mnU α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,e = -jδ αN δ m1 c n U N,n , n ′ m ′ ,α ′ W α ′ ,m ′ n ′ ,o α,mn U α ′ ,n ′ α,n C α ′ ,m ′ n ′ ,o = jδ αM δ m1 c n U M,n .

2 F

 2 (kr). Evenand odd-symmetry spherical eigenvectors are obtained as follows:F (ι)α,mn,e (kr) =1 (ι) α,mn (kr) + (-1) m (n + m)! (n -m)! F (kr) -(-1) m (n + m)! (n -m)!F ,e (kr) + jF (ι) α,mn,o (kr).

  mn,s α ′ ,m ′ n ′ ,s ′ = 1 2 δ n ′ n δ α ′ α δ se δ m ′ m +(-1) m (n + m)! (n -m)! δ m ′ ,-m -jδ so δ m ′ m -(-1) m (n + m)! (n -m)! δ m ′ ,-m (δ s ′ e +jδ s ′ o ) .

pec inclusion placed at d 1 = 0.5d 1,max , Θ 1 = 0 o , Φ 1 = 0 o and shrinking from a 1 = 10mm to 0, thus passing gradually from case 4 to case 2. Furthermore,